1
|
Nakatani T, Schauer T, Pal M, Ettinger A, Altamirano-Pacheco L, Zorn J, Gilbert DM, Torres-Padilla ME. RIF1 controls replication timing in early mouse embryos independently of lamina-associated nuclear organization. Dev Cell 2025:S1534-5807(25)00179-0. [PMID: 40262611 DOI: 10.1016/j.devcel.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/18/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Cells must duplicate their genome before they divide to ensure equal transmission of genetic information. The genome is replicated with a defined temporal order, replication timing (RT), which is cell-type specific and linked to 3D-genome organization. During mammalian development, RT is initially not well defined and becomes progressively consolidated from the 4-cell stage. However, the molecular regulators are unknown. Here, by combining loss-of-function analysis with genome-wide investigation of RT in mouse embryos, we identify Rap1 interacting factor 1 (RIF1) as a regulator of the progressive consolidation of RT. Embryos without RIF1 show DNA replication features of an early, more totipotent state. RIF1 regulates the progressive stratification of RT values and its depletion leads to global RT changes and a more heterogeneous RT program. Developmental RT changes are disentangled from changes in transcription and nuclear organization, specifically nuclear lamina association. Our work provides molecular understanding of replication and genome organization at the beginning of mammalian development.
Collapse
Affiliation(s)
- Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Luis Altamirano-Pacheco
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Julia Zorn
- Core Facility Laboratory Animal Services, Helmholtz Zentrum München, 81377 München, Germany
| | - David M Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany; Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
2
|
Nakatani T. Dynamics of replication timing during mammalian development. Trends Genet 2025:S0168-9525(25)00026-5. [PMID: 40082146 DOI: 10.1016/j.tig.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 03/16/2025]
Abstract
Recent developments in low-input genomics techniques have greatly advanced the analysis of the order in which DNA is replicated in the genome - that is, replication timing (RT) - and its interrelationships with other processes. RT correlates or anticorrelates with genomic-specific parameters such as gene expression, chromatin accessibility, histone modifications, and the 3D structure of the genome, but the significance of how they influence each other and how they relate to biological processes remains unclear. In this review I discuss the results of recent analyses of RT, the time at which it is remodeled and consolidated during embryogenesis, how it influences development and differentiation, and the regulatory mechanisms and factors involved.
Collapse
Affiliation(s)
- Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377, München, Germany.
| |
Collapse
|
3
|
Vouzas AE, Sasaki T, Rivera-Mulia JC, Turner JL, Brown AN, Alexander KE, Brueckner L, van Steensel B, Gilbert DM. Transcription can be sufficient, but is not necessary, to advance replication timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636516. [PMID: 39975371 PMCID: PMC11838563 DOI: 10.1101/2025.02.04.636516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
DNA replication timing (RT) is correlated with transcription during cell fate changes but there are many exceptions and our understanding of this relationship suffers from a paucity of reductionist approaches. Here, we manipulated length and strength of transcription in hybrid-genome mouse embryonic stem cells (mESCs) at a single locus upstream of the silent, late replicating, Pleiotrophin (Ptn) gene, directly comparing RT to nascent transcription rates at engineered vs. wild-type alleles. First, we inserted four reporter genes that differ only in their promoter. Two promoters transcribed the reporter gene at high rates and advanced RT. The other two transcribed at lower rates and did not advance RT. Since these promoters may prove useful in applications where effects on RT are undesirable, we confirmed the inability of one of them to advance RT at numerous ectopic sites. We next juxtaposed these same four promoters upstream of the Ptn transcription start site where they all transcribed the 96kb Ptn gene and advanced RT to different extents correlated with transcription rates. Indeed, a doxycycline-responsive promoter, which could not advance RT when induced as a small reporter gene, elicited a rapid and reversible RT advance proportional to the rate of transcription, providing direct evidence that transcription itself can advance RT. However, deletion of the Ptn promoter and enhancer, followed by directed differentiation to neural precursors, eliminated induction of transcription throughout the entire Ptn replication domain, without preventing the switch to early replication. Our results provide a solid empirical base with which to re-evaluate many decades of literature, demonstrating that length and strength of transcription is sufficient but not necessary to advance RT. Our results also provide a robust system in which to rapidly effect an RT change, permitting mechanistic studies of the role of transcription in RT and the consequences of RT changes to epigenomic remodeling.
Collapse
Affiliation(s)
- Athanasios E Vouzas
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Jesse L Turner
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Amber N Brown
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Karen E Alexander
- College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Laura Brueckner
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
4
|
Nakatani T, Schauer T, Altamirano-Pacheco L, Klein KN, Ettinger A, Pal M, Gilbert DM, Torres-Padilla ME. Emergence of replication timing during early mammalian development. Nature 2024; 625:401-409. [PMID: 38123678 PMCID: PMC10781638 DOI: 10.1038/s41586-023-06872-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
DNA replication enables genetic inheritance across the kingdoms of life. Replication occurs with a defined temporal order known as the replication timing (RT) programme, leading to organization of the genome into early- or late-replicating regions. RT is cell-type specific, is tightly linked to the three-dimensional nuclear organization of the genome1,2 and is considered an epigenetic fingerprint3. In spite of its importance in maintaining the epigenome4, the developmental regulation of RT in mammals in vivo has not been explored. Here, using single-cell Repli-seq5, we generated genome-wide RT maps of mouse embryos from the zygote to the blastocyst stage. Our data show that RT is initially not well defined but becomes defined progressively from the 4-cell stage, coinciding with strengthening of the A and B compartments. We show that transcription contributes to the precision of the RT programme and that the difference in RT between the A and B compartments depends on RNA polymerase II at zygotic genome activation. Our data indicate that the establishment of nuclear organization precedes the acquisition of defined RT features and primes the partitioning of the genome into early- and late-replicating domains. Our work sheds light on the establishment of the epigenome at the beginning of mammalian development and reveals the organizing principles of genome organization.
Collapse
Affiliation(s)
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | | | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - David M Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, Munich, Germany.
| |
Collapse
|
5
|
Jaksik R, Wheeler DA, Kimmel M. Detection and characterization of constitutive replication origins defined by DNA polymerase epsilon. BMC Biol 2023; 21:41. [PMID: 36829160 PMCID: PMC9960419 DOI: 10.1186/s12915-023-01527-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Despite the process of DNA replication being mechanistically highly conserved, the location of origins of replication (ORI) may vary from one tissue to the next, or between rounds of replication in eukaryotes, suggesting flexibility in the choice of locations to initiate replication. Lists of human ORI therefore vary widely in number and location, and there are currently no methods available to compare them. Here, we propose a method of detection of ORI based on somatic mutation patterns generated by the mutator phenotype of damaged DNA polymerase epsilon (POLE). RESULTS We report the genome-wide localization of constitutive ORI in POLE-mutated human tumors using whole genome sequencing data. Mutations accumulated after many rounds of replication of unsynchronized dividing cell populations in tumors allow to identify constitutive origins, which we show are shared with high fidelity between individuals and tumor types. Using a Smith-Waterman-like dynamic programming approach, we compared replication origin positions obtained from multiple different methods. The comparison allowed us to define a consensus set of replication origins, identified consistently by multiple ORI detection methods. Many DNA features co-localized with the consensus set of ORI, including chromatin loop anchors, G-quadruplexes, S/MARs, and CpGs. Among all features, the H2A.Z histone exhibited the most significant association. CONCLUSIONS Our results show that mutation-based detection of replication origins is a viable approach to determining their location and associated sequence features.
Collapse
Affiliation(s)
- Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| | - David A. Wheeler
- grid.39382.330000 0001 2160 926XHuman Genome Sequencing Centre, Baylor College of Medicine, Houston, TX USA ,grid.240871.80000 0001 0224 711XPresent Address: Clinical Genomics Group, Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN 38103 USA
| | - Marek Kimmel
- grid.6979.10000 0001 2335 3149Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, Houston, TX USA
| |
Collapse
|
6
|
Soujanya M, Bihani A, Hajirnis N, Pathak RU, Mishra RK. Nuclear architecture and the structural basis of mitotic memory. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:8. [PMID: 36725757 DOI: 10.1007/s10577-023-09714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.
Collapse
Affiliation(s)
- Mamilla Soujanya
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ashish Bihani
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Nikhil Hajirnis
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, USA
| | - Rashmi U Pathak
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India.
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India.
- TIGS - Tata Institute for Genetics and Society, Bangalore, India.
| |
Collapse
|
7
|
Regan-Mochrie G, Hoggard T, Bhagwat N, Lynch G, Hunter N, Remus D, Fox CA, Zhao X. Yeast ORC sumoylation status fine-tunes origin licensing. Genes Dev 2022; 36:gad.349610.122. [PMID: 35926881 PMCID: PMC9480853 DOI: 10.1101/gad.349610.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/14/2022] [Indexed: 01/03/2023]
Abstract
Sumoylation is emerging as a posttranslation modification important for regulating chromosome duplication and stability. The origin recognition complex (ORC) that directs DNA replication initiation by loading the MCM replicative helicase onto origins is sumoylated in both yeast and human cells. However, the biological consequences of ORC sumoylation are unclear. Here we report the effects of hypersumoylation and hyposumoylation of yeast ORC on ORC activity and origin function using multiple approaches. ORC hypersumoylation preferentially reduced the function of a subset of early origins, while Orc2 hyposumoylation had an opposing effect. Mechanistically, ORC hypersumoylation reduced MCM loading in vitro and diminished MCM chromatin association in vivo. Either hypersumoylation or hyposumoylation of ORC resulted in genome instability and the dependence of yeast on other genome maintenance factors, providing evidence that appropriate ORC sumoylation levels are important for cell fitness. Thus, yeast ORC sumoylation status must be properly controlled to achieve optimal origin function across the genome and genome stability.
Collapse
Affiliation(s)
- Gemma Regan-Mochrie
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Nikhil Bhagwat
- Howard Hughes Medical Institute, University of California at Davis, Davis, California 95616, USA
- Department of Microbiology and Molecular Genetics, University of California at Davis, Davis, California 95616, USA
| | - Gerard Lynch
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California at Davis, Davis, California 95616, USA
- Department of Microbiology and Molecular Genetics, University of California at Davis, Davis, California 95616, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Catherine A Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
8
|
Pancaldi V. Chromatin Network Analyses: Towards Structure-Function Relationships in Epigenomics. FRONTIERS IN BIOINFORMATICS 2021; 1:742216. [PMID: 36303769 PMCID: PMC9581029 DOI: 10.3389/fbinf.2021.742216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 01/16/2023] Open
Abstract
Recent technological advances have allowed us to map chromatin conformation and uncover the genome's spatial organization of the genome inside the nucleus. These experiments have revealed the complexities of genome folding, characterized by the presence of loops and domains at different scales, which can change across development and in different cell types. There is strong evidence for a relationship between the topological properties of chromatin contacts and cellular phenotype. Chromatin can be represented as a network, in which genomic fragments are the nodes and connections represent experimentally observed spatial proximity of two genomically distant regions in a specific cell type or biological condition. With this approach we can consider a variety of chromatin features in association with the 3D structure, investigating how nuclear chromatin organization can be related to gene regulation, replication, malignancy, phenotypic variability and plasticity. We briefly review the results obtained on genome architecture through network theoretic approaches. As previously observed in protein-protein interaction networks and many types of non-biological networks, external conditions could shape network topology through a yet unidentified structure-function relationship. Similar to scientists studying the brain, we are confronted with a duality between a spatially embedded network of physical contacts, a related network of correlation in the dynamics of network nodes and, finally, an abstract definition of function of this network, related to phenotype. We summarise major developments in the study of networks in other fields, which we think can suggest a path towards better understanding how 3D genome configuration can impact biological function and adaptation to the environment.
Collapse
Affiliation(s)
- Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Université Paul Sabatier, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| |
Collapse
|
9
|
Courtot L, Bournique E, Maric C, Guitton-Sert L, Madrid-Mencía M, Pancaldi V, Cadoret JC, Hoffmann JS, Bergoglio V. Low Replicative Stress Triggers Cell-Type Specific Inheritable Advanced Replication Timing. Int J Mol Sci 2021; 22:ijms22094959. [PMID: 34066960 PMCID: PMC8125030 DOI: 10.3390/ijms22094959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/27/2022] Open
Abstract
DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.
Collapse
Affiliation(s)
- Lilas Courtot
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
| | - Elodie Bournique
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
| | - Chrystelle Maric
- Université de Paris, CNRS, Institut Jacques Monod, DNA Replication Pathologies Team, F-75006 Paris, France;
| | - Laure Guitton-Sert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
| | - Miguel Madrid-Mencía
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
- Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | - Jean-Charles Cadoret
- Université de Paris, CNRS, Institut Jacques Monod, DNA Replication Pathologies Team, F-75006 Paris, France;
- Correspondence: (J.-C.C.); (J.-S.H.); (V.B.)
| | - Jean-Sébastien Hoffmann
- Laboratoire de pathologie, Laboratoire d’excellence Toulouse Cancer, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, CEDEX, 31059 Toulouse, France
- Correspondence: (J.-C.C.); (J.-S.H.); (V.B.)
| | - Valérie Bergoglio
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
- Correspondence: (J.-C.C.); (J.-S.H.); (V.B.)
| |
Collapse
|
10
|
Takebayashi SI, Ryba T, Wimbish K, Hayakawa T, Sakaue M, Kuriya K, Takahashi S, Ogata S, Hiratani I, Okumura K, Okano M, Ogata M. The Temporal Order of DNA Replication Shaped by Mammalian DNA Methyltransferases. Cells 2021; 10:cells10020266. [PMID: 33572832 PMCID: PMC7911666 DOI: 10.3390/cells10020266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple epigenetic pathways underlie the temporal order of DNA replication (replication timing) in the contexts of development and disease. DNA methylation by DNA methyltransferases (Dnmts) and downstream chromatin reorganization and transcriptional changes are thought to impact DNA replication, yet this remains to be comprehensively tested. Using cell-based and genome-wide approaches to measure replication timing, we identified a number of genomic regions undergoing subtle but reproducible replication timing changes in various Dnmt-mutant mouse embryonic stem (ES) cell lines that included a cell line with a drug-inducible Dnmt3a2 expression system. Replication timing within pericentromeric heterochromatin (PH) was shown to be correlated with redistribution of H3K27me3 induced by DNA hypomethylation: Later replicating PH coincided with H3K27me3-enriched regions. In contrast, this relationship with H3K27me3 was not evident within chromosomal arm regions undergoing either early-to-late (EtoL) or late-to-early (LtoE) switching of replication timing upon loss of the Dnmts. Interestingly, Dnmt-sensitive transcriptional up- and downregulation frequently coincided with earlier and later shifts in replication timing of the chromosomal arm regions, respectively. Our study revealed the previously unrecognized complex and diverse effects of the Dnmts loss on the mammalian DNA replication landscape.
Collapse
Affiliation(s)
- Shin-ichiro Takebayashi
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
- Correspondence:
| | - Tyrone Ryba
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA; (T.R.); (K.W.)
| | - Kelsey Wimbish
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA; (T.R.); (K.W.)
| | - Takuya Hayakawa
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Morito Sakaue
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Kenji Kuriya
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN BDR, Kobe, Hyogo 650-0047, Japan; (S.T.); (I.H.)
| | - Shin Ogata
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN BDR, Kobe, Hyogo 650-0047, Japan; (S.T.); (I.H.)
| | - Katsuzumi Okumura
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Masaki Okano
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan;
| | - Masato Ogata
- Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan;
| |
Collapse
|
11
|
Paniza T, Deshpande M, Wang N, O’Neil R, Zuccaro MV, Smith ME, Madireddy A, James D, Ecker J, Rosenwaks Z, Egli D, Gerhardt J. Pluripotent stem cells with low differentiation potential contain incompletely reprogrammed DNA replication. J Cell Biol 2020; 219:e201909163. [PMID: 32673399 PMCID: PMC7480103 DOI: 10.1083/jcb.201909163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/26/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Reprogrammed pluripotent stem cells (PSCs) are valuable for research and potentially for cell replacement therapy. However, only a fraction of reprogrammed PSCs are developmentally competent. Genomic stability and accurate DNA synthesis are fundamental for cell development and critical for safety. We analyzed whether defects in DNA replication contribute to genomic instability and the diverse differentiation potentials of reprogrammed PSCs. Using a unique single-molecule approach, we visualized DNA replication in isogenic PSCs generated by different reprogramming approaches, either somatic cell nuclear transfer (NT-hESCs) or with defined factors (iPSCs). In PSCs with lower differentiation potential, DNA replication was incompletely reprogrammed, and genomic instability increased during replicative stress. Reprogramming of DNA replication did not correlate with DNA methylation. Instead, fewer replication origins and a higher frequency of DNA breaks in PSCs with incompletely reprogrammed DNA replication were found. Given the impact of error-free DNA synthesis on the genomic integrity and differentiation proficiency of PSCs, analyzing DNA replication may be a useful quality control tool.
Collapse
Affiliation(s)
- Theodore Paniza
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY
| | - Madhura Deshpande
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY
| | - Ning Wang
- Department of Pediatrics, Columbia University, New York, NY
| | - Ryan O’Neil
- Plant Molecular and Cellular Biology Laboratory, Salk Institute, La Jolla, CA
| | - Michael V. Zuccaro
- Department of Pediatrics, Columbia University, New York, NY
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | | | - Advaitha Madireddy
- Department of Pediatric Hematology/Oncology, Rutgers University, New Brunswick, NJ
| | - Daylon James
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
| | - Joseph Ecker
- Plant Molecular and Cellular Biology Laboratory, Salk Institute, La Jolla, CA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY
| | - Dieter Egli
- Department of Pediatrics, Columbia University, New York, NY
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
12
|
Marchal C, Sima J, Gilbert DM. Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 2019; 20:721-737. [PMID: 31477886 PMCID: PMC11567694 DOI: 10.1038/s41580-019-0162-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
The 3D organization of mammalian chromatin was described more than 30 years ago by visualizing sites of DNA synthesis at different times during the S phase of the cell cycle. These early cytogenetic studies revealed structurally stable chromosome domains organized into subnuclear compartments. Active-gene-rich domains in the nuclear interior replicate early, whereas more condensed chromatin domains that are largely at the nuclear and nucleolar periphery replicate later. During the past decade, this spatiotemporal DNA replication programme has been mapped along the genome and found to correlate with epigenetic marks, transcriptional activity and features of 3D genome architecture such as chromosome compartments and topologically associated domains. But the causal relationship between these features and DNA replication timing and the regulatory mechanisms involved have remained an enigma. The recent identification of cis-acting elements regulating the replication time and 3D architecture of individual replication domains and of long non-coding RNAs that coordinate whole chromosome replication provide insights into such mechanisms.
Collapse
Affiliation(s)
- Claire Marchal
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
13
|
Rivera-Mulia JC, Kim S, Gabr H, Chakraborty A, Ay F, Kahveci T, Gilbert DM. Replication timing networks reveal a link between transcription regulatory circuits and replication timing control. Genome Res 2019; 29:1415-1428. [PMID: 31434679 PMCID: PMC6724675 DOI: 10.1101/gr.247049.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
DNA replication occurs in a defined temporal order known as the replication timing (RT) program and is regulated during development, coordinated with 3D genome organization and transcriptional activity. However, transcription and RT are not sufficiently coordinated to predict each other, suggesting an indirect relationship. Here, we exploit genome-wide RT profiles from 15 human cell types and intermediate differentiation stages derived from human embryonic stem cells to construct different types of RT regulatory networks. First, we constructed networks based on the coordinated RT changes during cell fate commitment to create highly complex RT networks composed of thousands of interactions that form specific functional subnetwork communities. We also constructed directional regulatory networks based on the order of RT changes within cell lineages, and identified master regulators of differentiation pathways. Finally, we explored relationships between RT networks and transcriptional regulatory networks (TRNs) by combining them into more complex circuitries of composite and bipartite networks. Results identified novel trans interactions linking transcription factors that are core to the regulatory circuitry of each cell type to RT changes occurring in those cell types. These core transcription factors were found to bind cooperatively to sites in the affected replication domains, providing provocative evidence that they constitute biologically significant directional interactions. Our findings suggest a regulatory link between the establishment of cell-type-specific TRNs and RT control during lineage specification.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Sebo Kim
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Haitham Gabr
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Abhijit Chakraborty
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
- School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Tamer Kahveci
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306-4295, USA
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
14
|
Miura H, Takahashi S, Poonperm R, Tanigawa A, Takebayashi SI, Hiratani I. Single-cell DNA replication profiling identifies spatiotemporal developmental dynamics of chromosome organization. Nat Genet 2019; 51:1356-1368. [PMID: 31406346 DOI: 10.1038/s41588-019-0474-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/26/2019] [Indexed: 01/09/2023]
Abstract
In mammalian cells, chromosomes are partitioned into megabase-sized topologically associating domains (TADs). TADs can be in either A (active) or B (inactive) subnuclear compartments, which exhibit early and late replication timing (RT), respectively. Here, we show that A/B compartments change coordinately with RT changes genome wide during mouse embryonic stem cell (mESC) differentiation. While A to B compartment changes and early to late RT changes were temporally inseparable, B to A changes clearly preceded late to early RT changes and transcriptional activation. Compartments changed primarily by boundary shifting, altering the compartmentalization of TADs facing the A/B compartment interface, which was conserved during reprogramming and confirmed in individual cells by single-cell Repli-seq. Differentiating mESCs altered single-cell Repli-seq profiles gradually but uniformly, transiently resembling RT profiles of epiblast-derived stem cells (EpiSCs), suggesting that A/B compartments might also change gradually but uniformly toward a primed pluripotent state. These results provide insights into how megabase-scale chromosome organization changes in individual cells during differentiation.
Collapse
Affiliation(s)
- Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Rawin Poonperm
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akie Tanigawa
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shin-Ichiro Takebayashi
- Laboratory of Molecular & Cellular Biology, Graduate Schoold of Bioresources, Mie University, Tsu, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan. .,Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
15
|
Poulet A, Li B, Dubos T, Rivera-Mulia JC, Gilbert DM, Qin ZS. RT States: systematic annotation of the human genome using cell type-specific replication timing programs. Bioinformatics 2019; 35:2167-2176. [PMID: 30475980 PMCID: PMC6681175 DOI: 10.1093/bioinformatics/bty957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION The replication timing (RT) program has been linked to many key biological processes including cell fate commitment, 3D chromatin organization and transcription regulation. Significant technology progress now allows to characterize the RT program in the entire human genome in a high-throughput and high-resolution fashion. These experiments suggest that RT changes dynamically during development in coordination with gene activity. Since RT is such a fundamental biological process, we believe that an effective quantitative profile of the local RT program from a diverse set of cell types in various developmental stages and lineages can provide crucial biological insights for a genomic locus. RESULTS In this study, we explored recurrent and spatially coherent combinatorial profiles from 42 RT programs collected from multiple lineages at diverse differentiation states. We found that a Hidden Markov Model with 15 hidden states provide a good model to describe these genome-wide RT profiling data. Each of the hidden state represents a unique combination of RT profiles across different cell types which we refer to as 'RT states'. To understand the biological properties of these RT states, we inspected their relationship with chromatin states, gene expression, functional annotation and 3D chromosomal organization. We found that the newly defined RT states possess interesting genome-wide functional properties that add complementary information to the existing annotation of the human genome. AVAILABILITY AND IMPLEMENTATION R scripts for inferring HMM models and Perl scripts for further analysis are available https://github.com/PouletAxel/script_HMM_Replication_timing. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ben Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Juan Carlos Rivera-Mulia
- Department of Biological Science, Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Dileep V, Wilson KA, Marchal C, Lyu X, Zhao PA, Li B, Poulet A, Bartlett DA, Rivera-Mulia JC, Qin ZS, Robins AJ, Schulz TC, Kulik MJ, McCord RP, Dekker J, Dalton S, Corces VG, Gilbert DM. Rapid Irreversible Transcriptional Reprogramming in Human Stem Cells Accompanied by Discordance between Replication Timing and Chromatin Compartment. Stem Cell Reports 2019; 13:193-206. [PMID: 31231024 PMCID: PMC6627004 DOI: 10.1016/j.stemcr.2019.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 02/02/2023] Open
Abstract
The temporal order of DNA replication is regulated during development and is highly correlated with gene expression, histone modifications and 3D genome architecture. We tracked changes in replication timing, gene expression, and chromatin conformation capture (Hi-C) A/B compartments over the first two cell cycles during differentiation of human embryonic stem cells to definitive endoderm. Remarkably, transcriptional programs were irreversibly reprogrammed within the first cell cycle and were largely but not universally coordinated with replication timing changes. Moreover, changes in A/B compartment and several histone modifications that normally correlate strongly with replication timing showed weak correlation during the early cell cycles of differentiation but showed increased alignment in later differentiation stages and in terminally differentiated cell lines. Thus, epigenetic cell fate transitions during early differentiation can occur despite dynamic and discordant changes in otherwise highly correlated genomic properties.
Collapse
Affiliation(s)
- Vishnu Dileep
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Korey A Wilson
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Claire Marchal
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Xiaowen Lyu
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Peiyao A Zhao
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Ben Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Axel Poulet
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Daniel A Bartlett
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Juan Carlos Rivera-Mulia
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | | - Michael J Kulik
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rachel Patton McCord
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Victor G Corces
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA.
| |
Collapse
|
17
|
Oldach P, Nieduszynski CA. Cohesin-Mediated Genome Architecture Does Not Define DNA Replication Timing Domains. Genes (Basel) 2019; 10:genes10030196. [PMID: 30836708 PMCID: PMC6471042 DOI: 10.3390/genes10030196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 01/03/2023] Open
Abstract
3D genome organization is strongly predictive of DNA replication timing in mammalian cells. This work tested the extent to which loop-based genome architecture acts as a regulatory unit of replication timing by using an auxin-inducible system for acute cohesin ablation. Cohesin ablation in a population of cells in asynchronous culture was shown not to disrupt patterns of replication timing as assayed by replication sequencing (RepliSeq) or BrdU-focus microscopy. Furthermore, cohesin ablation prior to S phase entry in synchronized cells was similarly shown to not impact replication timing patterns. These results suggest that cohesin-mediated genome architecture is not required for the execution of replication timing patterns in S phase, nor for the establishment of replication timing domains in G1.
Collapse
Affiliation(s)
- Phoebe Oldach
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Conrad A Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
18
|
Chen R, She Y, Fu Q, Chen X, Shi H, Lei S, Zhou S, Ou J, Liu Y. Differentially expressed coding and noncoding RNAs in CoCl2-induced cytotoxicity of C2C12 cells. Epigenomics 2019; 11:423-438. [PMID: 30785338 DOI: 10.2217/epi-2018-0087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: We aimed to explore potential regulators of coding and noncoding RNAs (ncRNAs) in Co(II) ion-induced myo cytotoxicity. Materials & methods: We confirmed the toxic effects of Co(II) on mouse skeletal C2C12 myotubes by CoCl2, and performed the expression profiles of circular RNAs (circRNAs), long noncoding RNAs (lncRNAs) and mRNAs using microarray analysis. We constructed co-expression, competing endogenous RNA and cis/trans regulation networks for ncRNAs, and filtered 71 candidate circRNAs with coding potential. Results: We identify 605 differentially expressed circRNAs, 4409 long noncoding RNAs and 3965 mRNAs. We also provided several ncRNAs regulation networks and presumed functions of circRNAs with coding potential. Conclusion: Our findings may reveal novel regulatory mechanisms underlying the noxious effects of CoCl2 in skeletal muscle.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical & Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, PR China
| | - Yanling She
- Guangdong Traditional Medical & Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, PR China
| | - Qiang Fu
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, PR China
| | - Xiaodan Chen
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, PR China
| | - Huacai Shi
- Guangdong Traditional Medical & Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, PR China
| | - Si Lei
- Guangdong Traditional Medical & Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, PR China
| | - Shanyao Zhou
- Guangdong Traditional Medical & Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, PR China
| | - Jun Ou
- Guangzhou FitGene Biotechnology CO., LTD, Building D, 3 Ju Quan Road, Guangzhou 510663, PR China
| | - Yulin Liu
- Guangzhou FitGene Biotechnology CO., LTD, Building D, 3 Ju Quan Road, Guangzhou 510663, PR China
| |
Collapse
|
19
|
Sima J, Chakraborty A, Dileep V, Michalski M, Klein KN, Holcomb NP, Turner JL, Paulsen MT, Rivera-Mulia JC, Trevilla-Garcia C, Bartlett DA, Zhao PA, Washburn BK, Nora EP, Kraft K, Mundlos S, Bruneau BG, Ljungman M, Fraser P, Ay F, Gilbert DM. Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication. Cell 2019; 176:816-830.e18. [PMID: 30595451 PMCID: PMC6546437 DOI: 10.1016/j.cell.2018.11.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.
Collapse
Affiliation(s)
- Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Marco Michalski
- Nuclear Dynamics Program, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Nicolas P Holcomb
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jesse L Turner
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | - Daniel A Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Peiyao A Zhao
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Elphège P Nora
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Katerina Kraft
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitäts Medizin Berlin, 13353 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitäts Medizin Berlin, 13353 Berlin, Germany
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Nuclear Dynamics Program, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; UC San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
20
|
Linking the organization of DNA replication with genome maintenance. Curr Genet 2019; 65:677-683. [PMID: 30600398 DOI: 10.1007/s00294-018-0923-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
The spatial and temporal organization of genome duplication, also referred to as the replication program, is defined by the distribution and the activities of the sites of replication initiation across the genome. Alterations to the replication profile are associated with cell fate changes during development and in pathologies, but the importance of undergoing S phase with distinct and specific programs remains largely unexplored. We have recently addressed this question, focusing on the interplay between the replication program and genome maintenance. In particular, we demonstrated that when cells encounter challenges to DNA synthesis, the organization of DNA replication drives the response to replication stress that is mediated by the ATR/Rad3 checkpoint pathway, thus shaping the pattern of genome instability along the chromosomes. In this review, we present the major findings of our study and discuss how they may bring new perspectives to our understanding of the biological importance of the replication program.
Collapse
|
21
|
Ren Y, Ay A, Kahveci T. Shortest path counting in probabilistic biological networks. BMC Bioinformatics 2018; 19:465. [PMID: 30514202 PMCID: PMC6278053 DOI: 10.1186/s12859-018-2480-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biological regulatory networks, representing the interactions between genes and their products, control almost every biological activity in the cell. Shortest path search is critical to apprehend the structure of these networks, and to detect their key components. Counting the number of shortest paths between pairs of genes in biological networks is a polynomial time problem. The fact that biological interactions are uncertain events however drastically complicates the problem, as it makes the topology of a given network uncertain. RESULTS In this paper, we develop a novel method to count the number of shortest paths between two nodes in probabilistic networks. Unlike earlier approaches, which uses the shortest path counting methods that are specifically designed for deterministic networks, our method builds a new mathematical model to express and compute the number of shortest paths. We prove the correctness of this model. CONCLUSIONS We compare our novel method to three existing shortest path counting methods on synthetic and real gene regulatory networks. Our experiments demonstrate that our method is scalable, and it outperforms the existing methods in accuracy. Application of our shortest path counting method to detect communities in probabilistic networks shows that our method successfully finds communities in probabilistic networks. Moreover, our experiments on cell cycle pathway among different cancer types exhibit that our method helps in uncovering key functional characteristics of biological networks.
Collapse
Affiliation(s)
- Yuanfang Ren
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, 32611, FL, USA
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, 13346, NY, USA
| | - Tamer Kahveci
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, 32611, FL, USA.
| |
Collapse
|
22
|
Yang Y, Gu Q, Zhang Y, Sasaki T, Crivello J, O'Neill RJ, Gilbert DM, Ma J. Continuous-Trait Probabilistic Model for Comparing Multi-species Functional Genomic Data. Cell Syst 2018; 7:208-218.e11. [PMID: 29936186 PMCID: PMC6107375 DOI: 10.1016/j.cels.2018.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 01/22/2023]
Abstract
A large amount of multi-species functional genomic data from high-throughput assays are becoming available to help understand the molecular mechanisms for phenotypic diversity across species. However, continuous-trait probabilistic models, which are key to such comparative analysis, remain under-explored. Here we develop a new model, called phylogenetic hidden Markov Gaussian processes (Phylo-HMGP), to simultaneously infer heterogeneous evolutionary states of functional genomic features in a genome-wide manner. Both simulation studies and real data application demonstrate the effectiveness of Phylo-HMGP. Importantly, we applied Phylo-HMGP to analyze a new cross-species DNA replication timing (RT) dataset from the same cell type in five primate species (human, chimpanzee, orangutan, gibbon, and green monkey). We demonstrate that our Phylo-HMGP model enables discovery of genomic regions with distinct evolutionary patterns of RT. Our method provides a generic framework for comparative analysis of multi-species continuous functional genomic signals to help reveal regions with conserved or lineage-specific regulatory roles.
Collapse
Affiliation(s)
- Yang Yang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Quanquan Gu
- Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Julianna Crivello
- Institute for Systems Genomics, Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics, Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Dmitrijeva M, Ossowski S, Serrano L, Schaefer MH. Tissue-specific DNA methylation loss during ageing and carcinogenesis is linked to chromosome structure, replication timing and cell division rates. Nucleic Acids Res 2018; 46:7022-7039. [PMID: 29893918 PMCID: PMC6101545 DOI: 10.1093/nar/gky498] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic mechanism known to affect gene expression and aberrant DNA methylation patterns have been described in cancer. However, only a small fraction of differential methylation events target genes with a defined role in cancer, raising the question of how aberrant DNA methylation contributes to carcinogenesis. As recently a link has been suggested between methylation patterns arising in ageing and those arising in cancer, we asked which aberrations are unique to cancer and which are the product of normal ageing processes. We therefore compared the methylation patterns between ageing and cancer in multiple tissues. We observed that hypermethylation preferentially occurs in regulatory elements, while hypomethylation is associated with structural features of the chromatin. Specifically, we observed consistent hypomethylation of late-replicating, lamina-associated domains. The extent of hypomethylation was stronger in cancer, but in both ageing and cancer it was proportional to the replication timing of the region and the cell division rate of the tissue. Moreover, cancer patients who displayed more hypomethylation in late-replicating, lamina-associated domains had higher expression of cell division genes. These findings suggest that different cell division rates contribute to tissue- and cancer type-specific DNA methylation profiles.
Collapse
Affiliation(s)
- Marija Dmitrijeva
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Stephan Ossowski
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Martin H Schaefer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
24
|
Kang X, Feng Y, Gan Z, Zeng S, Guo X, Chen X, Zhang Y, Wang C, Liu K, Chen X, Jiang X, Song S, Li Y, Chen S, Sun F, Mao Z, Yang X, Chang J. NASP antagonize chromatin accessibility through maintaining histone H3K9me1 in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3438-3448. [PMID: 30076957 DOI: 10.1016/j.bbadis.2018.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
The regulation of histone deposits mediated by multi-chaperone complexes under physiological conditions remains to be further investigated. Here, we studied the function of nuclear autoantigenic sperm protein (NASP) in the regulation of liver cancer. We found that NASP levels in liver tumors were generally higher than in normal liver tissues and NASP down-regulation inhibited liver cancer cells from forming tumors. We further analyzed cellular responses and epigenetic mechanisms of the histone H3-H4 shortage induced by NASP knockdown in liver cancer cells. The results showed that the major effects of NASP knockdown were globally enhanced chromatin accessibility, which facilitates transcription release, and failure of replication initiation. Furthermore, we demonstrated that NASP depletion led to a global decrease of histone H3K9me1 modification associated with newly H3 processing, which occurred directly at the promoters of up-regulated anti-tumor genes BACH2 and RunX1T1. This also resulted in a synergistic effect on enhanced apoptosis with Myc and p53 decreases. Overall, our work provides new insights into the roles of NASP in tumorigenesis and cancer prevention.
Collapse
Affiliation(s)
- Xuan Kang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Yun Feng
- Translational Center for Stem Cell Research at Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, PR China
| | - Zhixue Gan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Shiyang Zeng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Xiaobo Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Xirui Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Ye Zhang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Chen Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Kuinan Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Xuelin Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Xiaoxue Jiang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Shuting Song
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Yabin Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Su Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China; School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Zhiyong Mao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Xiaomei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China.
| | - Jianfeng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
25
|
Ren Y, Sarkar A, Kahveci T. ProMotE: an efficient algorithm for counting independent motifs in uncertain network topologies. BMC Bioinformatics 2018; 19:242. [PMID: 29940838 PMCID: PMC6020255 DOI: 10.1186/s12859-018-2236-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Identifying motifs in biological networks is essential in uncovering key functions served by these networks. Finding non-overlapping motif instances is however a computationally challenging task. The fact that biological interactions are uncertain events further complicates the problem, as it makes the existence of an embedding of a given motif an uncertain event as well. RESULTS In this paper, we develop a novel method, ProMotE (Probabilistic Motif Embedding), to count non-overlapping embeddings of a given motif in probabilistic networks. We utilize a polynomial model to capture the uncertainty. We develop three strategies to scale our algorithm to large networks. CONCLUSIONS Our experiments demonstrate that our method scales to large networks in practical time with high accuracy where existing methods fail. Moreover, our experiments on cancer and degenerative disease networks show that our method helps in uncovering key functional characteristics of biological networks.
Collapse
Affiliation(s)
- Yuanfang Ren
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, 32611 FL USA
| | - Aisharjya Sarkar
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, 32611 FL USA
| | - Tamer Kahveci
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, 32611 FL USA
| |
Collapse
|
26
|
Takahashi S, Kobayashi S, Hiratani I. Epigenetic differences between naïve and primed pluripotent stem cells. Cell Mol Life Sci 2018; 75:1191-1203. [PMID: 29134247 PMCID: PMC5843680 DOI: 10.1007/s00018-017-2703-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
It has been 8 years since the concept of naïve and primed pluripotent stem cell states was first proposed. Both are states of pluripotency, but exhibit slightly different properties. The naïve state represents the cellular state of the preimplantation mouse blastocyst inner cell mass, while the primed state is representative of the post-implantation epiblast cells. These two cell types exhibit clearly distinct developmental potential, as evidenced by the fact that naïve cells are able to contribute to blastocyst chimeras, while primed cells cannot. However, the epigenetic differences that underlie the distinct developmental potential of these cell types remain unclear, which is rather surprising given the large amount of active investigation over the years. Elucidating such epigenetic differences should lead to a better understanding of the fundamental properties of these states of pluripotency and the means by which the naïve-to-primed transition occurs, which may provide insights into the essence of stem cell commitment.
Collapse
Affiliation(s)
- Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Shin Kobayashi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koutou-ku, Tokyo, 135-0064, Japan.
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
27
|
Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq. Nat Protoc 2018; 13:819-839. [PMID: 29599440 DOI: 10.1038/nprot.2017.148] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This protocol is an extension to: Nat. Protoc. 6, 870-895 (2014); doi:10.1038/nprot.2011.328; published online 02 June 2011Cycling cells duplicate their DNA content during S phase, following a defined program called replication timing (RT). Early- and late-replicating regions differ in terms of mutation rates, transcriptional activity, chromatin marks and subnuclear position. Moreover, RT is regulated during development and is altered in diseases. Here, we describe E/L Repli-seq, an extension of our Repli-chip protocol. E/L Repli-seq is a rapid, robust and relatively inexpensive protocol for analyzing RT by next-generation sequencing (NGS), allowing genome-wide assessment of how cellular processes are linked to RT. Briefly, cells are pulse-labeled with BrdU, and early and late S-phase fractions are sorted by flow cytometry. Labeled nascent DNA is immunoprecipitated from both fractions and sequenced. Data processing leads to a single bedGraph file containing the ratio of nascent DNA from early versus late S-phase fractions. The results are comparable to those of Repli-chip, with the additional benefits of genome-wide sequence information and an increased dynamic range. We also provide computational pipelines for downstream analyses, for parsing phased genomes using single-nucleotide polymorphisms (SNPs) to analyze RT allelic asynchrony, and for direct comparison to Repli-chip data. This protocol can be performed in up to 3 d before sequencing, and requires basic cellular and molecular biology skills, as well as a basic understanding of Unix and R.
Collapse
|
28
|
Popova VV, Brechalov AV, Georgieva SG, Kopytova DV. Nonreplicative functions of the origin recognition complex. Nucleus 2018; 9:460-473. [PMID: 30196754 PMCID: PMC6244734 DOI: 10.1080/19491034.2018.1516484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/04/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
Origin recognition complex (ORC), a heteromeric six-subunit complex, is the central component of the eukaryotic pre-replication complex. Recent data from yeast, frogs, flies and mammals present compelling evidence that ORC and its individual subunits have nonreplicative functions as well. The majority of these functions, such as heterochromatin formation, chromosome condensation, and segregation are dependent on ORC-DNA interactions. Furthermore, ORC is involved in the control of cell division via its participation in centrosome duplication and cytokinesis. Recent findings have also demonstrated a direct interaction between ORC and mRNPs and highlighted an essential role of ORC in mRNA nuclear export. Along with the growth of evolutionary complexity of organisms, ORC complex functions become more elaborate and new functions of the ORC sub-complexes and individual subunits have emerged.
Collapse
Affiliation(s)
- Varvara V. Popova
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V. Brechalov
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia G. Georgieva
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V. Kopytova
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Abstract
In this review, Prioleau and MacAlpine summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages.
Collapse
Affiliation(s)
- Marie-Noëlle Prioleau
- Institut Jacques Monod, UMR7592, Centre National de la Recherche Scientifique, Universite Paris Diderot, Equipe Labellisee Association pour la Recherche sur le Cancer, Paris 75013, France
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710. USA
| |
Collapse
|
30
|
Anatomy of Mammalian Replication Domains. Genes (Basel) 2017; 8:genes8040110. [PMID: 28350365 PMCID: PMC5406857 DOI: 10.3390/genes8040110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
Genetic information is faithfully copied by DNA replication through many rounds of cell division. In mammals, DNA is replicated in Mb-sized chromosomal units called “replication domains.” While genome-wide maps in multiple cell types and disease states have uncovered both dynamic and static properties of replication domains, we are still in the process of understanding the mechanisms that give rise to these properties. A better understanding of the molecular basis of replication domain regulation will bring new insights into chromosome structure and function.
Collapse
|
31
|
Genomic instability during reprogramming by nuclear transfer is DNA replication dependent. Nat Cell Biol 2017; 19:282-291. [PMID: 28263958 DOI: 10.1038/ncb3485] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
Abstract
Somatic cells can be reprogrammed to a pluripotent state by nuclear transfer into oocytes, yet developmental arrest often occurs. While incomplete transcriptional reprogramming is known to cause developmental failure, reprogramming also involves concurrent changes in cell cycle progression and nuclear structure. Here we study cellular reprogramming events in human and mouse nuclear transfer embryos prior to embryonic genome activation. We show that genetic instability marked by frequent chromosome segregation errors and DNA damage arise prior to, and independent of, transcriptional activity. These errors occur following transition through DNA replication and are repaired by BRCA1. In the absence of mitotic nuclear remodelling, DNA replication is delayed and errors are exacerbated in subsequent mitosis. These results demonstrate that independent of gene expression, cell-type-specific features of cell cycle progression constitute a barrier sufficient to prevent the transition from one cell type to another during reprogramming.
Collapse
|
32
|
Jordà M, Díez-Villanueva A, Mallona I, Martín B, Lois S, Barrera V, Esteller M, Vavouri T, Peinado MA. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Res 2016; 27:118-132. [PMID: 27999094 PMCID: PMC5204336 DOI: 10.1101/gr.207522.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%–4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.
Collapse
Affiliation(s)
- Mireia Jordà
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Anna Díez-Villanueva
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Izaskun Mallona
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Berta Martín
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Sergi Lois
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Víctor Barrera
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona 08907, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Tanya Vavouri
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona 08916, Catalonia, Spain
| | - Miguel A Peinado
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| |
Collapse
|
33
|
Harvey AJ, Rathjen J, Gardner DK. Metaboloepigenetic Regulation of Pluripotent Stem Cells. Stem Cells Int 2015; 2016:1816525. [PMID: 26839556 PMCID: PMC4709785 DOI: 10.1155/2016/1816525] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022] Open
Abstract
The differentiation of pluripotent stem cells is associated with extensive changes in metabolism, as well as widespread remodeling of the epigenetic landscape. Epigenetic regulation is essential for the modulation of differentiation, being responsible for cell type specific gene expression patterns through the modification of DNA and histones, thereby establishing cell identity. Each cell type has its own idiosyncratic pattern regarding the use of specific metabolic pathways. Rather than simply being perceived as a means of generating ATP and building blocks for cell growth and division, cellular metabolism can directly influence cellular regulation and the epigenome. Consequently, the significance of nutrients and metabolites as regulators of differentiation is central to understanding how cells interact with their immediate environment. This review serves to integrate studies on pluripotent stem cell metabolism, and the regulation of DNA methylation and acetylation and identifies areas in which current knowledge is limited.
Collapse
Affiliation(s)
- Alexandra J. Harvey
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joy Rathjen
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - David K. Gardner
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
34
|
Gabr H, Kahveci T. Signal reachability facilitates characterization of probabilistic signaling networks. BMC Bioinformatics 2015; 16 Suppl 17:S6. [PMID: 26679404 PMCID: PMC4674881 DOI: 10.1186/1471-2105-16-s17-s6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Studying biological networks is of extreme importance in understanding cellular functions. These networks model interactions between molecules in each cell. A large volume of research has been done to uncover different characteristics of biological networks, such as large-scale organization, node centrality and network robustness. Nevertheless, the vast majority of research done in this area assume that biological networks have deterministic topologies. Biological interactions are however probabilistic events that may or may not appear at different cells or even in the same cell at different times. Results In this paper, we present novel methods for characterizing probabilistic signaling networks. Our methods do this by computing the probability that a signal propagates successfully from receptor to reporter genes through interactions in the network. We characterize such networks with respect to (i) centrality of individual nodes, (ii) stability of the entire network, and (iii) important functions served by the network. We use these methods to characterize major H. sapiens signaling networks including Wnt, ErbB and MAPK.
Collapse
|
35
|
Gabr H, Rivera-Mulia JC, Gilbert DM, Kahveci T. Computing interaction probabilities in signaling networks. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2015; 2015:10. [PMID: 26587014 PMCID: PMC4642599 DOI: 10.1186/s13637-015-0031-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/30/2015] [Indexed: 01/17/2023]
Abstract
Biological networks inherently have uncertain topologies. This arises from many factors. For instance, interactions between molecules may or may not take place under varying conditions. Genetic or epigenetic mutations may also alter biological processes like transcription or translation. This uncertainty is often modeled by associating each interaction with a probability value. Studying biological networks under this probabilistic model has already been shown to yield accurate and insightful analysis of interaction data. However, the problem of assigning accurate probability values to interactions remains unresolved. In this paper, we present a novel method for computing interaction probabilities in signaling networks based on transcription levels of genes. The transcription levels define the signal reachability probability between membrane receptors and transcription factors. Our method computes the interaction probabilities that minimize the gap between the observed and the computed signal reachability probabilities. We evaluate our method on four signaling networks from the Kyoto Encyclopedia of Genes and Genomes (KEGG). For each network, we compute its edge probabilities using the gene expression profiles for seven major leukemia subtypes. We use these values to analyze how the stress induced by different leukemia subtypes affects signaling interactions.
Collapse
Affiliation(s)
- Haitham Gabr
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, Florida, USA
| | | | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Tamer Kahveci
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
36
|
Dileep V, Rivera-Mulia JC, Sima J, Gilbert DM. Large-Scale Chromatin Structure-Function Relationships during the Cell Cycle and Development: Insights from Replication Timing. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:53-63. [PMID: 26590169 DOI: 10.1101/sqb.2015.80.027284] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chromosome architecture has received a lot of attention since the recent development of genome-scale methods to measure chromatin interactions (Hi-C), enabling the first sequence-based models of chromosome tertiary structure. A view has emerged of chromosomes as a string of structural units (topologically associating domains; TADs) whose boundaries persist through the cell cycle and development. TADs with similar chromatin states tend to aggregate, forming spatially segregated chromatin compartments. However, high-resolution Hi-C has revealed substructure within TADs (subTADs) that poses a challenge for models that attribute significance to structural units at any given scale. More than 20 years ago, the DNA replication field independently identified stable structural (and functional) units of chromosomes (replication foci) as well as spatially segregated chromatin compartments (early and late foci), but lacked the means to link these units to genomic map units. Genome-wide studies of replication timing (RT) have now merged these two disciplines by identifying individual units of replication regulation (replication domains; RDs) that correspond to TADs and are arranged in 3D to form spatiotemporally segregated subnuclear compartments. Furthermore, classifying RDs/TADs by their constitutive versus developmentally regulated RT has revealed distinct classes of chromatin organization, providing unexpected insight into the relationship between large-scale chromosome structure and function.
Collapse
Affiliation(s)
- Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | | | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295 Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306-4295
| |
Collapse
|
37
|
Rivera-Mulia JC, Buckley Q, Sasaki T, Zimmerman J, Didier RA, Nazor K, Loring JF, Lian Z, Weissman S, Robins AJ, Schulz TC, Menendez L, Kulik MJ, Dalton S, Gabr H, Kahveci T, Gilbert DM. Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells. Genome Res 2015; 25:1091-103. [PMID: 26055160 PMCID: PMC4509994 DOI: 10.1101/gr.187989.114] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/05/2015] [Indexed: 12/31/2022]
Abstract
Duplication of the genome in mammalian cells occurs in a defined temporal order referred to as its replication-timing (RT) program. RT changes dynamically during development, regulated in units of 400-800 kb referred to as replication domains (RDs). Changes in RT are generally coordinated with transcriptional competence and changes in subnuclear position. We generated genome-wide RT profiles for 26 distinct human cell types, including embryonic stem cell (hESC)-derived, primary cells and established cell lines representing intermediate stages of endoderm, mesoderm, ectoderm, and neural crest (NC) development. We identified clusters of RDs that replicate at unique times in each stage (RT signatures) and confirmed global consolidation of the genome into larger synchronously replicating segments during differentiation. Surprisingly, transcriptome data revealed that the well-accepted correlation between early replication and transcriptional activity was restricted to RT-constitutive genes, whereas two-thirds of the genes that switched RT during differentiation were strongly expressed when late replicating in one or more cell types. Closer inspection revealed that transcription of this class of genes was frequently restricted to the lineage in which the RT switch occurred, but was induced prior to a late-to-early RT switch and/or down-regulated after an early-to-late RT switch. Analysis of transcriptional regulatory networks showed that this class of genes contains strong regulators of genes that were only expressed when early replicating. These results provide intriguing new insight into the complex relationship between transcription and RT regulation during human development.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Quinton Buckley
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Jared Zimmerman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Ruth A Didier
- College of Medicine, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Kristopher Nazor
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeanne F Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Zheng Lian
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Sherman Weissman
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | | | | | - Laura Menendez
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Michael J Kulik
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Haitham Gabr
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Tamer Kahveci
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
38
|
Boulos RE, Drillon G, Argoul F, Arneodo A, Audit B. Structural organization of human replication timing domains. FEBS Lett 2015; 589:2944-57. [PMID: 25912651 DOI: 10.1016/j.febslet.2015.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Recent analysis of genome-wide epigenetic modification data, mean replication timing (MRT) profiles and chromosome conformation data in mammals have provided increasing evidence that flexibility in replication origin usage is regulated locally by the epigenetic landscape and over larger genomic distances by the 3D chromatin architecture. Here, we review the recent results establishing some link between replication domains and chromatin structural domains in pluripotent and various differentiated cell types in human. We reconcile the originally proposed dichotomic picture of early and late constant timing regions that replicate by multiple rather synchronous origins in separated nuclear compartments of open and closed chromatins, with the U-shaped MRT domains bordered by "master" replication origins specified by a localized (∼200-300 kb) zone of open and transcriptionally active chromatin from which a replication wave likely initiates and propagates toward the domain center via a cascade of origin firing. We discuss the relationships between these MRT domains, topologically associated domains and lamina-associated domains. This review sheds a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and the determination of differentiation properties.
Collapse
Affiliation(s)
- Rasha E Boulos
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Guénola Drillon
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Françoise Argoul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Alain Arneodo
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Benjamin Audit
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.
| |
Collapse
|
39
|
Lubelsky Y, Prinz JA, DeNapoli L, Li Y, Belsky JA, MacAlpine DM. DNA replication and transcription programs respond to the same chromatin cues. Genome Res 2015; 24:1102-14. [PMID: 24985913 PMCID: PMC4079966 DOI: 10.1101/gr.160010.113] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA replication is a dynamic process that occurs in a temporal order along each of the chromosomes. A consequence of the temporally coordinated activation of replication origins is the establishment of broad domains (>100 kb) that replicate either early or late in S phase. This partitioning of the genome into early and late replication domains is important for maintaining genome stability, gene dosage, and epigenetic inheritance; however, the molecular mechanisms that define and establish these domains are poorly understood. The modENCODE Project provided an opportunity to investigate the chromatin features that define the Drosophila replication timing program in multiple cell lines. The majority of early and late replicating domains in the Drosophila genome were static across all cell lines; however, a small subset of domains was dynamic and exhibited differences in replication timing between the cell lines. Both origin selection and activation contribute to defining the DNA replication program. Our results suggest that static early and late replicating domains were defined at the level of origin selection (ORC binding) and likely mediated by chromatin accessibility. In contrast, dynamic domains exhibited low ORC densities in both cell types, suggesting that origin activation and not origin selection governs the plasticity of the DNA replication program. Finally, we show that the male-specific early replication of the X chromosome is dependent on the dosage compensation complex (DCC), suggesting that the transcription and replication programs respond to the same chromatin cues. Specifically, MOF-mediated hyperacetylation of H4K16 on the X chromosome promotes both the up-regulation of male-specific transcription and origin activation.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Joseph A Prinz
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Leyna DeNapoli
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yulong Li
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jason A Belsky
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David M MacAlpine
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
40
|
Embryonic stem cell specific "master" replication origins at the heart of the loss of pluripotency. PLoS Comput Biol 2015; 11:e1003969. [PMID: 25658386 PMCID: PMC4319821 DOI: 10.1371/journal.pcbi.1003969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022] Open
Abstract
Epigenetic regulation of the replication program during mammalian cell differentiation remains poorly understood. We performed an integrative analysis of eleven genome-wide epigenetic profiles at 100 kb resolution of Mean Replication Timing (MRT) data in six human cell lines. Compared to the organization in four chromatin states shared by the five somatic cell lines, embryonic stem cell (ESC) line H1 displays (i) a gene-poor but highly dynamic chromatin state (EC4) associated to histone variant H2AZ rather than a HP1-associated heterochromatin state (C4) and (ii) a mid-S accessible chromatin state with bivalent gene marks instead of a polycomb-repressed heterochromatin state. Plastic MRT regions (≲ 20% of the genome) are predominantly localized at the borders of U-shaped timing domains. Whereas somatic-specific U-domain borders are gene-dense GC-rich regions, 31.6% of H1-specific U-domain borders are early EC4 regions enriched in pluripotency transcription factors NANOG and OCT4 despite being GC poor and gene deserts. Silencing of these ESC-specific “master” replication initiation zones during differentiation corresponds to a loss of H2AZ and an enrichment in H3K9me3 mark characteristic of late replicating C4 heterochromatin. These results shed a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and lineage commitment. During development, embryonic stem cell (ESC) enter a program of cell differentiation eventually leading to all the necessary differentiated cell types. Understanding the mechanisms responsible for the underlying modifications of the gene expression program is of fundamental importance, as it will likely have strong impact on the development of regenerative medicine. We show that besides some epigenetic regulation, ubiquitous master replication origins at replication timing U-domain borders shared by 6 human cell types are transcriptionally active open chromatin regions specified by a local enrichment in nucleosome free regions encoded in the DNA sequence suggesting that they have been selected during evolution. In contrast, ESC specific master replication origins bear a unique epigenetic signature (enrichment in CTCF, H2AZ, NANOG, OCT4, …) likely contributing to maintain ESC chromatin in a highly dynamic and accessible state that is refractory to polycomb and HP1 heterochromatin spreading. These ESC specific master origins thus appear as key genomic regions where epigenetic control of chromatin organization is at play to maintain pluripotency of stem cell lineages and to guide lineage commitment to somatic cell types.
Collapse
|
41
|
Topologically associating domains are stable units of replication-timing regulation. Nature 2015; 515:402-5. [PMID: 25409831 PMCID: PMC4251741 DOI: 10.1038/nature13986] [Citation(s) in RCA: 620] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023]
Abstract
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
Collapse
|
42
|
Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, Shen Y, Pervouchine DD, Djebali S, Thurman RE, Kaul R, Rynes E, Kirilusha A, Marinov GK, Williams BA, Trout D, Amrhein H, Fisher-Aylor K, Antoshechkin I, DeSalvo G, See LH, Fastuca M, Drenkow J, Zaleski C, Dobin A, Prieto P, Lagarde J, Bussotti G, Tanzer A, Denas O, Li K, Bender MA, Zhang M, Byron R, Groudine MT, McCleary D, Pham L, Ye Z, Kuan S, Edsall L, Wu YC, Rasmussen MD, Bansal MS, Kellis M, Keller CA, Morrissey CS, Mishra T, Jain D, Dogan N, Harris RS, Cayting P, Kawli T, Boyle AP, Euskirchen G, Kundaje A, Lin S, Lin Y, Jansen C, Malladi VS, Cline MS, Erickson DT, Kirkup VM, Learned K, Sloan CA, Rosenbloom KR, Lacerda de Sousa B, Beal K, Pignatelli M, Flicek P, Lian J, Kahveci T, Lee D, Kent WJ, Ramalho Santos M, Herrero J, Notredame C, Johnson A, Vong S, Lee K, Bates D, Neri F, Diegel M, Canfield T, Sabo PJ, Wilken MS, Reh TA, Giste E, Shafer A, Kutyavin T, Haugen E, Dunn D, Reynolds AP, Neph S, Humbert R, Hansen RS, De Bruijn M, et alYue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, Shen Y, Pervouchine DD, Djebali S, Thurman RE, Kaul R, Rynes E, Kirilusha A, Marinov GK, Williams BA, Trout D, Amrhein H, Fisher-Aylor K, Antoshechkin I, DeSalvo G, See LH, Fastuca M, Drenkow J, Zaleski C, Dobin A, Prieto P, Lagarde J, Bussotti G, Tanzer A, Denas O, Li K, Bender MA, Zhang M, Byron R, Groudine MT, McCleary D, Pham L, Ye Z, Kuan S, Edsall L, Wu YC, Rasmussen MD, Bansal MS, Kellis M, Keller CA, Morrissey CS, Mishra T, Jain D, Dogan N, Harris RS, Cayting P, Kawli T, Boyle AP, Euskirchen G, Kundaje A, Lin S, Lin Y, Jansen C, Malladi VS, Cline MS, Erickson DT, Kirkup VM, Learned K, Sloan CA, Rosenbloom KR, Lacerda de Sousa B, Beal K, Pignatelli M, Flicek P, Lian J, Kahveci T, Lee D, Kent WJ, Ramalho Santos M, Herrero J, Notredame C, Johnson A, Vong S, Lee K, Bates D, Neri F, Diegel M, Canfield T, Sabo PJ, Wilken MS, Reh TA, Giste E, Shafer A, Kutyavin T, Haugen E, Dunn D, Reynolds AP, Neph S, Humbert R, Hansen RS, De Bruijn M, Selleri L, Rudensky A, Josefowicz S, Samstein R, Eichler EE, Orkin SH, Levasseur D, Papayannopoulou T, Chang KH, Skoultchi A, Gosh S, Disteche C, Treuting P, Wang Y, Weiss MJ, Blobel GA, Cao X, Zhong S, Wang T, Good PJ, Lowdon RF, Adams LB, Zhou XQ, Pazin MJ, Feingold EA, Wold B, Taylor J, Mortazavi A, Weissman SM, Stamatoyannopoulos JA, Snyder MP, Guigo R, Gingeras TR, Gilbert DM, Hardison RC, Beer MA, Ren B. A comparative encyclopedia of DNA elements in the mouse genome. Nature 2015; 515:355-64. [PMID: 25409824 PMCID: PMC4266106 DOI: 10.1038/nature13992] [Show More Authors] [Citation(s) in RCA: 1248] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 10/24/2014] [Indexed: 12/11/2022]
Abstract
The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.
Collapse
Affiliation(s)
- Feng Yue
- 1] Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | - Yong Cheng
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Alessandra Breschi
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Jeff Vierstra
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tyrone Ryba
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Richard Sandstrom
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Zhihai Ma
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Carrie Davis
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Benjamin D Pope
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Yin Shen
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Dmitri D Pervouchine
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Sarah Djebali
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Robert E Thurman
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Rajinder Kaul
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Eric Rynes
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Anthony Kirilusha
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Georgi K Marinov
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Brian A Williams
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Diane Trout
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Henry Amrhein
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Katherine Fisher-Aylor
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Igor Antoshechkin
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Gilberto DeSalvo
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Lei-Hoon See
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Meagan Fastuca
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Jorg Drenkow
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Chris Zaleski
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Alex Dobin
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Pablo Prieto
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Julien Lagarde
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Giovanni Bussotti
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Andrea Tanzer
- 1] Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain. [2] Department of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Waehringerstrasse 17/3/303, A-1090 Vienna, Austria
| | - Olgert Denas
- Departments of Biology and Mathematics and Computer Science, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, Georgia 30322, USA
| | - Kanwei Li
- Departments of Biology and Mathematics and Computer Science, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, Georgia 30322, USA
| | - M A Bender
- 1] Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA. [2] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Miaohua Zhang
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Rachel Byron
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Mark T Groudine
- 1] Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. [2] Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, USA
| | - David McCleary
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Long Pham
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Samantha Kuan
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Lee Edsall
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yi-Chieh Wu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Matthew D Rasmussen
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Mukul S Bansal
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Manolis Kellis
- 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Deepti Jain
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nergiz Dogan
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Robert S Harris
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip Cayting
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Trupti Kawli
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Alan P Boyle
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Ghia Euskirchen
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Shin Lin
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Yiing Lin
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Camden Jansen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA
| | - Venkat S Malladi
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Melissa S Cline
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA
| | - Drew T Erickson
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Vanessa M Kirkup
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA
| | - Katrina Learned
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA
| | - Cricket A Sloan
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Kate R Rosenbloom
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA
| | - Beatriz Lacerda de Sousa
- Departments of Obstetrics/Gynecology and Pathology, and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California 94143, USA
| | - Kathryn Beal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Miguel Pignatelli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jin Lian
- Yale University, Department of Genetics, PO Box 208005, 333 Cedar Street, New Haven, Connecticut 06520-8005, USA
| | - Tamer Kahveci
- Computer &Information Sciences &Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Dongwon Lee
- McKusick-Nathans Institute of Genetic Medicine and Department of Biomedical Engineering, Johns Hopkins University, 733 N. Broadway, BRB 573 Baltimore, Maryland 21205, USA
| | - W James Kent
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA
| | - Miguel Ramalho Santos
- Departments of Obstetrics/Gynecology and Pathology, and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California 94143, USA
| | - Javier Herrero
- 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Cedric Notredame
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Audra Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Shinny Vong
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Kristen Lee
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Daniel Bates
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Fidencio Neri
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Morgan Diegel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Theresa Canfield
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Peter J Sabo
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Matthew S Wilken
- Department of Biological Structure, University of Washington, HSB I-516, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, HSB I-516, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | - Erika Giste
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Anthony Shafer
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Tanya Kutyavin
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Eric Haugen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Douglas Dunn
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Alex P Reynolds
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Shane Neph
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Richard Humbert
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - R Scott Hansen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Marella De Bruijn
- MRC Molecular Haemotology Unit, University of Oxford, Oxford OX3 9DS, UK
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Alexander Rudensky
- HHMI and Ludwig Center at Memorial Sloan Kettering Cancer Center, Immunology Program, Memorial Sloan Kettering Cancer Canter, New York, New York 10065, USA
| | - Steven Josefowicz
- HHMI and Ludwig Center at Memorial Sloan Kettering Cancer Center, Immunology Program, Memorial Sloan Kettering Cancer Canter, New York, New York 10065, USA
| | - Robert Samstein
- HHMI and Ludwig Center at Memorial Sloan Kettering Cancer Center, Immunology Program, Memorial Sloan Kettering Cancer Canter, New York, New York 10065, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Stuart H Orkin
- Dana Farber Cancer Institute, Harvard Medical School, Cambridge, Massachusetts 02138, USA
| | - Dana Levasseur
- University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, Iowa 52242, USA
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Kai-Hsin Chang
- University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, Iowa 52242, USA
| | - Arthur Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Srikanta Gosh
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Christine Disteche
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Piper Treuting
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Yanli Wang
- Bioinformatics and Genomics program, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Gerd A Blobel
- 1] Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. [2] Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xiaoyi Cao
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Peter J Good
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Rebecca F Lowdon
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Leslie B Adams
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Xiao-Qiao Zhou
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Michael J Pazin
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Elise A Feingold
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Barbara Wold
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - James Taylor
- Departments of Biology and Mathematics and Computer Science, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, Georgia 30322, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA
| | - Sherman M Weissman
- Yale University, Department of Genetics, PO Box 208005, 333 Cedar Street, New Haven, Connecticut 06520-8005, USA
| | | | - Michael P Snyder
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Roderic Guigo
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Thomas R Gingeras
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - David M Gilbert
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael A Beer
- McKusick-Nathans Institute of Genetic Medicine and Department of Biomedical Engineering, Johns Hopkins University, 733 N. Broadway, BRB 573 Baltimore, Maryland 21205, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | |
Collapse
|
43
|
Chen L, Zhou W, Zhang C, Lupski JR, Jin L, Zhang F. CNV instability associated with DNA replication dynamics: evidence for replicative mechanisms in CNV mutagenesis. Hum Mol Genet 2014; 24:1574-83. [PMID: 25398944 DOI: 10.1093/hmg/ddu572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Copy number variation (CNV) in the human genome is of vital importance to human health and evolution of our species. However, much of the molecular basis of CNV mutagenesis remains to be elucidated. Considering the DNA replication model of 'fork stalling and template switching' for CNV formation, we hypothesized that replication fork progression could be important for CNV mutagenesis. However, molecular assays of replication fork progression at the genome level are technically challenging. Instead, we conducted an estimation of DNA replication dynamics, as the statistic R, using the readily available data of replication timing. Small R-values can reflect 'slowed' replication, which could result from less fork initiation, reduced fork speed or fork barriers. We generated genome-wide profiles of R in the genomes of human, mouse and Drosophila. Intriguingly, the CNV breakpoints in all three genomes showed significantly biased distributions toward the genomic regions with small R-values, suggesting potential replication stress-induced CNV instability. Notably, among the human CNVs with distinct breakpoint junction characteristics, the homology-mediated and VNTR-mediated CNVs contribute the most to the correlation between CNV instability and the statistic R, consistent with the recent findings in the C. elegans and yeast genomes of repeat-induced DNA replication error and consequent CNV formation. The statistic R may reflect both replication stress and the effect of local genome architecture on fork progression. Our concordant observations suggest an important role for DNA replicative mechanisms in CNV mutagenesis and genome instability.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology and
| | - Weichen Zhou
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology and
| | - Cheng Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology and
| | - James R Lupski
- Department of Molecular and Human Genetics and Department of Pediatrics, Baylor College of Medicine, Houston TX 77030, USA Texas Children's Hospital, Houston, TX 77030, USA
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China,
| |
Collapse
|
44
|
Abstract
The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC's diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer.
Collapse
Affiliation(s)
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, New York 10032 Department of Genetics and Development, Columbia University, New York, New York 10032
| |
Collapse
|
45
|
Abstract
While large portions of the mammalian genome are known to replicate sequentially in a distinct, tissue-specific order, recent studies suggest that the inactive X chromosome is duplicated rapidly via random, synchronous DNA synthesis at numerous adjacent regions. The rapid duplication of the inactive X chromosome was observed in high-resolution studies visualizing DNA replication patterns in the nucleus, and by allele-specific DNA sequencing studies measuring the extent of DNA synthesis. These studies conclude that inactive X chromosomes complete replication earlier than previously thought and suggest that the strict order of DNA replication detected in the majority of genomic regions is not preserved in non-transcribed, "silent" chromatin. These observations alter current concepts about the regulation of DNA replication in non-transcribed portions of the genome in general and in the inactive X-chromosome in particular.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
46
|
GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris. PLoS Genet 2014; 10:e1004169. [PMID: 24603708 PMCID: PMC3945215 DOI: 10.1371/journal.pgen.1004169] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/25/2013] [Indexed: 11/19/2022] Open
Abstract
The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.
Collapse
|
47
|
Ay F, Bailey TL, Noble WS. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res 2014; 24:999-1011. [PMID: 24501021 PMCID: PMC4032863 DOI: 10.1101/gr.160374.113] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our current understanding of how DNA is packed in the nucleus is most accurate at the fine scale of individual nucleosomes and at the large scale of chromosome territories. However, accurate modeling of DNA architecture at the intermediate scale of ∼50 kb–10 Mb is crucial for identifying functional interactions among regulatory elements and their target promoters. We describe a method, Fit-Hi-C, that assigns statistical confidence estimates to mid-range intra-chromosomal contacts by jointly modeling the random polymer looping effect and previously observed technical biases in Hi-C data sets. We demonstrate that our proposed approach computes accurate empirical null models of contact probability without any distribution assumption, corrects for binning artifacts, and provides improved statistical power relative to a previously described method. High-confidence contacts identified by Fit-Hi-C preferentially link expressed gene promoters to active enhancers identified by chromatin signatures in human embryonic stem cells (ESCs), capture 77% of RNA polymerase II-mediated enhancer-promoter interactions identified using ChIA-PET in mouse ESCs, and confirm previously validated, cell line-specific interactions in mouse cortex cells. We observe that insulators and heterochromatin regions are hubs for high-confidence contacts, while promoters and strong enhancers are involved in fewer contacts. We also observe that binding peaks of master pluripotency factors such as NANOG and POU5F1 are highly enriched in high-confidence contacts for human ESCs. Furthermore, we show that pairs of loci linked by high-confidence contacts exhibit similar replication timing in human and mouse ESCs and preferentially lie within the boundaries of topological domains for human and mouse cell lines.
Collapse
Affiliation(s)
- Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Timothy L Bailey
- Institute for Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
48
|
Abstract
Eukaryotic DNA replication exhibits at once extraordinary fidelity and substantial plasticity. The importance of the apparent presence of a replication temporal program on a population level has been the subject of intense debate of late. Such debate has been, to a great extent, facilitated by methods that permit the description and analysis of replication dynamics in various model organisms, both globally and at a single-molecule level. Each of these methods provides a unique view of the replication process, and also presents challenges and questions in the interpretation of experimental observations. Thus, wider applications of these methods in different genetic backgrounds and in different organisms would doubtless enable us to better understand the execution and regulation of chromosomal DNA synthesis as well as its impact on genome maintenance.
Collapse
|
49
|
Palumbo E, Tosoni E, Russo A. General and specific replication profiles are detected in normal human cells by genome-wide and single-locus molecular combing. Exp Cell Res 2013; 319:3081-93. [PMID: 24126019 DOI: 10.1016/j.yexcr.2013.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/24/2013] [Accepted: 10/01/2013] [Indexed: 01/04/2023]
Abstract
Mammalian genomes are replicated under a flexible program, with random use of origins and variable fork rates, and many details of the process must be still unraveled. Molecular combing provides a set of direct data regarding the replication profile of eukaryotic cells: fork rates; organization of the replication clusters; proportion of unidirectional forks; and fork dynamics. In this study the replication profiles of different primary and immortalized non-cancer human cells (lymphocytes, lymphoblastoid cells, fibroblasts) were evaluated at the whole-genome level or within reference genomic regions harboring coding genes. It emerged that these different cell types are characterized by specific replication profiles. In primary fibroblasts, a remarkable fraction of the mammalian genome was found to be replicated by unidirectional forks, and interestingly, the proportion of unidirectional forks further increased in the replicating genome along the population divisions. A second difference concerned in the proportion of paused replication forks, again more frequent in primary fibroblasts than in PBL/lymphoblastoid cells. We concluded that these patterns, whose relevance could escape when genomic methods are applied, represent normal replication features. In single-locus analyses, unidirectional and paused replication forks were highly represented in all genomic regions considered with respect to the average estimates referring to the whole-genome. In addition, fork rates were significantly lower than whole-genome estimates. Instead, when considering the specificities of each genomic region investigated (early to late replication, normal or fragile site) no further differentiating features of replication profiles were detected. These data, representing the integration of genome-wide and single-locus analyses, highlight a large heterogeneity of replication profiles among cell types and within the genome, which should be considered for the correct use of replication datasets.
Collapse
Affiliation(s)
- Elisa Palumbo
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy.
| | | | | |
Collapse
|
50
|
Hoggard T, Shor E, Müller CA, Nieduszynski CA, Fox CA. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet 2013; 9:e1003798. [PMID: 24068963 PMCID: PMC3772097 DOI: 10.1371/journal.pgen.1003798] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. Cell division requires the duplication of chromosomes, protein-DNA complexes harboring genetic information. Specific chromosomal positions, origins, initiate this duplication. Multiple origins are required for accurate, efficient duplication—an insufficient number leads to mistakes in the genetic material and pathologies such as cancer. Origins are chosen when the origin recognition complex (ORC) binds to them. The molecular interactions controlling this binding remain unclear. Understanding these interactions will lead to new ways to control cell division, which could aid in treatments of disease. Experiments were performed in the eukaryotic microbe budding yeast to define the types of molecular interactions ORC uses to bind origins. Yeasts are useful for these studies because chromosome duplication and structure are well conserved from yeast to humans. While ORC-DNA interactions were important, interactions between ORC and chromosomal proteins played a role. In addition, different origins relied on different types of molecular interactions with ORC. Finally, ORC-protein interactions but not ORC-DNA interactions were associated with enhanced origin function during chromosome-duplication, revealing an unanticipated link between the types of molecular interactions ORC uses to select an origin and the ultimate function of that origin. These results have implications for interfering with ORC-origin interactions to control cell division.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Shor
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Carolin A. Müller
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
- * E-mail: (CAN); (CAF)
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CAN); (CAF)
| |
Collapse
|