1
|
Liang J, Yang Z, Zhou C. Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits. Neuroscientist 2025; 31:31-46. [PMID: 38291889 DOI: 10.1177/10738584231221766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.
Collapse
Affiliation(s)
- Junhao Liang
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Zhuda Yang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Life Science Imaging Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Research Centre, Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen, China
| |
Collapse
|
2
|
Po HF, Houben AM, Haeb AC, Jenkins DR, Hill EJ, Parri HR, Soriano J, Saad D. Inferring structure of cortical neuronal networks from activity data: A statistical physics approach. PNAS NEXUS 2025; 4:pgae565. [PMID: 39790102 PMCID: PMC11713615 DOI: 10.1093/pnasnexus/pgae565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process. We devise a probabilistic method for inferring the effective network structure by integrating techniques from Bayesian statistics, statistical physics, and principled machine learning. The method and resulting algorithm allow one to infer the effective network structure, identify the excitatory and inhibitory type of its constituents, and predict neuronal spiking activity by employing the inferred structure. We validate the method and algorithm's performance using synthetic data, spontaneous activity of an in silico emulator, and realistic in vitro neuronal networks of modular and homogeneous connectivity, demonstrating excellent structure inference and activity prediction. We also show that our method outperforms commonly used existing methods for inferring neuronal network structure. Inferring the evolving effective structure of neuronal networks will provide new insight into the learning process due to stimulation in general and will facilitate the development of neuron-based circuits with computing capabilities.
Collapse
Affiliation(s)
- Ho Fai Po
- Department of Mathematics, Aston University, Birmingham B4 7ET, United Kingdom
| | - Akke Mats Houben
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona E-08028, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona 08028, Spain
| | - Anna-Christina Haeb
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona E-08028, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona 08028, Spain
| | - David Rhys Jenkins
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
- Aston Institute for Membrane Excellence, Aston University, Birmingham B4 7ET, United Kingdom
| | - Eric J Hill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - H Rheinallt Parri
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
- Aston Institute for Membrane Excellence, Aston University, Birmingham B4 7ET, United Kingdom
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona E-08028, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona 08028, Spain
| | - David Saad
- Department of Mathematics, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
3
|
Zendrikov D, Paraskevov A. The vitals for steady nucleation maps of spontaneous spiking coherence in autonomous two-dimensional neuronal networks. Neural Netw 2024; 180:106589. [PMID: 39217864 DOI: 10.1016/j.neunet.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Thin pancake-like neuronal networks cultured on top of a planar microelectrode array have been extensively tried out in neuroengineering, as a substrate for the mobile robot's control unit, i.e., as a cyborg's brain. Most of these attempts failed due to intricate self-organizing dynamics in the neuronal systems. In particular, the networks may exhibit an emergent spatial map of steady nucleation sites ("n-sites") of spontaneous population spikes. Being unpredictable and independent of the surface electrode locations, the n-sites drastically change local ability of the network to generate spikes. Here, using a spiking neuronal network model with generative spatially-embedded connectome, we systematically show in simulations that the number, location, and relative activity of spontaneously formed n-sites ("the vitals") crucially depend on the samplings of three distributions: (1) the network distribution of neuronal excitability, (2) the distribution of connections between neurons of the network, and (3) the distribution of maximal amplitudes of a single synaptic current pulse. Moreover, blocking the dynamics of a small fraction (about 4%) of non-pacemaker neurons having the highest excitability was enough to completely suppress the occurrence of population spikes and their n-sites. This key result is explained theoretically. Remarkably, the n-sites occur taking into account only short-term synaptic plasticity, i.e., without a Hebbian-type plasticity. As the spiking network model used in this study is strictly deterministic, all simulation results can be accurately reproduced. The model, which has already demonstrated a very high richness-to-complexity ratio, can also be directly extended into the three-dimensional case, e.g., for targeting peculiarities of spiking dynamics in cerebral (or brain) organoids. We recommend the model as an excellent illustrative tool for teaching network-level computational neuroscience, complementing a few benchmark models.
Collapse
Affiliation(s)
- Dmitrii Zendrikov
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| | | |
Collapse
|
4
|
Li J, Bauer R, Rentzeperis I, van Leeuwen C. Adaptive rewiring: a general principle for neural network development. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1410092. [PMID: 39534101 PMCID: PMC11554485 DOI: 10.3389/fnetp.2024.1410092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The nervous system, especially the human brain, is characterized by its highly complex network topology. The neurodevelopment of some of its features has been described in terms of dynamic optimization rules. We discuss the principle of adaptive rewiring, i.e., the dynamic reorganization of a network according to the intensity of internal signal communication as measured by synchronization or diffusion, and its recent generalization for applications in directed networks. These have extended the principle of adaptive rewiring from highly oversimplified networks to more neurally plausible ones. Adaptive rewiring captures all the key features of the complex brain topology: it transforms initially random or regular networks into networks with a modular small-world structure and a rich-club core. This effect is specific in the sense that it can be tailored to computational needs, robust in the sense that it does not depend on a critical regime, and flexible in the sense that parametric variation generates a range of variant network configurations. Extreme variant networks can be associated at macroscopic level with disorders such as schizophrenia, autism, and dyslexia, and suggest a relationship between dyslexia and creativity. Adaptive rewiring cooperates with network growth and interacts constructively with spatial organization principles in the formation of topographically distinct modules and structures such as ganglia and chains. At the mesoscopic level, adaptive rewiring enables the development of functional architectures, such as convergent-divergent units, and sheds light on the early development of divergence and convergence in, for example, the visual system. Finally, we discuss future prospects for the principle of adaptive rewiring.
Collapse
Affiliation(s)
- Jia Li
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Cognitive Science, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Roman Bauer
- NICE Research Group, Computer Science Research Centre, University of Surrey, Guildford, United Kingdom
| | - Ilias Rentzeperis
- Institute of Optics, Spanish National Research Council (CSIC), Madrid, Spain
| | - Cees van Leeuwen
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Cognitive Science, RPTU Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
5
|
Kazemi S, Farokhniaee A, Jamali Y. Criticality and partial synchronization analysis in Wilson-Cowan and Jansen-Rit neural mass models. PLoS One 2024; 19:e0292910. [PMID: 38959236 PMCID: PMC11221676 DOI: 10.1371/journal.pone.0292910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Synchronization is a phenomenon observed in neuronal networks involved in diverse brain activities. Neural mass models such as Wilson-Cowan (WC) and Jansen-Rit (JR) manifest synchronized states. Despite extensive research on these models over the past several decades, their potential of manifesting second-order phase transitions (SOPT) and criticality has not been sufficiently acknowledged. In this study, two networks of coupled WC and JR nodes with small-world topologies were constructed and Kuramoto order parameter (KOP) was used to quantify the amount of synchronization. In addition, we investigated the presence of SOPT using the synchronization coefficient of variation. Both networks reached high synchrony by changing the coupling weight between their nodes. Moreover, they exhibited abrupt changes in the synchronization at certain values of the control parameter not necessarily related to a phase transition. While SOPT was observed only in JR model, neither WC nor JR model showed power-law behavior. Our study further investigated the global synchronization phenomenon that is known to exist in pathological brain states, such as seizure. JR model showed global synchronization, while WC model seemed to be more suitable in producing partially synchronized patterns.
Collapse
Affiliation(s)
- Sheida Kazemi
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - AmirAli Farokhniaee
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Yousef Jamali
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Kourosh-Arami M, Komaki A, Gholami M, Marashi SH, Hejazi S. Heterosynaptic plasticity-induced modulation of synapses. J Physiol Sci 2023; 73:33. [PMID: 38057729 PMCID: PMC10717068 DOI: 10.1186/s12576-023-00893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Plasticity is a common feature of synapses that is stated in different ways and occurs through several mechanisms. The regular action of the brain needs to be balanced in several neuronal and synaptic features, one of which is synaptic plasticity. The different homeostatic processes, including the balance between excitation/inhibition or homeostasis of synaptic weights at the single-neuron level, may obtain this. Homosynaptic Hebbian-type plasticity causes associative alterations of synapses. Both homosynaptic and heterosynaptic plasticity characterize the corresponding aspects of adjustable synapses, and both are essential for the regular action of neural systems and their plastic synapses.In this review, we will compare homo- and heterosynaptic plasticity and the main factors affecting the direction of plastic changes. This review paper will also discuss the diverse functions of the different kinds of heterosynaptic plasticity and their properties. We argue that a complementary system of heterosynaptic plasticity demonstrates an essential cellular constituent for homeostatic modulation of synaptic weights and neuronal activity.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Gholami
- Department of Physiology, Medical College, Arak University of Medical Sciences, Arak, Iran
| | | | - Sara Hejazi
- Department of Industrial Engineering & Management Systems, University of Central Florida, Orlando, USA
| |
Collapse
|
7
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. PLoS Comput Biol 2023; 19:e1011027. [PMID: 37956202 PMCID: PMC10681319 DOI: 10.1371/journal.pcbi.1011027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms of long-term effects remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity among excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). Particularly, the feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced structural reorganization, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Rabus A, Curic D, Ivan VE, Esteves IM, Gruber AJ, Davidsen J. Changes in functional connectivity preserve scale-free neuronal and behavioral dynamics. Phys Rev E 2023; 108:L052301. [PMID: 38115411 DOI: 10.1103/physreve.108.l052301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/06/2023] [Indexed: 12/21/2023]
Abstract
Does the brain optimize itself for storage and transmission of information, and if so, how? The critical brain hypothesis is based in statistical physics and posits that the brain self-tunes its dynamics to a critical point or regime to maximize the repertoire of neuronal responses. Yet, the robustness of this regime, especially with respect to changes in the functional connectivity, remains an unsolved fundamental challenge. Here, we show that both scale-free neuronal dynamics and self-similar features of behavioral dynamics persist following significant changes in functional connectivity. Specifically, we find that the psychedelic compound ibogaine that is associated with an altered state of consciousness fundamentally alters the functional connectivity in the retrosplenial cortex of mice. Yet, the scale-free statistics of movement and of neuronal avalanches among behaviorally related neurons remain largely unaltered. This indicates that the propagation of information within biological neural networks is robust to changes in functional organization of subpopulations of neurons, opening up a new perspective on how the adaptive nature of functional networks may lead to optimality of information transmission in the brain.
Collapse
Affiliation(s)
- Anja Rabus
- Complexity Science Group, Department of Physics and Astronomy University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Davor Curic
- Complexity Science Group, Department of Physics and Astronomy University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Victorita E Ivan
- Canadian Centre for Behavioral Neuroscience University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Ingrid M Esteves
- Canadian Centre for Behavioral Neuroscience University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Aaron J Gruber
- Canadian Centre for Behavioral Neuroscience University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
9
|
Habibollahi F, Kagan BJ, Burkitt AN, French C. Critical dynamics arise during structured information presentation within embodied in vitro neuronal networks. Nat Commun 2023; 14:5287. [PMID: 37648737 PMCID: PMC10469171 DOI: 10.1038/s41467-023-41020-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Understanding how brains process information is an incredibly difficult task. Amongst the metrics characterising information processing in the brain, observations of dynamic near-critical states have generated significant interest. However, theoretical and experimental limitations associated with human and animal models have precluded a definite answer about when and why neural criticality arises with links from attention, to cognition, and even to consciousness. To explore this topic, we used an in vitro neural network of cortical neurons that was trained to play a simplified game of 'Pong' to demonstrate Synthetic Biological Intelligence (SBI). We demonstrate that critical dynamics emerge when neural networks receive task-related structured sensory input, reorganizing the system to a near-critical state. Additionally, better task performance correlated with proximity to critical dynamics. However, criticality alone is insufficient for a neuronal network to demonstrate learning in the absence of additional information regarding the consequences of previous actions. These findings offer compelling support that neural criticality arises as a base feature of incoming structured information processing without the need for higher order cognition.
Collapse
Affiliation(s)
- Forough Habibollahi
- Cortical Labs Pty Ltd, Melbourne, 3056, VIC, Australia
- Biomedical Engineering Department, University of Melbourne, Parkville, 3010, VIC, Australia
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Brett J Kagan
- Cortical Labs Pty Ltd, Melbourne, 3056, VIC, Australia.
| | - Anthony N Burkitt
- Biomedical Engineering Department, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Chris French
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Parkville, 3010, VIC, Australia
- Neurology Department, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
10
|
López-León CF, Soriano J, Planet R. Rheological Characterization of Three-Dimensional Neuronal Cultures Embedded in PEGylated Fibrin Hydrogels. Gels 2023; 9:642. [PMID: 37623097 PMCID: PMC10454106 DOI: 10.3390/gels9080642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Three-dimensional (3D) neuronal cultures are valuable models for studying brain complexity in vitro, and the choice of the bulk material in which the neurons grow is a crucial factor in establishing successful cultures. Indeed, neuronal development and network functionality are influenced by the mechanical properties of the selected material; in turn, these properties may change due to neuron-matrix interactions that alter the microstructure of the material. To advance our understanding of the interplay between neurons and their environment, here we utilized a PEGylated fibrin hydrogel as a scaffold for mouse primary neuronal cultures and carried out a rheological characterization of the scaffold over a three-week period, both with and without cells. We observed that the hydrogels exhibited an elastic response that could be described in terms of the Young's modulus E. The hydrogels without neurons procured a stable E≃420 Pa, while the neuron-laden hydrogels showed a higher E≃590 Pa during the early stages of development that decreased to E≃340 Pa at maturer stages. Our results suggest that neurons and their processes dynamically modify the hydrogel structure during development, potentially compromising both the stability of the material and the functional traits of the developing neuronal network.
Collapse
Affiliation(s)
- Clara F. López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Ramon Planet
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| |
Collapse
|
11
|
Isomura T, Kotani K, Jimbo Y, Friston KJ. Experimental validation of the free-energy principle with in vitro neural networks. Nat Commun 2023; 14:4547. [PMID: 37550277 PMCID: PMC10406890 DOI: 10.1038/s41467-023-40141-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Empirical applications of the free-energy principle are not straightforward because they entail a commitment to a particular process theory, especially at the cellular and synaptic levels. Using a recently established reverse engineering technique, we confirm the quantitative predictions of the free-energy principle using in vitro networks of rat cortical neurons that perform causal inference. Upon receiving electrical stimuli-generated by mixing two hidden sources-neurons self-organised to selectively encode the two sources. Pharmacological up- and downregulation of network excitability disrupted the ensuing inference, consistent with changes in prior beliefs about hidden sources. As predicted, changes in effective synaptic connectivity reduced variational free energy, where the connection strengths encoded parameters of the generative model. In short, we show that variational free energy minimisation can quantitatively predict the self-organisation of neuronal networks, in terms of their responses and plasticity. These results demonstrate the applicability of the free-energy principle to in vitro neural networks and establish its predictive validity in this setting.
Collapse
Affiliation(s)
- Takuya Isomura
- Brain Intelligence Theory Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
- VERSES AI Research Lab, Los Angeles, CA, 90016, USA
| |
Collapse
|
12
|
Burrows DRW, Diana G, Pimpel B, Moeller F, Richardson MP, Bassett DS, Meyer MP, Rosch RE. Microscale Neuronal Activity Collectively Drives Chaotic and Inflexible Dynamics at the Macroscale in Seizures. J Neurosci 2023; 43:3259-3283. [PMID: 37019622 PMCID: PMC7614507 DOI: 10.1523/jneurosci.0171-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 04/07/2023] Open
Abstract
Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global network properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from criticality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dysfunction during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity collectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebrafish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality. Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics, impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.SIGNIFICANCE STATEMENT Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish, which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.
Collapse
Affiliation(s)
- Dominic R W Burrows
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Giovanni Diana
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Birgit Pimpel
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
- Great Ormond Street-University College London Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Friederike Moeller
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
| | - Mark P Richardson
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
- Departments of Electrical and Systems Engineering, Physics and Astronomy, Neurology, and Psychiatry University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
- Santa Fe Institute, Santa Fe NM 87501, New Mexico
| | - Martin P Meyer
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Richard E Rosch
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
| |
Collapse
|
13
|
Okujeni S, Egert U. Structural Modularity Tunes Mesoscale Criticality in Biological Neuronal Networks. J Neurosci 2023; 43:2515-2526. [PMID: 36868860 PMCID: PMC10082461 DOI: 10.1523/jneurosci.1420-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies suggest that biological neuronal networks self-organize toward a critical state with stable recruitment dynamics. Individual neurons would then statistically activate exactly one further neuron during activity cascades termed neuronal avalanches. Yet, it is unclear if and how this can be reconciled with the explosive recruitment dynamics within neocortical minicolumns in vivo and within neuronal clusters in vitro, which indicates that neurons form supercritical local circuits. Theoretical studies propose that modular networks with a mix of regionally subcritical and supercritical dynamics would create apparently critical dynamics, resolving this inconsistency. Here, we provide experimental support by manipulating the structural self-organization process of networks of cultured rat cortical neurons (either sex). Consistent with the prediction, we show that increasing clustering in neuronal networks developing in vitro strongly correlates with avalanche size distributions transitioning from supercritical to subcritical activity dynamics. Avalanche size distributions approximated a power law in moderately clustered networks, indicating overall critical recruitment. We propose that activity-dependent self-organization can tune inherently supercritical networks toward mesoscale criticality by creating a modular structure in neuronal networks.SIGNIFICANCE STATEMENT Critical recruitment dynamics in neuronal networks are considered optimal for information processing in the brain. However, it remains heavily debated how neuronal networks would self-organize criticality by detailed fine-tuning of connectivity, inhibition, and excitability. We provide experimental support for theoretical considerations that modularity tunes critical recruitment dynamics at the mesoscale level of interacting neuron clusters. This reconciles reports of supercritical recruitment dynamics in local neuron clusters with findings on criticality sampled at mesoscopic network scales. Intriguingly, altered mesoscale organization is a prominent aspect of various neuropathological diseases currently investigated in the framework of criticality. We therefore believe that our findings would also be of interest for clinical scientists searching to link the functional and anatomic signatures of such brain disorders.
Collapse
Affiliation(s)
- Samora Okujeni
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering-Institut für Mikrosystemtechnik, Faculty of Engineering, University of Freiburg, 79110 Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Ulrich Egert
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering-Institut für Mikrosystemtechnik, Faculty of Engineering, University of Freiburg, 79110 Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
14
|
Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, Ercsey-Ravasz M, Winkel M, Linde H, Mureșan RC. The fractal brain: scale-invariance in structure and dynamics. Cereb Cortex 2023; 33:4574-4605. [PMID: 36156074 PMCID: PMC10110456 DOI: 10.1093/cercor/bhac363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.
Collapse
Affiliation(s)
- George F Grosu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | | | - Vasile V Moca
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| | - Harald Bârzan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Maria Ercsey-Ravasz
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, Str. Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mathias Winkel
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Helmut Linde
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533396. [PMID: 36993387 PMCID: PMC10055183 DOI: 10.1101/2023.03.20.533396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity between excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). The feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced homeostatic structural plasticity, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Jones SA, Barfield JH, Norman VK, Shew WL. Scale-free behavioral dynamics directly linked with scale-free cortical dynamics. eLife 2023; 12:e79950. [PMID: 36705565 PMCID: PMC9931391 DOI: 10.7554/elife.79950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here, we show that scale-free dynamics of mouse behavior and neurons in the visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.
Collapse
Affiliation(s)
- Sabrina A Jones
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - Jacob H Barfield
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - V Kindler Norman
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - Woodrow L Shew
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| |
Collapse
|
17
|
Weir JS, Christiansen N, Sandvig A, Sandvig I. Selective inhibition of excitatory synaptic transmission alters the emergent bursting dynamics of in vitro neural networks. Front Neural Circuits 2023; 17:1020487. [PMID: 36874945 PMCID: PMC9978115 DOI: 10.3389/fncir.2023.1020487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Neurons in vitro connect to each other and form neural networks that display emergent electrophysiological activity. This activity begins as spontaneous uncorrelated firing in the early phase of development, and as functional excitatory and inhibitory synapses mature, the activity typically emerges as spontaneous network bursts. Network bursts are events of coordinated global activation among many neurons interspersed with periods of silencing and are important for synaptic plasticity, neural information processing, and network computation. While bursting is the consequence of balanced excitatory-inhibitory (E/I) interactions, the functional mechanisms underlying their evolution from physiological to potentially pathophysiological states, such as decreasing or increasing in synchrony, are still poorly understood. Synaptic activity, especially that related to maturity of E/I synaptic transmission, is known to strongly influence these processes. In this study, we used selective chemogenetic inhibition to target and disrupt excitatory synaptic transmission in in vitro neural networks to study functional response and recovery of spontaneous network bursts over time. We found that over time, inhibition resulted in increases in both network burstiness and synchrony. Our results indicate that the disruption in excitatory synaptic transmission during early network development likely affected inhibitory synaptic maturity which resulted in an overall decrease in network inhibition at later stages. These findings lend support to the importance of E/I balance in maintaining physiological bursting dynamics and, conceivably, information processing capacity in neural networks.
Collapse
Affiliation(s)
- Janelle Shari Weir
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicholas Christiansen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway.,Division of Neuro, Head and Neck, Department of Pharmacology and Clinical Neurosciences, Umeå University Hospital, Umeå, Sweden.,Division of Neuro, Head and Neck, Department of Community Medicine and Rehabilitation, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
18
|
Fosque LJ, Alipour A, Zare M, Williams-García RV, Beggs JM, Ortiz G. Quasicriticality explains variability of human neural dynamics across life span. Front Comput Neurosci 2022; 16:1037550. [PMID: 36532868 PMCID: PMC9747757 DOI: 10.3389/fncom.2022.1037550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
Aging impacts the brain's structural and functional organization and over time leads to various disorders, such as Alzheimer's disease and cognitive impairment. The process also impacts sensory function, bringing about a general slowing in various perceptual and cognitive functions. Here, we analyze the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) resting-state magnetoencephalography (MEG) dataset-the largest aging cohort available-in light of the quasicriticality framework, a novel organizing principle for brain functionality which relates information processing and scaling properties of brain activity to brain connectivity and stimulus. Examination of the data using this framework reveals interesting correlations with age and gender of test subjects. Using simulated data as verification, our results suggest a link between changes to brain connectivity due to aging and increased dynamical fluctuations of neuronal firing rates. Our findings suggest a platform to develop biomarkers of neurological health.
Collapse
Affiliation(s)
- Leandro J. Fosque
- Department of Physics, Indiana University, Bloomington, IN, United States
| | - Abolfazl Alipour
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | | | | | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, IN, United States
| | - Gerardo Ortiz
- Department of Physics, Indiana University, Bloomington, IN, United States
| |
Collapse
|
19
|
Neto JP, Spitzner FP, Priesemann V. Sampling effects and measurement overlap can bias the inference of neuronal avalanches. PLoS Comput Biol 2022; 18:e1010678. [PMID: 36445932 PMCID: PMC9733887 DOI: 10.1371/journal.pcbi.1010678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/09/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
To date, it is still impossible to sample the entire mammalian brain with single-neuron precision. This forces one to either use spikes (focusing on few neurons) or to use coarse-sampled activity (averaging over many neurons, e.g. LFP). Naturally, the sampling technique impacts inference about collective properties. Here, we emulate both sampling techniques on a simple spiking model to quantify how they alter observed correlations and signatures of criticality. We describe a general effect: when the inter-electrode distance is small, electrodes sample overlapping regions in space, which increases the correlation between the signals. For coarse-sampled activity, this can produce power-law distributions even for non-critical systems. In contrast, spike recordings do not suffer this particular bias and underlying dynamics can be identified. This may resolve why coarse measures and spikes have produced contradicting results in the past.
Collapse
Affiliation(s)
- Joao Pinheiro Neto
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - F. Paul Spitzner
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
20
|
Heiney K, Huse Ramstad O, Fiskum V, Sandvig A, Sandvig I, Nichele S. Neuronal avalanche dynamics and functional connectivity elucidate information propagation in vitro. Front Neural Circuits 2022; 16:980631. [PMID: 36188125 PMCID: PMC9520060 DOI: 10.3389/fncir.2022.980631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cascading activity is commonly observed in complex dynamical systems, including networks of biological neurons, and how these cascades spread through the system is reliant on how the elements of the system are connected and organized. In this work, we studied networks of neurons as they matured over 50 days in vitro and evaluated both their dynamics and their functional connectivity structures by observing their electrophysiological activity using microelectrode array recordings. Correlations were obtained between features of their activity propagation and functional connectivity characteristics to elucidate the interplay between dynamics and structure. The results indicate that in vitro networks maintain a slightly subcritical state by striking a balance between integration and segregation. Our work demonstrates the complementarity of these two approaches—functional connectivity and avalanche dynamics—in studying information propagation in neurons in vitro, which can in turn inform the design and optimization of engineered computational substrates.
Collapse
Affiliation(s)
- Kristine Heiney
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Kristine Heiney
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
- Department of Community Medicine and Rehabilitation, St. Olav's Hospital, Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science and Communication, Østfold University College, Halden, Norway
| |
Collapse
|
21
|
O'Byrne J, Jerbi K. How critical is brain criticality? Trends Neurosci 2022; 45:820-837. [PMID: 36096888 DOI: 10.1016/j.tins.2022.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
Criticality is the singular state of complex systems poised at the brink of a phase transition between order and randomness. Such systems display remarkable information-processing capabilities, evoking the compelling hypothesis that the brain may itself be critical. This foundational idea is now drawing renewed interest thanks to high-density data and converging cross-disciplinary knowledge. Together, these lines of inquiry have shed light on the intimate link between criticality, computation, and cognition. Here, we review these emerging trends in criticality neuroscience, highlighting new data pertaining to the edge of chaos and near-criticality, and making a case for the distance to criticality as a useful metric for probing cognitive states and mental illness. This unfolding progress in the field contributes to establishing criticality theory as a powerful mechanistic framework for studying emergent function and its efficiency in both biological and artificial neural networks.
Collapse
Affiliation(s)
- Jordan O'Byrne
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada
| | - Karim Jerbi
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada; MILA (Quebec Artificial Intelligence Institute), Montreal, Quebec, Canada; UNIQUE Center (Quebec Neuro-AI Research Center), Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Ivanov VA, Michmizos KP. Astrocytes Learn to Detect and Signal Deviations from Critical Brain Dynamics. Neural Comput 2022; 34:2047-2074. [PMID: 36027803 DOI: 10.1162/neco_a_01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/03/2022] [Indexed: 11/04/2022]
Abstract
Astrocytes are nonneuronal brain cells that were recently shown to actively communicate with neurons and are implicated in memory, learning, and regulation of cognitive states. Interestingly, these information processing functions are also closely linked to the brain's ability to self-organize at a critical phase transition. Investigating the mechanistic link between astrocytes and critical brain dynamics remains beyond the reach of cellular experiments, but it becomes increasingly approachable through computational studies. We developed a biologically plausible computational model of astrocytes to analyze how astrocyte calcium waves can respond to changes in underlying network dynamics. Our results suggest that astrocytes detect synaptic activity and signal directional changes in neuronal network dynamics using the frequency of their calcium waves. We show that this function may be facilitated by receptor scaling plasticity by enabling astrocytes to learn the approximate information content of input synaptic activity. This resulted in a computationally simple, information-theoretic model, which we demonstrate replicating the signaling functionality of the biophysical astrocyte model with receptor scaling. Our findings provide several experimentally testable hypotheses that offer insight into the regulatory role of astrocytes in brain information processing.
Collapse
Affiliation(s)
- Vladimir A Ivanov
- Computational Brain Lab, Department of Computer Science, Rutgers University, Piscataway, NJ 08854, U.S.A.
| | - Konstantinos P Michmizos
- Computational Brain Lab, Department of Computer Science, Rutgers University, Piscataway, NJ 08854, U.S.A.
| |
Collapse
|
23
|
Organization and Priming of Long-term Memory Representations with Two-phase Plasticity. Cognit Comput 2022. [DOI: 10.1007/s12559-022-10021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background / Introduction
In recurrent neural networks in the brain, memories are represented by so-called Hebbian cell assemblies. Such assemblies are groups of neurons with particularly strong synaptic connections formed by synaptic plasticity and consolidated by synaptic tagging and capture (STC). To link these synaptic mechanisms to long-term memory on the level of cognition and behavior, their functional implications on the level of neural networks have to be understood.
Methods
We employ a biologically detailed recurrent network of spiking neurons featuring synaptic plasticity and STC to model the learning and consolidation of long-term memory representations. Using this, we investigate the effects of different organizational paradigms, and of priming stimulation, on the functionality of multiple memory representations. We quantify these effects by the spontaneous activation of memory representations driven by background noise.
Results
We find that the learning order of the memory representations significantly biases the likelihood of activation towards more recently learned representations, and that hub-like overlap structure counters this effect. We identify long-term depression as the mechanism underlying these findings. Finally, we demonstrate that STC has functional consequences for the interaction of long-term memory representations: 1. intermediate consolidation in between learning the individual representations strongly alters the previously described effects, and 2. STC enables the priming of a long-term memory representation on a timescale of minutes to hours.
Conclusion
Our findings show how synaptic and neuronal mechanisms can provide an explanatory basis for known cognitive effects.
Collapse
|
24
|
The Analysis of Mammalian Hearing Systems Supports the Hypothesis That Criticality Favors Neuronal Information Representation but Not Computation. ENTROPY 2022; 24:e24040540. [PMID: 35455203 PMCID: PMC9029204 DOI: 10.3390/e24040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022]
Abstract
In the neighborhood of critical states, distinct materials exhibit the same physical behavior, expressed by common simple laws among measurable observables, hence rendering a more detailed analysis of the individual systems obsolete. It is a widespread view that critical states are fundamental to neuroscience and directly favor computation. We argue here that from an evolutionary point of view, critical points seem indeed to be a natural phenomenon. Using mammalian hearing as our example, we show, however, explicitly that criticality does not describe the proper computational process and thus is only indirectly related to the computation in neural systems.
Collapse
|
25
|
Torres JJ, Marro J. Physics Clues on the Mind Substrate and Attributes. Front Comput Neurosci 2022; 16:836532. [PMID: 35465268 PMCID: PMC9026167 DOI: 10.3389/fncom.2022.836532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
The last decade has witnessed a remarkable progress in our understanding of the brain. This has mainly been based on the scrutiny and modeling of the transmission of activity among neurons across lively synapses. A main conclusion, thus far, is that essential features of the mind rely on collective phenomena that emerge from a willful interaction of many neurons that, mediating other cells, form a complex network whose details keep constantly adapting to their activity and surroundings. In parallel, theoretical and computational studies developed to understand many natural and artificial complex systems, which have truthfully explained their amazing emergent features and precise the role of the interaction dynamics and other conditions behind the different collective phenomena they happen to display. Focusing on promising ideas that arise when comparing these neurobiology and physics studies, the present perspective article shortly reviews such fascinating scenarios looking for clues about how high-level cognitive processes such as consciousness, intelligence, and identity can emerge. We, thus, show that basic concepts of physics, such as dynamical phases and non-equilibrium phase transitions, become quite relevant to the brain activity while determined by factors at the subcellular, cellular, and network levels. We also show how these transitions depend on details of the processing mechanism of stimuli in a noisy background and, most important, that one may detect them in familiar electroencephalogram (EEG) recordings. Thus, we associate the existence of such phases, which reveal a brain operating at (non-equilibrium) criticality, with the emergence of most interesting phenomena during memory tasks.
Collapse
|
26
|
Gallinaro JV, Gašparović N, Rotter S. Homeostatic control of synaptic rewiring in recurrent networks induces the formation of stable memory engrams. PLoS Comput Biol 2022; 18:e1009836. [PMID: 35143489 PMCID: PMC8865699 DOI: 10.1371/journal.pcbi.1009836] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/23/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Brain networks store new memories using functional and structural synaptic plasticity. Memory formation is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in stabilizing network dynamics. Here we report that homeostatic plasticity alone can also lead to the formation of stable memories. We analyze this phenomenon using a new theory of network remodeling, combined with numerical simulations of recurrent spiking neural networks that exhibit structural plasticity based on firing rate homeostasis. These networks are able to store repeatedly presented patterns and recall them upon the presentation of incomplete cues. Storage is fast, governed by the homeostatic drift. In contrast, forgetting is slow, driven by a diffusion process. Joint stimulation of neurons induces the growth of associative connections between them, leading to the formation of memory engrams. These memories are stored in a distributed fashion throughout connectivity matrix, and individual synaptic connections have only a small influence. Although memory-specific connections are increased in number, the total number of inputs and outputs of neurons undergo only small changes during stimulation. We find that homeostatic structural plasticity induces a specific type of "silent memories", different from conventional attractor states.
Collapse
Affiliation(s)
- Júlia V. Gallinaro
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Nebojša Gašparović
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
27
|
Kazemi S, Jamali Y. Phase synchronization and measure of criticality in a network of neural mass models. Sci Rep 2022; 12:1319. [PMID: 35079038 PMCID: PMC8789819 DOI: 10.1038/s41598-022-05285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
Synchronization has an important role in neural networks dynamics that is mostly accompanied by cognitive activities such as memory, learning, and perception. These activities arise from collective neural behaviors and are not totally understood yet. This paper aims to investigate a cortical model from this perspective. Historically, epilepsy has been regarded as a functional brain disorder associated with excessive synchronization of large neural populations. Epilepsy is believed to arise as a result of complex interactions between neural networks characterized by dynamic synchronization. In this paper, we investigated a network of neural populations in a way the dynamics of each node corresponded to the Jansen-Rit neural mass model. First, we study a one-column Jansen-Rit neural mass model for four different input levels. Then, we considered a Watts-Strogatz network of Jansen-Rit oscillators. We observed an epileptic activity in the weak input level. The network is considered to change various parameters. The detailed results including the mean time series, phase spaces, and power spectrum revealed a wide range of different behaviors such as epilepsy, healthy, and a transition between synchrony and asynchrony states. In some points of coupling coefficients, there is an abrupt change in the order parameters. Since the critical state is a dynamic candidate for healthy brains, we considered some measures of criticality and investigated them at these points. According to our study, some markers of criticality can occur at these points, while others may not. This occurrence is a result of the nature of the specific order parameter selected to observe these markers. In fact, The definition of a proper order parameter is key and must be defined properly. Our view is that the critical points exhibit clear characteristics and invariance of scale, instead of some types of markers. As a result, these phase transition points are not critical as they show no evidence of scaling invariance.
Collapse
Affiliation(s)
- Sheida Kazemi
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Jamali
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
28
|
Hu L, Rech J, Bouet JY, Liu J. Spatial control over near-critical-point operation ensures fidelity of ParABS-mediated DNA partition. Biophys J 2021; 120:3911-3924. [PMID: 34418367 PMCID: PMC8511131 DOI: 10.1016/j.bpj.2021.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/26/2021] [Accepted: 08/13/2021] [Indexed: 01/20/2023] Open
Abstract
In bacteria, most low-copy-number plasmid and chromosomally encoded partition systems belong to the tripartite ParABS partition machinery. Despite the importance in genetic inheritance, the mechanisms of ParABS-mediated genome partition are not well understood. Combining theory and experiment, we provided evidence that the ParABS system-DNA partitioning in vivo via the ParA-gradient-based Brownian ratcheting-operates near a transition point in parameter space (i.e., a critical point), across which the system displays qualitatively different motile behaviors. This near-critical-point operation adapts the segregation distance of replicated plasmids to the half length of the elongating nucleoid, ensuring both cell halves to inherit one copy of the plasmids. Further, we demonstrated that the plasmid localizes the cytoplasmic ParA to buffer the partition fidelity against the large cell-to-cell fluctuations in ParA level. The spatial control over the near-critical-point operation not only ensures both sensitive adaptation and robust execution of partitioning but also sheds light on the fundamental question in cell biology: how do cells faithfully measure cellular-scale distance by only using molecular-scale interactions?
Collapse
Affiliation(s)
- Longhua Hu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse, UPS, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse, UPS, Toulouse, France.
| | - Jian Liu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
29
|
Miller SR, Yu S, Pajevic S, Plenz D. Long-term stability of avalanche scaling and integrative network organization in prefrontal and premotor cortex. Netw Neurosci 2021; 5:505-526. [PMID: 34189375 PMCID: PMC8233112 DOI: 10.1162/netn_a_00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022] Open
Abstract
Ongoing neuronal activity in the brain establishes functional networks that reflect normal and pathological brain function. Most estimates of these functional networks suffer from low spatiotemporal resolution and indirect measures of neuronal population activity, limiting the accuracy and reliability in their reconstruction over time. Here, we studied the stability of neuronal avalanche dynamics and corresponding reconstructed functional networks in the adult brain. Using chronically implanted high-density microelectrode arrays, the local field potential (LFP) of resting-state activity was recorded in prefrontal and premotor cortex of awake nonhuman primates. Avalanche dynamics revealed stable scaling exhibiting an inverted parabolic profile and collapse exponent of 2 in line with a critical branching process over many days and weeks. Functional networks were based on a Bayesian-derived estimator and demonstrated stable integrative properties characterized by nontrivial high neighborhood overlap between strongly connected nodes and robustness to weak-link pruning. Entropy-based mixing analysis revealed significant changes in strong link weights over weeks. The long-term stability in avalanche scaling and integrative network organization in the face of individual link weight changes should support the development of noninvasive biomarkers to characterize normal and abnormal brain states in the adult brain. The brain is spontaneously active even in the absence of specific sensations or movements. This ongoing activity arises from the interactions among hundreds of thousands of neurons, which has been captured by a variety of distinct functional networks predictive of healthy and pathological brain functions. The global dynamical states and overarching network principles that underlie such ongoing brain activity are not well understood. Here we identify avalanche dynamics and “friendship” networks as two major features of ongoing activity in the frontal cortex of nonhuman primates. We demonstrate their stability over weeks in the face of local network changes. Deviation from avalanche dynamics and “friendship” organization might provide robust biomarkers to identify normal and pathological brain states.
Collapse
Affiliation(s)
- Stephanie R Miller
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Shan Yu
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Sinisa Pajevic
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Development, NIH, Bethesda, MD, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Valderhaug VD, Heiney K, Ramstad OH, Bråthen G, Kuan WL, Nichele S, Sandvig A, Sandvig I. Early functional changes associated with alpha-synuclein proteinopathy in engineered human neural networks. Am J Physiol Cell Physiol 2021; 320:C1141-C1152. [PMID: 33950697 DOI: 10.1152/ajpcell.00413.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A patterned spread of proteinopathy represents a common characteristic of many neurodegenerative diseases. In Parkinson's disease (PD), misfolded forms of α-synuclein proteins accumulate in hallmark pathological inclusions termed Lewy bodies and Lewy neurites. Such protein aggregates seem to affect selectively vulnerable neuronal populations in the substantia nigra and to propagate within interconnected neuronal networks. Research findings suggest that these proteinopathic inclusions are present at very early time points in disease development, even before clear behavioral symptoms of dysfunction arise. In this study, we investigate the early pathophysiology developing after induced formation of such PD-related α-synuclein inclusions in a physiologically relevant in vitro setup using engineered human neural networks. We monitor the neural network activity using multielectrode arrays (MEAs) for a period of 3 wk following proteinopathy induction to identify associated changes in network function, with a special emphasis on the measure of network criticality. Self-organized criticality represents the critical point between resilience against perturbation and adaptational flexibility, which appears to be a functional trait in self-organizing neural networks, both in vitro and in vivo. We show that although developing pathology at early onset is not clearly manifest in standard measurements of network function, it may be discerned by investigating differences in network criticality states.
Collapse
Affiliation(s)
- Vibeke D Valderhaug
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristine Heiney
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Wei-Li Kuan
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Nichele
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav's Hospital, Trondheim, Norway.,Department of Clinical Neurosciences, Umeå University Hospital, Umeå, Sweden.,Department of Rehabilitation Medicine, Umeå University Hospital, Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden.,Clinical Sciences, Umeå University, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
31
|
Fagerholm ED, Foulkes WMC, Gallero-Salas Y, Helmchen F, Friston KJ, Leech R, Moran RJ. Neural Systems Under Change of Scale. Front Comput Neurosci 2021; 15:643148. [PMID: 33967728 PMCID: PMC8099030 DOI: 10.3389/fncom.2021.643148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
We derive a theoretical construct that allows for the characterisation of both scalable and scale free systems within the dynamic causal modelling (DCM) framework. We define a dynamical system to be "scalable" if the same equation of motion continues to apply as the system changes in size. As an example of such a system, we simulate planetary orbits varying in size and show that our proposed methodology can be used to recover Kepler's third law from the timeseries. In contrast, a "scale free" system is one in which there is no characteristic length scale, meaning that images of such a system are statistically unchanged at different levels of magnification. As an example of such a system, we use calcium imaging collected in murine cortex and show that the dynamical critical exponent, as defined in renormalization group theory, can be estimated in an empirical biological setting. We find that a task-relevant region of the cortex is associated with higher dynamical critical exponents in task vs. spontaneous states and vice versa for a task-irrelevant region.
Collapse
Affiliation(s)
- Erik D. Fagerholm
- Department of Neuroimaging, King’s College London, London, United Kingdom
| | - W. M. C. Foulkes
- Department of Physics, Imperial College London, London, United Kingdom
| | - Yasir Gallero-Salas
- Brain Research Institute, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Robert Leech
- Department of Neuroimaging, King’s College London, London, United Kingdom
| | - Rosalyn J. Moran
- Department of Neuroimaging, King’s College London, London, United Kingdom
| |
Collapse
|
32
|
Turkheimer FE, Rosas FE, Dipasquale O, Martins D, Fagerholm ED, Expert P, Váša F, Lord LD, Leech R. A Complex Systems Perspective on Neuroimaging Studies of Behavior and Its Disorders. Neuroscientist 2021; 28:382-399. [PMID: 33593120 PMCID: PMC9344570 DOI: 10.1177/1073858421994784] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study of complex systems deals with emergent behavior that arises as
a result of nonlinear spatiotemporal interactions between a large
number of components both within the system, as well as between the
system and its environment. There is a strong case to be made that
neural systems as well as their emergent behavior and disorders can be
studied within the framework of complexity science. In particular, the
field of neuroimaging has begun to apply both theoretical and
experimental procedures originating in complexity science—usually in
parallel with traditional methodologies. Here, we illustrate the basic
properties that characterize complex systems and evaluate how they
relate to what we have learned about brain structure and function from
neuroimaging experiments. We then argue in favor of adopting a complex
systems-based methodology in the study of neuroimaging, alongside
appropriate experimental paradigms, and with minimal influences from
noncomplex system approaches. Our exposition includes a review of the
fundamental mathematical concepts, combined with practical examples
and a compilation of results from the literature.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK.,Data Science Institute, Imperial College London, London, UK.,Centre for Complexity Science, Imperial College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erik D Fagerholm
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul Expert
- Global Digital Health Unit, School of Public Health, Imperial College London, London, UK
| | - František Váša
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Robert Leech
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
33
|
Heiney K, Huse Ramstad O, Fiskum V, Christiansen N, Sandvig A, Nichele S, Sandvig I. Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural Computation. Front Comput Neurosci 2021; 15:611183. [PMID: 33643017 PMCID: PMC7902700 DOI: 10.3389/fncom.2021.611183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023] Open
Abstract
It has been hypothesized that the brain optimizes its capacity for computation by self-organizing to a critical point. The dynamical state of criticality is achieved by striking a balance such that activity can effectively spread through the network without overwhelming it and is commonly identified in neuronal networks by observing the behavior of cascades of network activity termed "neuronal avalanches." The dynamic activity that occurs in neuronal networks is closely intertwined with how the elements of the network are connected and how they influence each other's functional activity. In this review, we highlight how studying criticality with a broad perspective that integrates concepts from physics, experimental and theoretical neuroscience, and computer science can provide a greater understanding of the mechanisms that drive networks to criticality and how their disruption may manifest in different disorders. First, integrating graph theory into experimental studies on criticality, as is becoming more common in theoretical and modeling studies, would provide insight into the kinds of network structures that support criticality in networks of biological neurons. Furthermore, plasticity mechanisms play a crucial role in shaping these neural structures, both in terms of homeostatic maintenance and learning. Both network structures and plasticity have been studied fairly extensively in theoretical models, but much work remains to bridge the gap between theoretical and experimental findings. Finally, information theoretical approaches can tie in more concrete evidence of a network's computational capabilities. Approaching neural dynamics with all these facets in mind has the potential to provide a greater understanding of what goes wrong in neural disorders. Criticality analysis therefore holds potential to identify disruptions to healthy dynamics, granted that robust methods and approaches are considered.
Collapse
Affiliation(s)
- Kristine Heiney
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicholas Christiansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Holistic Systems, Simula Metropolitan, Oslo, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
34
|
Bellay T, Shew WL, Yu S, Falco-Walter JJ, Plenz D. Selective Participation of Single Cortical Neurons in Neuronal Avalanches. Front Neural Circuits 2021; 14:620052. [PMID: 33551757 PMCID: PMC7862716 DOI: 10.3389/fncir.2020.620052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal avalanches are scale-invariant neuronal population activity patterns in the cortex that emerge in vivo in the awake state and in vitro during balanced excitation and inhibition. Theory and experiments suggest that avalanches indicate a state of cortex that improves numerous aspects of information processing by allowing for the transient and selective formation of local as well as system-wide spanning neuronal groups. If avalanches are indeed involved with information processing, one might expect that single neurons would participate in avalanche patterns selectively. Alternatively, all neurons could participate proportionally to their own activity in each avalanche as would be expected for a population rate code. Distinguishing these hypotheses, however, has been difficult as robust avalanche analysis requires technically challenging measures of their intricate organization in space and time at the population level, while also recording sub- or suprathreshold activity from individual neurons with high temporal resolution. Here, we identify repeated avalanches in the ongoing local field potential (LFP) measured with high-density microelectrode arrays in the cortex of awake nonhuman primates and in acute cortex slices from young and adult rats. We studied extracellular unit firing in vivo and intracellular responses of pyramidal neurons in vitro. We found that single neurons participate selectively in specific LFP-based avalanche patterns. Furthermore, we show in vitro that manipulating the balance of excitation and inhibition abolishes this selectivity. Our results support the view that avalanches represent the selective, scale-invariant formation of neuronal groups in line with the idea of Hebbian cell assemblies underlying cortical information processing.
Collapse
Affiliation(s)
- Timothy Bellay
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Woodrow L. Shew
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Shan Yu
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jessica J. Falco-Walter
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
35
|
Niizato T, Sakamoto K, Mototake YI, Murakami H, Tomaru T, Hoshika T, Fukushima T. Four-Types of IIT-Induced Group Integrity of Plecoglossus altivelis. ENTROPY 2020; 22:e22070726. [PMID: 33286497 PMCID: PMC7517268 DOI: 10.3390/e22070726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022]
Abstract
Integrated information theory (IIT) was initially proposed to describe human consciousness in terms of intrinsic-causal brain network structures. Particularly, IIT 3.0 targets the system's cause-effect structure from spatio-temporal grain and reveals the system's irreducibility. In a previous study, we tried to apply IIT 3.0 to an actual collective behaviour in Plecoglossus altivelis. We found that IIT 3.0 exhibits qualitative discontinuity between three and four schools of fish in terms of Φ value distributions. Other measures did not show similar characteristics. In this study, we followed up on our previous findings and introduced two new factors. First, we defined the global parameter settings to determine a different kind of group integrity. Second, we set several timescales (from Δ t = 5 / 120 to Δ t = 120 / 120 s). The results showed that we succeeded in classifying fish schools according to their group sizes and the degree of group integrity around the reaction time scale of the fish, despite the small group sizes. Compared with the short time scale, the interaction heterogeneity observed in the long time scale seems to diminish. Finally, we discuss one of the longstanding paradoxes in collective behaviour, known as the heap paradox, for which two tentative answers could be provided through our IIT 3.0 analysis.
Collapse
Affiliation(s)
- Takayuki Niizato
- Faculty of Engineering, Information and Systems University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; (T.H.); (T.F.)
- Correspondence: (T.N.); (K.S.)
| | - Kotaro Sakamoto
- Leading Graduate School Doctoral Program in Human Biology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Correspondence: (T.N.); (K.S.)
| | - Yoh-ichi Mototake
- The Institute of Statistical Mathematics, Tachikawa, Tokyo 190-0014, Japan;
| | - Hisashi Murakami
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-0041, Japan;
| | - Takenori Tomaru
- Department of Computer Science and Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan;
| | - Tomotaro Hoshika
- Faculty of Engineering, Information and Systems University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; (T.H.); (T.F.)
| | - Toshiki Fukushima
- Faculty of Engineering, Information and Systems University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; (T.H.); (T.F.)
| |
Collapse
|
36
|
A neuro-inspired general framework for the evolution of stochastic dynamical systems: Cellular automata, random Boolean networks and echo state networks towards criticality. Cogn Neurodyn 2020; 14:657-674. [PMID: 33014179 PMCID: PMC7501380 DOI: 10.1007/s11571-020-09600-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 10/27/2022] Open
Abstract
Although deep learning has recently increased in popularity, it suffers from various problems including high computational complexity, energy greedy computation, and lack of scalability, to mention a few. In this paper, we investigate an alternative brain-inspired method for data analysis that circumvents the deep learning drawbacks by taking the actual dynamical behavior of biological neural networks into account. For this purpose, we develop a general framework for dynamical systems that can evolve and model a variety of substrates that possess computational capacity. Therefore, dynamical systems can be exploited in the reservoir computing paradigm, i.e., an untrained recurrent nonlinear network with a trained linear readout layer. Moreover, our general framework, called EvoDynamic, is based on an optimized deep neural network library. Hence, generalization and performance can be balanced. The EvoDynamic framework contains three kinds of dynamical systems already implemented, namely cellular automata, random Boolean networks, and echo state networks. The evolution of such systems towards a dynamical behavior, called criticality, is investigated because systems with such behavior may be better suited to do useful computation. The implemented dynamical systems are stochastic and their evolution with genetic algorithm mutates their update rules or network initialization. The obtained results are promising and demonstrate that criticality is achieved. In addition to the presented results, our framework can also be utilized to evolve the dynamical systems connectivity, update and learning rules to improve the quality of the reservoir used for solving computational tasks and physical substrate modeling.
Collapse
|
37
|
Cramer B, Stöckel D, Kreft M, Wibral M, Schemmel J, Meier K, Priesemann V. Control of criticality and computation in spiking neuromorphic networks with plasticity. Nat Commun 2020; 11:2853. [PMID: 32503982 PMCID: PMC7275091 DOI: 10.1038/s41467-020-16548-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/23/2020] [Indexed: 11/08/2022] Open
Abstract
The critical state is assumed to be optimal for any computation in recurrent neural networks, because criticality maximizes a number of abstract computational properties. We challenge this assumption by evaluating the performance of a spiking recurrent neural network on a set of tasks of varying complexity at - and away from critical network dynamics. To that end, we developed a plastic spiking network on a neuromorphic chip. We show that the distance to criticality can be easily adapted by changing the input strength, and then demonstrate a clear relation between criticality, task-performance and information-theoretic fingerprint. Whereas the information-theoretic measures all show that network capacity is maximal at criticality, only the complex tasks profit from criticality, whereas simple tasks suffer. Thereby, we challenge the general assumption that criticality would be beneficial for any task, and provide instead an understanding of how the collective network state should be tuned to task requirement.
Collapse
Affiliation(s)
- Benjamin Cramer
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany.
| | - David Stöckel
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany
| | - Markus Kreft
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany
| | - Michael Wibral
- Campus Institute for Dynamics of Biological Networks, Georg-August University, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| | - Johannes Schemmel
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany
| | - Karlheinz Meier
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany
| | - Viola Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Georg-August University, Am Faßberg 17, 37077, Göttingen, Germany.
- Department of Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
| |
Collapse
|
38
|
Seven Properties of Self-Organization in the Human Brain. BIG DATA AND COGNITIVE COMPUTING 2020. [DOI: 10.3390/bdcc4020010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: (1) modular connectivity, (2) unsupervised learning, (3) adaptive ability, (4) functional resiliency, (5) functional plasticity, (6) from-local-to-global functional organization, and (7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward.
Collapse
|
39
|
Niizato T, Sakamoto K, Mototake YI, Murakami H, Tomaru T, Hoshika T, Fukushima T. Finding continuity and discontinuity in fish schools via integrated information theory. PLoS One 2020; 15:e0229573. [PMID: 32107495 PMCID: PMC7046263 DOI: 10.1371/journal.pone.0229573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
Collective behaviours are known to be the result of diverse dynamics and are sometimes likened to living systems. Although many studies have revealed the dynamics of various collective behaviours, their main focus has been on the information processing performed by the collective, not on interactions within the collective. For example, the qualitative difference between three and four elements in a system has rarely been investigated. Tononi et al. proposed integrated information theory (IIT) to measure the degree of consciousness Φ. IIT postulates that the amount of information loss caused by the minimum information partition is equivalent to the degree of information integration in the system. This measure is not only useful for estimating the degree of consciousness but can also be applied to more general network systems. Here, we obtained two main results from the application of IIT (in particular, IIT 3.0) to the analysis of real fish schools (Plecoglossus altivelis). First, we observed that the discontinuity on 〈Φ(N)〉 distributions emerges for a school of four or more fish. This transition was not observed by measuring the mutual information or the sum of the transfer entropy. We also analysed the IIT on Boids simulations with respect to different coupling strengths; however, the results of the Boids model were found to be quite different from those of real fish. Second, we found a correlation between this discontinuity and the emergence of leadership. We discriminate leadership in this paper from its traditional meaning (e.g. defined by transfer entropy) because IIT-induced leadership refers not to group behaviour, as in other methods, but the degree of autonomy (i.e. group integrity). These results suggest that integrated information Φ can reveal the emergence of a new type of leadership which cannot be observed using other measures.
Collapse
Affiliation(s)
- Takayuki Niizato
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kotaro Sakamoto
- University of Tsukuba, Leading Graduate School Doctoral Program in Human Biology, Tsukuba, Japan
| | | | - Hisashi Murakami
- University of Tokyo, Research Center for Advanced Science and Technology, Tokyo, Japan
| | - Takenori Tomaru
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Tomotaro Hoshika
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiki Fukushima
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
40
|
Marhl U, Gosak M. Proper spatial heterogeneities expand the regime of scale-free behavior in a lattice of excitable elements. Phys Rev E 2019; 100:062203. [PMID: 31962506 DOI: 10.1103/physreve.100.062203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 06/10/2023]
Abstract
Signatures of criticality, such as power law scaling of observables, have been empirically found in a plethora of real-life settings, including biological systems. The presence of critical states is believed to have many functional advantages and is associated with optimal operational abilities. Typically, critical dynamics arises in the proximity of phase transition points between absorbing disordered states (subcriticality) and ordered active regimes (supercriticality) and requires a high degree of fine tuning to emerge, which is unlikely to occur in real biological systems. In the present study we propose a rather simple, and biologically relevant mechanism that profoundly expands the critical-like region. In particular, by means of numerical simulation we show that incorporating spatial heterogeneities into the square lattice of map-based excitable oscillators broadens the parameter space in which the distribution of excitation wave sizes follows closely a power law. Most importantly, this behavior is only observed if the spatial profile exhibits intermediate-sized patches with similar excitability levels, whereas for large and small spatial clusters only marginal widening of the critical state is detected. Furthermore, it turned out that the presence of spatial disorder in general amplifies the size of excitation waves, whereby the relatively highest contributions are observed in the proximity of the critical point. We argue that the reported mechanism is of particular importance for excitable systems with local interactions between individual elements.
Collapse
Affiliation(s)
- Urban Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- Institute of Physiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
41
|
Skilling QM, Ognjanovski N, Aton SJ, Zochowski M. Critical Dynamics Mediate Learning of New Distributed Memory Representations in Neuronal Networks. ENTROPY 2019; 21:1043. [PMCID: PMC7514347 DOI: 10.3390/e21111043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 02/01/2025]
Abstract
We explore the possible role of network dynamics near a critical point in the storage of new information in silico and in vivo, and show that learning and memory may rely on neuronal network features mediated by the vicinity of criticality. Using a mean-field, attractor-based model, we show that new information can be consolidated into attractors through state-based learning in a dynamical regime associated with maximal susceptibility at the critical point. Then, we predict that the subsequent consolidation process results in a shift from critical to sub-critical dynamics to fully encapsulate the new information. We go on to corroborate these findings using analysis of rodent hippocampal CA1 activity during contextual fear memory (CFM) consolidation. We show that the dynamical state of the CA1 network is inherently poised near criticality, but the network also undergoes a shift towards sub-critical dynamics due to successful consolidation of the CFM. Based on these findings, we propose that dynamical features associated with criticality may be universally necessary for storing new memories.
Collapse
Affiliation(s)
- Quinton M. Skilling
- Biophysics Program, University of Michigan, 930 N University Ave., Ann Arbor, MI 48109, USA;
| | - Nicolette Ognjanovski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N University Ave., Ann Arbor, MI 48109, USA; (N.O.) (S.J.A.)
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N University Ave., Ann Arbor, MI 48109, USA; (N.O.) (S.J.A.)
| | - Michal Zochowski
- Biophysics Program, University of Michigan, 930 N University Ave., Ann Arbor, MI 48109, USA;
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, Wang A, Wu W, Haddad GG, Chaim IA, Domissy A, Vandenberghe M, Devor A, Yeo GW, Voytek B, Muotri AR. Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development. Cell Stem Cell 2019; 25:558-569.e7. [PMID: 31474560 PMCID: PMC6778040 DOI: 10.1016/j.stem.2019.08.002] [Citation(s) in RCA: 495] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/03/2019] [Accepted: 08/06/2019] [Indexed: 01/05/2023]
Abstract
Structural and transcriptional changes during early brain maturation follow fixed developmental programs defined by genetics. However, whether this is true for functional network activity remains unknown, primarily due to experimental inaccessibility of the initial stages of the living human brain. Here, we developed human cortical organoids that dynamically change cellular populations during maturation and exhibited consistent increases in electrical activity over the span of several months. The spontaneous network formation displayed periodic and regular oscillatory events that were dependent on glutamatergic and GABAergic signaling. The oscillatory activity transitioned to more spatiotemporally irregular patterns, and synchronous network events resembled features similar to those observed in preterm human electroencephalography. These results show that the development of structured network activity in a human neocortex model may follow stable genetic programming. Our approach provides opportunities for investigating and manipulating the role of network activity in the developing human cortex.
Collapse
Affiliation(s)
- Cleber A Trujillo
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard Gao
- Neurosciences Graduate Program, Institute for Neural Computation, Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Priscilla D Negraes
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing Gu
- Center for Epigenomics, Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justin Buchanan
- Center for Epigenomics, Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Allen Wang
- Center for Epigenomics, Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Wu
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabriel G Haddad
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Isaac A Chaim
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alain Domissy
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthieu Vandenberghe
- Department of Radiology, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna Devor
- Department of Radiology, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Gene W Yeo
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bradley Voytek
- Neurosciences Graduate Program, Institute for Neural Computation, Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind and Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind and Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Wilting J, Priesemann V. 25 years of criticality in neuroscience - established results, open controversies, novel concepts. Curr Opin Neurobiol 2019; 58:105-111. [PMID: 31546053 DOI: 10.1016/j.conb.2019.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/25/2019] [Indexed: 12/19/2022]
Abstract
Twenty-five years ago, Dunkelmann and Radons (1994) showed that neural networks can self-organize to a critical state. In models, the critical state offers a number of computational advantages. Thus this hypothesis, and in particular the experimental work by Beggs and Plenz (2003), has triggered an avalanche of research, with thousands of studies referring to it. Nonetheless, experimental results are still contradictory. How is it possible, that a hypothesis has attracted active research for decades, but nonetheless remains controversial? We discuss the experimental and conceptual controversy, and then present a parsimonious solution that (i) unifies the contradictory experimental results, (ii) avoids disadvantages of a critical state, and (iii) enables rapid, adaptive tuning of network properties to task requirements.
Collapse
Affiliation(s)
- J Wilting
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - V Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany; Bernstein-Center for Computational Neuroscience, Göttingen, Germany
| |
Collapse
|
44
|
Okujeni S, Egert U. Self-organization of modular network architecture by activity-dependent neuronal migration and outgrowth. eLife 2019; 8:47996. [PMID: 31526478 PMCID: PMC6783273 DOI: 10.7554/elife.47996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
The spatial distribution of neurons and activity-dependent neurite outgrowth shape long-range interaction, recurrent local connectivity and the modularity in neuronal networks. We investigated how this mesoscale architecture develops by interaction of neurite outgrowth, cell migration and activity in cultured networks of rat cortical neurons and show that simple rules can explain variations of network modularity. In contrast to theoretical studies on activity-dependent outgrowth but consistent with predictions for modular networks, spontaneous activity and the rate of synchronized bursts increased with clustering, whereas peak firing rates in bursts increased in highly interconnected homogeneous networks. As Ca2+ influx increased exponentially with increasing network recruitment during bursts, its modulation was highly correlated to peak firing rates. During network maturation, long-term estimates of Ca2+ influx showed convergence, even for highly different mesoscale architectures, neurite extent, connectivity, modularity and average activity levels, indicating homeostatic regulation towards a common set-point of Ca2+ influx.
Collapse
Affiliation(s)
- Samora Okujeni
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ulrich Egert
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Teppola H, Aćimović J, Linne ML. Unique Features of Network Bursts Emerge From the Complex Interplay of Excitatory and Inhibitory Receptors in Rat Neocortical Networks. Front Cell Neurosci 2019; 13:377. [PMID: 31555093 PMCID: PMC6742722 DOI: 10.3389/fncel.2019.00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
Spontaneous network activity plays a fundamental role in the formation of functional networks during early development. The landmark of this activity is the recurrent emergence of intensive time-limited network bursts (NBs) rapidly spreading across the entire dissociated culture in vitro. The main excitatory mediators of NBs are glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-Methyl-D-aspartic-acid receptors (NMDARs) that express fast and slow ion channel kinetics, respectively. The fast inhibition of the activity is mediated through gamma-aminobutyric acid type A receptors (GABAARs). Although the AMPAR, NMDAR and GABAAR kinetics have been biophysically characterized in detail at the monosynaptic level in a variety of brain areas, the unique features of NBs emerging from the kinetics and the complex interplay of these receptors are not well understood. The goal of this study is to analyze the contribution of fast GABAARs on AMPAR- and NMDAR- mediated spontaneous NB activity in dissociated neonatal rat cortical cultures at 3 weeks in vitro. The networks were probed by both acute and gradual application of each excitatory receptor antagonist and combinations of acute excitatory and inhibitory receptor antagonists. At the same time, the extracellular network-wide activity was recorded with microelectrode arrays (MEAs). We analyzed the characteristic NB measures extracted from NB rate profiles and the distributions of interspike intervals, interburst intervals, and electrode recruitment time as well as the similarity of spatio-temporal patterns of network activity under different receptor antagonists. We show that NBs were rapidly initiated and recruited as well as diversely propagated by AMPARs and temporally and spatially maintained by NMDARs. GABAARs reduced the spiking frequency in AMPAR-mediated networks and dampened the termination of NBs in NMDAR-mediated networks as well as slowed down the recruitment of activity in all networks. Finally, we show characteristic super bursts composed of slow NBs with highly repetitive spatio-temporal patterns in gradually AMPAR blocked networks. To the best of our knowledge, this study is the first to unravel in detail how the three main mediators of synaptic transmission uniquely shape the NB characteristics, such as the initiation, maintenance, recruitment and termination of NBs in cortical cell cultures in vitro.
Collapse
Affiliation(s)
- Heidi Teppola
- Computational Neuroscience Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jugoslava Aćimović
- Computational Neuroscience Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marja-Leena Linne
- Computational Neuroscience Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
46
|
Stožer A, Markovič R, Dolenšek J, Perc M, Marhl M, Slak Rupnik M, Gosak M. Heterogeneity and Delayed Activation as Hallmarks of Self-Organization and Criticality in Excitable Tissue. Front Physiol 2019; 10:869. [PMID: 31333504 PMCID: PMC6624746 DOI: 10.3389/fphys.2019.00869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Self-organized critical dynamics is assumed to be an attractive mode of functioning for several real-life systems and entails an emergent activity in which the extent of observables follows a power-law distribution. The hallmarks of criticality have recently been observed in a plethora of biological systems, including beta cell populations within pancreatic islets of Langerhans. In the present study, we systematically explored the mechanisms that drive the critical and supercritical behavior in networks of coupled beta cells under different circumstances by means of experimental and computational approaches. Experimentally, we employed high-speed functional multicellular calcium imaging of fluorescently labeled acute mouse pancreas tissue slices to record calcium signals in a large number of beta cells simultaneously, and with a high spatiotemporal resolution. Our experimental results revealed that the cellular responses to stimulation with glucose are biphasic and glucose-dependent. Under physiological as well as under supraphysiological levels of stimulation, an initial activation phase was followed by a supercritical plateau phase with a high number of global intercellular calcium waves. However, the activation phase displayed fingerprints of critical behavior under lower stimulation levels, with a progressive recruitment of cells and a power-law distribution of calcium wave sizes. On the other hand, the activation phase provoked by pathophysiologically high glucose concentrations, differed considerably and was more rapid, less continuous, and supercritical. To gain a deeper insight into the experimentally observed complex dynamical patterns, we built up a phenomenological model of coupled excitable cells and explored empirically the model’s necessities that ensured a good overlap between computational and experimental results. It turned out that such a good agreement between experimental and computational findings was attained when both heterogeneous and stimulus-dependent time lags, variability in excitability levels, as well as a heterogeneous cell-cell coupling were included into the model. Most importantly, since our phenomenological approach involved only a few parameters, it naturally lends itself not only for determining key mechanisms of self-organized criticality at the tissue level, but also points out various features for comprehensive and realistic modeling of different excitable systems in nature.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Faculty of Education, University of Maribor, Maribor, Slovenia.,Faculty of Energy Technology, University of Maribor, Krško, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia.,Complexity Science Hub Vienna, Vienna, Austria
| | - Marko Marhl
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Institute of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
47
|
Sandvig A, Sandvig I. Connectomics of Morphogenetically Engineered Neurons as a Predictor of Functional Integration in the Ischemic Brain. Front Neurol 2019; 10:630. [PMID: 31249553 PMCID: PMC6582372 DOI: 10.3389/fneur.2019.00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Recent advances in cell reprogramming technologies enable the in vitro generation of theoretically unlimited numbers of cells, including cells of neural lineage and specific neuronal subtypes from human, including patient-specific, somatic cells. Similarly, as demonstrated in recent animal studies, by applying morphogenetic neuroengineering principles in situ, it is possible to reprogram resident brain cells to the desired phenotype. These developments open new exciting possibilities for cell replacement therapy in stroke, albeit not without caveats. Main challenges include the successful integration of engineered cells in the ischemic brain to promote functional restoration as well as the fact that the underlying mechanisms of action are not fully understood. In this review, we aim to provide new insights to the above in the context of connectomics of morphogenetically engineered neural networks. Specifically, we discuss the relevance of combining advanced interdisciplinary approaches to: validate the functionality of engineered neurons by studying their self-organizing behavior into neural networks as well as responses to stroke-related pathology in vitro; derive structural and functional connectomes from these networks in healthy and perturbed conditions; and identify and extract key elements regulating neural network dynamics, which might predict the behavior of grafted engineered neurons post-transplantation in the stroke-injured brain.
Collapse
Affiliation(s)
- Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
48
|
Tyukin IY, Iudin D, Iudin F, Tyukina T, Kazantsev V, Mukhina I, Gorban AN. Simple model of complex dynamics of activity patterns in developing networks of neuronal cultures. PLoS One 2019; 14:e0218304. [PMID: 31246978 PMCID: PMC6597067 DOI: 10.1371/journal.pone.0218304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
Living neuronal networks in dissociated neuronal cultures are widely known for their ability to generate highly robust spatiotemporal activity patterns in various experimental conditions. Such patterns are often treated as neuronal avalanches that satisfy the power scaling law and thereby exemplify self-organized criticality in living systems. A crucial question is how these patterns can be explained and modeled in a way that is biologically meaningful, mathematically tractable and yet broad enough to account for neuronal heterogeneity and complexity. Here we derive and analyse a simple network model that may constitute a response to this question. Our derivations are based on few basic phenomenological observations concerning the input-output behavior of an isolated neuron. A distinctive feature of the model is that at the simplest level of description it comprises of only two variables, the network activity variable and an exogenous variable corresponding to energy needed to sustain the activity, and few parameters such as network connectivity and efficacy of signal transmission. The efficacy of signal transmission is modulated by the phenomenological energy variable. Strikingly, this simple model is already capable of explaining emergence of network spikes and bursts in developing neuronal cultures. The model behavior and predictions are consistent with published experimental evidence on cultured neurons. At the larger, cellular automata scale, introduction of the energy-dependent regulatory mechanism results in the overall model behavior that can be characterized as balancing on the edge of the network percolation transition. Network activity in this state shows population bursts satisfying the scaling avalanche conditions. This network state is self-sustainable and represents energetic balance between global network-wide processes and spontaneous activity of individual elements.
Collapse
Affiliation(s)
- Ivan Y. Tyukin
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- Saint-Petersburg State Electrotechnical University (LETI), Saint-Petersburg, Russia
- University of Leicester, Leicester, United Kingdom
- * E-mail:
| | - Dmitriy Iudin
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- Institute of Applied Physics of RAS, Nizhny Novgorod, Russia
| | - Feodor Iudin
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | | | - Victor Kazantsev
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- Institute of Applied Physics of RAS, Nizhny Novgorod, Russia
| | - Irina Mukhina
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - Alexander N. Gorban
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- University of Leicester, Leicester, United Kingdom
| |
Collapse
|
49
|
Millán AP, Torres JJ, Marro J. How Memory Conforms to Brain Development. Front Comput Neurosci 2019; 13:22. [PMID: 31057385 PMCID: PMC6477510 DOI: 10.3389/fncom.2019.00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Nature exhibits countless examples of adaptive networks, whose topology evolves constantly coupled with the activity due to its function. The brain is an illustrative example of a system in which a dynamic complex network develops by the generation and pruning of synaptic contacts between neurons while memories are acquired and consolidated. Here, we consider a recently proposed brain developing model to study how mechanisms responsible for the evolution of brain structure affect and are affected by memory storage processes. Following recent experimental observations, we assume that the basic rules for adding and removing synapses depend on local synaptic currents at the respective neurons in addition to global mechanisms depending on the mean connectivity. In this way a feedback loop between "form" and "function" spontaneously emerges that influences the ability of the system to optimally store and retrieve sensory information in patterns of brain activity or memories. In particular, we report here that, as a consequence of such a feedback-loop, oscillations in the activity of the system among the memorized patterns can occur, depending on parameters, reminding mind dynamical processes. Such oscillations have their origin in the destabilization of memory attractors due to the pruning dynamics, which induces a kind of structural disorder or noise in the system at a long-term scale. This constantly modifies the synaptic disorder induced by the interference among the many patterns of activity memorized in the system. Such new intriguing oscillatory behavior is to be associated only to long-term synaptic mechanisms during the network evolution dynamics, and it does not depend on short-term synaptic processes, as assumed in other studies, that are not present in our model.
Collapse
Affiliation(s)
| | - Joaquín J. Torres
- Institute “Carlos I” for Theoretical and Computational Physics, University of Granada, Granada, Spain
| | | |
Collapse
|
50
|
Abstract
The firing rate of neuronal spiking in vitro and in vivo significantly varies over extended timescales, characterized by long-memory processes and complex statistics, and appears in spontaneous as well as evoked activity upon repeated stimulus presentation. These variations in response features and their statistics, in face of repeated instances of a given physical input, are ubiquitous in all levels of brain-behavior organization. They are expressed in single neuron and network response variability but even appear in variations of subjective percepts or psychophysical choices and have been described as stemming from history-dependent, stochastic, or rate-determined processes.But what are the sources underlying these temporally rich variations in firing rate? Are they determined by interactions of the nervous system as a whole, or do isolated, single neurons or neuronal networks already express these fluctuations independent of higher levels? These questions motivated the application of a method that allows for controlled and specific long-term activation of a single neuron or neuronal network, isolated from higher levels of cortical organization.This chapter highlights the research done in cultured cortical networks to study (1) the inherent non-stationarity of neuronal network activity, (2) single neuron response fluctuations and underlying processes, and (3) the interface layer between network and single cell, the non-stationary efficacy of the ensemble of synapses impinging onto the observed neuron.
Collapse
|