1
|
Rao X, Liu W. A Guide to Metabolic Network Modeling for Plant Biology. PLANTS (BASEL, SWITZERLAND) 2025; 14:484. [PMID: 39943046 PMCID: PMC11820892 DOI: 10.3390/plants14030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Plants produce a diverse array of compounds that play crucial roles in growth, in development, and in responses to abiotic and biotic stresses. Understanding the fluxes within metabolic pathways is essential for guiding strategies aimed at directing metabolism for crop improvement and the plant natural product industry. Over the past decade, metabolic network modeling has emerged as a predominant tool for the integration, quantification, and prediction of the spatial and temporal distribution of metabolic flows. In this review, we present the primary methods for constructing mathematical models of metabolic systems and highlight recent achievements in plant metabolism using metabolic modeling. Furthermore, we discuss current challenges in applying network flux analysis in plants and explore the potential use of machine learning technologies in plant metabolic modeling. The practical application of mathematical modeling is expected to provide significant insights into the structure and regulation of plant metabolic networks.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, China
| |
Collapse
|
2
|
Rao X, Barros J. Modeling lignin biosynthesis: a pathway to renewable chemicals. TRENDS IN PLANT SCIENCE 2024; 29:546-559. [PMID: 37802691 DOI: 10.1016/j.tplants.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Plant biomass contains lignin that can be converted into high-value-added chemicals, fuels, and materials. The precise genetic manipulation of lignin content and composition in plant cells offers substantial environmental and economic benefits. However, the intricate regulatory mechanisms governing lignin formation challenge the development of crops with specific lignin profiles. Mathematical models and computational simulations have recently been employed to gain fundamental understanding of the metabolism of lignin and related phenolic compounds. This review article discusses the strategies used for modeling plant metabolic networks, focusing on the application of mathematical modeling for flux network analysis in monolignol biosynthesis. Furthermore, we highlight how current challenges might be overcome to optimize the use of metabolic modeling approaches for developing lignin-engineered plants.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jaime Barros
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
3
|
Uddin N, Li X, Ullah MW, Sethupathy S, Ma K, Zahoor, Elboughdiri N, Khan KA, Zhu D. Lignin developmental patterns and Casparian strip as apoplastic barriers: A review. Int J Biol Macromol 2024; 260:129595. [PMID: 38253138 DOI: 10.1016/j.ijbiomac.2024.129595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Lignin and Casparian strips are two essential components of plant cells that play critical roles in plant development regulate nutrients and water across the plants cell. Recent studies have extensively investigated lignin diversity and Casparian strip formation, providing valuable insights into plant physiology. This review presents the established lignin biosynthesis pathway, as well as the developmental patterns of lignin and Casparian strip and transcriptional network associated with Casparian strip formation. It describes the biochemical and genetic mechanisms that regulate lignin biosynthesis and deposition in different plants cell types and tissues. Additionally, the review highlights recent studies that have uncovered novel lignin biosynthesis genes and enzymatic pathways, expanding our understanding of lignin diversity. This review also discusses the developmental patterns of Casparian strip in roots and their role in regulating nutrient and water transport, focusing on recent genetic and molecular studies that have identified regulators of Casparian strip formation. Previous research has shown that lignin biosynthesis genes also play a role in Casparian strip formation, suggesting that these processes are interconnected. In conclusion, this comprehensive overview provides insights into the developmental patterns of lignin diversity and Casparian strip as apoplastic barriers. It also identifies future research directions, including the functional characterization of novel lignin biosynthesis genes and the identification of additional regulators of Casparian strip formation. Overall, this review enhances our understanding of the complex and interconnected processes that drive plant growth, pathogen defense, regulation and development.
Collapse
Affiliation(s)
- Nisar Uddin
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xia Li
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Keyu Ma
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Bioengineering and Molecular Biology of Miscanthus. ENERGIES 2022. [DOI: 10.3390/en15144941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Miscanthus is a perennial wild plant that is vital for the production of paper and roofing, as well as horticulture and the development of new high-yielding crops in temperate climates. Chromosome-level assembly of the ancient tetraploid genome of miscanthus chromosomes is reported to provide resources that can link its chromosomes to related diploid sorghum and complex polyploid sugarcane. Analysis of Miscanthus sinensis and Miscanthus sacchariflorus showed intense mixing and interspecific hybridization and documented the origin of a high-yielding triploid bioenergetic plant, Miscanthus × giganteus. The Miscanthus genome expands comparative genomics functions to better understand the main abilities of Andropogoneae herbs. Miscanthus × giganteus is widely regarded as a promising lignocellulosic biomass crop due to its high-biomass yield, which does not emit toxic compounds into the environment, and ability to grow in depleted lands. The high production cost of lignocellulosic bioethanol limits its commercialization. The main components that inhibit the enzymatic reactions of fermentation and saccharification are lignin in the cell wall and its by-products released during the pre-treatment stage. One approach to overcoming this barrier could be to genetically modify the genes involved in lignin biosynthesis, manipulating the lignin content and composition of miscanthus.
Collapse
|
5
|
Assessing the impact of substrate-level enzyme regulations limiting ethanol titer in Clostridium thermocellum using a core kinetic model. Metab Eng 2022; 69:286-301. [PMID: 34982997 DOI: 10.1016/j.ymben.2021.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022]
Abstract
Clostridium thermocellum is a promising candidate for consolidated bioprocessing because it can directly ferment cellulose to ethanol. Despite significant efforts, achieved yields and titers fall below industrially relevant targets. This implies that there still exist unknown enzymatic, regulatory, and/or possibly thermodynamic bottlenecks that can throttle back metabolic flow. By (i) elucidating internal metabolic fluxes in wild-type C. thermocellum grown on cellobiose via 13C-metabolic flux analysis (13C-MFA), (ii) parameterizing a core kinetic model, and (iii) subsequently deploying an ensemble-docking workflow for discovering substrate-level regulations, this paper aims to reveal some of these factors and expand our knowledgebase governing C. thermocellum metabolism. Generated 13C labeling data were used with 13C-MFA to generate a wild-type flux distribution for the metabolic network. Notably, flux elucidation through MFA alluded to serine generation via the mercaptopyruvate pathway. Using the elucidated flux distributions in conjunction with batch fermentation process yield data for various mutant strains, we constructed a kinetic model of C. thermocellum core metabolism (i.e. k-ctherm138). Subsequently, we used the parameterized kinetic model to explore the effect of removing substrate-level regulations on ethanol yield and titer. Upon exploring all possible simultaneous (up to four) regulation removals we identified combinations that lead to many-fold model predicted improvement in ethanol titer. In addition, by coupling a systematic method for identifying putative competitive inhibitory mechanisms using K-FIT kinetic parameterization with the ensemble-docking workflow, we flagged 67 putative substrate-level inhibition mechanisms across central carbon metabolism supported by both kinetic formalism and docking analysis.
Collapse
|
6
|
Chao N, Yu T, Hou C, Liu L, Zhang L. Genome-wide analysis of the lignin toolbox for morus and the roles of lignin related genes in response to zinc stress. PeerJ 2021; 9:e11964. [PMID: 34434666 PMCID: PMC8351576 DOI: 10.7717/peerj.11964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Mulberry (Morus, Moraceae) is an important economic plant with nutritional, medicinal, and ecological values. Lignin in mulberry can affect the quality of forage and the saccharification efficiency of mulberry twigs. The availability of the Morus notabilis genome makes it possible to perform a systematic analysis of the genes encoding the 11 protein families specific to the lignin branch of the phenylpropanoid pathway, providing the core genes for the lignin toolbox in mulberry. We performed genome-wide screening, which was combined with de novo transcriptome data for Morus notabilis and Morus alba variety Fengchi, to identify putative members of the lignin gene families followed by phylogenetic and expression profile analyses. We focused on bona fide clade genes and their response to zinc stress were further distinguished based on expression profiles using RNA-seq and RT-qPCR. We finally identified 31 bona fide genes in Morus notabilis and 25 bona fide genes in Fengchi. The putative function of these bona fide genes was proposed, and a lignin toolbox that comprised 19 genes in mulberry was provided, which will be convenient for researchers to explore and modify the monolignol biosynthesis pathway in mulberry. We also observed changes in the expression of some of these lignin biosynthetic genes in response to stress caused by excess zinc in Fengchi and proposed that the enhanced lignin biosynthesis in lignified organs and inhibition of lignin biosynthesis in leaf is an important response to zinc stress in mulberry.
Collapse
Affiliation(s)
- Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, Jiangsu Province, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Ting Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, Jiangsu Province, China
| | - Chong Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, Jiangsu Province, China
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, Jiangsu Province, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Lin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, Jiangsu Province, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
7
|
Matthews ML, Wang JP, Sederoff R, Chiang VL, Williams CM. A multiscale model of lignin biosynthesis for predicting bioenergy traits in Populus trichocarpa. Comput Struct Biotechnol J 2020; 19:168-182. [PMID: 33425249 PMCID: PMC7773863 DOI: 10.1016/j.csbj.2020.11.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Understanding the mechanisms behind lignin formation is an important research area with significant implications for the bioenergy and biomaterial industries. Computational models are indispensable tools for understanding this complex process. Models of the monolignol pathway in Populus trichocarpa and other plants have been developed to explore how transgenic modifications affect important bioenergy traits. Many of these models, however, only capture one level of biological organization and are unable to capture regulation across multiple biological scales. This limits their ability to predict how gene modification strategies will impact lignin and other wood properties. While the first multiscale model of lignin biosynthesis in P. trichocarpa spanned the transcript, protein, metabolic, and phenotypic layers, it did not account for cross-regulatory influences that could impact abundances of untargeted monolignol transcripts and proteins. Here, we present a multiscale model incorporating these cross-regulatory influences for predicting lignin and wood traits from transgenic knockdowns of the monolignol genes. The three main components of this multiscale model are (1) a transcript-protein model capturing cross-regulatory influences, (2) a kinetic-based metabolic model, and (3) random forest models relating the steady state metabolic fluxes to 25 physical traits. We demonstrate that including the cross-regulatory behavior results in smaller predictive error for 23 of the 25 traits. We use this multiscale model to explore the predicted impact of novel combinatorial knockdowns on key bioenergy traits, and identify the perturbation of PtrC3H3 and PtrCAld5H1&2 monolignol genes as a candidate strategy for increasing saccharification efficiencies while reducing negative impacts on wood density and height.
Collapse
Affiliation(s)
- Megan L Matthews
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.,Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.,Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Cranos M Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Dixon RA, Barros J. Lignin biosynthesis: old roads revisited and new roads explored. Open Biol 2019; 9:190215. [PMID: 31795915 PMCID: PMC6936255 DOI: 10.1098/rsob.190215] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
Lignin is a major component of secondarily thickened plant cell walls and is considered to be the second most abundant biopolymer on the planet. At one point believed to be the product of a highly controlled polymerization procedure involving just three potential monomeric components (monolignols), it is becoming increasingly clear that the composition of lignin is quite flexible. Furthermore, the biosynthetic pathways to the major monolignols also appear to exhibit flexibility, particularly as regards the early reactions leading to the formation of caffeic acid from coumaric acid. The operation of parallel pathways to caffeic acid occurring at the level of shikimate esters or free acids may help provide robustness to the pathway under different physiological conditions. Several features of the pathway also appear to link monolignol biosynthesis to both generation and detoxification of hydrogen peroxide, one of the oxidants responsible for creating monolignol radicals for polymerization in the apoplast. Monolignol transport to the apoplast is not well understood. It may involve passive diffusion, although this may be targeted to sites of lignin initiation/polymerization by ordered complexes of both biosynthetic enzymes on the cytosolic side of the plasma membrane and structural anchoring of proteins for monolignol oxidation and polymerization on the apoplastic side. We present several hypothetical models to illustrate these ideas and stimulate further research. These are based primarily on studies in model systems, which may or may not reflect the major lignification process in forest trees.
Collapse
Affiliation(s)
- Richard A. Dixon
- Hagler Institute for Advanced Studies and Department of Biological Sciences, Texas A&M University, College Station, TX, USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203-5017, USA
| | - Jaime Barros
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203-5017, USA
| |
Collapse
|
9
|
Zhou K, Hu L, Li Y, Chen X, Zhang Z, Liu B, Li P, Gong X, Ma F. MdUGT88F1-Mediated Phloridzin Biosynthesis Regulates Apple Development and Valsa Canker Resistance. PLANT PHYSIOLOGY 2019; 180:2290-2305. [PMID: 31227620 PMCID: PMC6670087 DOI: 10.1104/pp.19.00494] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/09/2019] [Indexed: 05/03/2023]
Abstract
In apple (Malus domestica), the polyphenol profile is dominated by phloridzin, but its physiological role remains largely elusive. Here, we used MdUGT88F1 (a key UDP-glucose:phloretin 2'-O-glucosyltransferase gene) transgenic apple lines and Malus spp. germplasm to gain more insight into the physiological role of phloridzin in apple. Decreasing phloridzin biosynthesis in apple lines by RNA silencing of MdUGT88F1 led to a series of severe phenotypic changes that included severe stunting, reduced internode length, spindly leaf shape, increased stem numbers, and weak adventitious roots. These changes were associated directly with reduced lignin levels and disorders in cell wall polysaccharides. Moreover, compact organization of tissues and thickened bark enhanced resistance to Valsa canker (caused by the fungus Valsa mali), which was associated with lignin- and cell wall polysaccharide-mediated increases of salicylic acid and reactive oxygen species. Phloridzin was also assumed to be utilized directly as a sugar alternative and a toxin accelerator by V. mali in apple. Therefore, after infection with V. mali, a higher level of phloridzin slightly compromised resistance to Valsa canker in MdUGT88F1-overexpressing apple lines. Taken together, our results shed light on the importance of MdUGT88F1-mediated biosynthesis of phloridzin in the interplay between plant development and pathogen resistance in apple trees.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangtiansu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingbing Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Wang JP, Matthews ML, Naik PP, Williams CM, Ducoste JJ, Sederoff RR, Chiang VL. Flux modeling for monolignol biosynthesis. Curr Opin Biotechnol 2019; 56:187-192. [DOI: 10.1016/j.copbio.2018.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/30/2018] [Accepted: 12/02/2018] [Indexed: 10/27/2022]
|
11
|
Vanholme R, De Meester B, Ralph J, Boerjan W. Lignin biosynthesis and its integration into metabolism. Curr Opin Biotechnol 2019; 56:230-239. [PMID: 30913460 DOI: 10.1016/j.copbio.2019.02.018] [Citation(s) in RCA: 409] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/22/2019] [Indexed: 11/25/2022]
Abstract
Lignin is a principal structural component of cell walls in higher terrestrial plants. It reinforces the cell walls, facilitates water transport, and acts as a physical barrier to pathogens. Lignin is typically described as being composed of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units that derive from the polymerization of the hydroxycinnamyl alcohols, p-coumaryl, coniferyl, and sinapyl alcohol, respectively. However, lignin also derives from various other aromatic monomers. Here, we review the biosynthetic pathway to the lignin monomers, and how flux through the pathway is regulated. Upon perturbation of the phenylpropanoid pathway, pathway intermediates may successfully incorporate into the lignin polymer, thereby affecting its physicochemical properties, or may remain soluble as such or as derivatized molecules that might interfere with physiological processes.
Collapse
Affiliation(s)
- Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Barbara De Meester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - John Ralph
- Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA; Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
12
|
Daly P, McClellan C, Maluk M, Oakey H, Lapierre C, Waugh R, Stephens J, Marshall D, Barakate A, Tsuji Y, Goeminne G, Vanholme R, Boerjan W, Ralph J, Halpin C. RNAi-suppression of barley caffeic acid O-methyltransferase modifies lignin despite redundancy in the gene family. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:594-607. [PMID: 30133138 PMCID: PMC6381794 DOI: 10.1111/pbi.13001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/18/2018] [Indexed: 05/12/2023]
Abstract
Caffeic acid O-methyltransferase (COMT), the lignin biosynthesis gene modified in many brown-midrib high-digestibility mutants of maize and sorghum, was targeted for downregulation in the small grain temperate cereal, barley (Hordeum vulgare), to improve straw properties. Phylogenetic and expression analyses identified the barley COMT orthologue(s) expressed in stems, defining a larger gene family than in brachypodium or rice with three COMT genes expressed in lignifying tissues. RNAi significantly reduced stem COMT protein and enzyme activity, and modestly reduced stem lignin content while dramatically changing lignin structure. Lignin syringyl-to-guaiacyl ratio was reduced by ~50%, the 5-hydroxyguaiacyl (5-OH-G) unit incorporated into lignin at 10--15-fold higher levels than normal, and the amount of p-coumaric acid ester-linked to cell walls was reduced by ~50%. No brown-midrib phenotype was observed in any RNAi line despite significant COMT suppression and altered lignin. The novel COMT gene family structure in barley highlights the dynamic nature of grass genomes. Redundancy in barley COMTs may explain the absence of brown-midrib mutants in barley and wheat. The barley COMT RNAi lines nevertheless have the potential to be exploited for bioenergy applications and as animal feed.
Collapse
Affiliation(s)
- Paul Daly
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
- Present address:
Fungal PhysiologyWesterdijk Fungal Biodiversity Institute and Fungal Molecular PhysiologyUtrecht UniversityUtrechtThe Netherlands
| | - Christopher McClellan
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| | - Marta Maluk
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| | - Helena Oakey
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
- Faculty of SciencesSchool of Agriculture, Food and WineUniversity of AdelaideAdelaideAustralia
| | - Catherine Lapierre
- UMR1318 INRA‐AgroParistechIJPBUniversite Paris‐SaclayVersailles CedexFrance
| | - Robbie Waugh
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
- Cell and Molecular SciencesJames Hutton InstituteDundeeUK
| | | | - David Marshall
- Information and Computational SciencesJames Hutton InstituteDundeeUK
| | - Abdellah Barakate
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| | - Yukiko Tsuji
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Energy's Great Lakes Bioenergy Research CenterThe Wisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Geert Goeminne
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Wout Boerjan
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - John Ralph
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Energy's Great Lakes Bioenergy Research CenterThe Wisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Claire Halpin
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| |
Collapse
|
13
|
Hossain MZ, Ishiga Y, Yamanaka N, Ogiso-Tanaka E, Yamaoka Y. Soybean leaves transcriptomic data dissects the phenylpropanoid pathway genes as a defence response against Phakopsora pachyrhizi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:424-433. [PMID: 30290334 DOI: 10.1016/j.plaphy.2018.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 05/02/2023]
Abstract
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is responsible for severe yield losses of up to 90% in all soybean producing countries. Till today, eight resistance to Phakopsora pachyrhizi (Rpp) loci have been mapped in soybean. Their resistance mechanism is race specific but largely unknown. The transcriptomes of susceptible BRS184 and Rpp3 with ASR isolates T1-2 at 24 h after inoculation (hai) and without ASR inoculation (mock) were annotated by similarity searching with different databases. A total of 4518 differentially expressed genes were identified. We found 70.89%, 56.61%, 32.13%, and 56.04% genes in the protein family databases (PFAM), Gene Ontology (GO), Eukaryotic clusters of Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG), respectively. KEGG disclosed that 52% of the phenylpropanoid pathway related genes were up-regulated. The relative gene expression study for selected genes of that pathway was conducted by RT-qPCR using Rpp1-Rpp4 carrying lines with T1-2 infection. The RT-qPCR results revealed that the Rpp lines utilized these genes in a rate limiting manner as a defence response. With the exception of glycinol 4-dimethylallyltransferase (G4DT) and chalcone reductase (CHR), all the genes showed the greatest expression at 12 hai, but the gene expressions which occur between 24 and 96 hai make these Rpp lines unique to their respective ASR isolates. Moreover, functional coordination of arogenate dehydratase 6 (ADT6) and 4-hydroxy-3-methylbut-2-enyl diphosphate synthase (ispG), chalcone synthase (CHS) and CHR, and G4DT and phytyltransferase 3 (PT3) may have a great impact on soybean resistance against ASR.
Collapse
Affiliation(s)
- Md Zakir Hossain
- Bangladesh Jute Research Institute, Dhaka, 1207, Bangladesh; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Naoki Yamanaka
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Eri Ogiso-Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yuichi Yamaoka
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
14
|
Faraji M, Fonseca LL, Escamilla-Treviño L, Barros-Rios J, Engle NL, Yang ZK, Tschaplinski TJ, Dixon RA, Voit EO. A dynamic model of lignin biosynthesis in Brachypodium distachyon. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:253. [PMID: 30250505 PMCID: PMC6145374 DOI: 10.1186/s13068-018-1241-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND Lignin is a crucial molecule for terrestrial plants, as it offers structural support and permits the transport of water over long distances. The hardness of lignin reduces plant digestibility by cattle and sheep; it also makes inedible plant materials recalcitrant toward the enzymatic fermentation of cellulose, which is a potentially valuable substrate for sustainable biofuels. Targeted attempts to change the amount or composition of lignin in relevant plant species have been hampered by the fact that the lignin biosynthetic pathway is difficult to understand, because it uses several enzymes for the same substrates, is regulated in an ill-characterized manner, may operate in different locations within cells, and contains metabolic channels, which the plant may use to funnel initial substrates into specific monolignols. RESULTS We propose a dynamic mathematical model that integrates various datasets and other information regarding the lignin pathway in Brachypodium distachyon and permits explanations for some counterintuitive observations. The model predicts the lignin composition and label distribution in a BdPTAL knockdown strain, with results that are quite similar to experimental data. CONCLUSION Given the present scarcity of available data, the model resulting from our analysis is presumably not final. However, it offers proof of concept for how one may design integrative pathway models of this type, which are necessary tools for predicting the consequences of genomic or other alterations toward plants with lignin features that are more desirable than in their wild-type counterparts.
Collapse
Affiliation(s)
- Mojdeh Faraji
- The Wallace H. Coulter, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Atlanta, GA 30332-2000 USA
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
| | - Luis L. Fonseca
- The Wallace H. Coulter, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Atlanta, GA 30332-2000 USA
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
| | - Luis Escamilla-Treviño
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017 USA
| | - Jaime Barros-Rios
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017 USA
| | - Nancy L. Engle
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 USA
| | - Zamin K. Yang
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 USA
| | - Timothy J. Tschaplinski
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 USA
| | - Richard A. Dixon
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017 USA
| | - Eberhard O. Voit
- The Wallace H. Coulter, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Atlanta, GA 30332-2000 USA
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
| |
Collapse
|
15
|
Preliminary study of Cell Wall Structure and its Mechanical Properties of C3H and HCT RNAi Transgenic Poplar Sapling. Sci Rep 2018; 8:10508. [PMID: 30002401 PMCID: PMC6043518 DOI: 10.1038/s41598-018-28675-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/06/2018] [Indexed: 12/02/2022] Open
Abstract
This research focused on the cell wall structure and its mechanical properties of down-regulated Coumaroyl shikimate 3-hydroxylase (C3H) transgenic poplar and down-regulated hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) transgenic poplar (Populus alba × P. glandulosa cv ‘84 k’). The wood samples with respect to microstructure, the longitudinal elastic modulus (MOE) and hardness of wood fiber secondary cell wall were investigated. The results show that the lignin contents in the two transgenic poplar woods were lower than non-modified wood. The C3H transgenic poplar and HCT transgenic poplar have more than 18.5% and 16.1% cellulose crystalline regions than non-modified poplar respectively. The diameter of the fiber cell and the vessel element of transgenic poplars are smaller. Double radial vessel cell wall thicknesses of both transgenic poplars were smaller than non-modified poplar. Cell wall ratios for the transgenic poplar were higher than non-modified poplar and cell wall density was significantly lower in both C3H and HCT transgenic poplar. The cell wall MOEs of C3H and HCT transgenic poplar was 5.8% and 7.0% higher than non-modified poplar. HCT can be more effective than C3H to modify the trees by considerably increasing mechanical properties of the cell wall.
Collapse
|
16
|
Naik P, Wang JP, Sederoff R, Chiang V, Williams C, Ducoste JJ. Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis. PLoS One 2018; 13:e0193896. [PMID: 29509777 PMCID: PMC5839572 DOI: 10.1371/journal.pone.0193896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022] Open
Abstract
Lignin is a polymer present in the secondary cell walls of all vascular plants. It is a known barrier to pulping and the extraction of high-energy sugars from cellulosic biomass. The challenge faced with predicting outcomes of transgenic plants with reduced lignin is due in part to the presence of unique protein-protein interactions that influence the regulation and metabolic flux in the pathway. Yet, it is unclear why certain plants have evolved to create these protein complexes. In this study, we use mathematical models to investigate the role that the protein complex, formed specifically between Ptr4CL3 and Ptr4CL5 enzymes, have on the monolignol biosynthesis pathway. The role of this Ptr4CL3-Ptr4CL5 enzyme complex on the steady state flux distribution was quantified by performing Monte Carlo simulations. The effect of this complex on the robustness and the homeostatic properties of the pathway were identified by performing sensitivity and stability analyses, respectively. Results from these robustness and stability analyses suggest that the monolignol biosynthetic pathway is resilient to mild perturbations in the presence of the Ptr4CL3-Ptr4CL5 complex. Specifically, the presence of Ptr4CL3-Ptr4CL5 complex increased the stability of the pathway by 22%. The robustness in the pathway is maintained due to the presence of multiple enzyme isoforms as well as the presence of alternative pathways resulting from the presence of the Ptr4CL3-Ptr4CL5 complex.
Collapse
Affiliation(s)
- Punith Naik
- Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jack P. Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Vincent Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Cranos Williams
- Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Joel J. Ducoste
- Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Faraji M, Fonseca LL, Escamilla-Treviño L, Barros-Rios J, Engle N, Yang ZK, Tschaplinski TJ, Dixon RA, Voit EO. Mathematical models of lignin biosynthesis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:34. [PMID: 29449882 PMCID: PMC5806469 DOI: 10.1186/s13068-018-1028-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/20/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Lignin is a natural polymer that is interwoven with cellulose and hemicellulose within plant cell walls. Due to this molecular arrangement, lignin is a major contributor to the recalcitrance of plant materials with respect to the extraction of sugars and their fermentation into ethanol, butanol, and other potential bioenergy crops. The lignin biosynthetic pathway is similar, but not identical in different plant species. It is in each case comprised of a moderate number of enzymatic steps, but its responses to manipulations, such as gene knock-downs, are complicated by the fact that several of the key enzymes are involved in several reaction steps. This feature poses a challenge to bioenergy production, as it renders it difficult to select the most promising combinations of genetic manipulations for the optimization of lignin composition and amount. RESULTS Here, we present several computational models than can aid in the analysis of data characterizing lignin biosynthesis. While minimizing technical details, we focus on the questions of what types of data are particularly useful for modeling and what genuine benefits the biofuel researcher may gain from the resulting models. We demonstrate our analysis with mathematical models for black cottonwood (Populus trichocarpa), alfalfa (Medicago truncatula), switchgrass (Panicum virgatum) and the grass Brachypodium distachyon. CONCLUSIONS Despite commonality in pathway structure, different plant species show different regulatory features and distinct spatial and topological characteristics. The putative lignin biosynthes pathway is not able to explain the plant specific laboratory data, and the necessity of plant specific modeling should be heeded.
Collapse
Affiliation(s)
- Mojdeh Faraji
- The Wallace H. Coulter, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive, Atlanta, GA 30332 USA
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
| | - Luis L. Fonseca
- The Wallace H. Coulter, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive, Atlanta, GA 30332 USA
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
| | - Luis Escamilla-Treviño
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017 USA
| | - Jaime Barros-Rios
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017 USA
| | - Nancy Engle
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 USA
| | - Zamin K. Yang
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 USA
| | - Timothy J. Tschaplinski
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 USA
| | - Richard A. Dixon
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017 USA
| | - Eberhard O. Voit
- The Wallace H. Coulter, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive, Atlanta, GA 30332 USA
- BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
| |
Collapse
|
18
|
de Vries L, Vanholme R, Van Acker R, De Meester B, Sundin L, Boerjan W. Stacking of a low-lignin trait with an increased guaiacyl and 5-hydroxyguaiacyl unit trait leads to additive and synergistic effects on saccharification efficiency in Arabidopsis thaliana. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:257. [PMID: 30250509 PMCID: PMC6146604 DOI: 10.1186/s13068-018-1257-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Lignocellulosic biomass, such as wood and straw, is an interesting feedstock for the production of fermentable sugars. However, mainly due to the presence of lignin, this type of biomass is recalcitrant to saccharification. In Arabidopsis, lignocellulosic biomass with a lower lignin content or with lignin with an increased fraction of guaiacyl (G) and 5-hydroxyguaiacyl (5H) units shows an increased saccharification efficiency. Here, we stacked these two traits and studied the effect on the saccharification efficiency and biomass yield, by combining either transaldolase (tra2), cinnamate 4-hydroxylase (c4h-3), or 4-coumarate:CoA ligase (4cl1-1) with caffeic acid O-methyltransferase (comt-1 or comt-4) mutants. RESULTS The three double mutants (tra2 comt-1, c4h-3 comt-4, and 4cl1-1 comt-4) had a decreased lignin amount and an increase in G and 5H units in the lignin polymer compared to wild-type (WT) plants. The tra2 comt-1 double mutant had a better saccharification efficiency compared to the parental lines when an acid or alkaline pretreatment was used. For the double mutants, c4h-3 comt-4 and 4cl1-1 comt-4, the saccharification efficiency was significantly higher compared to WT and its parental lines, independent of the pretreatment used. When no pretreatment was used, the saccharification efficiency increased even synergistically for these mutants. CONCLUSION Our results show that saccharification efficiency can be improved by combining two different mutant lignin traits, leading to plants with an even higher saccharification efficiency, without having a yield reduction of the primary inflorescence stem. This approach can help improve saccharification efficiency in bio-energy crops.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Lisa Sundin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| |
Collapse
|
19
|
Dolan WL, Dilkes BP, Stout JM, Bonawitz ND, Chapple C. Mediator Complex Subunits MED2, MED5, MED16, and MED23 Genetically Interact in the Regulation of Phenylpropanoid Biosynthesis. THE PLANT CELL 2017; 29:3269-3285. [PMID: 29203634 PMCID: PMC5757269 DOI: 10.1105/tpc.17.00282] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 05/19/2023]
Abstract
The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana, disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 (ref4-3) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex.
Collapse
Affiliation(s)
- Whitney L Dolan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, West Lafayette, Indiana 47907
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, West Lafayette, Indiana 47907
| | - Jake M Stout
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, West Lafayette, Indiana 47907
| | - Nicholas D Bonawitz
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, West Lafayette, Indiana 47907
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, West Lafayette, Indiana 47907
| |
Collapse
|
20
|
|
21
|
Chen Y, Li F, Tian L, Huang M, Deng R, Li X, Chen W, Wu P, Li M, Jiang H, Wu G. The Phenylalanine Ammonia Lyase Gene LjPAL1 Is Involved in Plant Defense Responses to Pathogens and Plays Diverse Roles in Lotus japonicus-Rhizobium Symbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:739-753. [PMID: 28598263 DOI: 10.1094/mpmi-04-17-0080-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phenylalanine ammonia lyase (PAL) is important in the biosynthesis of plant secondary metabolites that regulate growth responses. Although its function is well-established in various plants, the functional significance of PAL genes in nodulation is poorly understood. Here, we demonstrate that the Lotus japonicus PAL (LjPAL1) gene is induced by Mesorhizobium loti infection and methyl-jasmonate (Me-JA) treatment in roots. LjPAL1 altered PAL activity, leading to changes in lignin contents and thicknesses of cell walls in roots and nodules of transgenic plants and, hence, to structural changes in roots and nodules. LjPAL1-knockdown plants (LjPAL1i) exhibited increased infection thread and nodule numbers and the induced upregulation of nodulin gene expression after M. loti infection. Conversely, LjPAL1 overexpression delayed the infection process and reduced infection thread and nodule numbers after M. loti inoculation. LjPAL1i plants also exhibited reduced endogenous salicylic acid (SA) accumulation and expression of the SA-dependent marker gene. Their infection phenotype could be partially restored by exogenous SA or Me-JA application. Our data demonstrate that LjPAL1 plays diverse roles in L. japonicus-rhizobium symbiosis, affecting rhizobial infection progress and nodule structure, likely by inducing lignin modification, regulating endogenous SA biosynthesis, and modulating SA signaling.
Collapse
Affiliation(s)
- Yaping Chen
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| | - Fengjiao Li
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
- 3 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Tian
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
- 3 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingchao Huang
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
- 3 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rufang Deng
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| | - Xueliu Li
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
- 3 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
- 3 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingzhi Wu
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| | - Meiru Li
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| | - Huawu Jiang
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| | - Guojiang Wu
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| |
Collapse
|
22
|
Chezem WR, Memon A, Li FS, Weng JK, Clay NK. SG2-Type R2R3-MYB Transcription Factor MYB15 Controls Defense-Induced Lignification and Basal Immunity in Arabidopsis. THE PLANT CELL 2017; 29:1907-1926. [PMID: 28733420 PMCID: PMC5590497 DOI: 10.1105/tpc.16.00954] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 05/14/2023]
Abstract
Lignification of cell wall appositions is a conserved basal defense mechanism in the plant innate immune response. However, the genetic pathway controlling defense-induced lignification remains unknown. Here, we demonstrate the Arabidopsis thaliana SG2-type R2R3-MYB transcription factor MYB15 as a regulator of defense-induced lignification and basal immunity. Loss of MYB15 reduces the content but not the composition of defense-induced lignin, whereas constitutive expression of MYB15 increases lignin content independently of immune activation. Comparative transcriptional and metabolomics analyses implicate MYB15 as necessary for the defense-induced synthesis of guaiacyl lignin and the basal synthesis of the coumarin metabolite scopoletin. MYB15 directly binds to the secondary wall MYB-responsive element consensus sequence, which encompasses the AC elements, to drive lignification. The myb15 and lignin biosynthetic mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with defense-induced lignin having a major role in basal immunity. A scopoletin biosynthetic mutant also shows increased susceptibility independently of immune activation, consistent with a role in preformed defense. Our results support a role for phenylalanine-derived small molecules in preformed and inducible Arabidopsis defense, a role previously dominated by tryptophan-derived small molecules. Understanding the regulatory network linking lignin biosynthesis to plant growth and defense will help lignin engineering efforts to improve the production of biofuels and aromatic industrial products as well as increase disease resistance in energy and agricultural crops.
Collapse
Affiliation(s)
- William R Chezem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511
| | - Altamash Memon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511
| | - Fu-Shuang Li
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Nicole K Clay
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
23
|
Steenackers W, Cesarino I, Klíma P, Quareshy M, Vanholme R, Corneillie S, Kumpf RP, Van de Wouwer D, Ljung K, Goeminne G, Novák O, Zažímalová E, Napier R, Boerjan W, Vanholme B. The Allelochemical MDCA Inhibits Lignification and Affects Auxin Homeostasis. PLANT PHYSIOLOGY 2016; 172:874-888. [PMID: 27506238 PMCID: PMC5047068 DOI: 10.1104/pp.15.01972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/03/2016] [Indexed: 05/05/2023]
Abstract
The phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA) is a plant-derived compound first extracted from roots of Asparagus officinalis and further characterized as an allelochemical. Later on, MDCA was identified as an efficient inhibitor of 4-COUMARATE-CoA LIGASE (4CL), a key enzyme of the general phenylpropanoid pathway. By blocking 4CL, MDCA affects the biosynthesis of many important metabolites, which might explain its phytotoxicity. To decipher the molecular basis of the allelochemical activity of MDCA, we evaluated the effect of this compound on Arabidopsis thaliana seedlings. Metabolic profiling revealed that MDCA is converted in planta into piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H), the enzyme directly upstream of 4CL. The inhibition of C4H was also reflected in the phenolic profile of MDCA-treated plants. Treatment of in vitro grown plants resulted in an inhibition of primary root growth and a proliferation of lateral and adventitious roots. These observed growth defects were not the consequence of lignin perturbation, but rather the result of disturbing auxin homeostasis. Based on DII-VENUS quantification and direct measurement of cellular auxin transport, we concluded that MDCA disturbs auxin gradients by interfering with auxin efflux. In addition, mass spectrometry was used to show that MDCA triggers auxin biosynthesis, conjugation, and catabolism. A similar shift in auxin homeostasis was found in the c4h mutant ref3-2, indicating that MDCA triggers a cross talk between the phenylpropanoid and auxin biosynthetic pathways independent from the observed auxin efflux inhibition. Altogether, our data provide, to our knowledge, a novel molecular explanation for the phytotoxic properties of MDCA.
Collapse
Affiliation(s)
- Ward Steenackers
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Igor Cesarino
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Petr Klíma
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Mussa Quareshy
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Sander Corneillie
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Robert Peter Kumpf
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Dorien Van de Wouwer
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Karin Ljung
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Geert Goeminne
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Ondřej Novák
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Eva Zažímalová
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Richard Napier
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| |
Collapse
|
24
|
LEE WANGHEE, OKOS MARTINR. MODEL-BASED ANALYSIS OF IGF-1 EFFECT ON OSTEOBLAST AND OSTEOCLAST REGULATION IN BONE TURNOVER. J BIOL SYST 2016. [DOI: 10.1142/s0218339016500042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The main determinant of bone Ca accretion is a bimolecular regulatory network on osteoblast (OB) and osteoclast (OC). Even though IGF-1 is known as an important regulator in bone cell cycle, little has been done to model IGF-1 action in bone cell regulation. Thus, the objective is to develop a mathematical model that depicts the regulatory action of IGF-1 onto the OB and OC interaction, and to evaluate adolescent and adult bone Ca accretion in response to differences in IGF-1 levels. As a result, a dynamic model of OB and OC with two main regulatory systems, i.e., Receptor Activator for Nuclear Factor [Formula: see text]B (RANK)-RANK Ligand (RANKL)-osteoprogerin (OPG) system, and TGF-[Formula: see text], was augmented with the IGF-1, and incorporated into Ca kinetic data to predict exchangeable bone Ca. The developed model could predict a change in OB and OC levels in response to perturbations in regulators, producing results consistent with bone physiology and published experimental data. The model also estimated parametric difference in regulators between adults and adolescents, suggesting that RANKL/OPG in adolescents was about 4 times higher than in adults, while adolescent serum PTH and IGF-1 concentrations were 60% and 220% of those of adults, respectively. This study highlighted the influence of IGF-1 on the regulation of bone cells in positively modulating bone Ca, suggesting that IGF-1 may be an effective target for reducing bone loss by promoting mature OB.
Collapse
Affiliation(s)
- WANG-HEE LEE
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093, USA
| | - MARTIN R. OKOS
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093, USA
| |
Collapse
|
25
|
Vargas L, Cesarino I, Vanholme R, Voorend W, de Lyra Soriano Saleme M, Morreel K, Boerjan W. Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:139. [PMID: 27390589 PMCID: PMC4936005 DOI: 10.1186/s13068-016-0551-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/23/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Caffeoyl shikimate esterase (CSE) was recently characterized as an enzyme central to the lignin biosynthetic pathway in Arabidopsis thaliana. The cse-2 loss-of-function mutant shows a typical phenotype of lignin-deficient mutants, including collapsed vessels, reduced lignin content, and lignin compositional shift, in addition to a fourfold increase in cellulose-to-glucose conversion when compared to the wild type. However, this mutant exhibits a substantial developmental arrest, which might outweigh the gains in fermentable sugar yield. To restore its normal growth and further improve its saccharification yield, we investigated a possible cause for the yield penalty of the cse-2 mutant. Furthermore, we evaluated whether CSE expression is under the same multi-leveled transcriptional regulatory network as other lignin biosynthetic genes and analyzed the transcriptional responses of the phenylpropanoid pathway upon disruption of CSE. RESULTS Transactivation analysis demonstrated that only second-level MYB master switches (MYB46 and MYB83) and lignin-specific activators (MYB63 and MYB85), but not top-level NAC master switches or other downstream transcription factors, effectively activate the CSE promoter in our protoplast-based system. The cse-2 mutant exhibited transcriptional repression of genes upstream of CSE, while downstream genes were mainly unaffected, indicating transcriptional feedback of CSE loss-of-function on monolignol biosynthetic genes. In addition, we found that the expression of CSE under the control of the vessel-specific VND7 promoter in the cse-2 background restored the vasculature integrity resulting in improved growth parameters, while the overall lignin content remained relatively low. Thus, by restoring the vascular integrity and biomass parameters of cse-2, we further improved glucose release per plant without pretreatment, with an increase of up to 36 % compared to the cse-2 mutant and up to 154 % compared to the wild type. CONCLUSIONS Our results contribute to a better understanding of how the expression of CSE is regulated by secondary wall-associated transcription factors and how the expression of lignin genes is affected upon CSE loss-of-function in Arabidopsis. Moreover, we found evidence that vasculature collapse is underlying the yield penalty found in the cse-2 mutant. Through a vessel-specific complementation approach, vasculature morphology and final stem weight were restored, leading to an even higher total glucose release per plant.
Collapse
Affiliation(s)
- Lívia Vargas
- />Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- />Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Igor Cesarino
- />Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- />Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- />Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, SP Brazil
| | - Ruben Vanholme
- />Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- />Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Wannes Voorend
- />Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- />Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Marina de Lyra Soriano Saleme
- />Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- />Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Kris Morreel
- />Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- />Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Wout Boerjan
- />Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- />Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
26
|
Faraji M, Fonseca LL, Escamilla-Treviño L, Dixon RA, Voit EO. Computational inference of the structure and regulation of the lignin pathway in Panicum virgatum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:151. [PMID: 26388938 PMCID: PMC4574612 DOI: 10.1186/s13068-015-0334-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/03/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Switchgrass is a prime target for biofuel production from inedible plant parts and has been the subject of numerous investigations in recent years. Yet, one of the main obstacles to effective biofuel production remains to be the major problem of recalcitrance. Recalcitrance emerges in part from the 3-D structure of lignin as a polymer in the secondary cell wall. Lignin limits accessibility of the sugars in the cellulose and hemicellulose polymers to enzymes and ultimately decreases ethanol yield. Monolignols, the building blocks of lignin polymers, are synthesized in the cytosol and translocated to the plant cell wall, where they undergo polymerization. The biosynthetic pathway leading to monolignols in switchgrass is not completely known, and difficulties associated with in vivo measurements of these intermediates pose a challenge for a true understanding of the functioning of the pathway. RESULTS In this study, a systems biological modeling approach is used to address this challenge and to elucidate the structure and regulation of the lignin pathway through a computational characterization of alternate candidate topologies. The analysis is based on experimental data characterizing stem and tiller tissue of four transgenic lines (knock-downs of genes coding for key enzymes in the pathway) as well as wild-type switchgrass plants. These data consist of the observed content and composition of monolignols. The possibility of a G-lignin specific metabolic channel associated with the production and degradation of coniferaldehyde is examined, and the results support previous findings from another plant species. The computational analysis suggests regulatory mechanisms of product inhibition and enzyme competition, which are well known in biochemistry, but so far had not been reported in switchgrass. By including these mechanisms, the pathway model is able to represent all observations. CONCLUSIONS The results show that the presence of the coniferaldehyde channel is necessary and that product inhibition and competition over cinnamoyl-CoA-reductase (CCR1) are essential for matching the model to observed increases in H-lignin levels in 4-coumarate:CoA-ligase (4CL) knockdowns. Moreover, competition for 4-coumarate:CoA-ligase (4CL) is essential for matching the model to observed increases in the pathway metabolites in caffeic acid O-methyltransferase (COMT) knockdowns. As far as possible, the model was validated with independent data.
Collapse
Affiliation(s)
- Mojdeh Faraji
- />The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive, Atlanta, GA 30332 USA
- />BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
| | - Luis L. Fonseca
- />The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive, Atlanta, GA 30332 USA
- />BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
| | - Luis Escamilla-Treviño
- />BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- />Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017 USA
| | - Richard A. Dixon
- />BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
- />Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017 USA
| | - Eberhard O. Voit
- />The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive, Atlanta, GA 30332 USA
- />BioEnergy Sciences Center (BESC), Oak Ridge National Lab, Oak Ridge, TN USA
| |
Collapse
|
27
|
Vicentini R, Bottcher A, Brito MDS, dos Santos AB, Creste S, Landell MGDA, Cesarino I, Mazzafera P. Large-Scale Transcriptome Analysis of Two Sugarcane Genotypes Contrasting for Lignin Content. PLoS One 2015; 10:e0134909. [PMID: 26241317 PMCID: PMC4524650 DOI: 10.1371/journal.pone.0134909] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/15/2015] [Indexed: 12/16/2022] Open
Abstract
Sugarcane is an important crop worldwide for sugar and first generation ethanol production. Recently, the residue of sugarcane mills, named bagasse, has been considered a promising lignocellulosic biomass to produce the second-generation ethanol. Lignin is a major factor limiting the use of bagasse and other plant lignocellulosic materials to produce second-generation ethanol. Lignin biosynthesis pathway is a complex network and changes in the expression of genes of this pathway have in general led to diverse and undesirable impacts on plant structure and physiology. Despite its economic importance, sugarcane genome was still not sequenced. In this study a high-throughput transcriptome evaluation of two sugarcane genotypes contrasting for lignin content was carried out. We generated a set of 85,151 transcripts of sugarcane using RNA-seq and de novo assembling. More than 2,000 transcripts showed differential expression between the genotypes, including several genes involved in the lignin biosynthetic pathway. This information can give valuable knowledge on the lignin biosynthesis and its interactions with other metabolic pathways in the complex sugarcane genome.
Collapse
Affiliation(s)
- Renato Vicentini
- Systems Biology Laboratory, Centre for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, SP, Brazil
- * E-mail:
| | - Alexandra Bottcher
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Michael dos Santos Brito
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
- Sugarcane Center, Agronomic Institute of Campinas, Ribeirão Preto, SP, Brazil
| | | | - Silvana Creste
- Sugarcane Center, Agronomic Institute of Campinas, Ribeirão Preto, SP, Brazil
| | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
28
|
Chakraborty A, Sarkar D, Satya P, Karmakar PG, Singh NK. Pathways associated with lignin biosynthesis in lignomaniac jute fibres. Mol Genet Genomics 2015; 290:1523-42. [PMID: 25724692 DOI: 10.1007/s00438-015-1013-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/15/2015] [Indexed: 01/09/2023]
Abstract
We generated the bast transcriptomes of a deficient lignified phloem fibre mutant and its wild-type jute (Corchorus capsularis) using Illumina paired-end sequencing. A total of 34,163 wild-type and 29,463 mutant unigenes, with average lengths of 1442 and 1136 bp, respectively, were assembled de novo, ~77-79 % of which were functionally annotated. These annotated unigenes were assigned to COG (~37-40 %) and GO (~22-28 %) classifications and mapped to 189 KEGG pathways (~19-21 %). We discovered 38 and 43 isoforms of 16 and 10 genes of the upstream shikimate-aromatic amino acid and downstream monolignol biosynthetic pathways, respectively, rendered their sequence similarities, confirmed the identities of 22 of these candidate gene families by phylogenetic analyses and reconstructed the pathway leading to lignin biosynthesis in jute fibres. We also identified major genes and bast-related transcription factors involved in secondary cell wall (SCW) formation. The quantitative RT-PCRs revealed that phenylalanine ammonia-lyase 1 (CcPAL1) was co-down-regulated with several genes of the upstream shikimate pathway in mutant bast tissues at an early growth stage, although its expression relapsed to the normal level at the later growth stage. However, cinnamyl alcohol dehydrogenase 7 (CcCAD7) was strongly down-regulated in mutant bast tissues irrespective of growth stages. CcCAD7 disruption at an early growth stage was accompanied by co-up-regulation of SCW-specific genes cellulose synthase A7 (CcCesA7) and fasciclin-like arabinogalactan 6 (CcFLA6), which was predicted to be involved in coordinating the S-layers' deposition in the xylan-type jute fibres. Our results identified CAD as a promising target for developing low-lignin jute fibres using genomics-assisted molecular approaches.
Collapse
Affiliation(s)
- Avrajit Chakraborty
- Biotechnology Unit, Division of Crop Improvement, ICAR-Central Research Institute for Jute and Allied Fibres (CRIJAF), Barrackpore, Kolkata, 700 120, West Bengal, India
| | | | | | | | | |
Collapse
|
29
|
Lin CY, Wang JP, Li Q, Chen HC, Liu J, Loziuk P, Song J, Williams C, Muddiman DC, Sederoff RR, Chiang VL. 4-Coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa. MOLECULAR PLANT 2015; 8:176-87. [PMID: 25578281 DOI: 10.1016/j.molp.2014.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/07/2014] [Indexed: 05/06/2023]
Abstract
Downregulation of 4-coumaric acid:coenzyme A ligase (4CL) can reduce lignin content in a number of plant species. In lignin precursor (monolignol) biosynthesis during stem wood formation in Populus trichocarpa, two enzymes, Ptr4CL3 and Ptr4CL5, catalyze the coenzyme A (CoA) ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. CoA ligation of 4-coumaric acid is essential for the 3-hydroxylation of 4-coumaroyl shikimic acid. This hydroxylation results from sequential reactions of 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) and 4-coumaric acid 3-hydroxylase 3 (PtrC3H3). Alternatively, 3-hydroxylation of 4-coumaric acid to caffeic acid may occur through an enzyme complex of cinnamic acid 4-hydroxylase 1 and 2 (PtrC4H1 and PtrC4H2) and PtrC3H3. We found that 4-coumaroyl and caffeoyl shikimic acids are inhibitors of Ptr4CL3 and Ptr4CL5. 4-Coumaroyl shikimic acid strongly inhibits the formation of 4-coumaroyl-CoA and caffeoyl-CoA. Caffeoyl shikimic acid inhibits only the formation of 4-coumaroyl-CoA. 4-Coumaroyl and caffeoyl shikimic acids both act as competitive and uncompetitive inhibitors. Metabolic flux in wild-type and PtrC3H3 downregulated P. trichocarpa transgenics has been estimated by absolute protein and metabolite quantification based on liquid chromatography-tandem mass spectrometry, mass action kinetics, and inhibition equations. Inhibition by 4-coumaroyl and caffeoyl shikimic acids may play significant regulatory roles when these inhibitors accumulate.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Hsi-Chuan Chen
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Philip Loziuk
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Jina Song
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Cranos Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - David C Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
30
|
Pan H, Zhou R, Louie GV, Mühlemann JK, Bomati EK, Bowman ME, Dudareva N, Dixon RA, Noel JP, Wang X. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis. THE PLANT CELL 2014; 26:3709-27. [PMID: 25217505 PMCID: PMC4213152 DOI: 10.1105/tpc.114.127399] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/27/2014] [Accepted: 08/08/2014] [Indexed: 05/18/2023]
Abstract
The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates.
Collapse
Affiliation(s)
- Haiyun Pan
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Rui Zhou
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Gordon V Louie
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Joëlle K Mühlemann
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Erin K Bomati
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037 Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92037
| | - Marianne E Bowman
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Richard A Dixon
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017
| | - Joseph P Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037 Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92037
| | - Xiaoqiang Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| |
Collapse
|
31
|
Wang JP, Naik PP, Chen HC, Shi R, Lin CY, Liu J, Shuford CM, Li Q, Sun YH, Tunlaya-Anukit S, Williams CM, Muddiman DC, Ducoste JJ, Sederoff RR, Chiang VL. Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. THE PLANT CELL 2014; 26:894-914. [PMID: 24619611 PMCID: PMC4001400 DOI: 10.1105/tpc.113.120881] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/12/2014] [Accepted: 02/12/2014] [Indexed: 05/17/2023]
Abstract
We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants.
Collapse
Affiliation(s)
- Jack P. Wang
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Punith P. Naik
- Civil, Construction, and Environmental Engineering, North
Carolina State University, Raleigh, North Carolina 27695
| | - Hsi-Chuan Chen
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Rui Shi
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Chien-Yuan Lin
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Christopher M. Shuford
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
- College of Forestry, Shandong Agricultural University,
Taian, Shandong 271018, China
| | - Ying-Hsuan Sun
- Department of Forestry, National Chung-Hsing University,
Taichung, 40227, Taiwan
| | - Sermsawat Tunlaya-Anukit
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Cranos M. Williams
- Electrical and Computer Engineering, North Carolina State
University, Raleigh, North Carolina 27695
| | - David C. Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Joel J. Ducoste
- Civil, Construction, and Environmental Engineering, North
Carolina State University, Raleigh, North Carolina 27695
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
- Department of Forest Biomaterials, North Carolina State
University, Raleigh, North Carolina 27695
- Address correspondence to
| |
Collapse
|
32
|
Chen HC, Song J, Wang JP, Lin YC, Ducoste J, Shuford CM, Liu J, Li Q, Shi R, Nepomuceno A, Isik F, Muddiman DC, Williams C, Sederoff RR, Chiang VL. Systems biology of lignin biosynthesis in Populus trichocarpa: heteromeric 4-coumaric acid:coenzyme A ligase protein complex formation, regulation, and numerical modeling. THE PLANT CELL 2014; 26:876-93. [PMID: 24619612 PMCID: PMC4001399 DOI: 10.1105/tpc.113.119685] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/28/2014] [Accepted: 02/12/2014] [Indexed: 05/17/2023]
Abstract
As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein-protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation.
Collapse
Affiliation(s)
- Hsi-Chuan Chen
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Jina Song
- Department of Electrical and Computer Engineering, North
Carolina State University, Raleigh, North Carolina 27695
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Ying-Chung Lin
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Joel Ducoste
- Department of Civil, Construction, and Environmental
Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Christopher M. Shuford
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
- College of Forestry, Shandong Agricultural University,
Shandong 271018, China
| | - Rui Shi
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Angelito Nepomuceno
- W.M. Keck Mass Spectrometry Laboratory, Department of
Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Fikret Isik
- NCSU Cooperative Tree Improvement Program, Department of
Forestry and Environmental Resources, North Carolina State University, Raleigh, North
Carolina 27695
| | - David C. Muddiman
- W.M. Keck Mass Spectrometry Laboratory, Department of
Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Cranos Williams
- Department of Electrical and Computer Engineering, North
Carolina State University, Raleigh, North Carolina 27695
- Address correspondence to
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
- Address correspondence to
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
- Department of Forest Biomaterials, North Carolina State
University, Raleigh, North Carolina 27695
- Address correspondence to
| |
Collapse
|
33
|
Salvador VH, Lima RB, dos Santos WD, Soares AR, Böhm PAF, Marchiosi R, Ferrarese MDLL, Ferrarese-Filho O. Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS One 2013; 8:e69105. [PMID: 23922685 PMCID: PMC3724853 DOI: 10.1371/journal.pone.0069105] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022] Open
Abstract
Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.
Collapse
Affiliation(s)
- Victor Hugo Salvador
- Laboratory of Plant Biochemistry, University of Maringá, Maringá, Paraná, Brazil
| | - Rogério Barbosa Lima
- Laboratory of Plant Biochemistry, University of Maringá, Maringá, Paraná, Brazil
| | | | | | | | - Rogério Marchiosi
- Laboratory of Plant Biochemistry, University of Maringá, Maringá, Paraná, Brazil
| | | | | |
Collapse
|
34
|
Walker AM, Hayes RP, Youn B, Vermerris W, Sattler SE, Kang C. Elucidation of the structure and reaction mechanism of sorghum hydroxycinnamoyltransferase and its structural relationship to other coenzyme a-dependent transferases and synthases. PLANT PHYSIOLOGY 2013; 162:640-51. [PMID: 23624856 PMCID: PMC3668059 DOI: 10.1104/pp.113.217836] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/26/2013] [Indexed: 05/18/2023]
Abstract
Hydroxycinnamoyltransferase (HCT) from sorghum (Sorghum bicolor) participates in an early step of the phenylpropanoid pathway, exchanging coenzyme A (CoA) esterified to p-coumaric acid with shikimic or quinic acid as intermediates in the biosynthesis of the monolignols coniferyl alcohol and sinapyl alcohol. In order to elucidate the mode of action of this enzyme, we have determined the crystal structures of SbHCT in its apo-form and ternary complex with shikimate and p-coumaroyl-CoA, which was converted to its product during crystal soaking. The structure revealed the roles of threonine-36, serine-38, tyrosine-40, histidine-162, arginine-371, and threonine-384 in catalysis and specificity. Based on the exact chemistry of p-coumaroyl-CoA and shikimic acid in the active site and an analysis of kinetic and thermodynamic data of the wild type and mutants, we propose a role for histidine-162 and threonine-36 in the catalytic mechanism of HCT. Considering the calorimetric data, substrate binding of SbHCT should occur sequentially, with p-coumaroyl-CoA binding prior to the acyl acceptor molecule. While some HCTs can use both shikimate and quinate as an acyl acceptor, SbHCT displays low activity toward quinate. Comparison of the structure of sorghum HCT with the HCT involved in chlorogenic acid synthesis in coffee (Coffea canephora) revealed many shared features. Taken together, these observations explain how CoA-dependent transferases with similar structural features can participate in different biochemical pathways across species.
Collapse
|
35
|
|
36
|
Gea G, Kjell S, Jean-François H. Integrated -omics: a powerful approach to understanding the heterogeneous lignification of fibre crops. Int J Mol Sci 2013; 14:10958-78. [PMID: 23708098 PMCID: PMC3709712 DOI: 10.3390/ijms140610958] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022] Open
Abstract
Lignin and cellulose represent the two main components of plant secondary walls and the most abundant polymers on Earth. Quantitatively one of the principal products of the phenylpropanoid pathway, lignin confers high mechanical strength and hydrophobicity to plant walls, thus enabling erect growth and high-pressure water transport in the vessels. Lignin is characterized by a high natural heterogeneity in its composition and abundance in plant secondary cell walls, even in the different tissues of the same plant. A typical example is the stem of fibre crops, which shows a lignified core enveloped by a cellulosic, lignin-poor cortex. Despite the great value of fibre crops for humanity, however, still little is known on the mechanisms controlling their cell wall biogenesis, and particularly, what regulates their spatially-defined lignification pattern. Given the chemical complexity and the heterogeneous composition of fibre crops' secondary walls, only the use of multidisciplinary approaches can convey an integrated picture and provide exhaustive information covering different levels of biological complexity. The present review highlights the importance of combining high throughput -omics approaches to get a complete understanding of the factors regulating the lignification heterogeneity typical of fibre crops.
Collapse
Affiliation(s)
- Guerriero Gea
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Sergeant Kjell
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Hausman Jean-François
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| |
Collapse
|
37
|
Van Acker R, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:46. [PMID: 23622268 PMCID: PMC3661393 DOI: 10.1186/1754-6834-6-46] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/26/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20 Arabidopsis thaliana mutants in 10 different genes of the lignin biosynthetic pathway were analyzed for cell wall composition and saccharification yield. Saccharification models were built to elucidate which cell wall parameters played a role in cell wall recalcitrance. RESULTS Although lignin is a key polymer providing the strength necessary for the plant's ability to grow upward, a reduction in lignin content down to 64% of the wild-type level in Arabidopsis was tolerated without any obvious growth penalty. In contrast to common perception, we found that a reduction in lignin was not compensated for by an increase in cellulose, but rather by an increase in matrix polysaccharides. In most lignin mutants, the saccharification yield was improved by up to 88% cellulose conversion for the cinnamoyl-coenzyme A reductase1 mutants under pretreatment conditions, whereas the wild-type cellulose conversion only reached 18%. The saccharification models and Pearson correlation matrix revealed that the lignin content was the main factor determining the saccharification yield. However, also lignin composition, matrix polysaccharide content and composition, and, especially, the xylose, galactose, and arabinose contents influenced the saccharification yield. Strikingly, cellulose content did not significantly affect saccharification yield. CONCLUSIONS Although the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content. Our results contribute to a better understanding of the effect of lignin perturbations on plant cell wall composition and its influence on saccharification yield, and provide new potential targets for genetic improvement.
Collapse
Affiliation(s)
- Rebecca Van Acker
- Department of Plant Systems Biology, VIB, Technologiepark 927, Gent, 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, 9052, Belgium
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB, Technologiepark 927, Gent, 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, 9052, Belgium
| | - Véronique Storme
- Department of Plant Systems Biology, VIB, Technologiepark 927, Gent, 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, 9052, Belgium
| | - Jennifer C Mortimer
- Department of Biochemistry, Cambridge University, Cambridge, CB2 1QW, United Kingdom
| | - Paul Dupree
- Department of Biochemistry, Cambridge University, Cambridge, CB2 1QW, United Kingdom
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, Technologiepark 927, Gent, 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, 9052, Belgium
| |
Collapse
|
38
|
Chen HC, Song J, Williams CM, Shuford CM, Liu J, Wang JP, Li Q, Shi R, Gokce E, Ducoste J, Muddiman DC, Sederoff RR, Chiang VL. Monolignol pathway 4-coumaric acid:coenzyme A ligases in Populus trichocarpa: novel specificity, metabolic regulation, and simulation of coenzyme A ligation fluxes. PLANT PHYSIOLOGY 2013; 161:1501-16. [PMID: 23344904 PMCID: PMC3585612 DOI: 10.1104/pp.112.210971] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/21/2013] [Indexed: 05/20/2023]
Abstract
4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stem-differentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.
Collapse
|
39
|
Abstract
Biochemical systems theory (BST) is the foundation for a set of analytical andmodeling tools that facilitate the analysis of dynamic biological systems. This paper depicts major developments in BST up to the current state of the art in 2012. It discusses its rationale, describes the typical strategies and methods of designing, diagnosing, analyzing, and utilizing BST models, and reviews areas of application. The paper is intended as a guide for investigators entering the fascinating field of biological systems analysis and as a resource for practitioners and experts.
Collapse
|
40
|
Bonawitz ND, Chapple C. Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 2012; 24:336-43. [PMID: 23228388 DOI: 10.1016/j.copbio.2012.11.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 11/13/2022]
Abstract
The secondary cell wall polymer lignin impedes the extraction of fermentable sugars from biomass, and has been one of the major impediments in the development of cost-effective biofuel technologies. Unfortunately, attempts to genetically engineer lignin biosynthesis frequently result in dwarfing or developmental abnormalities of unknown cause, thus limiting the benefits of increased fermentable sugar yield. In this brief review, we explore some of the possible mechanisms that could underlie this poorly understood phenomenon, with the expectation that an understanding of the cause of dwarfing in lignin biosynthetic mutants and transgenic plants could lead to new strategies for the development of improved bioenergy feedstocks.
Collapse
Affiliation(s)
- Nicholas D Bonawitz
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-2063, United States.
| | | |
Collapse
|
41
|
Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W. Metabolic engineering of novel lignin in biomass crops. THE NEW PHYTOLOGIST 2012; 196:978-1000. [PMID: 23035778 DOI: 10.1111/j.1469-8137.2012.04337.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/08/2012] [Indexed: 05/17/2023]
Abstract
Lignin, a phenolic polymer in the secondary wall, is the major cause of lignocellulosic biomass recalcitrance to efficient industrial processing. From an applications perspective, it is desirable that second-generation bioenergy crops have lignin that is readily degraded by chemical pretreatments but still fulfill its biological role in plants. Because plants can tolerate large variations in lignin composition, often without apparent adverse effects, substitution of some fraction of the traditional monolignols by alternative monomers through genetic engineering is a promising strategy to tailor lignin in bioenergy crops. However, successful engineering of lignin incorporating alternative monomers requires knowledge about phenolic metabolism in plants and about the coupling properties of these alternative monomers. Here, we review the current knowledge about lignin biosynthesis and the pathways towards the main phenolic classes. In addition, the minimal requirements are defined for molecules that, upon incorporation into the lignin polymer, make the latter more susceptible to biomass pretreatment. Numerous metabolites made by plants meet these requirements, and several have already been tested as monolignol substitutes in biomimetic systems. Finally, the status of detection and identification of compounds by phenolic profiling is discussed, as phenolic profiling serves in pathway elucidation and for the detection of incorporation of alternative lignin monomers.
Collapse
Affiliation(s)
- Ruben Vanholme
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Kris Morreel
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Chiarina Darrah
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Paula Oyarce
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - John H Grabber
- USDA-Agricultural Research Service, US Dairy Forage Research Center, 1925 Linden Drive West, Madison, WI, 53706, USA
| | - John Ralph
- Departments of Biochemistry and Biological Systems Engineering, the Wisconsin Bioenergy Initiative, and the DOE Great Lakes Bioenergy Research Center, University of Wisconsin, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| |
Collapse
|
42
|
Lee Y, Escamilla-Treviño L, Dixon RA, Voit EO. Functional analysis of metabolic channeling and regulation in lignin biosynthesis: a computational approach. PLoS Comput Biol 2012; 8:e1002769. [PMID: 23144605 PMCID: PMC3493464 DOI: 10.1371/journal.pcbi.1002769] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/21/2012] [Indexed: 12/27/2022] Open
Abstract
Lignin is a polymer in secondary cell walls of plants that is known to have negative impacts on forage digestibility, pulping efficiency, and sugar release from cellulosic biomass. While targeted modifications of different lignin biosynthetic enzymes have permitted the generation of transgenic plants with desirable traits, such as improved digestibility or reduced recalcitrance to saccharification, some of the engineered plants exhibit monomer compositions that are clearly at odds with the expected outcomes when the biosynthetic pathway is perturbed. In Medicago, such discrepancies were partly reconciled by the recent finding that certain biosynthetic enzymes may be spatially organized into two independent channels for the synthesis of guaiacyl (G) and syringyl (S) lignin monomers. Nevertheless, the mechanistic details, as well as the biological function of these interactions, remain unclear. To decipher the working principles of this and similar control mechanisms, we propose and employ here a novel computational approach that permits an expedient and exhaustive assessment of hundreds of minimal designs that could arise in vivo. Interestingly, this comparative analysis not only helps distinguish two most parsimonious mechanisms of crosstalk between the two channels by formulating a targeted and readily testable hypothesis, but also suggests that the G lignin-specific channel is more important for proper functioning than the S lignin-specific channel. While the proposed strategy of analysis in this article is tightly focused on lignin synthesis, it is likely to be of similar utility in extracting unbiased information in a variety of situations, where the spatial organization of molecular components is critical for coordinating the flow of cellular information, and where initially various control designs seem equally valid.
Collapse
Affiliation(s)
- Yun Lee
- The Interdisciplinary Bioengineering Program, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- BioEnergy Sciences Center (BESC), Oak Ridge, Tennessee, United States of America
| | - Luis Escamilla-Treviño
- BioEnergy Sciences Center (BESC), Oak Ridge, Tennessee, United States of America
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Richard A. Dixon
- BioEnergy Sciences Center (BESC), Oak Ridge, Tennessee, United States of America
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Eberhard O. Voit
- BioEnergy Sciences Center (BESC), Oak Ridge, Tennessee, United States of America
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Jung HJG, Samac DA, Sarath G. Modifying crops to increase cell wall digestibility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:65-77. [PMID: 22325867 DOI: 10.1016/j.plantsci.2011.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 05/18/2023]
Abstract
Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants is highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-digestible. Digestibility of grasses is slowed severely by lignification of most tissues, but these cell walls remain largely digestible. Cell wall lignification creates an access barrier to potentially digestible wall material by rumen bacteria if cells have not been physically ruptured. Traditional breeding has focused on increasing total dry matter digestibility rather than cell wall digestibility, which has resulted in minimal reductions in cell wall lignification. Brown midrib mutants in some annual grasses exhibit small reductions in lignin concentration and improved cell wall digestibility. Similarly, transgenic approaches down-regulating genes in monolignol synthesis have produced plants with reduced lignin content and improved cell wall digestibility. While major reductions in lignin concentration have been associated with poor plant fitness, smaller reductions in lignin provided measurable improvements in digestibility without significantly impacting agronomic fitness. Additional targets for genetic modification to enhance digestibility and improve roughages for use as biofuel feedstocks are discussed; including manipulating cell wall polysaccharide composition, novel lignin structures, reduced lignin/polysaccharide cross-linking, smaller lignin polymers, enhanced development of non-lignified tissues, and targeting specific cell types. Greater tissue specificity of transgene expression will be needed to maximize benefits while avoiding negative impacts on plant fitness.cauliflower mosiac virus (CaMV) 35S promoter.
Collapse
Affiliation(s)
- Hans-Joachim G Jung
- USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108, USA.
| | | | | |
Collapse
|
44
|
Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proc Natl Acad Sci U S A 2011; 108:20814-9. [PMID: 22123972 DOI: 10.1073/pnas.1117873108] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Down-regulation of the enzyme hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) in thale cress (Arabidopsis thaliana) and alfalfa (Medicago sativa) leads to strongly reduced lignin levels, reduced recalcitrance of cell walls to sugar release, but severe stunting of the plants. Levels of the stress hormone salicylic acid (SA) are inversely proportional to lignin levels and growth in a series of transgenic alfalfa plants in which lignin biosynthesis has been perturbed at different biosynthetic steps. Reduction of SA levels by genetically blocking its formation or causing its removal restores growth in HCT-down-regulated Arabidopsis, although the plants maintain reduced lignin levels. SA-mediated growth inhibition may occur via interference with gibberellic acid signaling or responsiveness. Our data place SA as a central component in growth signaling pathways that either sense flux into the monolignol pathway or respond to secondary cell-wall integrity, and indicate that it is possible to engineer plants with highly reduced cell-wall recalcitrance without negatively impacting growth.
Collapse
|
45
|
Lee Y, Chen PW, Voit EO. Analysis of operating principles with S-system models. Math Biosci 2011; 231:49-60. [PMID: 21377479 PMCID: PMC3102019 DOI: 10.1016/j.mbs.2011.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 02/04/2023]
Abstract
Operating principles address general questions regarding the response dynamics of biological systems as we observe or hypothesize them, in comparison to a priori equally valid alternatives. In analogy to design principles, the question arises: Why are some operating strategies encountered more frequently than others and in what sense might they be superior? It is at this point impossible to study operation principles in complete generality, but the work here discusses the important situation where a biological system must shift operation from its normal steady state to a new steady state. This situation is quite common and includes many stress responses. We present two distinct methods for determining different solutions to this task of achieving a new target steady state. Both methods utilize the property of S-system models within Biochemical Systems Theory (BST) that steady states can be explicitly represented as systems of linear algebraic equations. The first method uses matrix inversion, a pseudo-inverse, or regression to characterize the entire admissible solution space. Operations on the basis of the solution space permit modest alterations of the transients toward the target steady state. The second method uses standard or mixed integer linear programming to determine admissible solutions that satisfy criteria of functional effectiveness, which are specified beforehand. As an illustration, we use both methods to characterize alternative response patterns of yeast subjected to heat stress, and compare them with observations from the literature.
Collapse
Affiliation(s)
| | | | - Eberhard O. Voit
- The Wallace H. Coulter, Department of Biomedical Engineering at Georgia Tech and Emory University, 313 Ferst Drive, Suite 4103, Atlanta, Georgia 30332-0535
| |
Collapse
|