1
|
Yao L, Jack RL. Interfacial and density fluctuations in a lattice model of motility-induced phase separation. J Chem Phys 2025; 162:114902. [PMID: 40094244 DOI: 10.1063/5.0253530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
We analyze motility-induced phase separation and bubbly phase separation in a two-dimensional lattice model of self-propelled particles. We compare systems where the dense (liquid) phase has slab and droplet geometries. We find that interfacial fluctuations of the slab are well-described by capillary wave theory, despite the existence of bubbles in the dense phase. We attribute this to a separation of time scales between bubble expulsion and interfacial relaxation. We also characterize the dependence of liquid and vapor densities on the curvature of the liquid droplet, as well as the density fluctuations inside the phases. The vapor phase behaves similarly to an equilibrium system, displaying a Laplace pressure effect that shifts its density, and Gaussian density fluctuations. The liquid phase has large non-Gaussian fluctuations, but this is not accompanied by a large density shift, contrary to the equilibrium case. Nevertheless, the shift of the vapor density can be used to infer an effective surface tension that appears to also quantify capillary wave fluctuations.
Collapse
Affiliation(s)
- Liheng Yao
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Robert L Jack
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Chaithanya KVS, Rozman J, Košmrlj A, Sknepnek R. Cell-Level Modelling of Homeostasis in Confined Epithelial Monolayers. JOURNAL OF ELASTICITY 2025; 157:29. [PMID: 40013236 PMCID: PMC11850549 DOI: 10.1007/s10659-025-10120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Tissue homeostasis, the biological process of maintaining a steady state in tissue via control of cell proliferation and death, is essential for the development, growth, maintenance, and proper function of living organisms. Disruptions to this process can lead to serious diseases and even death. In this study, we use the vertex model for the cell-level description of tissue mechanics to investigate the impact of the tissue environment and local mechanical properties of cells on homeostasis in confined epithelial tissues. We find a dynamic steady state, where the balance between cell divisions and removals sustains homeostasis, and characterise the homeostatic state in terms of cell count, tissue area, homeostatic pressure, and the cells' neighbour count distribution. This work, therefore, sheds light on the mechanisms underlying tissue homeostasis and highlights the importance of mechanics in its control.
Collapse
Affiliation(s)
- KVS Chaithanya
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| | - Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU UK
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 USA
- Princeton Materials Institute, Princeton University, Princeton, NJ 08544 USA
| | - Rastko Sknepnek
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| |
Collapse
|
3
|
Cano-Fernández H, Tissot T, Brun-Usan M, Salazar-Ciudad I. A mathematical model of development shows that cell division, short-range signaling and self-activating gene networks increase developmental noise while long-range signaling and epithelial stiffness reduce it. Dev Biol 2025; 518:85-97. [PMID: 39622312 DOI: 10.1016/j.ydbio.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
The position of cells during development is constantly subject to noise, i.e. cell-level noise. We do not yet fully understand how cell-level noise coming from processes such as cell division or movement leads to morphological noise, i.e. morphological differences between genetically identical individuals developing in the same environment. To address this question we constructed a large ensemble of random genetic networks regulating cell behaviors (contraction, adhesion, etc.) and cell signaling. We simulated them with a general computational model of development, EmbryoMaker. We identified and studied the dynamics, under cell-level noise, of those networks that lead to the development of animal-like morphologies from simple blastula-like initial conditions. We found that growth by cell division is a major contributor to morphological noise. Self-activating gene network loops also amplified cell-level noise into morphological noise while long-range signaling and epithelial stiffness tended to reduce morphological noise.
Collapse
Affiliation(s)
- Hugo Cano-Fernández
- Genomics, Bioinformatics and Evolution Group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, 08193, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Tazzio Tissot
- Electronics and Computer Science Department, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Miguel Brun-Usan
- Departamento de Biologia, Universidad Autónoma de Madrid, Darwin St., 2, Fuencarral-El Pardo, 28049, Madrid, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution Group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, 08193, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; Centre de Recerca Matemàtica (CRM), Edifici C, 08193, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| |
Collapse
|
4
|
Rozman J, Chaithanya K, Yeomans JM, Sknepnek R. Vertex model with internal dissipation enables sustained flows. Nat Commun 2025; 16:530. [PMID: 39789022 PMCID: PMC11718050 DOI: 10.1038/s41467-025-55820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos. When coupled to cell shape anisotropy, the internal viscous dissipation allows for long-range velocity correlations and thus enables the spontaneous emergence of flows with a large degree of spatiotemporal organisation. We demonstrate sustained flow in epithelial sheets confined to a channel, providing a link between the cell-level vertex model of tissue dynamics and continuum active nematics, whose behaviour in a channel is theoretically understood and experimentally realisable. Our findings also show a simple mechanism that could account for collective cell migration correlated over distances large compared to the cell size, as observed during morphogenesis.
Collapse
Affiliation(s)
- Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Kvs Chaithanya
- School of Life Sciences, University of Dundee, Dundee, UK
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Rastko Sknepnek
- School of Life Sciences, University of Dundee, Dundee, UK.
- School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
5
|
Vagne Q, Salbreux G. Generic theory of interacting, spinning, active polar particles: A model for cell aggregates. Phys Rev E 2025; 111:014423. [PMID: 39972799 DOI: 10.1103/physreve.111.014423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/05/2024] [Indexed: 02/21/2025]
Abstract
We present a generic framework for describing interacting, spinning, active polar particles, aimed at modeling dense cell aggregates, where cells are treated as polar, rotating objects that interact mechanically with one another and their surrounding environment. Using principles from nonequilibrium thermodynamics, we derive constitutive equations for interaction forces, torques, and polarity dynamics. We subsequently use this framework to analyze the spontaneous motion of cell doublets, uncovering a rich phase diagram of collective behaviors, including steady rotation driven by flow-polarity coupling or interactions between polarity and cell position.
Collapse
Affiliation(s)
- Quentin Vagne
- University of Geneva, Quai Ernest Ansermet 30, 1205 Geneva, Switzerland
| | | |
Collapse
|
6
|
Braat QJS, Storm C, Janssen LMC. Formation of motile cell clusters in heterogeneous model tumors: The role of cell-cell alignment. Phys Rev E 2024; 110:064401. [PMID: 39916223 DOI: 10.1103/physreve.110.064401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 05/07/2025]
Abstract
Circulating tumor cell clusters play an important role in the metastatic cascade. These clusters can acquire a migratory and more invasive phenotype, and coordinate their motion to migrate as a collective. Before such clusters can form by collectively detaching from a primary tumor, however, the cluster must first aggregate in the tumor interior. The mechanism of this cluster formation process is still poorly understood. One of the possible ways for cells to cluster is by aligning their direction of motion with their neighboring cells. This work aims to investigate the role of this cell-cell alignment interaction on the formation of motile cell clusters inside the bulk of a tumor using computer simulations. We employ a cellular Potts model in which we model a two-dimensional heterogeneous confluent layer containing both motile and nonmotile cells. Our results indicate that the degree of clustering is governed by two distinct processes: the formation of clusters due to the presence of cell-cell alignment interactions among motile cells, and the suppression of clustering due to the presence of the dynamic cellular environment (comprising the nonmotile cells). We find that the largest motile clusters are formed for intermediate alignment strengths, contrary to what is observed for motile cells in free space (that is, unimpeded by a dense cellular environment), in which case stronger cell-cell alignment always leads to larger clustering. Our findings suggest that the presence of a densely packed cellular environment and strong cell-cell alignment inhibits the formation of large migratory clusters within the primary tumor, providing physical insight into potential factors at play during the early stages of metastasis.
Collapse
Affiliation(s)
- Quirine J S Braat
- Eindhoven University of Technology, Department of Applied Physics and Science Education, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Cornelis Storm
- Eindhoven University of Technology, Department of Applied Physics and Science Education, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Eindhoven University of Technology, Institute for Complex Molecular Systems, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Liesbeth M C Janssen
- Eindhoven University of Technology, Department of Applied Physics and Science Education, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Eindhoven University of Technology, Institute for Complex Molecular Systems, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Anjum S, Turner L, Atieh Y, Eisenhoffer GT, Davidson LA. Assessing mechanical agency during apical apoptotic cell extrusion. iScience 2024; 27:111017. [PMID: 39507245 PMCID: PMC11539584 DOI: 10.1016/j.isci.2024.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/31/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Homeostasis is necessary for epithelia to maintain barrier function and prevent the accumulation of defective cells. Unfit, excess, and dying cells in the larval zebrafish tail fin epidermis are removed via controlled cell death and extrusion. Extrusion coincides with oscillations of cell area, both in the extruding cell and its neighbors. Here, we develop a biophysical model of this process to explore the role of autonomous and non-autonomous mechanics. We vary biophysical properties and oscillatory behaviors of extruding cells and their neighbors along with tissue-wide cell density and viscosity. We find that cell autonomous processes are major contributors to the dynamics of extrusion, with the mechanical microenvironment providing a less pronounced contribution. We also find that some cells initially resist extrusion, influencing the duration of the expulsion process. Our model provides insights into the cellular dynamics and mechanics that promote elimination of unwanted cells from epithelia during homeostatic tissue maintenance.
Collapse
Affiliation(s)
- Sommer Anjum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Computational Modeling and Simulation Graduate Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Llaran Turner
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Youmna Atieh
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George T. Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
8
|
Lange S, Schmied J, Willam P, Voss-Böhme A. Minimal cellular automaton model with heterogeneous cell sizes predicts epithelial colony growth. J Theor Biol 2024; 592:111882. [PMID: 38944379 DOI: 10.1016/j.jtbi.2024.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Regulation of cell proliferation is a crucial aspect of tissue development and homeostasis and plays a major role in morphogenesis, wound healing, and tumor invasion. A phenomenon of such regulation is contact inhibition, which describes the dramatic slowing of proliferation, cell migration and individual cell growth when multiple cells are in contact with each other. While many physiological, molecular and genetic factors are known, the mechanism of contact inhibition is still not fully understood. In particular, the relevance of cellular signaling due to interfacial contact for contact inhibition is still debated. Cellular automata (CA) have been employed in the past as numerically efficient mathematical models to study the dynamics of cell ensembles, but they are not suitable to explore the origins of contact inhibition as such agent-based models assume fixed cell sizes. We develop a minimal, data-driven model to simulate the dynamics of planar cell cultures by extending a probabilistic CA to incorporate size changes of individual cells during growth and cell division. We successfully apply this model to previous in-vitro experiments on contact inhibition in epithelial tissue: After a systematic calibration of the model parameters to measurements of single-cell dynamics, our CA model quantitatively reproduces independent measurements of emergent, culture-wide features, like colony size, cell density and collective cell migration. In particular, the dynamics of the CA model also exhibit the transition from a low-density confluent regime to a stationary postconfluent regime with a rapid decrease in cell size and motion. This implies that the volume exclusion principle, a mechanical constraint which is the only inter-cellular interaction incorporated in the model, paired with a size-dependent proliferation rate is sufficient to generate the observed contact inhibition. We discuss how our approach enables the introduction of effective bio-mechanical interactions in a CA framework for future studies.
Collapse
Affiliation(s)
- Steffen Lange
- DataMedAssist Group, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, 01307, Germany.
| | - Jannik Schmied
- DataMedAssist Group, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany; Faculty of Informatics/Mathematics, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany
| | - Paul Willam
- DataMedAssist Group, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany
| | - Anja Voss-Böhme
- DataMedAssist Group, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany; Faculty of Informatics/Mathematics, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany
| |
Collapse
|
9
|
Wang W, Law RA, Perez Ipiña E, Konstantopoulos K, Camley BA. Confinement, jamming, and adhesion in cancer cells dissociating from a collectively invading strand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601053. [PMID: 38979161 PMCID: PMC11230418 DOI: 10.1101/2024.06.28.601053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
When cells in a primary tumor work together to invade into nearby tissue, this can lead to cell dissociations-cancer cells breaking off from the invading front-leading to metastasis. What controls the dissociation of cells, and whether they break off singly or in small groups? Can this be determined by cell-cell adhesion or chemotactic cues given to cells? We develop a physical model for this question, based on experiments that mimic aspects of cancer cell invasion using microfluidic devices with microchannels of different widths. Experimentally, most dissociation events ("ruptures") involve single cells breaking off, but we observe some ruptures of large groups ( ∼ 20 cells) in wider channels. The rupture probability is nearly independent of channel width. We recapitulate the experimental results with a phase field cell motility model by introducing three different cell states (follower, guided, and high-motility metabolically active leader cells) based on their spatial position. These leader cells may explain why single-cell rupture is the universal most probable outcome. Our simulation results show that cell-channel adhesion is necessary for cells in narrow channels to invade, and strong cell-cell adhesion leads to fewer but larger ruptures. Chemotaxis also influences the rupture behavior: Strong chemotaxis strength leads to larger and faster ruptures. Finally, we study the relationship between biological jamming transitions and cell dissociations. Our results suggest unjamming is necessary but not sufficient to create ruptures.
Collapse
|
10
|
Almodóvar A, Galla T, López C. Extinction and coexistence in a binary mixture of proliferating motile disks. Phys Rev E 2024; 109:064140. [PMID: 39021032 DOI: 10.1103/physreve.109.064140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 07/20/2024]
Abstract
A binary mixture of two-different-size proliferating motile disks is studied. As growth is space limited, we focus on the conditions such that there is a coexistence of both large and small disks, or dominance of the larger disks. The study involves systematically varying some system parameters, such as diffusivities, growth rates, and self-propulsion velocities. In particular, we demonstrate that diffusing faster confers a competitive advantage, so that larger disks can in the long time coexist or even dominate the smaller ones. In the case of self-propelled disks, a coexistence regime is induced by the activity where the two types of disks show the same spatial distribution: both particles are phase separated or both are homogeneously distributed in the whole system.
Collapse
|
11
|
Brückner DB, Broedersz CP. Learning dynamical models of single and collective cell migration: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:056601. [PMID: 38518358 DOI: 10.1088/1361-6633/ad36d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| |
Collapse
|
12
|
Du M, Behera AK, Vaikuntanathan S. Active oscillatory associative memory. J Chem Phys 2024; 160:055103. [PMID: 38341712 DOI: 10.1063/5.0171983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/07/2024] [Indexed: 02/13/2024] Open
Abstract
Traditionally, physical models of associative memory assume conditions of equilibrium. Here, we consider a prototypical oscillator model of associative memory and study how active noise sources that drive the system out of equilibrium, as well as nonlinearities in the interactions between the oscillators, affect the associative memory properties of the system. Our simulations show that pattern retrieval under active noise is more robust to the number of learned patterns and noise intensity than under passive noise. To understand this phenomenon, we analytically derive an effective energy correction due to the temporal correlations of active noise in the limit of short correlation decay time. We find that active noise deepens the energy wells corresponding to the patterns by strengthening the oscillator couplings, where the more nonlinear interactions are preferentially enhanced. Using replica theory, we demonstrate qualitative agreement between this effective picture and the retrieval simulations. Our work suggests that the nonlinearity in the oscillator couplings can improve memory under nonequilibrium conditions.
Collapse
Affiliation(s)
- Matthew Du
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Agnish Kumar Behera
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Suriyanarayanan Vaikuntanathan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Kirchner Z, Geohagan A, Truszkowska A. A Vicsek-type model of confined cancer cells with variable clustering affinities. Integr Biol (Camb) 2024; 16:zyae005. [PMID: 38402577 DOI: 10.1093/intbio/zyae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
Clustering of cells is an essential component of many biological processes from tissue formation to cancer metastasis. We develop a minimal, Vicsek-based model of cellular interactions that robustly and accurately captures the variable propensity of different cells to form groups when confined. We calibrate and validate the model with experimental data on clustering affinities of four lines of tumor cells. We then show that cell clustering or separation tendencies are retained in environments with higher cell number densities and in cell mixtures. Finally, we calibrate our model with experimental measurements on the separation of cells treated with anti-clustering agents and find that treated cells maintain their distances in denser suspensions. We show that the model reconstructs several cell interaction mechanisms, which makes it suitable for exploring the dynamics of cell cluster formation as well as cell separation. Insight: We developed a model of cellular interactions that captures the clustering and separation of cells in an enclosure. Our model is particularly relevant for microfluidic systems with confined cells and we centered our work around one such emerging assay for the detection and research on clustering breast cancer cells. We calibrated our model using the existing experimental data and used it to explore the functionality of the assay under a broader set of conditions than originally considered. Future usages of our model can include purely theoretical and computational considerations, exploring experimental devices, and supporting research on small to medium-sized cell clusters.
Collapse
Affiliation(s)
- Zachary Kirchner
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Anna Geohagan
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Agnieszka Truszkowska
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
14
|
张 德, 张 豪, 李 博. [The Dynamic Model of the Active-Inactive Cell Interface]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:39-46. [PMID: 38322532 PMCID: PMC10839493 DOI: 10.12182/20240160508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 02/08/2024]
Abstract
Objective To explore the morphodynamics of the active-inactive cell monolayer interfaces by using the active liquid crystal model. Methods A continuum mechanical model was established based on the active liquid crystal theory and the active-inactive cell monolayer interfaces were established by setting the activity difference of cell monolayers. The theoretical equations were solved numerically by the finite difference and the lattice Boltzmann method. Results The active-inactive cell interfaces displayed three typical morphologies, namely, flat interface, wavy interface, and finger-like interface. On the flat interfaces, the cells were oriented perpendicular to the interface, the -1/2 topological defects were clustered in the interfaces, and the interfaces were negatively charged. On the wavy interfaces, cells showed no obvious preference for orientation at the interfaces and the interfaces were neutrally charged. On the finger-like interfaces, cells were tangentially oriented at the interfaces, the +1/2 topological defects were collected at the interfaces, driving the growth of the finger-like structures, and the interfaces were positively charged. Conclusion The orientation of the cell alignment at the interface can significantly affect the morphologies of the active-inactive cell monolayer interfaces, which is closely associated with the dynamics of topological defects at the interfaces.
Collapse
Affiliation(s)
- 德清 张
- 清华大学工程力学系 生物力学与医学工程研究所 (北京 100084)Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - 豪舜 张
- 清华大学工程力学系 生物力学与医学工程研究所 (北京 100084)Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - 博 李
- 清华大学工程力学系 生物力学与医学工程研究所 (北京 100084)Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Cano-Fernández H, Tissot T, Brun-Usan M, Salazar-Ciudad I. On the origins of developmental robustness: modeling buffering mechanisms against cell-level noise. Development 2023; 150:dev201911. [PMID: 38032004 DOI: 10.1242/dev.201911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
During development, cells are subject to stochastic fluctuations in their positions (i.e. cell-level noise) that can potentially lead to morphological noise (i.e. stochastic differences between morphologies that are expected to be equal, e.g. the right and left sides of bilateral organisms). In this study, we explore new and existing hypotheses on buffering mechanisms against cell-level noise. Many of these hypotheses focus on how the boundaries between territories of gene expression remain regular and well defined, despite cell-level noise and division. We study these hypotheses and how irregular territory boundaries lead to morphological noise. To determine the consistency of the different hypotheses, we use a general computational model of development: EmbryoMaker. EmbryoMaker can implement arbitrary gene networks regulating basic cell behaviors (contraction, adhesion, etc.), signaling and tissue biomechanics. We found that buffering mechanisms based on the orientation of cell divisions cannot lead to regular boundaries but that other buffering mechanisms can (homotypic adhesion, planar contraction, non-dividing boundaries, constant signaling and majority rule hypotheses). We also explore the effects of the shape and size of the territories on morphological noise.
Collapse
Affiliation(s)
- Hugo Cano-Fernández
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Tazzio Tissot
- Electronics and Computer Science Department, University of Southampton, Southampton SO17 1BJ, UK
| | - Miguel Brun-Usan
- Departamento de Biologia, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centre de Recerca Matemàtica (CRM), Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
16
|
Ron JE, d'Alessandro J, Cellerin V, Voituriez R, Ladoux B, Gov NS. Polarization and motility of one-dimensional multi-cellular trains. Biophys J 2023; 122:4598-4613. [PMID: 37936351 PMCID: PMC10719073 DOI: 10.1016/j.bpj.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Collective cell migration, whereby cells adhere to form multi-cellular clusters that move as a single entity, play an important role in numerous biological processes, such as during development and cancer progression. Recent experimental work focused on migration of one-dimensional cellular clusters, confined to move along adhesive lanes, as a simple geometry in which to systematically study this complex system. One-dimensional migration also arises in the body when cells migrate along blood vessels, axonal projections, and narrow cavities between tissues. We explore here the modes of one-dimensional migration of cellular clusters ("trains") by implementing cell-cell interactions in a model of cell migration that contains a mechanism for spontaneous cell polarization. We go beyond simple phenomenological models of the cells as self-propelled particles by having the internal polarization of each cell depend on its interactions with the neighboring cells that directly affect the actin polymerization activity at the cell's leading edges. Both contact inhibition of locomotion and cryptic lamellipodia interactions between neighboring cells are introduced. We find that this model predicts multiple motility modes of the cell trains, which can have several different speeds for the same polarization pattern. Compared to experimental data, we find that Madin-Darby canine kidney cells are poised along the transition region where contact inhibition of locomotion and cryptic lamellipodia roughly balance each other, where collective migration speed is most sensitive to the values of the cell-cell interaction strength.
Collapse
Affiliation(s)
- Jonathan E Ron
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | | | - Victor Cellerin
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Raphael Voituriez
- Laboratoire Jean Perrin and Laboratoire de Physique Theorique de la Matiere Condensee, CNRS / Sorbonne Université, Paris, France
| | - Benoit Ladoux
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
17
|
Dinelli A, O'Byrne J, Curatolo A, Zhao Y, Sollich P, Tailleur J. Non-reciprocity across scales in active mixtures. Nat Commun 2023; 14:7035. [PMID: 37923724 PMCID: PMC10624904 DOI: 10.1038/s41467-023-42713-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
In active matter, particles typically experience mediated interactions, which are not constrained by Newton's third law and are therefore generically non-reciprocal. Non-reciprocity leads to a rich set of emerging behaviors that are hard to account for starting from the microscopic scale, due to the absence of a generic theoretical framework out of equilibrium. Here we consider bacterial mixtures that interact via mediated, non-reciprocal interactions (NRI) like quorum-sensing and chemotaxis. By explicitly relating microscopic and macroscopic dynamics, we show that, under conditions that we derive explicitly, non-reciprocity may fade upon coarse-graining, leading to large-scale equilibrium descriptions. In turn, this allows us to account quantitatively, and without fitting parameters, for the rich behaviors observed in microscopic simulations including phase separation, demixing, and multi-phase coexistence. We also derive the condition under which non-reciprocity survives coarse-graining, leading to a wealth of dynamical patterns. Again, our analytical approach allows us to predict the phase diagram of the system starting from its microscopic description. All in all, our work demonstrates that the fate of non-reciprocity across scales is a subtle and important question.
Collapse
Affiliation(s)
- Alberto Dinelli
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205, Paris, France
| | - Jérémy O'Byrne
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205, Paris, France
- Department of Applied Maths and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Rd, Cambridge, CB3 0WA, UK
| | - Agnese Curatolo
- John A. Paulson School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA
| | - Yongfeng Zhao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, 215006, Suzhou, China
| | - Peter Sollich
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37 077, Göttingen, Germany
- Department of Mathematics, King's College London, London, WC2R 2LS, UK
| | - Julien Tailleur
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205, Paris, France.
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
18
|
Terragni F, Martinson WD, Carretero M, Maini PK, Bonilla LL. Soliton approximation in continuum models of leader-follower behavior. Phys Rev E 2023; 108:054407. [PMID: 38115402 DOI: 10.1103/physreve.108.054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 12/21/2023]
Abstract
Complex biological processes involve collective behavior of entities (bacteria, cells, animals) over many length and time scales and can be described by discrete models that track individuals or by continuum models involving densities and fields. We consider hybrid stochastic agent-based models of branching morphogenesis and angiogenesis (new blood vessel creation from preexisting vasculature), which treat cells as individuals that are guided by underlying continuous chemical and/or mechanical fields. In these descriptions, leader (tip) cells emerge from existing branches and follower (stalk) cells build the new sprout in their wake. Vessel branching and fusion (anastomosis) occur as a result of tip and stalk cell dynamics. Coarse graining these hybrid models in appropriate limits produces continuum partial differential equations (PDEs) for endothelial cell densities that are more analytically tractable. While these models differ in nonlinearity, they produce similar equations at leading order when chemotaxis is dominant. We analyze this leading order system in a simple quasi-one-dimensional geometry and show that the numerical solution of the leading order PDE is well described by a soliton wave that evolves from vessel to source. This wave is an attractor for intermediate times until it arrives at the hypoxic region releasing the growth factor. The mathematical techniques used here thus identify common features of discrete and continuum approaches and provide insight into general biological mechanisms governing their collective dynamics.
Collapse
Affiliation(s)
- F Terragni
- Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - W D Martinson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - M Carretero
- Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - P K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - L L Bonilla
- Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| |
Collapse
|
19
|
Koyama H, Okumura H, Ito AM, Nakamura K, Otani T, Kato K, Fujimori T. Effective mechanical potential of cell-cell interaction explains three-dimensional morphologies during early embryogenesis. PLoS Comput Biol 2023; 19:e1011306. [PMID: 37549166 PMCID: PMC10434874 DOI: 10.1371/journal.pcbi.1011306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/17/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
Mechanical forces are critical for the emergence of diverse three-dimensional morphologies of multicellular systems. However, it remains unclear what kind of mechanical parameters at cellular level substantially contribute to tissue morphologies. This is largely due to technical limitations of live measurements of cellular forces. Here we developed a framework for inferring and modeling mechanical forces of cell-cell interactions. First, by analogy to coarse-grained models in molecular and colloidal sciences, we approximated cells as particles, where mean forces (i.e. effective forces) of pairwise cell-cell interactions are considered. Then, the forces were statistically inferred by fitting the mathematical model to cell tracking data. This method was validated by using synthetic cell tracking data resembling various in vivo situations. Application of our method to the cells in the early embryos of mice and the nematode Caenorhabditis elegans revealed that cell-cell interaction forces can be written as a pairwise potential energy in a manner dependent on cell-cell distances. Importantly, the profiles of the pairwise potentials were quantitatively different among species and embryonic stages, and the quantitative differences correctly described the differences of their morphological features such as spherical vs. distorted cell aggregates, and tightly vs. non-tightly assembled aggregates. We conclude that the effective pairwise potential of cell-cell interactions is a live measurable parameter whose quantitative differences can be a parameter describing three-dimensional tissue morphologies.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hisashi Okumura
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Biomolecular Dynamics Simulation Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Atsushi M. Ito
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Gifu, Japan
| | - Kazuyuki Nakamura
- School of Interdisciplinary Mathematical Sciences, Meiji University, Nakano-ku, Tokyo, Japan
- JST, PRESTO, Kawaguchi, Saitama, Japan
| | - Tetsuhisa Otani
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Division of Cell Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Kagayaki Kato
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Biological Diversity, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| |
Collapse
|
20
|
Camacho-Gomez D, Sorzabal-Bellido I, Ortiz-de-Solorzano C, Garcia-Aznar JM, Gomez-Benito MJ. A hybrid physics-based and data-driven framework for cellular biological systems: Application to the morphogenesis of organoids. iScience 2023; 26:107164. [PMID: 37485358 PMCID: PMC10359941 DOI: 10.1016/j.isci.2023.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
How cells orchestrate their cellular functions remains a crucial question to unravel how they organize in different patterns. We present a framework based on artificial intelligence to advance the understanding of how cell functions are coordinated spatially and temporally in biological systems. It consists of a hybrid physics-based model that integrates both mechanical interactions and cell functions with a data-driven model that regulates the cellular decision-making process through a deep learning algorithm trained on image data metrics. To illustrate our approach, we used data from 3D cultures of murine pancreatic ductal adenocarcinoma cells (PDAC) grown in Matrigel as tumor organoids. Our approach allowed us to find the underlying principles through which cells activate different cell processes to self-organize in different patterns according to the specific microenvironmental conditions. The framework proposed here expands the tools for simulating biological systems at the cellular level, providing a novel perspective to unravel morphogenetic patterns.
Collapse
Affiliation(s)
- Daniel Camacho-Gomez
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Ioritz Sorzabal-Bellido
- Solid Tumors and Biomarkers Program, IDISNA, and CIBERONC, Center for Applied Medical Research, University of Navarra, Zaragoza, Spain
| | - Carlos Ortiz-de-Solorzano
- Solid Tumors and Biomarkers Program, IDISNA, and CIBERONC, Center for Applied Medical Research, University of Navarra, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
21
|
Hartmann J, Mayor R. Self-organized collective cell behaviors as design principles for synthetic developmental biology. Semin Cell Dev Biol 2023; 141:63-73. [PMID: 35450765 DOI: 10.1016/j.semcdb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Over the past two decades, molecular cell biology has graduated from a mostly analytic science to one with substantial synthetic capability. This success is built on a deep understanding of the structure and function of biomolecules and molecular mechanisms. For synthetic biology to achieve similar success at the scale of tissues and organs, an equally deep understanding of the principles of development is required. Here, we review some of the central concepts and recent progress in tissue patterning, morphogenesis and collective cell migration and discuss their value for synthetic developmental biology, emphasizing in particular the power of (guided) self-organization and the role of theoretical advances in making developmental insights applicable in synthesis.
Collapse
Affiliation(s)
- Jonas Hartmann
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Selvamani P, Chelakkot R, Nandi A, Inamdar MM. Emergence of Spatial Scales and Macroscopic Tissue Dynamics in Active Epithelial Monolayers. Cells Tissues Organs 2023; 213:269-282. [PMID: 37044075 DOI: 10.1159/000528501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/22/2022] [Indexed: 04/14/2023] Open
Abstract
Migrating cells in tissues are often known to exhibit collective swirling movements. In this paper, we develop an active vertex model with polarity dynamics based on contact inhibition of locomotion (CIL). We show that under this dynamics, the cells form steady-state vortices in velocity, polarity, and cell stress with length scales that depend on polarity alignment rate (ζ), self-motility (v0), and cell-cell bond tension (λ). When the ratio λ/v0 becomes larger, the tissue reaches a near jamming state because of the inability of the cells to exchange their neighbors, and the length scale associated with tissue kinematics increases. A deeper examination of this jammed state provides insights into the mechanism of sustained swirl formation under CIL rule that is governed by the feedback between cell polarities and deformations. To gain additional understanding of how active forcing governed by CIL dynamics leads to large-scale tissue dynamics, we systematically coarse-grain cell stress, polarity, and motility and show that the tissue remains polar even on larger length scales. Overall, we explore the origin of swirling patterns during collective cell migration and obtain a connection between cell-level dynamics and large-scale cellular flow patterns observed in epithelial monolayers.
Collapse
Affiliation(s)
- Padmalochini Selvamani
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
23
|
Brandstätter T, Brückner DB, Han YL, Alert R, Guo M, Broedersz CP. Curvature induces active velocity waves in rotating spherical tissues. Nat Commun 2023; 14:1643. [PMID: 36964141 PMCID: PMC10039078 DOI: 10.1038/s41467-023-37054-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/26/2023] [Indexed: 03/26/2023] Open
Abstract
The multicellular organization of diverse systems, including embryos, intestines, and tumors relies on coordinated cell migration in curved environments. In these settings, cells establish supracellular patterns of motion, including collective rotation and invasion. While such collective modes have been studied extensively in flat systems, the consequences of geometrical and topological constraints on collective migration in curved systems are largely unknown. Here, we discover a collective mode of cell migration in rotating spherical tissues manifesting as a propagating single-wavelength velocity wave. This wave is accompanied by an apparently incompressible supracellular flow pattern featuring topological defects as dictated by the spherical topology. Using a minimal active particle model, we reveal that this collective mode arises from the effect of curvature on the active flocking behavior of a cell layer confined to a spherical surface. Our results thus identify curvature-induced velocity waves as a mode of collective cell migration, impacting the dynamical organization of 3D curved tissues.
Collapse
Affiliation(s)
- Tom Brandstätter
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - David B Brückner
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Montenegro-Rojas I, Yañez G, Skog E, Guerrero-Calvo O, Andaur-Lobos M, Dolfi L, Cellerino A, Cerda M, Concha ML, Bertocchi C, Rojas NO, Ravasio A, Rudge TJ. A computational framework for testing hypotheses of the minimal mechanical requirements for cell aggregation using early annual killifish embryogenesis as a model. Front Cell Dev Biol 2023; 11:959611. [PMID: 37020464 PMCID: PMC10067630 DOI: 10.3389/fcell.2023.959611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction: Deciphering the biological and physical requirements for the outset of multicellularity is limited to few experimental models. The early embryonic development of annual killifish represents an almost unique opportunity to investigate de novo cellular aggregation in a vertebrate model. As an adaptation to seasonal drought, annual killifish employs a unique developmental pattern in which embryogenesis occurs only after undifferentiated embryonic cells have completed epiboly and dispersed in low density on the egg surface. Therefore, the first stage of embryogenesis requires the congregation of embryonic cells at one pole of the egg to form a single aggregate that later gives rise to the embryo proper. This unique process presents an opportunity to dissect the self-organizing principles involved in early organization of embryonic stem cells. Indeed, the physical and biological processes required to form the aggregate of embryonic cells are currently unknown. Methods: Here, we developed an in silico, agent-based biophysical model that allows testing how cell-specific and environmental properties could determine the aggregation dynamics of early Killifish embryogenesis. In a forward engineering approach, we then proceeded to test two hypotheses for cell aggregation (cell-autonomous and a simple taxis model) as a proof of concept of modeling feasibility. In a first approach (cell autonomous system), we considered how intrinsic biophysical properties of the cells such as motility, polarity, density, and the interplay between cell adhesion and contact inhibition of locomotion drive cell aggregation into self-organized clusters. Second, we included guidance of cell migration through a simple taxis mechanism to resemble the activity of an organizing center found in several developmental models. Results: Our numerical simulations showed that random migration combined with low cell-cell adhesion is sufficient to maintain cells in dispersion and that aggregation can indeed arise spontaneously under a limited set of conditions, but, without environmental guidance, the dynamics and resulting structures do not recapitulate in vivo observations. Discussion: Thus, an environmental guidance cue seems to be required for correct execution of early aggregation in early killifish development. However, the nature of this cue (e.g., chemical or mechanical) can only be determined experimentally. Our model provides a predictive tool that could be used to better characterize the process and, importantly, to design informed experimental strategies.
Collapse
Affiliation(s)
- Ignacio Montenegro-Rojas
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Yañez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Skog
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar Guerrero-Calvo
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Andaur-Lobos
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luca Dolfi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Alessandro Cellerino
- BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Mauricio Cerda
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina. Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Medical Informatics and Telemedicine, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina. Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology Pontificia Universidad Católica de Chile, Santiago, Chile
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Nicolás O. Rojas
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Timothy J. Rudge
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
25
|
Messenger DA, Bortz DM. Learning mean-field equations from particle data using WSINDy. PHYSICA D. NONLINEAR PHENOMENA 2022; 439:133406. [PMID: 37476028 PMCID: PMC10358825 DOI: 10.1016/j.physd.2022.133406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
We develop a weak-form sparse identification method for interacting particle systems (IPS) with the primary goals of reducing computational complexity for large particle number N and offering robustness to either intrinsic or extrinsic noise. In particular, we use concepts from mean-field theory of IPS in combination with the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy) to provide a fast and reliable system identification scheme for recovering the governing stochastic differential equations for an IPS when the number of particles per experiment N is on the order of several thousands and the number of experiments M is less than 100. This is in contrast to existing work showing that system identification for N less than 100 and M on the order of several thousand is feasible using strong-form methods. We prove that under some standard regularity assumptions the scheme converges with rate O ( N - 1 ∕ 2 ) in the ordinary least squares setting and we demonstrate the convergence rate numerically on several systems in one and two spatial dimensions. Our examples include a canonical problem from homogenization theory (as a first step towards learning coarse-grained models), the dynamics of an attractive-repulsive swarm, and the IPS description of the parabolic-elliptic Keller-Segel model for chemotaxis. Code is available at https://github.com/MathBioCU/WSINDy_IPS.
Collapse
Affiliation(s)
- Daniel A. Messenger
- Department of Applied Mathematics, University of Colorado Boulder, 11 Engineering Dr, Boulder, CO 80309, USA
| | - David M. Bortz
- Department of Applied Mathematics, University of Colorado Boulder, 11 Engineering Dr, Boulder, CO 80309, USA
| |
Collapse
|
26
|
Almodóvar A, Galla T, López C. Liquid-hexatic-solid phases in active and passive Brownian particles determined by stochastic birth and death events. Phys Rev E 2022; 106:054130. [PMID: 36559396 DOI: 10.1103/physreve.106.054130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
We study the effects of stochastic birth and death processes on the structural phases of systems of active and passive Brownian particles subject to volume exclusion. The total number of particles in the system is a fluctuating quantity, determined by the birth and death parameters and on the activity of the particles. As the birth and death parameters are varied, we find liquid, hexatic, and solid phases. For passive particles, these phases are found to be spatially homogeneous. For active particles, motility-induced phase separation (coexisting hexatic and liquid phases) occurs for large activity and sufficiently small birth rates. We also observe a reentrant transition to the hexatic phase when the birth rate is increased. This results from a balance of an increasing number of particles filling the system, and a larger number of defects resulting from the birth and death dynamics.
Collapse
Affiliation(s)
- Alejandro Almodóvar
- IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Tobias Galla
- IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Cristóbal López
- IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
27
|
Ardaševa A, Mueller R, Doostmohammadi A. Bridging microscopic cell dynamics to nematohydrodynamics of cell monolayers. SOFT MATTER 2022; 18:4737-4746. [PMID: 35703313 DOI: 10.1039/d2sm00537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is increasingly being realized that liquid-crystalline features can play an important role in the properties and dynamics of cell monolayers. Here, we present a cell-based model of cell layers, based on the phase-field formulation, that connects cell-cell interactions specified at the single cell level to large-scale nematic and hydrodynamic properties of the tissue. In particular, we present a minimal formulation that reproduces the well-known bend and splay hydrodynamic instabilities of the continuum nemato-hydrodynamic formulation of active matter, together with an analytical description of the instability threshold in terms of activity and elasticity of the cells. Furthermore, we provide a quantitative characterisation and comparison of flows and topological defects for extensile and contractile stress generation mechanisms, and demonstrate activity-induced heterogeneity and spontaneous formation of gaps within a confluent monolayer. Together, these results contribute to bridging the gap between cell-scale dynamics and tissue-scale collective cellular organisation.
Collapse
Affiliation(s)
| | - Romain Mueller
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK
| | | |
Collapse
|
28
|
Disentangling cadherin-mediated cell-cell interactions in collective cancer cell migration. Biophys J 2022; 121:44-60. [PMID: 34890578 PMCID: PMC8758422 DOI: 10.1016/j.bpj.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.
Collapse
|
29
|
Trenado C, Bonilla LL, Martínez-Calvo A. Fingering instability in spreading epithelial monolayers: roles of cell polarisation, substrate friction and contractile stresses. SOFT MATTER 2021; 17:8276-8290. [PMID: 34374406 DOI: 10.1039/d1sm00626f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Collective cell migration plays a crucial role in many developmental processes that underlie morphogenesis, wound healing, or cancer progression. In such coordinated behaviours, cells are organised in coherent structures and actively migrate to serve different biological purposes. In some contexts, namely during epithelial wound healing, it is well known that a migrating free-edge monolayer develops finger-like instabilities, yet the onset is still under debate. Here, by means of theory and numerical simulations, we shed light on the main mechanisms driving the instability process, analysing the linear and nonlinear dynamics of a continuum compressible polar fluid. In particular, we assess the role of cell polarisation, substrate friction, and contractile stresses. Linear theory shows that it is crucial to analyse the perturbation transient dynamics, since we unravel a plethora of crossovers between different exponential growth rates during the linear regime. Numerical simulations suggest that cell-substrate friction could be the mechanism responsible for the formation of complex finger-like structures at the edge, since it triggers secondary fingering instabilities and tip-splitting phenomena. Finally, we obtain a critical contractile stress that depends on cell-substrate friction and the initial-to-nematic length ratio, characterising an active wetting-dewetting transition. In the dewetting scenario, the monolayer retracts and becomes stable without developing finger-like structures.
Collapse
Affiliation(s)
- Carolina Trenado
- Department of Mathematics, Gregorio Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
| | - Luis L Bonilla
- Department of Mathematics, Gregorio Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
| | - Alejandro Martínez-Calvo
- Grupo de Mecánica de Fluidos, Gregorio Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
30
|
Kumar S, Singh JP, Giri D, Mishra S. Effect of polydispersity on the dynamics of active Brownian particles. Phys Rev E 2021; 104:024601. [PMID: 34525623 DOI: 10.1103/physreve.104.024601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/09/2021] [Indexed: 11/07/2022]
Abstract
We numerically study the dynamics and the phases of self-propelled disk-shaped particles of different sizes with soft repulsive potential in two dimensions. Size diversity is introduced by the polydispersity index (PDI) ε, which is the width of the uniform distribution of the particle's radius. The self-propulsion speed of the particles controls the activity v. We observe enhanced dynamics for large size diversity among the particles. We calculate the effective diffusion coefficient D_{eff} in the steady state. The system exhibits four distinct phases, jammed phase with small D_{eff} for small activity and liquid phase with enhanced D_{eff} for large activity. The number fluctuation is larger and smaller than the equilibrium limit in the liquid and jammed phases, respectively. Further, the jammed phase is of two types: solid jammed and liquid jammed for small and large PDI. Whereas the liquid phase is called motility induced phase separation (MIPS) liquid for small PDI and for large PDI, we find enhanced diffusivity and call it the pure liquid phase. The system is studied for three packing densities ϕ, and the response of the system for polydispersity is the same for all ϕ's. Our study can help understand the behavior of cells of various sizes in a tissue, artificial self-driven granular particles, or living organisms of different sizes in a dense environment.
Collapse
Affiliation(s)
- Sameer Kumar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Jay Prakash Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Debaprasad Giri
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
31
|
Scott M, Żychaluk K, Bearon RN. A mathematical framework for modelling 3D cell motility: applications to glioblastoma cell migration. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2021; 38:333-354. [PMID: 34189581 DOI: 10.1093/imammb/dqab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/14/2022]
Abstract
The collection of 3D cell tracking data from live images of micro-tissues is a recent innovation made possible due to advances in imaging techniques. As such there is increased interest in studying cell motility in 3D in vitro model systems but a lack of rigorous methodology for analysing the resulting data sets. One such instance of the use of these in vitro models is in the study of cancerous tumours. Growing multicellular tumour spheroids in vitro allows for modelling of the tumour microenvironment and the study of tumour cell behaviours, such as migration, which improves understanding of these cells and in turn could potentially improve cancer treatments. In this paper, we present a workflow for the rigorous analysis of 3D cell tracking data, based on the persistent random walk model, but adaptable to other biologically informed mathematical models. We use statistical measures to assess the fit of the model to the motility data and to estimate model parameters and provide confidence intervals for those parameters, to allow for parametrization of the model taking correlation in the data into account. We use in silico simulations to validate the workflow in 3D before testing our method on cell tracking data taken from in vitro experiments on glioblastoma tumour cells, a brain cancer with a very poor prognosis. The presented approach is intended to be accessible to both modellers and experimentalists alike in that it provides tools for uncovering features of the data set that may suggest amendments to future experiments or modelling attempts.
Collapse
Affiliation(s)
- M Scott
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - K Żychaluk
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - R N Bearon
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| |
Collapse
|
32
|
Caprini L, Maggi C, Marini Bettolo Marconi U. Collective effects in confined active Brownian particles. J Chem Phys 2021; 154:244901. [PMID: 34241356 DOI: 10.1063/5.0051315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We investigate a two-dimensional system of active particles confined to a narrow annular domain. Despite the absence of explicit interactions among the velocities or the active forces of different particles, the system displays a transition from a disordered and stuck state to an ordered state of global collective motion where the particles rotate persistently clockwise or anticlockwise. We describe this behavior by introducing a suitable order parameter, the velocity polarization, measuring the global alignment of the particles' velocities along the tangential direction of the ring. We also measure the spatial velocity correlation function and its correlation length to characterize the two states. In the rotating phase, the velocity correlation displays an algebraic decay that is analytically predicted together with its correlation length, while in the stuck regime, the velocity correlation decays exponentially with a correlation length that increases with the persistence time. In the first case, the correlation (and, in particular, its correlation length) does not depend on the active force but the system size only. The global collective motion, an effect caused by the interplay between finite-size, periodicity, and persistent active forces, disappears as the size of the ring becomes infinite, suggesting that this phenomenon does not correspond to a phase transition in the usual thermodynamic sense.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, I-62032 Camerino, Italy
| | - Claudio Maggi
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Roma, Italy
| | | |
Collapse
|
33
|
Sadhukhan S, Nandi SK. Theory and simulation for equilibrium glassy dynamics in cellular Potts model of confluent biological tissue. Phys Rev E 2021; 103:062403. [PMID: 34271700 DOI: 10.1103/physreve.103.062403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/14/2021] [Indexed: 01/23/2023]
Abstract
Glassy dynamics in a confluent monolayer is indispensable in morphogenesis, wound healing, bronchial asthma, and many others; a detailed theoretical framework for such a system is, therefore, important. Vertex-model (VM) simulations have provided crucial insights into the dynamics of such systems, but their nonequilibrium nature makes theoretical development difficult. The cellular Potts model (CPM) of confluent monolayers provides an alternative model for such systems with a well-defined equilibrium limit. We combine numerical simulations of the CPM and an analytical study based on one of the most successful theories of equilibrium glass, the random first-order transition theory, and develop a comprehensive theoretical framework for a confluent glassy system. We find that the glassy dynamics within the CPM is qualitatively similar to that in the VM. Our study elucidates the crucial role of geometric constraints in bringing about two distinct regimes in the dynamics, as the target perimeter P_{0} is varied. The unusual sub-Arrhenius relaxation results from the distinctive interaction potential arising from the perimeter constraint in such systems. The fragility of the system decreases with increasing P_{0} in the low-P_{0} regime, whereas the dynamics is independent of P_{0} in the other regime. The rigidity transition, found in the VM, is absent within the CPM; this difference seems to come from the nonequilibrium nature of the former. We show that the CPM captures the basic phenomenology of glassy dynamics in a confluent biological system via comparison of our numerical results with existing experiments on different systems.
Collapse
Affiliation(s)
- Souvik Sadhukhan
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Saroj Kumar Nandi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
34
|
Cascarano P, Comes MC, Mencattini A, Parrini MC, Piccolomini EL, Martinelli E. Recursive Deep Prior Video: A super resolution algorithm for time-lapse microscopy of organ-on-chip experiments. Med Image Anal 2021; 72:102124. [PMID: 34157611 DOI: 10.1016/j.media.2021.102124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/23/2023]
Abstract
Biological experiments based on organ-on-chips (OOCs) exploit light Time-Lapse Microscopy (TLM) for a direct observation of cell movement that is an observable signature of underlying biological processes. A high spatial resolution is essential to capture cell dynamics and interactions from recorded experiments by TLM. Unfortunately, due to physical and cost limitations, acquiring high resolution videos is not always possible. To overcome the problem, we present here a new deep learning-based algorithm that extends the well-known Deep Image Prior (DIP) to TLM Video Super Resolution without requiring any training. The proposed Recursive Deep Prior Video method introduces some novelties. The weights of the DIP network architecture are initialized for each of the frames according to a new recursive updating rule combined with an efficient early stopping criterion. Moreover, the DIP loss function is penalized by two different Total Variation-based terms. The method has been validated on synthetic, i.e., artificially generated, as well as real videos from OOC experiments related to tumor-immune interaction. The achieved results are compared with several state-of-the-art trained deep learning Super Resolution algorithms showing outstanding performances.
Collapse
Affiliation(s)
- Pasquale Cascarano
- Department of Mathematics, University of Bologna, Piazza di Porta S. Donato 5, Bologna 40126, Italy
| | - Maria Colomba Comes
- Department of Electronic Engineering, University of Tor Vergata, Via del Politecnico 1, Rome 00133, Italy; Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Tor Vergata, Via del Politecnico 1, Rome 00133, Italy.
| | - Arianna Mencattini
- Department of Electronic Engineering, University of Tor Vergata, Via del Politecnico 1, Rome 00133, Italy; Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Tor Vergata, Via del Politecnico 1, Rome 00133, Italy
| | - Maria Carla Parrini
- Institute Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France
| | - Elena Loli Piccolomini
- Department of Computer Science and Engineering, Mura Anteo Zamboni 7, Bologna 40126, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Tor Vergata, Via del Politecnico 1, Rome 00133, Italy; Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Tor Vergata, Via del Politecnico 1, Rome 00133, Italy
| |
Collapse
|
35
|
Bhaskar D, Zhang WY, Wong IY. Topological data analysis of collective and individual epithelial cells using persistent homology of loops. SOFT MATTER 2021; 17:4653-4664. [PMID: 33949592 PMCID: PMC8276269 DOI: 10.1039/d1sm00072a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interacting, self-propelled particles such as epithelial cells can dynamically self-organize into complex multicellular patterns, which are challenging to classify without a priori information. Classically, different phases and phase transitions have been described based on local ordering, which may not capture structural features at larger length scales. Instead, topological data analysis (TDA) determines the stability of spatial connectivity at varying length scales (i.e. persistent homology), and can compare different particle configurations based on the "cost" of reorganizing one configuration into another. Here, we demonstrate a topology-based machine learning approach for unsupervised profiling of individual and collective phases based on large-scale loops. We show that these topological loops (i.e. dimension 1 homology) are robust to variations in particle number and density, particularly in comparison to connected components (i.e. dimension 0 homology). We use TDA to map out phase diagrams for simulated particles with varying adhesion and propulsion, at constant population size as well as when proliferation is permitted. Next, we use this approach to profile our recent experiments on the clustering of epithelial cells in varying growth factor conditions, which are compared to our simulations. Finally, we characterize the robustness of this approach at varying length scales, with sparse sampling, and over time. Overall, we envision TDA will be broadly applicable as a model-agnostic approach to analyze active systems with varying population size, from cytoskeletal motors to motile cells to flocking or swarming animals.
Collapse
Affiliation(s)
- Dhananjay Bhaskar
- School of Engineering, Center for Biomedical Engineering, Brown University, 184 Hope St Box D, Providence, RI 02912, USA. and Data Science Initiative, Brown University, 184 Hope St Box D, Providence, RI 02912, USA
| | - William Y Zhang
- Department of Computer Science, Brown University, 184 Hope St Box D, Providence, RI 02912, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Brown University, 184 Hope St Box D, Providence, RI 02912, USA. and Data Science Initiative, Brown University, 184 Hope St Box D, Providence, RI 02912, USA
| |
Collapse
|
36
|
Caprini L, Marini Bettolo Marconi U. Spatial velocity correlations in inertial systems of active Brownian particles. SOFT MATTER 2021; 17:4109-4121. [PMID: 33734261 DOI: 10.1039/d0sm02273j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recently, it has been discovered that systems of active Brownian particles (APB) at high density organise their velocities into coherent domains showing large spatial structures in the velocity field. This collective behavior occurs spontaneously, i.e. is not caused by any specific interparticle force favoring the alignment of the velocities. This phenomenon was investigated in the absence of thermal noise and in the overdamped regime where inertial forces could be neglected. In this work, we demonstrate through numerical simulations and theoretical analysis that velocity alignment is a robust property of ABP and persists even in the presence of inertial forces and thermal fluctuations. We also show that a single dimensionless parameter, such as the Péclet number customarily employed in the description of self-propelled particles, is not sufficient to fully characterize this phenomenon either in the regimes of large viscosity or small mass. Indeed, the size of the velocity domains, measured through the correlation length of the spatial velocity correlation, remains constant when the swim velocity increases and decreases as the rotational diffusion becomes larger. We find that, contrary to the common belief, the spatial velocity correlation not only depends on inertia but is also non-symmetrically affected by mass and inverse viscosity variations. We conclude that in self-propelled systems, at variance with passive systems, variations in the inertial time (mass over solvent viscosity) and mass act as independent control parameters. Finally, we highlight the non-thermal nature of the spatial velocity correlations that are fairly insensitive both to solvent and active temperatures.
Collapse
Affiliation(s)
- Lorenzo Caprini
- School of Sciences and Technology, University of Camerino, Via Madonna delle Carceri, I-62032, Camerino, Italy.
| | | |
Collapse
|
37
|
Petridou NI, Corominas-Murtra B, Heisenberg CP, Hannezo E. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell 2021; 184:1914-1928.e19. [PMID: 33730596 PMCID: PMC8055543 DOI: 10.1016/j.cell.2021.02.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.
Collapse
Affiliation(s)
| | | | | | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
38
|
Brückner DB, Arlt N, Fink A, Ronceray P, Rädler JO, Broedersz CP. Learning the dynamics of cell-cell interactions in confined cell migration. Proc Natl Acad Sci U S A 2021; 118:e2016602118. [PMID: 33579821 PMCID: PMC7896326 DOI: 10.1073/pnas.2016602118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The migratory dynamics of cells in physiological processes, ranging from wound healing to cancer metastasis, rely on contact-mediated cell-cell interactions. These interactions play a key role in shaping the stochastic trajectories of migrating cells. While data-driven physical formalisms for the stochastic migration dynamics of single cells have been developed, such a framework for the behavioral dynamics of interacting cells still remains elusive. Here, we monitor stochastic cell trajectories in a minimal experimental cell collider: a dumbbell-shaped micropattern on which pairs of cells perform repeated cellular collisions. We observe different characteristic behaviors, including cells reversing, following, and sliding past each other upon collision. Capitalizing on this large experimental dataset of coupled cell trajectories, we infer an interacting stochastic equation of motion that accurately predicts the observed interaction behaviors. Our approach reveals that interacting noncancerous MCF10A cells can be described by repulsion and friction interactions. In contrast, cancerous MDA-MB-231 cells exhibit attraction and antifriction interactions, promoting the predominant relative sliding behavior observed for these cells. Based on these experimentally inferred interactions, we show how this framework may generalize to provide a unifying theoretical description of the diverse cellular interaction behaviors of distinct cell types.
Collapse
Affiliation(s)
- David B Brückner
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
| | - Nicolas Arlt
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
| | - Alexandra Fink
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Faculty of Physics, Ludwig-Maximilian-University, D-80539 Munich, Germany
| | - Pierre Ronceray
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544
| | - Joachim O Rädler
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany;
- Faculty of Physics, Ludwig-Maximilian-University, D-80539 Munich, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany;
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
39
|
Oguma T, Takigawa-Imamura H, Miura T. Mechanism underlying dynamic scaling properties observed in the contour of spreading epithelial monolayer. Phys Rev E 2020; 102:062408. [PMID: 33466041 DOI: 10.1103/physreve.102.062408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
We found evidence of dynamic scaling in the spreading of Madin-Darby canine kidney (MDCK) cell monolayer, which can be characterized by the Hurst exponent α=0.86 and the growth exponent β=0.73, and theoretically and experimentally clarified the mechanism that governs the contour shape dynamics. Dynamic scaling refers to the roughness of the surface scales, both spatially and temporally. During the spreading of the monolayer, it is known that so-called leader cells generate the driving force and lead the other cells. Our time-lapse observations of cell behavior showed that these leader cells appeared at the early stage of the spreading and formed the monolayer protrusion. Informed by these observations, we developed a simple mathematical model that included differences in cell motility, cell-cell adhesion, and random cell movement. The model reproduced the quantitative characteristics obtained from the experiment, such as the spreading speed, the distribution of the increment, and the dynamic scaling law. Analysis of the model equation shows that the model can reproduce different scaling laws from (α=0.5,β=0.25) to (α=0.9,β=0.75), where the exponents α and β are determined by two dimensionless quantities determined by the microscopic cell behavior. From the analytical result, parameter estimation from the experimental results was achieved. The monolayer on the collagen-coated dishes showed a different scaling law, α=0.74,β=0.68, suggesting that cell motility increased ninefold. This result was consistent with the assay of the single-cell motility. Our study demonstrated that the dynamics of the contour of the monolayer were explained by the simple model, and we propose a mechanism that exhibits the dynamic scaling property.
Collapse
Affiliation(s)
- Toshiki Oguma
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Hisako Takigawa-Imamura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
40
|
Bonilla LL, Carpio A, Trenado C. Tracking collective cell motion by topological data analysis. PLoS Comput Biol 2020; 16:e1008407. [PMID: 33362204 PMCID: PMC7757824 DOI: 10.1371/journal.pcbi.1008407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration.
Collapse
Affiliation(s)
- Luis L. Bonilla
- G. Millán Institute for Fluid Dynamics, Nanoscience & Industrial Mathematics, and Department of Mathematics, Universidad Carlos III de Madrid, Leganés, Spain
- Courant Institute of Mathematical Sciences, New York University, New York, United States of America
| | - Ana Carpio
- Courant Institute of Mathematical Sciences, New York University, New York, United States of America
- Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid, Spain
| | - Carolina Trenado
- G. Millán Institute for Fluid Dynamics, Nanoscience & Industrial Mathematics, and Department of Mathematics, Universidad Carlos III de Madrid, Leganés, Spain
| |
Collapse
|
41
|
Caprini L, Marini Bettolo Marconi U. Active matter at high density: Velocity distribution and kinetic temperature. J Chem Phys 2020; 153:184901. [DOI: 10.1063/5.0029710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Dipartimento di Fisica, Universitá di Camerino, Via Madonna delle Carceri, I-62032 Camerino, Italy
| | | |
Collapse
|
42
|
Mitchel JA, Das A, O'Sullivan MJ, Stancil IT, DeCamp SJ, Koehler S, Ocaña OH, Butler JP, Fredberg JJ, Nieto MA, Bi D, Park JA. In primary airway epithelial cells, the unjamming transition is distinct from the epithelial-to-mesenchymal transition. Nat Commun 2020; 11:5053. [PMID: 33028821 PMCID: PMC7542457 DOI: 10.1038/s41467-020-18841-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) and the unjamming transition (UJT) each comprises a gateway to cellular migration, plasticity and remodeling, but the extent to which these core programs are distinct, overlapping, or identical has remained undefined. Here, we triggered partial EMT (pEMT) or UJT in differentiated primary human bronchial epithelial cells. After triggering UJT, cell-cell junctions, apico-basal polarity, and barrier function remain intact, cells elongate and align into cooperative migratory packs, and mesenchymal markers of EMT remain unapparent. After triggering pEMT these and other metrics of UJT versus pEMT diverge. A computational model attributes effects of pEMT mainly to diminished junctional tension but attributes those of UJT mainly to augmented cellular propulsion. Through the actions of UJT and pEMT working independently, sequentially, or interactively, those tissues that are subject to development, injury, or disease become endowed with rich mechanisms for cellular migration, plasticity, self-repair, and regeneration.
Collapse
Affiliation(s)
| | - Amit Das
- Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Ian T Stancil
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Oscar H Ocaña
- Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | - James P Butler
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
43
|
Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network. Sci Rep 2020; 10:15635. [PMID: 32973301 PMCID: PMC7519062 DOI: 10.1038/s41598-020-72605-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
The incremented uptake provided by time-lapse microscopy in Organ-on-a-Chip (OoC) devices allowed increased attention to the dynamics of the co-cultured systems. However, the amount of information stored in long-time experiments may constitute a serious bottleneck of the experimental pipeline. Forward long-term prediction of cell trajectories may reduce the spatial–temporal burden of video sequences storage. Cell trajectory prediction becomes crucial especially to increase the trustworthiness in software tools designed to conduct a massive analysis of cell behavior under chemical stimuli. To address this task, we transpose here the exploitation of the presence of “social forces” from the human to the cellular level for motion prediction at microscale by adapting the potential of Social Generative Adversarial Network predictors to cell motility. To demonstrate the effectiveness of the approach, we consider here two case studies: one related to PC-3 prostate cancer cells cultured in 2D Petri dishes under control and treated conditions and one related to an OoC experiment of tumor-immune interaction in fibrosarcoma cells. The goodness of the proposed strategy has been verified by successfully comparing the distributions of common descriptors (kinematic descriptors and mean interaction time for the two scenarios respectively) from the trajectories obtained by video analysis and the predicted counterparts.
Collapse
|
44
|
Lin S, Chen P, Guan L, Shao Y, Hao Y, Li Q, Li B, Weitz DA, Feng X. Universal Statistical Laws for the Velocities of Collective Migrating Cells. ACTA ACUST UNITED AC 2020; 4:e2000065. [DOI: 10.1002/adbi.202000065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/09/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Shao‐Zhen Lin
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Peng‐Cheng Chen
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Liu‐Yuan Guan
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Yu‐Kun Hao
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Qunyang Li
- AML Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - David A. Weitz
- School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Xi‐Qiao Feng
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| |
Collapse
|
45
|
Brückner DB, Ronceray P, Broedersz CP. Inferring the Dynamics of Underdamped Stochastic Systems. PHYSICAL REVIEW LETTERS 2020; 125:058103. [PMID: 32794851 DOI: 10.1103/physrevlett.125.058103] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/26/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Many complex systems, ranging from migrating cells to animal groups, exhibit stochastic dynamics described by the underdamped Langevin equation. Inferring such an equation of motion from experimental data can provide profound insight into the physical laws governing the system. Here, we derive a principled framework to infer the dynamics of underdamped stochastic systems from realistic experimental trajectories, sampled at discrete times and subject to measurement errors. This framework yields an operational method, Underdamped Langevin Inference, which performs well on experimental trajectories of single migrating cells and in complex high-dimensional systems, including flocks with Viscek-like alignment interactions. Our method is robust to experimental measurement errors, and includes a self-consistent estimate of the inference error.
Collapse
Affiliation(s)
- David B Brückner
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| | - Pierre Ronceray
- Center for the Physics of Biological Function, Princeton University, Princeton, New Jersey 08544, USA
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
46
|
|
47
|
Khataee H, Czirok A, Neufeld Z. Multiscale modelling of motility wave propagation in cell migration. Sci Rep 2020; 10:8128. [PMID: 32424155 PMCID: PMC7235313 DOI: 10.1038/s41598-020-63506-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The collective motion of cell monolayers within a tissue is a fundamental biological process that occurs during tissue formation, wound healing, cancerous invasion, and viral infection. Experiments have shown that at the onset of migration, the motility is self-generated as a polarisation wave starting from the leading edge of the monolayer and progressively propagates into the bulk. However, it is unclear how the propagation of this motility wave is influenced by cellular properties. Here, we investigate this question using a computational model based on the Potts model coupled to the dynamics of intracellular polarisation. The model captures the propagation of the polarisation wave and suggests that the cells cortex can regulate the migration modes: strongly contractile cells may depolarise the monolayer, whereas less contractile cells can form swirling movement. Cortical contractility is further found to limit the cells motility, which (i) decelerates the wave speed and the leading edge progression, and (ii) destabilises the leading edge. Together, our model describes how different mechanical properties of cells can contribute to the regulation of collective cell migration.
Collapse
Affiliation(s)
- Hamid Khataee
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, 1053, Hungary.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
48
|
Stegemerten F, Gurevich SV, Thiele U. Bifurcations of front motion in passive and active Allen-Cahn-type equations. CHAOS (WOODBURY, N.Y.) 2020; 30:053136. [PMID: 32491885 DOI: 10.1063/5.0003271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The well-known cubic Allen-Cahn (AC) equation is a simple gradient dynamics (or variational) model for a nonconserved order parameter field. After revising main literature results for the occurrence of different types of moving fronts, we employ path continuation to determine their bifurcation diagram in dependence of the external field strength or chemical potential. We then employ the same methodology to systematically analyze fronts for more involved AC-type models. In particular, we consider a cubic-quintic variational AC model and two different nonvariational generalizations. We determine and compare the bifurcation diagrams of front solutions in the four considered models.
Collapse
Affiliation(s)
- Fenna Stegemerten
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Svetlana V Gurevich
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| |
Collapse
|
49
|
Comes MC, Mencattini A, Di Giuseppe D, Filippi J, D’Orazio M, Casti P, Corsi F, Ghibelli L, Di Natale C, Martinelli E. A Camera Sensors-Based System to Study Drug Effects On In Vitro Motility: The Case of PC-3 Prostate Cancer Cells. SENSORS 2020; 20:s20051531. [PMID: 32164292 PMCID: PMC7085768 DOI: 10.3390/s20051531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Cell motility is the brilliant result of cell status and its interaction with close environments. Its detection is now possible, thanks to the synergy of high-resolution camera sensors, time-lapse microscopy devices, and dedicated software tools for video and data analysis. In this scenario, we formulated a novel paradigm in which we considered the individual cells as a sort of sensitive element of a sensor, which exploits the camera as a transducer returning the movement of the cell as an output signal. In this way, cell movement allows us to retrieve information about the chemical composition of the close environment. To optimally exploit this information, in this work, we introduce a new setting, in which a cell trajectory is divided into sub-tracks, each one characterized by a specific motion kind. Hence, we considered all the sub-tracks of the single-cell trajectory as the signals of a virtual array of cell motility-based sensors. The kinematics of each sub-track is quantified and used for a classification task. To investigate the potential of the proposed approach, we have compared the achieved performances with those obtained by using a single-trajectory paradigm with the scope to evaluate the chemotherapy treatment effects on prostate cancer cells. Novel pattern recognition algorithms have been applied to the descriptors extracted at a sub-track level by implementing features, as well as samples selection (a good teacher learning approach) for model construction. The experimental results have put in evidence that the performances are higher when a further cluster majority role has been considered, by emulating a sort of sensor fusion procedure. All of these results highlighted the high strength of the proposed approach, and straightforwardly prefigure its use in lab-on-chip or organ-on-chip applications, where the cell motility analysis can be massively applied using time-lapse microscopy images.
Collapse
Affiliation(s)
- Maria Colomba Comes
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Arianna Mencattini
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
- Correspondence:
| | - Davide Di Giuseppe
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Joanna Filippi
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Michele D’Orazio
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Paola Casti
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Francesca Corsi
- Dept. of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Roma, Italy;
| | - Lina Ghibelli
- Dept. Biology, University of Rome Tor Vergata, 00133 Roma, Italy;
| | - Corrado Di Natale
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| | - Eugenio Martinelli
- Dept. Electronic Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (M.C.C.); (D.D.G.); (J.F.); (M.D.); (P.C.); (C.D.N.); (E.M.)
| |
Collapse
|
50
|
Nakano T, Okaie Y, Kinugasa Y, Koujin T, Suda T, Hiraoka Y, Haraguchi T. Roles of Remote and Contact Forces in Epithelial Cell Structure Formation. Biophys J 2020; 118:1466-1478. [PMID: 32097624 PMCID: PMC7091513 DOI: 10.1016/j.bpj.2020.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer cells collectively form a large-scale structure for their growth. In this article, we report that HeLa cells, epithelial-like human cervical cancer cells, aggressively migrate on Matrigel and form a large-scale structure in a cell-density-dependent manner. To explain the experimental results, we develop a simple model in which cells interact and migrate using the two fundamentally different types of force, remote and contact forces, and show how cells form a large-scale structure. We demonstrate that the simple model reproduces experimental observations, suggesting that the remote and contact forces considered in this work play a major role in large-scale structure formation of HeLa cells. This article provides important evidence that cancer cells form a large-scale structure and develops an understanding into the poorly understood mechanisms of their structure formation.
Collapse
Affiliation(s)
- Tadashi Nakano
- Institute for Datability Science, Osaka University, Suita, Japan.
| | - Yutaka Okaie
- Institute for Datability Science, Osaka University, Suita, Japan
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Takako Koujin
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | | | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|