1
|
Duinkerken BHP, Kievits AJ, Wolters AHG, van Beijeren Bergen En Henegouwen D, Kuipers J, Hoogenboom JP, Giepmans BNG. Sample Processing and Benchmarking for Multibeam Optical Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozaf024. [PMID: 40173053 DOI: 10.1093/mam/ozaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 04/04/2025]
Abstract
Electron microscopy (EM) is an indispensable technique to visualize biological ultrastructure in health and disease. High-throughput EM further enables larger scales and volumes to be recorded within feasible timeframes. Multibeam optical scanning transmission EM (OSTEM) utilizes multiple beamlets and optical separation of the transmitted electrons to increase imaging throughput with transmission-based imaging. However, the compatibility of multibeam OSTEM with routine sample preparation protocols and the effect of machine settings on image quality remain largely unknown. Here, we show multibeam OSTEM to be an order of magnitude faster than (scanning) transmission EM while yielding comparable high-quality images of tissue processed with standard high-contrast staining protocols. Multibeam OSTEM benefits from embedding approaches that introduce high contrast but is flexible in the type of stain used. Optimal results are obtained using an acceleration voltage of 5 kV, where section thickness and pixel dwell time require a balance between throughput and image quality. Our results show high-throughput EM with imaging quality comparable with commonly used transmission-based modalities, enabling biological ultrastructure analysis across larger scales and volumes.
Collapse
Affiliation(s)
- B H Peter Duinkerken
- Department of Biomedical Sciences, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | - Arent J Kievits
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, Delft, CJ 2628, The Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | - Daan van Beijeren Bergen En Henegouwen
- Department of Biomedical Sciences, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | - Jacob P Hoogenboom
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, Delft, CJ 2628, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| |
Collapse
|
2
|
Przybysz JM, Jenewein KJ, Minichová M, Hrbek T, Böhm T, Priamushko T, Cherevko S. Key Aspects in Designing High-Throughput Workflows in Electrocatalysis Research: A Case Study on IrCo Mixed-Metal Oxides. ACS MATERIALS LETTERS 2024; 6:5103-5111. [PMID: 39512724 PMCID: PMC11539082 DOI: 10.1021/acsmaterialslett.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024]
Abstract
With the growing interest of the electrochemical community in high-throughput (HT) experimentation as a powerful tool in accelerating materials discovery, the implementation of HT methodologies and the design of HT workflows has gained traction. We identify 6 aspects essential to HT workflow design in electrochemistry and beyond to ease the incorporation of HT methods in the community's research and to assist in their improvement. We study IrCo mixed-metal oxides (MMOs) for the oxygen evolution reaction (OER) in acidic media using the mentioned aspects to provide a practical example of possible workflow design pitfalls and strategies to counteract them.
Collapse
Affiliation(s)
- Joanna M. Przybysz
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstrasse 1, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Ken J. Jenewein
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstrasse 1, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Mária Minichová
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstrasse 1, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Tomáš Hrbek
- Charles
University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Thomas Böhm
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstrasse 1, 91058 Erlangen, Germany
| | - Tatiana Priamushko
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstrasse 1, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstrasse 1, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Son R, Yamazawa K, Oguchi A, Suga M, Tamura M, Yanagita M, Murakawa Y, Kume S. Morphomics via next-generation electron microscopy. J Mol Cell Biol 2024; 15:mjad081. [PMID: 38148118 PMCID: PMC11167312 DOI: 10.1093/jmcb/mjad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/02/2022] [Accepted: 12/23/2023] [Indexed: 12/28/2023] Open
Abstract
The living body is composed of innumerable fine and complex structures. Although these structures have been studied in the past, a vast amount of information pertaining to them still remains unknown. When attempting to observe these ultra-structures, the use of electron microscopy (EM) has become indispensable. However, conventional EM settings are limited to a narrow tissue area, which can bias observations. Recently, new trends in EM research have emerged, enabling coverage of far broader, nano-scale fields of view for two-dimensional wide areas and three-dimensional large volumes. Moreover, cutting-edge bioimage informatics conducted via deep learning has accelerated the quantification of complex morphological bioimages. Taken together, these technological and analytical advances have led to the comprehensive acquisition and quantification of cellular morphology, which now arises as a new omics science termed 'morphomics'.
Collapse
Affiliation(s)
- Raku Son
- R IKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kenji Yamazawa
- Advanced Manufacturing Support Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
| | - Akiko Oguchi
- R IKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuo Suga
- Multimodal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe 650-0047, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Yasuhiro Murakawa
- R IKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Satoshi Kume
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
- Center for Health Science Innovation, Osaka City University, Osaka 530-0011, Japan
- Osaka Electro-Communication University, Neyagawa 572-8530, Japan
| |
Collapse
|
4
|
Ju Y, Li S, Yuan X, Cui L, Godfrey A, Yan Y, Cheng Z, Zhong X, Zhu J. A macro-nano-atomic-scale high-throughput approach for material research. SCIENCE ADVANCES 2021; 7:eabj8804. [PMID: 34851676 PMCID: PMC8635436 DOI: 10.1126/sciadv.abj8804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/13/2021] [Indexed: 06/09/2023]
Abstract
Understanding the properties of materials requires structural characterization over large areas and different scales to link microstructure with performance. Here, we demonstrate a single-beam high-throughput scanning electron microscope allowing the collection of both secondary electron and backscattered electron signals over large areas. Combined with machine learning, a high efficiency in material research is achieved, illustrated here by a multiscale investigation of carbides in a second-generation nickel-base single-crystal superalloy. The resulting terabyte-sized panoramic atlas data, combined with conventional electron microscopy, enable a simultaneous multiscale analysis of carbide evolution during creep regarding specific type, location, composition, size, shape, and relationship with the matrix, providing sample-scale quantitative statistical data and giving a precise insight into the effect of carbides in the superalloy in a way not previously possible.
Collapse
Affiliation(s)
- Yiwei Ju
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, People’s Republic of China
- Ji Hua Laboratory, Foshan 528299, People’s Republic of China
| | - Shuai Li
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, People’s Republic of China
- Focus e-Beam Technology (Beijing) Co. Ltd., Beijing 100176, People’s Republic of China
| | - Xiaofei Yuan
- Dekai Intelligent Casting Co. Ltd., Hebei 072750, People’s Republic of China
- Beijing Key Laboratory of Advanced High Temperature Materials, Gaona Aero Material Co. Ltd., Beijing 100081, People’s Republic of China
- Central Iron and Steel Research Institute, Beijing 100081, People’s Republic of China
| | - Lei Cui
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, People’s Republic of China
- Beijing SenseTime Technology Co. Ltd., Beijing 100080, People’s Republic of China
| | - Andy Godfrey
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yunjie Yan
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zhiying Cheng
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xiaoyan Zhong
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, People’s Republic of China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People’s Republic of China
- Nanomanufacturing Laboratory (NML), Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, People’s Republic of China
- Ji Hua Laboratory, Foshan 528299, People’s Republic of China
- Central Iron and Steel Research Institute, Beijing 100081, People’s Republic of China
| |
Collapse
|
5
|
Walsh CL, Tafforeau P, Wagner WL, Jafree DJ, Bellier A, Werlein C, Kühnel MP, Boller E, Walker-Samuel S, Robertus JL, Long DA, Jacob J, Marussi S, Brown E, Holroyd N, Jonigk DD, Ackermann M, Lee PD. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat Methods 2021; 18:1532-1541. [PMID: 34737453 PMCID: PMC8648561 DOI: 10.1038/s41592-021-01317-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Imaging intact human organs from the organ to the cellular scale in three dimensions is a goal of biomedical imaging. To meet this challenge, we developed hierarchical phase-contrast tomography (HiP-CT), an X-ray phase propagation technique using the European Synchrotron Radiation Facility (ESRF)'s Extremely Brilliant Source (EBS). The spatial coherence of the ESRF-EBS combined with our beamline equipment, sample preparation and scanning developments enabled us to perform non-destructive, three-dimensional (3D) scans with hierarchically increasing resolution at any location in whole human organs. We applied HiP-CT to image five intact human organ types: brain, lung, heart, kidney and spleen. HiP-CT provided a structural overview of each whole organ followed by multiple higher-resolution volumes of interest, capturing organotypic functional units and certain individual specialized cells within intact human organs. We demonstrate the potential applications of HiP-CT through quantification and morphometry of glomeruli in an intact human kidney and identification of regional changes in the tissue architecture in a lung from a deceased donor with coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- C L Walsh
- Department of Mechanical Engineering, University College London, London, UK.
- Centre for Advanced Biomedical Imaging, University College London, London, UK.
| | - P Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| | - W L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- German Lung Research Centre (DZL), Translational Lung Research Centre Heidelberg (TLRC), Heidelberg, Germany
| | - D J Jafree
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, UK
| | - A Bellier
- French Alps Laboratory of Anatomy (LADAF), Grenoble Alpes University, Grenoble, France
| | - C Werlein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - M P Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - E Boller
- European Synchrotron Radiation Facility, Grenoble, France
| | - S Walker-Samuel
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - J L Robertus
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - D A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - J Jacob
- Centre for Medical Image Computing, University College London, London, UK
- UCL Respiratory, University College London, London, UK
| | - S Marussi
- Department of Mechanical Engineering, University College London, London, UK
| | - E Brown
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - N Holroyd
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - D D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
- German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.
| | - M Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, Wuppertal, Germany.
| | - P D Lee
- Department of Mechanical Engineering, University College London, London, UK.
| |
Collapse
|
6
|
Knothe Tate ML, Srikantha A, Wojek C, Zeidler D. Connectomics of Bone to Brain-Probing Physical Renderings of Cellular Experience. Front Physiol 2021; 12:647603. [PMID: 34322033 PMCID: PMC8313296 DOI: 10.3389/fphys.2021.647603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
“Brainless” cells, the living constituents inhabiting all biological materials, exhibit remarkably smart, i.e., stimuli-responsive and adaptive, behavior. The emergent spatial and temporal patterns of adaptation, observed as changes in cellular connectivity and tissue remodeling by cells, underpin neuroplasticity, muscle memory, immunological imprinting, and sentience itself, in diverse physiological systems from brain to bone. Connectomics addresses the direct connectivity of cells and cells’ adaptation to dynamic environments through manufacture of extracellular matrix, forming tissues and architectures comprising interacting organs and systems of organisms. There is imperative to understand the physical renderings of cellular experience throughout life, from the time of emergence, to growth, adaptation and aging-associated degeneration of tissues. Here we address this need through development of technological approaches that incorporate cross length scale (nm to m) structural data, acquired via multibeam scanning electron microscopy, with machine learning and information transfer using network modeling approaches. This pilot case study uses cutting edge imaging methods for nano- to meso-scale study of cellular inhabitants within human hip tissue resected during the normal course of hip replacement surgery. We discuss the technical approach and workflow and identify the resulting opportunities as well as pitfalls to avoid, delineating a path for cellular connectomics studies in diverse tissue/organ environments and their interactions within organisms and across species. Finally, we discuss the implications of the outlined approach for neuromechanics and the control of physical behavior and neuromuscular training.
Collapse
Affiliation(s)
| | | | - Christian Wojek
- Corporate Research and Technology, Carl Zeiss AG, Oberkochen, Germany
| | | |
Collapse
|
7
|
Walsh C, Tafforeau P, Wagner WL, Jafree DJ, Bellier A, Werlein C, Kühnel MP, Boller E, Walker-Samuel S, Robertus JL, Long DA, Jacob J, Marussi S, Brown E, Holroyd N, Jonigk DD, Ackermann M, Lee PD. Multiscale three-dimensional imaging of intact human organs down to the cellular scale using hierarchical phase-contrast tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.03.429481. [PMID: 33564772 PMCID: PMC7872374 DOI: 10.1101/2021.02.03.429481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human organs are complex, three-dimensional and multiscale systems. Spatially mapping the human body down through its hierarchy, from entire organs to their individual functional units and specialised cells, is a major obstacle to fully understanding health and disease. To meet this challenge, we developed hierarchical phase-contrast tomography (HiP-CT), an X-ray phase propagation technique utilising the European Synchrotron Radiation Facility's Extremely Brilliant Source: the world's first high-energy 4 th generation X-ray source. HiP-CT enabled three-dimensional and non-destructive imaging at near-micron resolution in soft tissues at one hundred thousand times the voxel size whilst maintaining the organ's structure. We applied HiP-CT to image five intact human parenchymal organs: brain, lung, heart, kidney and spleen. These were hierarchically assessed with HiP-CT, providing a structural overview of the whole organ alongside detail of the organ's individual functional units and cells. The potential applications of HiP-CT were demonstrated through quantification and morphometry of glomeruli in an intact human kidney, and identification of regional changes to the architecture of the air-tissue interface and alveolar morphology in the lung of a deceased COVID-19 patient. Overall, we show that HiP-CT is a powerful tool which can provide a comprehensive picture of structural information for whole intact human organs, encompassing precise details on functional units and their constituent cells to better understand human health and disease.
Collapse
Affiliation(s)
- C Walsh
- Centre for Advanced Biomedical Imaging, University College London, U.K
| | - P Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Willi L Wagner
- Dept of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), Heidelberg, Germany
| | - D J Jafree
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, UK
- UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, UK
| | - A Bellier
- French Alps Laboratory of Anatomy (LADAF), Grenoble Alpes University, Grenoble, France
| | - C Werlein
- Institute of Pathology, Hannover Medical School, Hannover, Germany (Carl-Neuberg-Straße 1, 30625 Hannover)
| | - M P Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany (Carl-Neuberg-Straße 1, 30625 Hannover)
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)
| | - E Boller
- European Synchrotron Radiation Facility, Grenoble, France
| | - S Walker-Samuel
- Centre for Advanced Biomedical Imaging, University College London, U.K
| | - J L Robertus
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - D A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, UK
| | - J Jacob
- Centre for Medical Image Computing, University College London, London, UK
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - S Marussi
- Department of Mechanical Engineering University College London, U.K
| | - E Brown
- Centre for Advanced Biomedical Imaging, University College London, U.K
| | - N Holroyd
- Centre for Advanced Biomedical Imaging, University College London, U.K
| | - D D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany (Carl-Neuberg-Straße 1, 30625 Hannover)
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)
| | - M Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz
| | - P D Lee
- Department of Mechanical Engineering University College London, U.K
| |
Collapse
|
8
|
Potocek P, Trampert P, Peemen M, Schoenmakers R, Dahmen T. Sparse Scanning Electron Microscopy Data Acquisition and Deep Neural Networks for Automated Segmentation in Connectomics. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:403-412. [PMID: 32252851 DOI: 10.1017/s1431927620001361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the growing importance of three-dimensional and very large field of view imaging, acquisition time becomes a serious bottleneck. Additionally, dose reduction is of importance when imaging material like biological tissue that is sensitive to electron radiation. Random sparse scanning can be used in the combination with image reconstruction techniques to reduce the acquisition time or electron dose in scanning electron microscopy. In this study, we demonstrate a workflow that includes data acquisition on a scanning electron microscope, followed by a sparse image reconstruction based on compressive sensing or alternatively using neural networks. Neuron structures are automatically segmented from the reconstructed images using deep learning techniques. We show that the average dwell time per pixel can be reduced by a factor of 2-3, thereby providing a real-life confirmation of previous results on simulated data in one of the key segmentation applications in connectomics and thus demonstrating the feasibility and benefit of random sparse scanning techniques for a specific real-world scenario.
Collapse
Affiliation(s)
- Pavel Potocek
- Materials and Structural Analysis Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Patrick Trampert
- German Research Center for Artificial Intelligence, DFKI, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Maurice Peemen
- Materials and Structural Analysis Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Remco Schoenmakers
- Materials and Structural Analysis Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Tim Dahmen
- German Research Center for Artificial Intelligence, DFKI, Saarbrücken, Germany
| |
Collapse
|
9
|
Pape C, Matskevych A, Wolny A, Hennies J, Mizzon G, Louveaux M, Musser J, Maizel A, Arendt D, Kreshuk A. Leveraging Domain Knowledge to Improve Microscopy Image Segmentation With Lifted Multicuts. FRONTIERS IN COMPUTER SCIENCE 2019. [DOI: 10.3389/fcomp.2019.00006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Reichelt M, Sagolla M, Katakam AK, Webster JD. Unobstructed Multiscale Imaging of Tissue Sections for Ultrastructural Pathology Analysis by Backscattered Electron Scanning Microscopy. J Histochem Cytochem 2019; 68:9-23. [PMID: 31385742 DOI: 10.1369/0022155419868992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ultrastructural analysis of healthy, diseased, or experimental tissues is essential in diagnostic and investigative pathology. Evaluation of large tissue areas with suborganelle resolution is challenging because biological structures ranging from several millimeters to nanometers in size need to be identified and imaged while maintaining context over multiple scales. Imaging with field emission scanning electron microscopes (FE-SEMs) is uniquely suited for this task. We describe an efficient workflow for the preparation and unobstructed multiscale imaging of tissue sections with backscattered electron scanning electron microscopy (BSE-SEM) for applications in ultrastructural pathology. We demonstrate that a diverse range of tissues, processed by conventional electron microscopy protocols and avoiding the use of mordanting agents, can be imaged on standard glass slides over multiple scales, from the histological to the ultrastructural level, without any visual obstructions. Our workflow takes advantage of the very large scan fields possible with modern FE-SEMs that allow for the acquisition of wide-field overview images which can be explored at the ultrastructural level by digitally zooming into the images. Examples from applications in pulmonary research and neuropathology demonstrate the versatility and efficiency of this method. This BSE-SEM-based multiscale imaging procedure promises to substantially simplify and accelerate ultrastructural tissue analysis in pathology.
Collapse
Affiliation(s)
- Mike Reichelt
- Department of Pathology, Genentech Inc., South San Francisco, California
| | - Meredith Sagolla
- Department of Pathology, Genentech Inc., South San Francisco, California
| | - Anand K Katakam
- Department of Pathology, Genentech Inc., South San Francisco, California
| | - Joshua D Webster
- Department of Pathology, Genentech Inc., South San Francisco, California
| |
Collapse
|
11
|
Ngo L, Nathanson AD, Garbowski T, Knothe U, Zeidler D, Knothe Tate ML. Electron Microscopy Sample Preparation Protocol Enabling Nano-to-mesoscopic Mapping of Cellular Connectomes and Their Habitats in Human Tissues and Organs. Bio Protoc 2019; 9:e3298. [PMID: 33654811 DOI: 10.21769/bioprotoc.3298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 11/02/2022] Open
Abstract
Multibeam scanning electron microscopy (multiSEM) provides a technical platform for seamless nano-to-mesoscale mapping of cells in human tissues and organs, which is a major new initiative of the U.S. National Institutes of Health. Such cross-length-scale imaging is expected to provide unprecedented understanding of relationships between cellular health and tissue-organ as well as organismal-scale health outcomes. For example, understanding relationships between loss in cell viability and cell network connectivity enables identification of emergent behaviors and prediction of degenerative disease onset, in organs as diverse as bone and brain, at early timepoints, providing a basis for future treatments and prevention. Developed for rapid throughput imaging of minute defects on semiconductor wafers, multiSEM has recently been adapted for imaging of human organs, their constituent tissues, and their respective cellular inhabitants. Through integration of geospatial approaches, statistical and network modelling, advances in computing and the management of immense datasets, as well as recent developments in machine learning that enable the automation of big data analyses, multiSEM and other cross- cutting imaging technologies have the potential to exert a profound impact on elucidation of disease mechanisms, translating to improvements in human health. Here we provide a protocol for acquisition and preparation of sample specimen sizes of diagnostic relevance for human anatomy and physiology. We discuss challenges and opportunities to integrate this approach with multibeam scanning electron microscopy workflows as well as multiple imaging modalities for mapping of organ and tissue structure and function.
Collapse
Affiliation(s)
- Lucy Ngo
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Anton D Nathanson
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | | | - Ulf Knothe
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone-a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res 2019; 7:15. [PMID: 31123620 PMCID: PMC6531483 DOI: 10.1038/s41413-019-0053-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair. The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone. It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view. Interactions between incident electrons and atoms on the sample surface generate backscattered electrons, secondary electrons, and various other signals including X-rays that relay compositional and topographical information. Through selective removal or preservation of specific tissue components (organic, inorganic, cellular, vascular), their individual contribution(s) to the overall functional competence can be elucidated. With few restrictions on sample geometry and a variety of applicable sample-processing routes, a given sample may be conveniently adapted for multiple analytical methods. While a conventional SEM operates at high vacuum conditions that demand clean, dry, and electrically conductive samples, non-conductive materials (e.g., bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope. This review highlights important insights gained into bone microstructure and pathophysiology, bone response to implanted biomaterials, elemental analysis, SEM in paleoarchaeology, 3D imaging using focused ion beam techniques, correlative microscopy and in situ experiments. The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum, the SEM lends itself to many unique and diverse applications, which attest to the versatility and user-friendly nature of this instrument for studying bone. Significant technological developments are anticipated for analysing bone using the SEM.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Sidler HJ, Duvenage J, Anderson EJ, Ng J, Hageman DJ, Knothe Tate ML. Prospective Design, Rapid Prototyping, and Testing of Smart Dressings, Drug Delivery Patches, and Replacement Body Parts Using Microscopy Aided Design and ManufacturE (MADAME). Front Med (Lausanne) 2018; 5:348. [PMID: 30619859 PMCID: PMC6301284 DOI: 10.3389/fmed.2018.00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Natural materials exhibit smart properties including gradients in biophysical properties that engender higher order functions, as well as stimuli-responsive properties which integrate sensor and/or actuator capacities. Elucidation of mechanisms underpinning such smart material properties (i), and translation of that understanding (ii), represent two of the biggest challenges in emulating natural design paradigms for design and manufacture of disruptive materials, parts, and products. Microscopy Aided Design And ManufacturE (MADAME) stands for a computer-aided additive manufacturing platform that incorporates multidimensional (multi-D) printing and computer-controlled weaving. MADAME enables the creation of composite design motifs emulating e.g., patterns of woven protein fibers as well as gradients in different caliber porosities, mechanical, and molecular properties, found in natural tissues, from the skin on bones (periosteum) to tree bark. Insodoing, MADAME provides a means to manufacture a new genre of smart materials, products and replacement body parts that exhibit advantageous properties both under the influence of as well as harnessing dynamic mechanical loads to activate material properties (mechanoactive properties). This Technical Report introduces the MADAME technology platform and its associated machine-based workflow (pipeline), provides basic technical background of the novel technology and its applications, and discusses advantages and disadvantages of the approach in context of current 3 and 4D printing platforms.
Collapse
Affiliation(s)
- Hans Jörg Sidler
- Institute of Biomedical Engineering and Medical Informatics, Swiss Federal Institute of Technology, Zurich, Switzerland
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Departments of Mechanical & Aerospace Engineering and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob Duvenage
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Eric J. Anderson
- Departments of Mechanical & Aerospace Engineering and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory, Ann Arbor, MI, United States
| | - Joanna Ng
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Daniel J. Hageman
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Melissa L. Knothe Tate
- Institute of Biomedical Engineering and Medical Informatics, Swiss Federal Institute of Technology, Zurich, Switzerland
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Departments of Mechanical & Aerospace Engineering and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|