1
|
Chen M, Guo G, Liu S, Cai J, Tong X, Liu X, Zhang Y, Chen Y, Huo J. Investigating the relationship between sleep disturbances and cortical thickness, brainstem volume, amyloid accumulation, and inflammatory markers in Parkinson's disease patients. Exp Gerontol 2025; 205:112762. [PMID: 40252714 DOI: 10.1016/j.exger.2025.112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND This study aimed to explore the relationship between self-reported sleep disturbances (e.g., insomnia, REM sleep behavior disorder [RBD]) and cortical thickness, brainstem volume, amyloid accumulation, and inflammatory markers in Parkinson's disease (PD) patients. METHODS We conducted a cross-sectional study comparing 100 PD patients (observation group) with 100 age-matched controls. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI), and serum levels of amyloid-beta (Aβ1-42), α-synuclein, and inflammatory markers (CRP, TNF-α, IL-1β) were quantified. RESULTS PD patients exhibited significantly poorer sleep quality (PSQI total score: 2.11 ± 0.27 vs. 0.52 ± 0.02, P < 0.001), reduced parietal cortical thickness (2.68 ± 0.12 mm vs. 3.15 ± 0.18 mm, P = 0.003), and lower brainstem volume (2697.42 ± 147.05 mm3 vs. 3185.16 ± 255.41 mm3, P = 0.007) compared to controls. Biomarker profiling revealed elevated amyloid pathology in PD, with higher serum Aβ1-42 (median [IQR]: 1.98 [1.75-2.22] vs. 1.14 [1.10-1.19], P < 0.001) and α-synuclein (2.03 [1.85-2.22] vs. 1.06 [1.03-1.10], P < 0.001). Proinflammatory markers were markedly increased in PD, including CRP (9.30 [7.85-10.75] vs. 6.30 [5.60-7.10], P = 0.01), TNF-α (372.20 [329.85-414.55] vs. 184.50 [165.20-203.80], P < 0.001), and IL-1β (573.50 [497.15-649.85] vs. 115.40 [101.05-129.75], P < 0.001). Multivariate analysis identified cortical thinning, brainstem atrophy, and IL-1β elevation as independent predictors of sleep disturbances (P < 0.05). CONCLUSION These findings highlight the interplay between neuroanatomical changes, amyloid pathology, and systemic inflammation in PD-related sleep dysfunction, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Min Chen
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Gongbing Guo
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuangyu Liu
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jingjing Cai
- Department of General Practitioner, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xueying Tong
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xia Liu
- Out-patient Department, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yufei Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yanhong Chen
- Chinese Medicine Rehabilitation Comprehensive Department, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Jiangtao Huo
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
2
|
Yao P, Sharma A, Abdi‐Sargezeh B, Liu T, Tan H, Hahn A, Starr P, Little S, Oswal A. Beta Burst Characteristics and Coupling within the Sensorimotor Cortical-Subthalamic Nucleus Circuit Dynamically Relate to Bradykinesia in Parkinson's Disease. Mov Disord 2025; 40:962-968. [PMID: 40013548 PMCID: PMC12089894 DOI: 10.1002/mds.30163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Bursts of exaggerated subthalamic nucleus (STN) beta activity are believed to contribute to clinical impairments in Parkinson's disease (PD). No previous studies have explored burst characteristics and coupling across the sensorimotor cortical-STN circuit and determined their relationship to dynamic measurements of bradykinesia. OBJECTIVE We sought to (1) establish the characteristics of sensorimotor cortical and STN bursts during naturalistic behaviors, (2) determine the predictability of STN bursts from motor cortical recordings, and (3) relate burst features to continuous measurements of bradykinesia using wearable sensors. METHODS We analyzed 1046 h of wirelessly streamed bilateral sensorimotor cortical and STN recordings from 5 PD patients with concurrent measurements of bradykinesia. RESULTS STN bursts were longer than cortical bursts and had shorter inter-burst intervals. Long bursts (>200 ms) in both structures displayed temporal overlap (>30%), with cortical bursts tending to lead STN burst onset by 8 ms. Worsening bradykinesia was linked to increased cortical burst rates and durations, whereas STN burst properties had the opposite effect. CONCLUSION Cortical beta bursts tend to precede STN beta bursts with short delays and their occurrence relates to worsening bradykinesia in naturalistic settings. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pan Yao
- MRC Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
- State Key Laboratory of Transducer TechnologyAerospace Information Research Institute (AIR), Chinese Academy of SciencesBeijingChina
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences (UCAS)BeijingChina
| | - Abhinav Sharma
- MRC Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| | | | - Tao Liu
- MRC Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| | - Amelia Hahn
- Department of Neurological SurgeryWeill Institute for Neurosciences, University of California, San FranciscoSan FranciscoCAUSA
| | - Philip Starr
- Department of Neurological SurgeryWeill Institute for Neurosciences, University of California, San FranciscoSan FranciscoCAUSA
| | - Simon Little
- Department of Neurological SurgeryWeill Institute for Neurosciences, University of California, San FranciscoSan FranciscoCAUSA
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
3
|
Fedele T, Burman RJ, Steinberg A, Selmin G, Ramantani G, Rosch RE. Synaptic inhibitory dynamics drive benzodiazepine response in pediatric status epilepticus. Epilepsia 2025. [PMID: 40232025 DOI: 10.1111/epi.18398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
OBJECTIVE Pediatric status epilepticus (SE) is a medical emergency associated with significant morbidity. Benzodiazepines (BZPs) are the current first-line treatment, but do not work in more than one third of children presenting with SE. Animal studies have shown that SE can cause changes in synaptic inhibition signaling that can ultimately lead to BZPs becoming ineffective. However, the relevance of these mechanisms in pediatric patients with SE remains unknown. METHODS To test this hypothesis, we combine clinical electroencephalographic (EEG) recordings with dynamic causal modeling (DCM). This approach allows model-based inference of cortical synaptic coupling parameters based on EEG recorded across distinct oscillatory states. RESULTS Our DCM revealed that dynamic changes in inhibitory synaptic coupling explain differences in EEG power spectra associated with BZP treatment responsiveness and guide the transition from ictal to interictal state. Furthermore, in silico simulations demonstrate that there are alternative routes to seizure termination even in cortical circuit models unresponsive to BZPs. SIGNIFICANCE Together, our findings confirm that alterations in synaptic inhibition underlie BZP response during pediatric SE. More broadly, this work further demonstrates the utility of computational modeling to validate insights from basic science in clinically accessible recordings in neurological disorders characterized by abnormal brain states.
Collapse
Affiliation(s)
- Tommaso Fedele
- Department of Pediatric Neurology, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Richard J Burman
- Department of Pediatric Neurology, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anne Steinberg
- Department of Pediatric Neurology, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Giorgio Selmin
- Department of Pediatric Neurology, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Georgia Ramantani
- Department of Pediatric Neurology, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Richard E Rosch
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Wellcome Centre for Imaging Neuroscience, University College London, London, UK
| |
Collapse
|
4
|
Xue L, Hu X, Zhang S, Dai Z, Zhou H, Chen Z, Yao Z, Lu Q. Abnormal beta bursts of depression in the orbitofrontal cortex and its relationship with clinical symptoms. J Affect Disord 2025; 369:1168-1177. [PMID: 39490422 DOI: 10.1016/j.jad.2024.10.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Recent researches have reported that frequency-specific patterns of neural activity contain not only rhythmically sustained oscillations but also transient-bursts of isolated events. The aim of this study was to investigated the correlation between beta burst and depression in order to explore depressive disease and the neurological underpinnings of disease-related symptoms. METHODS We collected resting-state MEG recordings from 30 depressive patients and a matched 40 healthy controls. A Hidden Markov Model (HMM) was applied on source-space time courses for 78 cortical regions of the AAL atlas and the temporal characteristics of beta burst from the matched HMM states were captured. Group differences were evaluated on these beta burst characteristics after permutation tests and, for the depressive group, associations between burst characteristics and clinical symptom severity were determined using Spearman correlation coefficients. RESULTS At a threshold of p=0.05corrected, burst characteristics revealed significant differences between depression patients and controls at the group level, including increased burst amplitude in frontal lobe, decreased burst duration in occipital regions, increased burst rate and decreased burst interval time in some brain regions. Furthermore, burst amplitude in the orbitofrontal cortex (OFC) was positively related to the severity of sleep disturbance and burst rate in the OFC was negatively related to the severity of anxiety in depression patients. CONCLUSIONS The findings highlight OFC may be a targeted area responsible for the anxiety and sleep disturbance symptom by abnormal beta burst in depressive patients and beta burst characteristics of OFC might serve as a neuro-marker for the depression.
Collapse
Affiliation(s)
- Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China
| | - Xiaowen Hu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China
| | - Siqi Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China
| | - Hongliang Zhou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhilu Chen
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China.
| |
Collapse
|
5
|
Jordi L, Isacson O. Neuronal threshold functions: Determining symptom onset in neurological disorders. Prog Neurobiol 2024; 242:102673. [PMID: 39389338 PMCID: PMC11809673 DOI: 10.1016/j.pneurobio.2024.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Synaptic networks determine brain function. Highly complex interconnected brain synaptic networks provide output even under fluctuating or pathological conditions. Relevant to the treatment of brain disorders, understanding the limitations of such functional networks becomes paramount. Here we use the example of Parkinson's Disease (PD) as a system disorder, with PD symptomatology emerging only when the functional reserves of neurons, and their interconnected networks, are unable to facilitate effective compensatory mechanisms. We have denoted this the "threshold theory" to account for how PD symptoms develop in sequence. In this perspective, threshold functions are delineated in a quantitative, synaptic, and cellular network context. This provides a framework to discuss the development of specific symptoms. PD includes dysfunction and degeneration in many organ systems and both peripheral and central nervous system involvement. The threshold theory accounts for and explains the reasons why parallel gradually emerging pathologies in brain and peripheral systems generate specific symptoms only when functional thresholds are crossed, like tipping points. New and mounting evidence demonstrate that PD and related neurodegenerative diseases are multisystem disorders, which transcends the traditional brain-centric paradigm. We believe that representation of threshold functions will be helpful to develop new medicines and interventions that are specific for both pre- and post-symptomatic periods of neurodegenerative disorders.
Collapse
Affiliation(s)
- Luc Jordi
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA.
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA; Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
7
|
Perry A, Hughes LE, Adams NE, Naessens M, Kloosterman NA, Rouse MA, Murley AG, Street D, Jones PS, Rowe JB. Frontotemporal lobar degeneration changes neuronal beta-frequency dynamics during the mismatch negativity response. Neuroimage Clin 2024; 44:103671. [PMID: 39305652 PMCID: PMC11439566 DOI: 10.1016/j.nicl.2024.103671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024]
Abstract
The consequences of frontotemporal lobar degeneration include changes in prefrontal cortical neurophysiology, with abnormalities of neural dynamics reported in the beta frequency range (14-30 Hz) that correlate with functional severity. We examined beta dynamics in two clinical syndromes associated with frontotemporal lobar degeneration: the behavioral variant of frontotemporal dementia (bvFTD) and progressive supranuclear palsy (PSP). Whilst these two syndromes are partially convergent in cognitive effects, they differ in disease mechanisms such as molecular pathologies and prefrontal atrophy. Whether bvFTD and PSP also differ in neurophysiology remains to be fully investigated. We compared magnetoencephalography from 20 controls, 23 people with bvFTD and 21 people with PSP (Richardson's syndrome) during an auditory roving oddball paradigm. We measured changes in low and high total beta power responses (14-22 and 22-30 Hz respectively) over frontotemporal cortex in the period of the mismatch negativity response (100-250 ms post-stimulus). In controls, we found increased 14-22 Hz beta power following unexpected sensory events (i.e. increased deviant versus standard response), from right prefrontal cortex. Relative to controls, PSP reversed the mismatch response in this time-frequency window, reflecting reduced responses to the deviant stimuli (relative to standard stimuli). Abnormal beta at baseline in PSP could account for the reduced task-modulation of beta. Across bvFTD and PSP groups, the beta response to deviant stimuli (relative to standard stimuli) correlated with clinical severity, but not with atrophy of the prefrontal source region. These findings confirm the proposed importance of higher-order cortical regions, and their beta-power generators, in sensory change detection and context-updating during oddball paradigms. The physiological effects are proposed to result from changes in synaptic density, cortical neurotransmitters and subcortical connections, rather than merely atrophy. Beta-power changes may assist clinical stratification and provide intermediate outcomes for experimental medicine studies of novel therapeutic strategies.
Collapse
Affiliation(s)
- Alistair Perry
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - Laura E Hughes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - Natalie E Adams
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - Michelle Naessens
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - Niels A Kloosterman
- Institut für Psychologie I, Universität zu Lübeck, Germany; Max Planck Institute for Human Development, Berlin, Germany
| | - Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - Duncan Street
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - P Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom.
| |
Collapse
|
8
|
Zhu X, Liu S, Liu S. Computational study of associations between the synaptic conductance of STN and GPe and the development of Parkinson's disease. Cogn Neurodyn 2024; 18:1849-1860. [PMID: 39104668 PMCID: PMC11297884 DOI: 10.1007/s11571-023-10048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 08/07/2024] Open
Abstract
There is evidence that the subthalamic nucleus (STN) and globus pallidus pars externa (GPe) involve in the development of Parkinson's disease, a neurodegenerative disorder characterized by motor and non-motor symptoms and loss of dopaminergic neurons in which the error index (EI) in firing patterns is widely used to address the related issues. Whether and how this interaction mechanism of STN and GPe affects EI in Parkinson's disease is uncertain. To account for this, we propose a kind of basal ganglia-thalamic network model associated with Parkinson's disease coupled with neurons, and investigate the effect of synaptic conductance of STN and GPe on EI in this network, as well as their internal relationship under EI as an index. The results show a relationship like a piecewise function between the error index and the slope of the state transition function of synaptic conductance from STN to GPe ( g snge ) and from GPe to STN ( g gesn ). And there is an approximate negative correlation between EI and g gesn . Increasing g snge and decreasing g gesn can improve the fidelity of thalamus information transmission and alleviate Parkinson's disease effectively. These obtained results can give some theoretical evidence that the abnormal synaptic releases of STN and GPe may be the symptoms of the development of Parkinson's disease, and further enrich the understanding of the pathogenesis and treatment mechanism of Parkinson's disease.
Collapse
Affiliation(s)
- Xiaohang Zhu
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Shu Liu
- Shenzhen Liushu Clinic, Shenzhen, 518118 China
| | - Suyu Liu
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018 China
| |
Collapse
|
9
|
Hofmann D, Chesebro AG, Rackauckas C, Mujica-Parodi LR, Friston KJ, Edelman A, Strey HH. Increasing spectral DCM flexibility and speed by leveraging Julia's ModelingToolkit and automated differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.564407. [PMID: 37961652 PMCID: PMC10634910 DOI: 10.1101/2023.10.27.564407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Using neuroimaging and electrophysiological data to infer neural parameter estimations from theoretical circuits requires solving the inverse problem. Here, we provide a new Julia language package designed to i) compose complex dynamical models in a simple and modular way with ModelingToolkit.jl, ii) implement parameter fitting based on spectral dynamic causal modeling (sDCM) using the Laplace approximation, analogous to MATLAB implementation in SPM12, and iii) leverage Julia's unique strengths to increase accuracy and speed by employing Automatic Differentiation during the fitting procedure. To illustrate the utility of our flexible modular approach, we provide a method to improve correction for fMRI scanner field strengths (1.5T, 3T, 7T) when fitting models to real data.
Collapse
|
10
|
Tabari F, Patron C, Cryer H, Johari K. HD-tDCS over left supplementary motor area differentially modulated neural correlates of motor planning for speech vs. limb movement. Int J Psychophysiol 2024; 201:112357. [PMID: 38701898 DOI: 10.1016/j.ijpsycho.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The supplementary motor area (SMA) is implicated in planning, execution, and control of speech production and limb movement. The SMA is among putative generators of pre-movement EEG activity which is thought to be neural markers of motor planning. In neurological conditions such as Parkinson's disease, abnormal pre-movement neural activity within the SMA has been reported during speech production and limb movement. Therefore, this region can be a potential target for non-invasive brain stimulation for both speech and limb movement. The present study took an initial step in examining the application of high-definition transcranial direct current stimulation (HD-tDCS) over the left SMA in 24 neurologically intact adults. Subsequently, event-related potentials (ERPs) were recorded while participants performed speech and limb movement tasks. Participants' data were collected in three counterbalanced sessions: anodal, cathodal and sham HD-tDCS. Relative to sham stimulation, anodal, but not cathodal, HD-tDCS significantly attenuated ERPs prior to the onset of the speech production. In contrast, neither anodal nor cathodal HD-tDCS significantly modulated ERPs prior to the onset of limb movement compared to sham stimulation. These findings showed that neural correlates of motor planning can be modulated using HD-tDCS over the left SMA in neurotypical adults, with translational implications for neurological conditions that impair speech production. The absence of a stimulation effect on ERPs prior to the onset of limb movement was not expected in this study, and future studies are warranted to further explore this effect.
Collapse
Affiliation(s)
- Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Celeste Patron
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Hope Cryer
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
11
|
Correa A, Ponzi A, Calderón VM, Migliore R. Pathological cell assembly dynamics in a striatal MSN network model. Front Comput Neurosci 2024; 18:1410335. [PMID: 38903730 PMCID: PMC11188713 DOI: 10.3389/fncom.2024.1410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of cortical excitation to MSNs. To understand how these long timescales arise we extended a previous network model of MSN cells to include synapses with short-term plasticity, with parameters taken from a recent detailed striatal connectome study. We first confirmed the presence of sequentially switching cell clusters using the non-linear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP). We found that the network could generate non-stationary activity patterns varying extremely slowly on the order of minutes under biologically realistic conditions. Next we used Simulation Based Inference (SBI) to train a deep net to map features of the MSN network generated cell assembly activity to MSN network parameters. We used the trained SBI model to estimate MSN network parameters from ex-vivo brain slice calcium imaging data. We found that best fit network parameters were very close to their physiologically observed values. On the other hand network parameters estimated from Parkinsonian, decorticated and dyskinetic ex-vivo slice preparations were different. Our work may provide a pipeline for diagnosis of basal ganglia pathology from spiking data as well as for the design pharmacological treatments.
Collapse
Affiliation(s)
- Astrid Correa
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Vladimir M. Calderón
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of Mexico, Querétaro, Mexico
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
12
|
Wang YM, Liu CW, Chen SY, Lu LY, Liu WC, Wang JH, Ni CL, Wong SB, Kumar A, Lee JC, Kuo SH, Wu SC, Pan MK. Neuronal population activity in the olivocerebellum encodes the frequency of essential tremor in mice and patients. Sci Transl Med 2024; 16:eadl1408. [PMID: 38748772 DOI: 10.1126/scitranslmed.adl1408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/24/2024] [Indexed: 05/24/2025]
Abstract
Essential tremor (ET) is the most prevalent movement disorder, characterized primarily by action tremor, an involuntary rhythmic movement with a specific frequency. However, the neuronal mechanism underlying the coding of tremor frequency remains unexplored. Here, we used in vivo electrophysiology, optogenetics, and simultaneous motion tracking in the Grid2dupE3 mouse model to investigate whether and how neuronal activity in the olivocerebellum determines the frequency of essential tremor. We report that tremor frequency was encoded by the temporal coherence of population neuronal firing within the olivocerebellums of these mice, leading to frequency-dependent cerebellar oscillations and tremors. This mechanism was precise and generalizable, enabling us to use optogenetic stimulation of the deep cerebellar nuclei to induce frequency-specific tremors in wild-type mice or alter tremor frequencies in tremor mice. In patients with ET, we showed that deep brain stimulation of the thalamus suppressed tremor symptoms but did not eliminate cerebellar oscillations measured by electroencephalgraphy, indicating that tremor-related oscillations in the cerebellum do not require the reciprocal interactions with the thalamus. Frequency-disrupting transcranial alternating current stimulation of the cerebellum could suppress tremor amplitudes, confirming the frequency modulatory role of the cerebellum in patients with ET. These findings offer a neurodynamic basis for the frequency-dependent stimulation of the cerebellum to treat essential tremor.
Collapse
Affiliation(s)
- Yi-Mei Wang
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 632007, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
| | - Chia-Wei Liu
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Shun-Ying Chen
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10638, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Liang-Yin Lu
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 632007, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Wen-Chuan Liu
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jia-Huei Wang
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Chun-Lun Ni
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shi-Bing Wong
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Ami Kumar
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Jye-Chang Lee
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Sheng-Han Kuo
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 632007, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10638, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 100225, Taiwan
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
| |
Collapse
|
13
|
McLoughlin C, Lowery M. Impact of Network Topology on Neural Synchrony in a Model of the Subthalamic Nucleus-Globus Pallidus Circuit. IEEE Trans Neural Syst Rehabil Eng 2024; 32:282-292. [PMID: 38145524 DOI: 10.1109/tnsre.2023.3346456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Synchronous neural oscillations within the beta frequency range are observed across the parkinsonian basal ganglia network, including within the subthalamic nucleus (STN) - globus pallidus (GPe) subcircuit. The emergence of pathological synchrony in Parkinson's disease is often attributed to changes in neural properties or connection strength, and less often to the network topology, i.e. the structural arrangement of connections between neurons. This study investigates the relationship between network structure and neural synchrony in a model of the STN-GPe circuit comprised of conductance-based spiking neurons. Changes in net synaptic input were controlled for through a synaptic scaling rule, which facilitated separation of the effects of network structure from net synaptic input. Five topologies were examined as structures for the STN-GPe circuit: Watts-Strogatz, preferential attachment, spatial, stochastic block, k-regular random. Beta band synchrony generally increased as the number of connections increased, however the exact relationship was topology specific. Varying the wiring pattern while maintaining a constant number of connections caused network synchrony to be enhanced or suppressed, demonstrating the ability of purely structural changes to alter synchrony. This relationship was well-captured by the algebraic connectivity of the network, the second smallest eigenvalue of the network's Laplacian matrix. The structure-synchrony relationship was further investigated in a network model designed to emulate the action selection role of the STN-GPe circuit. It was found that increasing the number of connections and/or the overlap of action selection channels could lead to a rapid transition to synchrony, which was also predicted by the algebraic connectivity.
Collapse
|
14
|
Wiesman AI, da Silva Castanheira J, Degroot C, Fon EA, Baillet S, Network QP. Adverse and compensatory neurophysiological slowing in Parkinson's disease. Prog Neurobiol 2023; 231:102538. [PMID: 37832713 PMCID: PMC10872886 DOI: 10.1016/j.pneurobio.2023.102538] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Patients with Parkinson's disease (PD) exhibit multifaceted changes in neurophysiological brain activity, hypothesized to represent a global cortical slowing effect. Using task-free magnetoencephalography and extensive clinical assessments, we found that neurophysiological slowing in PD is differentially associated with motor and non-motor symptoms along a sagittal gradient over the cortical anatomy. In superior parietal regions, neurophysiological slowing reflects an adverse effect and scales with cognitive and motor impairments, while across the inferior frontal cortex, neurophysiological slowing is compatible with a compensatory role. This adverse-to-compensatory gradient is sensitive to individual clinical profiles, such as drug regimens and laterality of symptoms; it is also aligned with the topography of neurotransmitter and transporter systems relevant to PD. We conclude that neurophysiological slowing in patients with PD signals both deleterious and protective mechanisms of the disease, from posterior to anterior regions across the cortex, respectively, with functional and clinical relevance to motor and cognitive symptoms.
Collapse
Affiliation(s)
- Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | | | - Clotilde Degroot
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edward A Fon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Quebec Parkinson Network
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Sun Y, Lü J, Zhou Y, Liu Y, Chai Y. Suppression of beta oscillations by delayed feedback in a cortex-basal ganglia-thalamus-pedunculopontine nucleus neural loop model. J Biol Phys 2023; 49:463-482. [PMID: 37572243 PMCID: PMC10651615 DOI: 10.1007/s10867-023-09641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Excessive neural synchronization of neural populations in the beta (β) frequency range (12-35 Hz) is intimately related to the symptoms of hypokinesia in Parkinson's disease (PD). Studies have shown that delayed feedback stimulation strategies can interrupt excessive neural synchronization and effectively alleviate symptoms associated with PD dyskinesia. Work on optimizing delayed feedback algorithms continues to progress, yet it remains challenging to further improve the inhibitory effect with reduced energy expenditure. Therefore, we first established a neural mass model of the cortex-basal ganglia-thalamus-pedunculopontine nucleus (CBGTh-PPN) closed-loop system, which can reflect the internal properties of cortical and basal ganglia neurons and their intrinsic connections with thalamic and pedunculopontine nucleus neurons. Second, the inhibitory effects of three delayed feedback schemes based on the external globus pallidum (GPe) on β oscillations were investigated separately and compared with those based on the subthalamic nucleus (STN) only. Our results show that all four delayed feedback schemes achieve effective suppression of pathological β oscillations when using the linear delayed feedback algorithm. The comparison revealed that the three GPe-based delayed feedback stimulation strategies were able to have a greater range of oscillation suppression with reduced energy consumption, thus improving control performance effectively, suggesting that they may be more effective for the relief of Parkinson's motor symptoms in practical applications.
Collapse
Affiliation(s)
- Yuqin Sun
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Jiali Lü
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Ye Zhou
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yingpeng Liu
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China.
| |
Collapse
|
16
|
Yang B, Yang Z, Liu H, Qi H. Dynamic modelling and tristability analysis of misfolded α-synuclein degraded via autophagy in Parkinson's disease. Biosystems 2023; 233:105036. [PMID: 37726073 DOI: 10.1016/j.biosystems.2023.105036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
The widely-accepted hallmark pathology of Parkinson's disease (PD) is the presence of Lewy bodies with characteristic abnormal aggregated α-synuclein (αSyn). Growing physiological evidence suggests that there is a pivotal role for the autophagy-lysosome pathway (ALP) in the clearance of misfolded αSyn (αSyn∗). This work establishes a mathematical model for αSyn∗ degradation through the ALP. Qualitative simulations are used to uncover the tristable behavior of αSyn∗, i.e., the lower, medium, and upper steady states, which correspond to the healthy, critical, and disease stages of PD, respectively. Time series and codimension-1 bifurcation analysis suggest that the system shows tristability dynamics. Furthermore, variations in the key parameters influence the tristable dynamic behavior, and the distribution of tristable regions is exhibited more comprehensively in codimension-2 bifurcation diagrams. In addition, robustness analysis demonstrates that tristability is a robust property of the system. These results may be valuable in therapeutic strategies for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Bojie Yang
- School of Mathematical Sciences and LMIB, Beihang University, Beijing, 100191, People's Republic of China
| | - Zhuoqin Yang
- School of Mathematical Sciences and LMIB, Beihang University, Beijing, 100191, People's Republic of China.
| | - Heng Liu
- School of Mathematical Sciences and LMIB, Beihang University, Beijing, 100191, People's Republic of China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
17
|
Lorenzi RM, Geminiani A, Zerlaut Y, De Grazia M, Destexhe A, Gandini Wheeler-Kingshott CAM, Palesi F, Casellato C, D'Angelo E. A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics. PLoS Comput Biol 2023; 19:e1011434. [PMID: 37656758 PMCID: PMC10501640 DOI: 10.1371/journal.pcbi.1011434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/14/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Mean-field (MF) models are computational formalism used to summarize in a few statistical parameters the salient biophysical properties of an inter-wired neuronal network. Their formalism normally incorporates different types of neurons and synapses along with their topological organization. MFs are crucial to efficiently implement the computational modules of large-scale models of brain function, maintaining the specificity of local cortical microcircuits. While MFs have been generated for the isocortex, they are still missing for other parts of the brain. Here we have designed and simulated a multi-layer MF of the cerebellar microcircuit (including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using a system of equations, where properties of neuronal populations and topological parameters are embedded in inter-dependent transfer functions. The model time constant was optimised using local field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF reproduced the average dynamics of different neuronal populations in response to various input patterns and predicted the modulation of the Purkinje Cells firing depending on cortical plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The cerebellar MF provides a computationally efficient tool for future investigations of the causal relationship between microscopic neuronal properties and ensemble brain activity in virtual brain models addressing both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Alice Geminiani
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Yann Zerlaut
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | - Claudia A M Gandini Wheeler-Kingshott
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, UCL, London, United Kingdom
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
18
|
Ortone A, Vergani AA, Ahmadipour M, Mannella R, Mazzoni A. Dopamine depletion leads to pathological synchronization of distinct basal ganglia loops in the beta band. PLoS Comput Biol 2023; 19:e1010645. [PMID: 37104542 PMCID: PMC10168586 DOI: 10.1371/journal.pcbi.1010645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/09/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Motor symptoms of Parkinson's Disease (PD) are associated with dopamine deficits and pathological oscillation of basal ganglia (BG) neurons in the β range ([12-30] Hz). However, how dopamine depletion affects the oscillation dynamics of BG nuclei is still unclear. With a spiking neurons model, we here capture the features of BG nuclei interactions leading to oscillations in dopamine-depleted condition. We highlight that both the loop between subthalamic nucleus (STN) and Globus Pallidus pars externa (GPe) and the loop between striatal fast spiking and medium spiny neurons and GPe display resonances in the β range, and synchronize to a common β frequency through interaction. Crucially, the synchronization depends on dopamine depletion: the two loops are largely independent for high levels of dopamine, but progressively synchronize as dopamine is depleted due to the increased strength of the striatal loop. The model is validated against recent experimental reports on the role of cortical inputs, STN and GPe activity in the generation of β oscillations. Our results highlight the role of the interplay between the GPe-STN and the GPe-striatum loop in generating sustained β oscillations in PD subjects, and explain how this interplay depends on the level of dopamine. This paves the way to the design of therapies specifically addressing the onset of pathological β oscillations.
Collapse
Affiliation(s)
- Andrea Ortone
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Alberto Arturo Vergani
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Mahboubeh Ahmadipour
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
19
|
Combined EEG and immersive virtual reality unveil dopaminergic modulation of error monitoring in Parkinson's Disease. NPJ Parkinsons Dis 2023; 9:3. [PMID: 36639384 PMCID: PMC9839679 DOI: 10.1038/s41531-022-00441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Detecting errors in your own and others' actions is associated with discrepancies between intended and expected outcomes. The processing of salient events is associated with dopamine release, the balance of which is altered in Parkinson's disease (PD). Errors in observed actions trigger various electrocortical indices (e.g. mid-frontal theta, error-related delta, and error positivity [oPe]). However, the impact of dopamine depletion to observed errors in the same individual remains unclear. Healthy controls (HCs) and PD patients observed ecological reach-to-grasp-a-glass actions performed by a virtual arm from a first-person perspective. PD patients were tested under their dopaminergic medication (on-condition) and after dopaminergic withdrawal (off-condition). Analyses of oPe, delta, and theta-power increases indicate that while the formers were elicited after incorrect vs. correct actions in all groups, the latter were observed in on-condition but altered in off-condition PD. Therefore, different EEG error signatures may index the activity of distinct mechanisms, and error-related theta power is selectively modulated by dopamine depletion. Our findings may facilitate discovering dopamine-related biomarkers for error-monitoring dysfunctions that may have crucial theoretical and clinical implications.
Collapse
|
20
|
Gu W, Xu L, Wang J, Ou Y. Control mechanisms of pathological low-frequency oscillations under different targets in Parkinson's disease. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A, Ghilardi MF. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front Neurosci 2022; 16:1045715. [PMID: 36507340 PMCID: PMC9726921 DOI: 10.3389/fnins.2022.1045715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaime Peter
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Dave Mathew
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shaina George
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Tomisin Alalade
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Sheilla A. Salcedo
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shannon Saed
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,*Correspondence: Elisa Tatti,
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo-Piemonte, Messina, Italy,Angelo Quartarone,
| | - M. Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,M. Felice Ghilardi,
| |
Collapse
|
22
|
Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks. Proc Natl Acad Sci U S A 2022; 119:e2122552119. [PMID: 36161926 DOI: 10.1073/pnas.2122552119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptors, transporters, and ion channels are important targets for therapy development in neurological diseases, but their mechanistic role in pathogenesis is often poorly understood. Gene editing and in vivo imaging approaches will help to identify the molecular and functional role of these targets and the consequence of their regional dysfunction on the whole-brain level. We combine CRISPR-Cas9 gene editing with in vivo positron emission tomography (PET) and functional MRI (fMRI) to investigate the direct link between genes, molecules, and the brain connectome. The extensive knowledge of the Slc18a2 gene encoding the vesicular monoamine transporter (VMAT2), involved in the storage and release of dopamine, makes it an excellent target for studying the gene network relationships while structurally preserving neuronal integrity and function. We edited the Slc18a2 in the substantia nigra pars compacta of adult rats and used in vivo molecular imaging besides behavioral, histological, and biochemical assessments to characterize the CRISPR-Cas9-mediated VMAT2 knockdown. Simultaneous PET/fMRI was performed to investigate molecular and functional brain alterations. We found that stage-specific adaptations of brain functional connectivity follow the selective impairment of presynaptic dopamine storage and release. Our study reveals that recruiting different brain networks is an early response to the dopaminergic dysfunction preceding neuronal cell loss. Our combinatorial approach is a tool to investigate the impact of specific genes on brain molecular and functional dynamics, which will help to develop tailored therapies for normalizing brain function.
Collapse
|
23
|
Padilla-Orozco M, Duhne M, Fuentes-Serrano A, Ortega A, Galarraga E, Bargas J, Lara-González E. Synaptic determinants of cholinergic interneurons hyperactivity during parkinsonism. Front Synaptic Neurosci 2022; 14:945816. [PMID: 36147730 PMCID: PMC9485566 DOI: 10.3389/fnsyn.2022.945816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative ailment generated by the loss of dopamine in the basal ganglia, mainly in the striatum. The disease courses with increased striatal levels of acetylcholine, disrupting the balance among these modulatory transmitters. These modifications disturb the excitatory and inhibitory balance in the striatal circuitry, as reflected in the activity of projection striatal neurons. In addition, changes in the firing pattern of striatal tonically active interneurons during the disease, including cholinergic interneurons (CINs), are being searched. Dopamine-depleted striatal circuits exhibit pathological hyperactivity as compared to controls. One aim of this study was to show how striatal CINs contribute to this hyperactivity. A second aim was to show the contribution of extrinsic synaptic inputs to striatal CINs hyperactivity. Electrophysiological and calcium imaging recordings in Cre-mice allowed us to evaluate the activity of dozens of identified CINs with single-cell resolution in ex vivo brain slices. CINs show hyperactivity with bursts and silences in the dopamine-depleted striatum. We confirmed that the intrinsic differences between the activity of control and dopamine-depleted CINs are one source of their hyperactivity. We also show that a great part of this hyperactivity and firing pattern change is a product of extrinsic synaptic inputs, targeting CINs. Both glutamatergic and GABAergic inputs are essential to sustain hyperactivity. In addition, cholinergic transmission through nicotinic receptors also participates, suggesting that the joint activity of CINs drives the phenomenon; since striatal CINs express nicotinic receptors, not expressed in striatal projection neurons. Therefore, CINs hyperactivity is the result of changes in intrinsic properties and excitatory and inhibitory inputs, in addition to the modification of local circuitry due to cholinergic nicotinic transmission. We conclude that CINs are the main drivers of the pathological hyperactivity present in the striatum that is depleted of dopamine, and this is, in part, a result of extrinsic synaptic inputs. These results show that CINs may be a main therapeutic target to treat Parkinson’s disease by intervening in their synaptic inputs.
Collapse
Affiliation(s)
- Montserrat Padilla-Orozco
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Alejandra Fuentes-Serrano
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aidán Ortega
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José Bargas,
| | - Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Esther Lara-González,
| |
Collapse
|
24
|
Mushiake H. Neurophysiological Perspective on Allostasis and Homeostasis: Dynamic Adaptation in Viable Systems. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allostasis is a physiological principle based on a dynamic regulatory system, contrary to homeostasis, in which the goal is to reach a steady state and recover from deviation from a set point in the internal environment. The concept of allostasis has continued to develop with advances in the field of neuroscience. In this short review, the author presents several new findings in neuroscience and extend the concept of allostasis as mutual regulation between cognitive, somatic, and autonomic systems. In this manner, biological systems adapt to external and internal environments by changing themselves.
Collapse
|
25
|
Madadi Asl M, Asadi A, Enayati J, Valizadeh A. Inhibitory Spike-Timing-Dependent Plasticity Can Account for Pathological Strengthening of Pallido-Subthalamic Synapses in Parkinson's Disease. Front Physiol 2022; 13:915626. [PMID: 35665225 PMCID: PMC9160312 DOI: 10.3389/fphys.2022.915626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative brain disorder associated with dysfunction of the basal ganglia (BG) circuitry. Dopamine (DA) depletion in experimental PD models leads to the pathological strengthening of pallido-subthalamic synaptic connections, contributing to the emergence of abnormally synchronized neuronal activity in the external segment of the globus pallidus (GPe) and subthalamic nucleus (STN). Augmented GPe-STN transmission following loss of DA was attributed to heterosynaptic plasticity mechanisms induced by cortico-subthalamic inputs. However, synaptic plasticity may play a role in this process. Here, by employing computational modeling we show that assuming inhibitory spike-timing-dependent plasticity (iSTDP) at pallido-subthalamic synapses can account for pathological strengthening of pallido-subthalamic synapses in PD by further promoting correlated neuronal activity in the GPe-STN network. In addition, we show that GPe-STN transmission delays can shape bistable activity-connectivity states due to iSTDP, characterized by strong connectivity and strong synchronized activity (pathological states) as opposed to weak connectivity and desynchronized activity (physiological states). Our results may shed light on how abnormal reshaping of GPe-STN connectivity by synaptic plasticity during parkinsonism is related to the PD pathophysiology and contribute to the development of therapeutic brain stimulation techniques targeting plasticity-induced rewiring of network connectivity.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Atefeh Asadi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Jamil Enayati
- Physics Department, College of Education, University of Garmian, Kalar, Iraq
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
26
|
Adam EM, Brown EN, Kopell N, McCarthy MM. Deep brain stimulation in the subthalamic nucleus for Parkinson's disease can restore dynamics of striatal networks. Proc Natl Acad Sci U S A 2022; 119:e2120808119. [PMID: 35500112 PMCID: PMC9171607 DOI: 10.1073/pnas.2120808119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in alleviating movement disability in patients with Parkinson’s disease (PD). However, its therapeutic mechanism of action is unknown. The healthy striatum exhibits rich dynamics resulting from an interaction of beta, gamma, and theta oscillations. These rhythms are essential to selection and execution of motor programs, and their loss or exaggeration due to dopamine (DA) depletion in PD is a major source of behavioral deficits. Restoring the natural rhythms may then be instrumental in the therapeutic action of DBS. We develop a biophysical networked model of a BG pathway to study how abnormal beta oscillations can emerge throughout the BG in PD and how DBS can restore normal beta, gamma, and theta striatal rhythms. Our model incorporates STN projections to the striatum, long known but understudied, found to preferentially target fast-spiking interneurons (FSI). We find that DBS in STN can normalize striatal medium spiny neuron activity by recruiting FSI dynamics and restoring the inhibitory potency of FSIs observed in normal conditions. We also find that DBS allows the reexpression of gamma and theta rhythms, thought to be dependent on high DA levels and thus lost in PD, through cortical noise control. Our study highlights that DBS effects can go beyond regularizing BG output dynamics to restoring normal internal BG dynamics and the ability to regulate them. It also suggests how gamma and theta oscillations can be leveraged to supplement DBS treatment and enhance its effectiveness.
Collapse
Affiliation(s)
- Elie M. Adam
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emery N. Brown
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | | |
Collapse
|
27
|
Mazzetti C, Gonzales Damatac C, Sprooten E, ter Huurne N, Buitelaar JK, Jensen O. Dorsal-to-ventral imbalance in the superior longitudinal fasciculus mediates methylphenidate's effect on beta oscillations in ADHD. Psychophysiology 2022; 59:e14008. [PMID: 35165906 PMCID: PMC9287074 DOI: 10.1111/psyp.14008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
While pharmacological treatment with methylphenidate (MPH) is a first line intervention for ADHD, its mechanisms of action have yet to be elucidated. We here seek to identify the white matter tracts that mediate MPH's effect on beta oscillations. We implemented a double-blind placebo-controlled crossover design, where boys diagnosed with ADHD underwent behavioral and MEG measurements during a spatial attention task while on and off MPH. The results were compared with an age/IQ-matched control group. Estimates of white matter tracts were obtained using diffusion tensor imaging (DTI). Via a stepwise model selection strategy, we identified the fiber tracts (regressors) significantly predicting values of the dependent variables of interest (i.e., oscillatory power, behavioral performance, and clinical symptoms): the anterior thalamic radiation (ATR), the superior longitudinal fasciculus ("parietal endings") (SLFp), and superior longitudinal fasciculus ("temporal endings") (SLFt). ADHD symptoms severity was associated with lower fractional anisotropy (FA) within the ATR. In addition, individuals with relatively higher FA in SLFp compared to SLFt, led to stronger behavioral effects of MPH in the form of faster and more accurate responses. Furthermore, the same parietotemporal FA gradient explained the effects of MPH on beta modulation: subjects with ADHD exhibiting higher FA in SLFp compared to SLFt also displayed greater effects of MPH on beta power during response preparation. Our data suggest that the behavioral deficits and aberrant oscillatory modulations observed in ADHD depend on a possibly detrimental structural connectivity imbalance within the SLF, caused by a diffusivity gradient in favor of parietal rather than temporal, fiber tracts.
Collapse
Affiliation(s)
- Cecilia Mazzetti
- Department of Basic NeurosciencesUniversity of GenevaGenèveSwitzerland
| | - Christienne Gonzales Damatac
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboudumcNijmegenThe Netherlands
| | - Emma Sprooten
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboudumcNijmegenThe Netherlands
| | - Niels ter Huurne
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Karakter Child and Adolescent Psychiatry University CentreNijmegenThe Netherlands
| | - Jan K. Buitelaar
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboudumcNijmegenThe Netherlands
- Karakter Child and Adolescent Psychiatry University CentreNijmegenThe Netherlands
| | - Ole Jensen
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| |
Collapse
|
28
|
Darbinyan LV, Simonyan KV, Hambardzumyan LE, Manukyan LP, Badalyan SH, Sarkisian VH. Protective effect of curcumin against rotenone-induced substantia nigra pars compacta neuronal dysfunction. Metab Brain Dis 2022; 37:1111-1118. [PMID: 35239141 DOI: 10.1007/s11011-022-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 01/07/2023]
Abstract
Rotenone is involved in the degeneration of dopaminergic neurons, and curcumin may prevent or effectively slow the progression of Parkinson's disease (PD). Previous research has shown that the naturally occurring phenolic compound curcumin can reduce inflammation and oxidation, making it a potential therapeutic agent for neurodegenerative diseases. The present study involves investigation of rotenone-induced histological changes in the brain area, hippocampus using Nissl staining after 35 day of subcutaneous injection of rotenone in adult male rats. We sought to determine whether curcumin could protect against rotenone-induced dopaminergic neurotoxicity in a rat model by in vivo electrical recording from Substantia nigra pars compacta (SNc). Curcumin treatment significantly improved electrical activity of neurons in the SNc of rotenone-induced PD model rats. The pattern of histological alterations corresponds with electrophysiological manifestations.
Collapse
Affiliation(s)
- L V Darbinyan
- Sensorimotor Integration Laboratory, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - K V Simonyan
- Neuroendocrine Relationships Laboratory, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia.
| | - L E Hambardzumyan
- Sensorimotor Integration Laboratory, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L P Manukyan
- Sensorimotor Integration Laboratory, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - S H Badalyan
- Sensorimotor Integration Laboratory, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - V H Sarkisian
- Sensorimotor Integration Laboratory, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| |
Collapse
|
29
|
Oscillation suppression effects of intermittent noisy deep brain stimulation induced by coordinated reset pattern based on a computational model. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
West TO, Magill PJ, Sharott A, Litvak V, Farmer SF, Cagnan H. Stimulating at the right time to recover network states in a model of the cortico-basal ganglia-thalamic circuit. PLoS Comput Biol 2022; 18:e1009887. [PMID: 35245281 PMCID: PMC8939795 DOI: 10.1371/journal.pcbi.1009887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/22/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Synchronization of neural oscillations is thought to facilitate communication in the brain. Neurodegenerative pathologies such as Parkinson's disease (PD) can result in synaptic reorganization of the motor circuit, leading to altered neuronal dynamics and impaired neural communication. Treatments for PD aim to restore network function via pharmacological means such as dopamine replacement, or by suppressing pathological oscillations with deep brain stimulation. We tested the hypothesis that brain stimulation can operate beyond a simple "reversible lesion" effect to augment network communication. Specifically, we examined the modulation of beta band (14-30 Hz) activity, a known biomarker of motor deficits and potential control signal for stimulation in Parkinson's. To do this we setup a neural mass model of population activity within the cortico-basal ganglia-thalamic (CBGT) circuit with parameters that were constrained to yield spectral features comparable to those in experimental Parkinsonism. We modulated the connectivity of two major pathways known to be disrupted in PD and constructed statistical summaries of the spectra and functional connectivity of the resulting spontaneous activity. These were then used to assess the network-wide outcomes of closed-loop stimulation delivered to motor cortex and phase locked to subthalamic beta activity. Our results demonstrate that the spatial pattern of beta synchrony is dependent upon the strength of inputs to the STN. Precisely timed stimulation has the capacity to recover network states, with stimulation phase inducing activity with distinct spectral and spatial properties. These results provide a theoretical basis for the design of the next-generation brain stimulators that aim to restore neural communication in disease.
Collapse
Affiliation(s)
- Timothy O. West
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Peter J. Magill
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Simon F. Farmer
- Department of Neurology, National Hospital for Neurology & Neurosurgery, London, United Kingdom
- Department of Clinical and Human Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Hayriye Cagnan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
31
|
Madadi Asl M, Vahabie AH, Valizadeh A, Tass PA. Spike-Timing-Dependent Plasticity Mediated by Dopamine and its Role in Parkinson's Disease Pathophysiology. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:817524. [PMID: 36926058 PMCID: PMC10013044 DOI: 10.3389/fnetp.2022.817524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is a multi-systemic neurodegenerative brain disorder. Motor symptoms of PD are linked to the significant dopamine (DA) loss in substantia nigra pars compacta (SNc) followed by basal ganglia (BG) circuit dysfunction. Increasing experimental and computational evidence indicates that (synaptic) plasticity plays a key role in the emergence of PD-related pathological changes following DA loss. Spike-timing-dependent plasticity (STDP) mediated by DA provides a mechanistic model for synaptic plasticity to modify synaptic connections within the BG according to the neuronal activity. To shed light on how DA-mediated STDP can shape neuronal activity and synaptic connectivity in the PD condition, we reviewed experimental and computational findings addressing the modulatory effect of DA on STDP as well as other plasticity mechanisms and discussed their potential role in PD pathophysiology and related network dynamics and connectivity. In particular, reshaping of STDP profiles together with other plasticity-mediated processes following DA loss may abnormally modify synaptic connections in competing pathways of the BG. The cascade of plasticity-induced maladaptive or compensatory changes can impair the excitation-inhibition balance towards the BG output nuclei, leading to the emergence of pathological activity-connectivity patterns in PD. Pre-clinical, clinical as well as computational studies reviewed here provide an understanding of the impact of synaptic plasticity and other plasticity mechanisms on PD pathophysiology, especially PD-related network activity and connectivity, after DA loss. This review may provide further insights into the abnormal structure-function relationship within the BG contributing to the emergence of pathological states in PD. Specifically, this review is intended to provide detailed information for the development of computational network models for PD, serving as testbeds for the development and optimization of invasive and non-invasive brain stimulation techniques. Computationally derived hypotheses may accelerate the development of therapeutic stimulation techniques and potentially reduce the number of related animal experiments.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Abdol-Hossein Vahabie
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
32
|
Liu C, Zhou C, Wang J, Fietkiewicz C, Loparo KA. Delayed Feedback-Based Suppression of Pathological Oscillations in a Neural Mass Model. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:5046-5056. [PMID: 31295136 DOI: 10.1109/tcyb.2019.2923317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Suppression of excessively synchronous beta frequency (12-35 Hz) oscillatory activity in the basal ganglia is believed to correlate with the alleviation of hypokinetic motor symptoms of the Parkinson's disease. Delayed feedback is an effective strategy to interrupt the synchronization and has been used in the design of closed-loop neuromodulation methods computationally. Although tremendous efforts in this are being made by optimizing delayed feedback algorithm and stimulation waveforms, there are still remaining problems in the selection of effective parameters in the delayed feedback control schemes. In most delayed feedback neuromodulation strategies, the stimulation signal is obtained from the local field potential (LFP) of the excitatory subthalamic nucleus (STN) neurons and then is administered back to STN itself only. The inhibitory external globus pallidus (GPe) nucleus in the excitatory-inhibitory STN-GPe reciprocal network has not been involved in the design of the delayed feedback control strategies. Thus, considering the role of GPe, this paper proposes three schemes involving GPe in the design of the delayed feedback strategies and compared their effectiveness to the traditional paradigm using STN only. Based on a neural mass model of STN-GPe network having capability of simulating the LFP directly, the proposed stimulation strategies are tested and compared. Our simulation results show that the four types of delayed feedback control schemes are all effective, even if with a simple linear delayed feedback algorithm. But the three new control strategies we propose here further improve the control performance by enlarging the oscillatory suppression space and reducing the energy expenditure, suggesting that they may be more effective in applications. This paper may guide a new approach to optimize the closed-loop deep brain stimulation treatment to alleviate the Parkinsonian state by retargeting the measurement and stimulation nucleus.
Collapse
|
33
|
Oswal A, Cao C, Yeh CH, Neumann WJ, Gratwicke J, Akram H, Horn A, Li D, Zhan S, Zhang C, Wang Q, Zrinzo L, Foltynie T, Limousin P, Bogacz R, Sun B, Husain M, Brown P, Litvak V. Neural signatures of hyperdirect pathway activity in Parkinson's disease. Nat Commun 2021; 12:5185. [PMID: 34465771 PMCID: PMC8408177 DOI: 10.1038/s41467-021-25366-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is characterised by the emergence of beta frequency oscillatory synchronisation across the cortico-basal-ganglia circuit. The relationship between the anatomy of this circuit and oscillatory synchronisation within it remains unclear. We address this by combining recordings from human subthalamic nucleus (STN) and internal globus pallidus (GPi) with magnetoencephalography, tractography and computational modelling. Coherence between supplementary motor area and STN within the high (21-30 Hz) but not low (13-21 Hz) beta frequency range correlated with 'hyperdirect pathway' fibre densities between these structures. Furthermore, supplementary motor area activity drove STN activity selectively at high beta frequencies suggesting that high beta frequencies propagate from the cortex to the basal ganglia via the hyperdirect pathway. Computational modelling revealed that exaggerated high beta hyperdirect pathway activity can provoke the generation of widespread pathological synchrony at lower beta frequencies. These findings suggest a spectral signature and a pathophysiological role for the hyperdirect pathway in PD.
Collapse
Affiliation(s)
- Ashwini Oswal
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- The Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Chunyan Cao
- Department of Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Chien-Hung Yeh
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- School of Information and Electronics Engineering, Beijing Institute of Technology, Beijing, China
| | | | - James Gratwicke
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Andreas Horn
- Department of Neurology, Charité University, Berlin, Germany
| | - Dianyou Li
- Department of Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Chao Zhang
- Department of Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Qiang Wang
- Department of Neurology, Charité University, Berlin, Germany
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Tom Foltynie
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Bomin Sun
- Department of Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Vladimir Litvak
- The Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| |
Collapse
|
34
|
West TO, Berthouze L, Farmer SF, Cagnan H, Litvak V. Inference of brain networks with approximate Bayesian computation - assessing face validity with an example application in Parkinsonism. Neuroimage 2021; 236:118020. [PMID: 33839264 PMCID: PMC8270890 DOI: 10.1016/j.neuroimage.2021.118020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 11/21/2022] Open
Abstract
This paper describes and validates a novel framework using the Approximate Bayesian Computation (ABC) algorithm for parameter estimation and model selection in models of mesoscale brain network activity. We provide a proof of principle, first pass validation of this framework using a set of neural mass models of the cortico-basal ganglia thalamic circuit inverted upon spectral features from experimental, in vivo recordings. This optimization scheme relaxes an assumption of fixed-form posteriors (i.e. the Laplace approximation) taken in previous approaches to inverse modelling of spectral features. This enables the exploration of model dynamics beyond that approximated from local linearity assumptions and so fit to explicit, numerical solutions of the underlying non-linear system of equations. In this first paper, we establish a face validation of the optimization procedures in terms of: (i) the ability to approximate posterior densities over parameters that are plausible given the known causes of the data; (ii) the ability of the model comparison procedures to yield posterior model probabilities that can identify the model structure known to generate the data; and (iii) the robustness of these procedures to local minima in the face of different starting conditions. Finally, as an illustrative application we show (iv) that model comparison can yield plausible conclusions given the known neurobiology of the cortico-basal ganglia-thalamic circuit in Parkinsonism. These results lay the groundwork for future studies utilizing highly nonlinear or brittle models that can explain time dependant dynamics, such as oscillatory bursts, in terms of the underlying neural circuits.
Collapse
Affiliation(s)
- Timothy O West
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom; Wellcome Trust Centre for Human Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
| | - Luc Berthouze
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, United Kingdom; UCL Great Ormond Street Institute of Child Health, Guildford St., London WC1N 1EH, United Kingdom
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, United Kingdom; Department of Clinical and Movement Neurosciences, Institute of Neurology, Queen Square, UCL, London WC1N 3BG, United Kingdom
| | - Hayriye Cagnan
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom; Wellcome Trust Centre for Human Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Vladimir Litvak
- Wellcome Trust Centre for Human Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
35
|
Yan C, Liu Q, Bi Y. Bifurcation analyses and potential landscapes of a cortex-basal ganglia-thalamus model. IET Syst Biol 2021; 15:101-109. [PMID: 33861900 PMCID: PMC8675854 DOI: 10.1049/syb2.12018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/06/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
The dynamics of cortical neuronal activity plays important roles in controlling body movement and is regulated by connection weights between neurons in a cortex–basal ganglia–thalamus (BGCT) loop. Beta‐band oscillation of cortical activity is closely associated with the movement disorder of Parkinson's disease, which is caused by an imbalance in the connection weights of direct and indirect pathways in the BGCT loop. In this study, the authors investigate how the dynamics of cortical activity are modulated by connection weights of direct and indirect pathways in the BGCT loop under low dopamine levels through bifurcation analyses and potential landscapes. The results reveal that cortical activity displays rich dynamics under different connection weights, including one, two, or three stable steady states, one or two stable limit cycles, and the coexistence of one stable limit cycle with one stable steady state or two stable ones. For a low dopamine level, cortical activity exhibits oscillation for larger connection weights of direct and indirect pathways. The stability of these stable dynamics is explored by the potential landscapes.
Collapse
Affiliation(s)
- Chenri Yan
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Quansheng Liu
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Yuanhong Bi
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot, China
| |
Collapse
|
36
|
Parkinsonism Alters Beta Burst Dynamics across the Basal Ganglia-Motor Cortical Network. J Neurosci 2021; 41:2274-2286. [PMID: 33483430 DOI: 10.1523/jneurosci.1591-20.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Elevated synchronized oscillatory activity in the beta band has been hypothesized to be a pathophysiological marker of Parkinson's disease (PD). Recent studies have suggested that parkinsonism is closely associated with increased amplitude and duration of beta burst activity in the subthalamic nucleus (STN). How beta burst dynamics are altered from the normal to parkinsonian state across the basal ganglia-thalamocortical (BGTC) motor network, however, remains unclear. In this study, we simultaneously recorded local field potential activity from the STN, internal segment of the globus pallidus (GPi), and primary motor cortex (M1) in three female rhesus macaques, and characterized how beta burst activity changed as the animals transitioned from normal to progressively more severe parkinsonian states. Parkinsonism was associated with an increased incidence of beta bursts with longer duration and higher amplitude in the low beta band (8-20 Hz) in both the STN and GPi, but not in M1. We observed greater concurrence of beta burst activity, however, across all recording sites (M1, STN, and GPi) in PD. The simultaneous presence of low beta burst activity across multiple nodes of the BGTC network that increased with severity of PD motor signs provides compelling evidence in support of the hypothesis that low beta synchronized oscillations play a significant role in the underlying pathophysiology of PD. Given its immersion throughout the motor circuit, we hypothesize that this elevated beta-band activity interferes with spatial-temporal processing of information flow in the BGTC network that contributes to the impairment of motor function in PD.SIGNIFICANCE STATEMENT This study fills a knowledge gap regarding the change in temporal dynamics and coupling of beta burst activity across the basal ganglia-thalamocortical (BGTC) network during the evolution from normal to progressively more severe parkinsonian states. We observed that changes in beta oscillatory activity occur throughout BGTC and that increasing severity of parkinsonism was associated with a higher incidence of longer duration, higher amplitude low beta bursts in the basal ganglia, and increased concurrence of beta bursts across the subthalamic nucleus, globus pallidus, and motor cortex. These data provide new insights into the potential role of changes in the temporal dynamics of low beta activity within the BGTC network in the pathogenesis of Parkinson's disease.
Collapse
|
37
|
Ding XF, Gao Y, Zhang H, Zhang Y, Wang SX, Zhao YQ, Wang YZ, Fan M. A novel low-cost electrode for recording the local field potential of freely moving rat's brain. Transl Neurosci 2020; 11:96-104. [PMID: 33312716 PMCID: PMC7705991 DOI: 10.1515/tnsci-2020-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 11/15/2022] Open
Abstract
Local field potentials (LFPs) are involved in almost all cognitive activities of animals. Several kinds of recording electrodes are used for recording LFPs in freely moving animals, including commercial and homemade electrodes. However, commercial recording electrodes are expensive, and their relatively fixed size often causes a steric hindrance effect, especially when combining deep brain stimulation (DBS) with LFP recording, which may not always satisfy the aim of researchers. Currently, an increasing number of researchers are designing their own recording electrodes to lower research costs. Nevertheless, there is no simple universal method to produce low-cost recording electrodes with a specific size according to the target brain area. Thus, we developed a simple method for quickly producing low-cost multiple-channel recording electrodes. To inspect the effectiveness of our self-designed electrode, LFPs were recorded in a Parkinson’s disease (PD) rat model, and an electrical stimulation electrode was implanted into the subthalamic nucleus to verify the space-saving ability of the self-designed recording electrode. The results showed that <30 min was needed to prepare an electrode and that the electrode materials cost <5 dollars. Further investigations showed that our electrode successfully recorded the beta oscillations (12–40 Hz) in the PD rat model. Thus, this method will greatly reduce the cost of recording electrodes and save time for researchers. Additionally, the small size of the electrode will further facilitate DBS research.
Collapse
Affiliation(s)
- Xue-Feng Ding
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China
| | - Yan Gao
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China.,Institute of Radiation Medicine, Beijing, P. R. China
| | - Hui Zhang
- Department of Neurosurgery, Air Force Medical Center of PLA, Beijing, P. R. China
| | - Yuan Zhang
- Laboratory of Neural Circuit Plasticity, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, P. R. China
| | - Shao-Xia Wang
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China
| | - Yong-Qi Zhao
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China
| | - Yi-Zheng Wang
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China
| | - Ming Fan
- Institute of Military Cognition and Brain Sciences, Beijing, P. R. China
| |
Collapse
|
38
|
Min BK, Kim HS, Pinotsis DA, Pantazis D. Thalamocortical inhibitory dynamics support conscious perception. Neuroimage 2020; 220:117066. [PMID: 32565278 DOI: 10.1016/j.neuroimage.2020.117066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022] Open
Abstract
Whether thalamocortical interactions play a decisive role in conscious perception remains an open question. We presented rapid red/green color flickering stimuli, which induced the mental perception of either an illusory orange color or non-fused red and green colors. Using magnetoencephalography, we observed 6-Hz thalamic activity associated with thalamocortical inhibitory coupling only during the conscious perception of the illusory orange color. This sustained thalamic disinhibition was temporally coupled with higher visual cortical activation during the conscious perception of the orange color, providing neurophysiological evidence of the role of thalamocortical synchronization in conscious awareness of mental representation. Bayesian model comparison consistently supported the thalamocortical model in conscious perception. Taken together, experimental and theoretical evidence established the thalamocortical inhibitory network as a gateway to conscious mental representations.
Collapse
Affiliation(s)
- Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Hyun Seok Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dimitris A Pinotsis
- Center for Mathematical Neuroscience and Psychology, Department of Psychology, City-University of London, London, EC1V 0HB, UK; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
39
|
Khawaldeh S, Tinkhauser G, Shah SA, Peterman K, Debove I, Nguyen TAK, Nowacki A, Lachenmayer ML, Schuepbach M, Pollo C, Krack P, Woolrich M, Brown P. Subthalamic nucleus activity dynamics and limb movement prediction in Parkinson's disease. Brain 2020; 143:582-596. [PMID: 32040563 PMCID: PMC7009471 DOI: 10.1093/brain/awz417] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 02/01/2023] Open
Abstract
Whilst exaggerated bursts of beta frequency band oscillatory synchronization in the subthalamic nucleus have been associated with motor impairment in Parkinson's disease, a plausible mechanism linking the two phenomena has been lacking. Here we test the hypothesis that increased synchronization denoted by beta bursting might compromise information coding capacity in basal ganglia networks. To this end we recorded local field potential activity in the subthalamic nucleus of 18 patients with Parkinson's disease as they executed cued upper and lower limb movements. We used the accuracy of local field potential-based classification of the limb to be moved on each trial as an index of the information held by the system with respect to intended action. Machine learning using the naïve Bayes conditional probability model was used for classification. Local field potential dynamics allowed accurate prediction of intended movements well ahead of their execution, with an area under the receiver operator characteristic curve of 0.80 ± 0.04 before imperative cues when the demanded action was known ahead of time. The presence of bursts of local field potential activity in the alpha, and even more so, in the beta frequency band significantly compromised the prediction of the limb to be moved. We conclude that low frequency bursts, particularly those in the beta band, restrict the capacity of the basal ganglia system to encode physiologically relevant information about intended actions. The current findings are also important as they suggest that local subthalamic activity may potentially be decoded to enable effector selection, in addition to force control in restorative brain-machine interface applications.
Collapse
Affiliation(s)
- Saed Khawaldeh
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Gerd Tinkhauser
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Syed Ahmar Shah
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Usher Institute of Population Health Sciences and Informatics, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| | - Katrin Peterman
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - T A Khoa Nguyen
- Department of Neurosurgery, Bern University Hospital and University of Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Bern University Hospital and University of Bern, Switzerland
| | - M Lenard Lachenmayer
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Michael Schuepbach
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Bern University Hospital and University of Bern, Switzerland
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Mark Woolrich
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
40
|
Sonkusare S, Nguyen VT, Moran R, van der Meer J, Ren Y, Koussis N, Dionisio S, Breakspear M, Guo C. Intracranial-EEG evidence for medial temporal pole driving amygdala activity induced by multi-modal emotional stimuli. Cortex 2020; 130:32-48. [PMID: 32640373 DOI: 10.1016/j.cortex.2020.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
The temporal pole (TP) is an associative cortical region required for complex cognitive functions such as social and emotional cognition. However, mapping the TP with functional magnetic resonance imaging is technically challenging and thus understanding its interaction with other key emotional circuitry, such as the amygdala, remains elusive. We exploited the unique advantages of stereo-electroencephalography (sEEG) to assess the responses of the TP and the amygdala during the perception of emotionally salient stimuli of pictures, music and movies. These stimuli consistently elicited high gamma responses (70-140 Hz) in both the TP and the amygdala, accompanied by functional connectivity in the low frequency range (2-12 Hz). Computational analyses suggested that the TP drove this effect in the theta frequency range, modulated by the emotional valence of the stimuli. Notably, cross-frequency analysis indicated the phase of theta oscillations in the TP modulated the amplitude of high gamma activity in the amygdala. These results were reproducible across three types of sensory inputs including naturalistic stimuli. Our results suggest that multimodal emotional stimuli induce a hierarchical influence of the TP over the amygdala.
Collapse
Affiliation(s)
- Saurabh Sonkusare
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia.
| | - Vinh T Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Yudan Ren
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Information Science and Technology, Northwest University, Xi'an, China
| | - Nikitas Koussis
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sasha Dionisio
- Mater Advanced Epilepsy Unit, Mater Hospital, Brisbane, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.
| | - Christine Guo
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
41
|
Kovaleski RF, Callahan JW, Chazalon M, Wokosin DL, Baufreton J, Bevan MD. Dysregulation of external globus pallidus-subthalamic nucleus network dynamics in parkinsonian mice during cortical slow-wave activity and activation. J Physiol 2020; 598:1897-1927. [PMID: 32112413 DOI: 10.1113/jp279232] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN) neurons form a key network within the basal ganglia. In Parkinson's disease and its models, abnormal rates and patterns of GPe-STN network activity are linked to motor dysfunction. Using cell class-specific optogenetic identification and inhibition during cortical slow-wave activity and activation, we report that, in dopamine-depleted mice, (1) D2 dopamine receptor expressing striatal projection neurons (D2-SPNs) discharge at higher rates, especially during cortical activation, (2) prototypic parvalbumin-expressing GPe neurons are excessively patterned by D2-SPNs even though their autonomous activity is upregulated, (3) despite being disinhibited, STN neurons are not hyperactive, and (4) STN activity opposes striatopallidal patterning. These data argue that in parkinsonian mice abnormal, temporally offset prototypic GPe and STN neuron firing results in part from increased striatopallidal transmission and that compensatory plasticity limits STN hyperactivity and cortical entrainment. ABSTRACT Reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN) neurons form a key, centrally positioned network within the basal ganglia. In Parkinson's disease and its models, abnormal rates and patterns of GPe-STN network activity are linked to motor dysfunction. Following the loss of dopamine, the activities of GPe and STN neurons become more temporally offset and strongly correlated with cortical oscillations below 40 Hz. Previous studies utilized cortical slow-wave activity and/or cortical activation (ACT) under anaesthesia to probe the mechanisms underlying the normal and pathological patterning of basal ganglia activity. Here, we combined this approach with in vivo optogenetic inhibition to identify and interrupt the activity of D2 dopamine receptor-expressing striatal projection neurons (D2-SPNs), parvalbumin-expressing prototypic GPe (PV GPe) neurons, and STN neurons. We found that, in dopamine-depleted mice, (1) the firing rate of D2-SPNs was elevated, especially during cortical ACT, (2) abnormal phasic suppression of PV GPe neuron activity was ameliorated by optogenetic inhibition of coincident D2-SPN activity, (3) autonomous PV GPe neuron firing ex vivo was upregulated, presumably through homeostatic mechanisms, (4) STN neurons were not hyperactive, despite being disinhibited, (5) optogenetic inhibition of the STN exacerbated abnormal GPe activity, and (6) exaggerated beta band activity was not present in the cortex or GPe-STN network. Together with recent studies, these data suggest that in dopamine-depleted mice abnormally correlated and temporally offset PV GPe and STN neuron activity is generated in part by elevated striatopallidal transmission, while compensatory plasticity prevents STN hyperactivity and limits cortical entrainment.
Collapse
Affiliation(s)
- Ryan F Kovaleski
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joshua W Callahan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Marine Chazalon
- Université de Bordeaux & CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, F-33000, France
| | - David L Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jérôme Baufreton
- Université de Bordeaux & CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, F-33000, France
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
42
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, which causes a tremendous socioeconomic burden. PD patients are suffering from debilitating motor and nonmotor symptoms. Cardinal motor symptoms of PD, including akinesia, bradykinesia, resting tremor, and rigidity, are caused by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. In addition, decreased amounts of dopamine (DA) level in the basal ganglia induces numerous adaptive changes at the cellular and synaptic levels in the basal ganglia circuits. These cellular and synaptic adaptations are believed to underlie the emergence and propagation of correlated, rhythmic pattern of activity throughout the interconnected cortico-basal ganglia-thalamocortical network. The widespread pathological pattern of brain activity is closely linked to the devastating motor symptoms of PD. Accumulating evidence suggests that both dopaminergic degeneration and the associated abnormal cellular and circuit activity in the basal ganglia drive the motor symptoms of PD. In this short review I summarize the recent advances in our understanding of synaptic and cellular alterations in two basal ganglia nuclei (i.e. the striatum and the subthalamic nucleus) following a complete loss of DA, and in our conceptual understanding of the cellular and circuit bases for the pathological pattern of brain activity in parkinsonian state.
Collapse
|
43
|
Bahuguna J, Sahasranamam A, Kumar A. Uncoupling the roles of firing rates and spike bursts in shaping the STN-GPe beta band oscillations. PLoS Comput Biol 2020; 16:e1007748. [PMID: 32226014 PMCID: PMC7145269 DOI: 10.1371/journal.pcbi.1007748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 04/09/2020] [Accepted: 02/25/2020] [Indexed: 01/15/2023] Open
Abstract
The excess of 15-30 Hz (β-band) oscillations in the basal ganglia is one of the key signatures of Parkinson's disease (PD). The STN-GPe network is integral to generation and modulation of β band oscillations in basal ganglia. However, the role of changes in the firing rates and spike bursting of STN and GPe neurons in shaping these oscillations has remained unclear. In order to uncouple their effects, we studied the dynamics of STN-GPe network using numerical simulations. In particular, we used a neuron model, in which firing rates and spike bursting can be independently controlled. Using this model, we found that while STN firing rate is predictive of oscillations, GPe firing rate is not. The effect of spike bursting in STN and GPe neurons was state-dependent. That is, only when the network was operating in a state close to the border of oscillatory and non-oscillatory regimes, spike bursting had a qualitative effect on the β band oscillations. In these network states, an increase in GPe bursting enhanced the oscillations whereas an equivalent proportion of spike bursting in STN suppressed the oscillations. These results provide new insights into the mechanisms underlying the transient β bursts and how duration and power of β band oscillations may be controlled by an interplay of GPe and STN firing rates and spike bursts.
Collapse
Affiliation(s)
- Jyotika Bahuguna
- Aix Marseille University, Institute for Systems Neuroscience, Marseille, France
- * E-mail: (JB); (AK)
| | | | - Arvind Kumar
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail: (JB); (AK)
| |
Collapse
|
44
|
Fleming JE, Dunn E, Lowery MM. Simulation of Closed-Loop Deep Brain Stimulation Control Schemes for Suppression of Pathological Beta Oscillations in Parkinson's Disease. Front Neurosci 2020; 14:166. [PMID: 32194372 PMCID: PMC7066305 DOI: 10.3389/fnins.2020.00166] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
This study presents a computational model of closed-loop control of deep brain stimulation (DBS) for Parkinson's disease (PD) to investigate clinically viable control schemes for suppressing pathological beta-band activity. Closed-loop DBS for PD has shown promising results in preliminary clinical studies and offers the potential to achieve better control of patient symptoms and side effects with lower power consumption than conventional open-loop DBS. However, extensive testing of algorithms in patients is difficult. The model presented provides a means to explore a range of control algorithms in silico and optimize control parameters before preclinical testing. The model incorporates (i) the extracellular DBS electric field, (ii) antidromic and orthodromic activation of STN afferent fibers, (iii) the LFP detected at non-stimulating contacts on the DBS electrode and (iv) temporal variation of network beta-band activity within the thalamo-cortico-basal ganglia loop. The performance of on-off and dual-threshold controllers for suppressing beta-band activity by modulating the DBS amplitude were first verified, showing levels of beta suppression and reductions in power consumption comparable with previous clinical studies. Proportional (P) and proportional-integral (PI) closed-loop controllers for amplitude and frequency modulation were then investigated. A simple tuning rule was derived for selecting effective PI controller parameters to target long duration beta bursts while respecting clinical constraints that limit the rate of change of stimulation parameters. Of the controllers tested, PI controllers displayed superior performance for regulating network beta-band activity whilst accounting for clinical considerations. Proportional controllers resulted in undesirable rapid fluctuations of the DBS parameters which may exceed clinically tolerable rate limits. Overall, the PI controller for modulating DBS frequency performed best, reducing the mean error by 83% compared to DBS off and the mean power consumed to 25% of that utilized by open-loop DBS. The network model presented captures sufficient physiological detail to act as a surrogate for preclinical testing of closed-loop DBS algorithms using a clinically accessible biomarker, providing a first step for deriving and testing novel, clinically suitable closed-loop DBS controllers.
Collapse
Affiliation(s)
- John E. Fleming
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
45
|
Fleming JE, Lowery MM. Changes in Neuronal Entropy in a Network Model of the Cortico-Basal Ganglia during Deep Brain Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5172-5175. [PMID: 31947023 DOI: 10.1109/embc.2019.8857440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuronal entropy changes are observed in the basal ganglia circuit in Parkinson's disease (PD). These changes are observed in both single unit recordings from globus pallidus (GP) neurons and in local field potential (LFP) recordings from the subthalamic nucleus (STN). These changes are hypothesized as representing changes in the information coding capacity of the network, with PD resulting in a reduction in the coding capacity of the basal ganglia network. Entropy changes in the LFP and in single unit recordings are investigated in a detailed physiological model of the cortico-basal ganglia network during STN deep brain stimulation (DBS). The model incorporates extracellular stimulation of STN afferent fibers, with both orthodromic and antidromic activation, and simulation of the LFP detected at a differential recording electrode. LFP sample entropy and beta-band oscillation power were found to be altered following the application of DBS. The ring pattern entropy of GP neurons in the network were observed to decrease during high frequency stimulation and increase during low frequency stimulation. Simulation results were consistent with experimentally reported changes in neuronal entropy during DBS.
Collapse
|
46
|
Koelman LA, Lowery MM. Beta-Band Resonance and Intrinsic Oscillations in a Biophysically Detailed Model of the Subthalamic Nucleus-Globus Pallidus Network. Front Comput Neurosci 2019; 13:77. [PMID: 31749692 PMCID: PMC6848887 DOI: 10.3389/fncom.2019.00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
Increased beta-band oscillatory activity in the basal ganglia network is associated with Parkinsonian motor symptoms and is suppressed with medication and deep brain stimulation (DBS). The origins of the beta-band oscillations, however, remains unclear with both intrinsic oscillations arising within the subthalamic nucleus (STN)-external globus pallidus (GPe) network and exogenous beta-activity, originating outside the network, proposed as potential sources of the pathological activity. The aim of this study was to explore the relative contribution of autonomous oscillations and exogenous oscillatory inputs in the generation of pathological oscillatory activity in a biophysically detailed model of the parkinsonian STN-GPe network. The network model accounts for the integration of synaptic currents and their interaction with intrinsic membrane currents in dendritic structures within the STN and GPe. The model was used to investigate the development of beta-band synchrony and bursting within the STN-GPe network by changing the balance of excitation and inhibition in both nuclei, and by adding exogenous oscillatory inputs with varying phase relationships through the hyperdirect cortico-subthalamic and indirect striato-pallidal pathways. The model showed an intrinsic susceptibility to beta-band oscillations that was manifest in weak autonomously generated oscillations within the STN-GPe network and in selective amplification of exogenous beta-band synaptic inputs near the network's endogenous oscillation frequency. The frequency at which this resonance peak occurred was determined by the net level of excitatory drive to the network. Intrinsic or endogenously generated oscillations were too weak to support a pacemaker role for the STN-GPe network, however, they were considerably amplified by sparse cortical beta inputs and were further amplified by striatal beta inputs that promoted anti-phase firing of the cortex and GPe, resulting in maximum transient inhibition of STN neurons. The model elucidates a mechanism of cortical patterning of the STN-GPe network through feedback inhibition whereby intrinsic susceptibility to beta-band oscillations can lead to phase locked spiking under parkinsonian conditions. These results point to resonance of endogenous oscillations with exogenous patterning of the STN-GPe network as a mechanism of pathological synchronization, and a role for the pallido-striatal feedback loop in amplifying beta oscillations.
Collapse
Affiliation(s)
- Lucas A. Koelman
- Neuromuscular Systems Laboratory, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
47
|
Wang X, Geng X, Li M, Xie J, Chen D, Han H, Meng X, Yao X, Zhang H, Gao Y, Chang H, Zhang X, Wang Y, Wang M. Electrophysiological and Neurochemical Considerations of Distinct Neuronal Populations in the Rat Pedunculopontine Nucleus and Their Responsiveness Following 6-Hydroxydopamine Lesions. Front Neurosci 2019; 13:1034. [PMID: 31616246 PMCID: PMC6775246 DOI: 10.3389/fnins.2019.01034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is composed of a morphologically and neurochemically heterogeneous population of neurons, which is severely affected by Parkinson’s disease (PD). However, the role of each subtype of neurons within the PPN in the pathophysiology of PD has not been completely elucidated. In this study, we present the discharge profiles of three classified subtypes of PPN neurons and their alterations after 6-hydroxydopamine (6-OHDA) lesion. Following 6-OHDA lesion, the spike timing of the Type II (GABAergic) and Type III (glutamatergic) neurons had phase-lock with the oscillations in the delta and beta band frequency range in the PPN, respectively. Morphological evidence has shown distinct alteration in three kinds of neurons after 6-OHDA lesion. These findings revealed that the changes in the firing characteristics of neurons in PPN in hemi-parkinsonism rats are closely associated with damaged neuronal morphology, which would make contributions to the divergence of dysfunctions in Parkinsonism.
Collapse
Affiliation(s)
- Xuenan Wang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiwen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Advanced Material Genome Innovation Team, Advanced Materials Institute, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Min Li
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Jinlu Xie
- Department of Physiology, School of Medical Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Dadian Chen
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Hongyu Han
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiaoqian Meng
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiaomeng Yao
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China.,School of Nursing, Qilu Institute of Technology, Jinan, China
| | - Haiyan Zhang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yunfeng Gao
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Hongli Chang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiao Zhang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yanan Wang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Min Wang
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
48
|
Macerollo A, Limousin P, Korlipara P, Foltynie T, Edwards MJ, Kilner J. Dopaminergic Modulation of Sensory Attenuation in Parkinson's Disease: Is There an Underlying Modulation of Beta Power? Front Neurol 2019; 10:1001. [PMID: 31620072 PMCID: PMC6759719 DOI: 10.3389/fneur.2019.01001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: Pathological high amplitude of beta oscillations is thought as the underlying mechanism of motor symptoms in Parkinson's disease (PD), in particular with regard to bradykinesia. In addition, abnormality in a neurophysiological phenomenon labeled sensory attenuation has been found in patients with PD. The current study explored the hypothesis that the abnormal sensory attenuation has a causal link with the typical abnormality in beta oscillations in PD. Methods: The study tested sixteen right-handed patients with a diagnosis of PD and 22 healthy participants, which were matched by age and gender. Somatosensory evoked potentials were elicited through electrical stimulation of the median nerve at the wrist. Electrical activity was recorded at the scalp using a 128 channels EEG. Somatosensory evoked potentials were recorded in 2 conditions: at rest and at the onset of a voluntary movement, which was a self-paced abduction movement of the right thumb. Results: Healthy participants showed a reduction of the N20-P25 amplitude at the onset of the right thumb abduction compared to the rest condition (P < 0.05). When patients were OFF medication, they showed mild reduction of the N20-P25 component at movement onset (P < 0.05). On the contrary, they did show greater attenuation of the N20-P25 component at the onset of movement compared to the rest condition when ON medication (P < 0.05). There was no significant evidence of a link between the degree of sensory attenuation and the change in beta oscillations in our cohort of patients. Conclusion: These results confirmed a significant link between dopaminergic modulation and sensory attenuation. However, the sensory attenuation and beta oscillations were found as two independent phenomena.
Collapse
Affiliation(s)
- Antonella Macerollo
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom.,School of Psychology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom.,National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Institute of Neurology, University College of London, London, United Kingdom
| | - Patricia Limousin
- National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Institute of Neurology, University College of London, London, United Kingdom
| | - Prasad Korlipara
- National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Tom Foltynie
- National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Institute of Neurology, University College of London, London, United Kingdom
| | - Mark J Edwards
- Department of Neurology, St George's University of London, London, United Kingdom
| | - James Kilner
- Institute of Neurology, University College of London, London, United Kingdom
| |
Collapse
|
49
|
Jiang X, Yan Y, Wang K, Wei J, Su W, Jia J. Brain state-dependent alterations of corticostriatal synchronized oscillations in awake and anesthetized parkinsonian rats. Brain Res 2019; 1717:214-227. [DOI: 10.1016/j.brainres.2019.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/29/2022]
|
50
|
Reis C, Sharott A, Magill PJ, van Wijk BCM, Parr T, Zeidman P, Friston KJ, Cagnan H. Thalamocortical dynamics underlying spontaneous transitions in beta power in Parkinsonism. Neuroimage 2019; 193:103-114. [PMID: 30862535 PMCID: PMC6503152 DOI: 10.1016/j.neuroimage.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/01/2019] [Accepted: 03/05/2019] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition in which aberrant oscillatory synchronization of neuronal activity at beta frequencies (15–35 Hz) across the cortico-basal ganglia-thalamocortical circuit is associated with debilitating motor symptoms, such as bradykinesia and rigidity. Mounting evidence suggests that the magnitude of beta synchrony in the parkinsonian state fluctuates over time, but the mechanisms by which thalamocortical circuitry regulates the dynamic properties of cortical beta in PD are poorly understood. Using the recently developed generic Dynamic Causal Modelling (DCM) framework, we recursively optimized a set of plausible models of the thalamocortical circuit (n = 144) to infer the neural mechanisms that best explain the transitions between low and high beta power states observed in recordings of field potentials made in the motor cortex of anesthetized Parkinsonian rats. Bayesian model comparison suggests that upregulation of cortical rhythmic activity in the beta-frequency band results from changes in the coupling strength both between and within the thalamus and motor cortex. Specifically, our model indicates that high levels of cortical beta synchrony are mainly achieved by a delayed (extrinsic) input from thalamic relay cells to deep pyramidal cells and a fast (intrinsic) input from middle pyramidal cells to superficial pyramidal cells. From a clinical perspective, our study provides insights into potential therapeutic strategies that could be utilized to modulate the network mechanisms responsible for the enhancement of cortical beta in PD. Specifically, we speculate that cortical stimulation aimed to reduce the enhanced excitatory inputs to either the superficial or deep pyramidal cells could be a potential non-invasive therapeutic strategy for PD. Coupling changes within and between circuit nodes lead to cortical beta enhancement. Input propagation delays play a crucial role in the up-regulation of cortical beta. Beta power could be modulated by altering lamina specific inputs.
Collapse
Affiliation(s)
- Carolina Reis
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Bernadette C M van Wijk
- Wellcome Centre for Human Neuroimaging, University College London, UK; Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Hayriye Cagnan
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|