1
|
Crowl S, Coleman MB, Chaphiv A, Jordan BT, Naegle KM. Systematic analysis of the effects of splicing on the diversity of post-translational modifications in protein isoforms using PTM-POSE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.10.575062. [PMID: 38260432 PMCID: PMC10802621 DOI: 10.1101/2024.01.10.575062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Post-translational modifications (PTMs) and splicing are important regulatory processes for controlling protein function and activity. Despite examples of interplay between alternative splicing and cell signaling in literature, there have been few detailed analyses of the impacts of alternative splicing on PTMs, partly due to difficulties in extracting PTM information from splicing measurements. We developed a computational pipeline, PTM Projection Onto Splice Events (PTM-POSE), to identify "prospective" PTM sites in alternative isoforms and splice events recorded in databases using only the genomic coordinates of a splice event or isoform of interest. Importantly, PTM-POSE integrates various PTM-specific databases and tools to allow for deeper analysis of the individual and global impact of spliced PTMs on isoform function, protein interactions, and regulation by enzymes like kinases. Using PTM-POSE, we performed a systematic analysis of PTM diversification across isoforms annotated in the Ensembl database. We found that 32% of PTMs are excluded from at least one Ensembl isoform, with palmitoylation being most likely to be excluded (49%) and glycosylation and crotonylation exhibiting the highest constitutive rates (75% and 94%, respectively). Further, approximately 2% of prospective PTM sites exhibited altered regulatory sequences surrounding the modification site, suggesting that regulatory or binding interactions might be different in these proteoforms. When comparing splicing of phosphorylation sites to measured phosphorylation abundance in KRAS-expressing lung cells, differential inclusion of phosphorylation sites correlated with phosphorylation levels, particularly for larger changes in inclusion (> 20%). To better understand how splicing diversification of PTMs may alter protein function and regulatory networks in specific biological contexts, we applied PTM-POSE to exon utilization measurements from TCGASpliceSeq of prostate tumor samples from The Cancer Genome Atlas (TCGA) and identified 1,489 PTMs impacted by ESRP1-correlated splicing, a splicing factor associated with worsened prognosis. We identified protein interaction and regulatory networks that may be rewired as a result of differential inclusion of PTM sites in ribosomal and cytoskeletal proteins. We also found instances in which ESRP1-mediated splicing impacted PTMs by altering flanking residues surrounding specific phosphorylation sites that may be targets of 14-3-3 proteins and SH2 domains. In addition, SGK1 signaling was found to be influenced by ESRP1 expression through increased inclusion of SGK1 substrates in ESRP1-expressing patients. Based on validation in a separate prostate cancer cohort from the Chinese Prostate Cancer Genome and EpiGenome Atlas (CPGEA), this correlated with increased phosphorylation of SGK1 substrates, particularly when SGK1 was predicted to be active. From this work, we highlighted the extensive splicing-control of PTM sites across the transcriptome and the novel information that can be gained through inclusion of PTMs in the analysis of alternative splicing. Importantly, we have provided a publicly available python package (PTM-POSE: https://github.com/NaegleLab/PTM-POSE) and all associated data for use by the broader scientific community to allow for continued exploration of the relationship between splicing and PTMs.
Collapse
Affiliation(s)
- Sam Crowl
- University of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA, 22903
| | - Maeve Bella Coleman
- University of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA, 22903
| | - Andrew Chaphiv
- University of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA, 22903
| | - Ben T. Jordan
- University of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA, 22903
| | - Kristen M. Naegle
- University of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA, 22903
| |
Collapse
|
2
|
Fang F, Guo X, Liu S, Dang L, Chen Z, Yang Y, Chen L, Lin J, Qiu W, Chen Z, Wu B. LincRNA-ASAO promotes dental pulp repair through interacting with PTBP1 to increase ALPL alternative splicing. Stem Cell Res Ther 2025; 16:149. [PMID: 40140936 PMCID: PMC11948687 DOI: 10.1186/s13287-025-04274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Alternative splicing not only expands the genetic encoding of genes but also determines cellular activities. This study aimed to elucidate the regulation mechanism and biological functions of lincRNA-ASAO in the process of odontogenesis-related genes alternative splicing mediated odontogenic differentiation of hDPSCs. METHODS RACE, RNA-seq, FISH and bioinformatics techniques were used to identify novel lincRNA-ASAO. ALP staining, alizarin red staining, qRT-PCR and western blot were used to identify the role of lincRNA-ASAO in regulating the odontoblast differentiation of hDPSCs. The binding protein PTBP1 of lincRNA-ASAO was screened by RNA-Pulldown, protein profiling and bioinformatics. The target gene ALPL of lincRNA-ASAO/PTBP1 was identified by RNA-seq, bioinformatics technology and DNA agarose gel electrophoresis. FISH, IF, PAR-CLIP and bioinformatics techniques were used to determine the roles of lincRNA-ASAO, PTBP1 and ALPL pre-mRNA in the odontoblast differentiation of hDPSCs. RESULTS We identified a novel lincRNA-ASAO that could promote the odontogenic differentiation of human Dental Pulp Stem Cells (hDPSCs). And, the interaction between lincRNA-ASAO and alternative splicing factor PTBP1 promoted the odontoblast differentiation of hDPSCs. In addition, lincRNA-ASAO forms duplexes with ALPL pre-mRNA, targeting PTBP1 to exonic splicing silencer (ESS) of ALPL and regulating exon 2 skipping. Notably, lincRNA-ASAO/PTBP1 regulated ALPL production to increase the type 2 splice variant, which promoted the odontoblast differentiation of hDPSCs. CONCLUSIONS We have identified the novel lincRNA-ASAO, which can promote the odontoblast differentiation of hDPSCs. The mechanism study found that lincRNA-ASAO/PTBP1 mediated the exon 2 skipping of ALPL pre-mRNA, resulting in the type 2 splice variant of ALPL. Our results enrich the understanding of lncRNAs and alternative splicing in regulating the odontoblast differentiation of hDPSCs, and provide clues to improve the clinical therapeutic potential of hDPSCs for dental pulp restoration.
Collapse
Affiliation(s)
- Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolan Guo
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sitong Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longrui Dang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yumeng Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahao Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China.
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Cai YD, Liu X, Chow GK, Hidalgo S, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of Clock transcript mediates the response of circadian clocks to temperature changes. Proc Natl Acad Sci U S A 2024; 121:e2410680121. [PMID: 39630861 PMCID: PMC11648895 DOI: 10.1073/pnas.2410680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although Clock (Clk) gene encodes the critical activator of circadian gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. Here, we observed that Clk transcripts undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative Clk transcript, hereinafter termed Clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is deleted in CLK-cold protein. We demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing transcriptional activity of CLK. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature likely due to higher amounts of CLK-cold isoforms that lack S13 residue. Finally, we showed that PER promotes CK1α-dependent phosphorylation of CLK(S13), supporting kinase-scaffolding role of repressor proteins as a conserved feature in the regulation of eukaryotic circadian clocks. This study provides insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Xianhui Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu215123, China
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| |
Collapse
|
4
|
Kiseleva OI, Arzumanian VA, Kurbatov IY, Poverennaya EV. In silico and in cellulo approaches for functional annotation of human protein splice variants. BIOMEDITSINSKAIA KHIMIIA 2024; 70:315-328. [PMID: 39324196 DOI: 10.18097/pbmc20247005315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The elegance of pre-mRNA splicing mechanisms continues to interest scientists even after over a half century, since the discovery of the fact that coding regions in genes are interrupted by non-coding sequences. The vast majority of human genes have several mRNA variants, coding structurally and functionally different protein isoforms in a tissue-specific manner and with a linkage to specific developmental stages of the organism. Alteration of splicing patterns shifts the balance of functionally distinct proteins in living systems, distorts normal molecular pathways, and may trigger the onset and progression of various pathologies. Over the past two decades, numerous studies have been conducted in various life sciences disciplines to deepen our understanding of splicing mechanisms and the extent of their impact on the functioning of living systems. This review aims to summarize experimental and computational approaches used to elucidate the functions of splice variants of a single gene based on our experience accumulated in the laboratory of interactomics of proteoforms at the Institute of Biomedical Chemistry (IBMC) and best global practices.
Collapse
Affiliation(s)
- O I Kiseleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | |
Collapse
|
5
|
Patyal P, Ameer FS, Verma A, Zhang X, Azhar G, Shrivastava J, Sharma S, Zhang R, Wei JY. The Role of Sirtuin-1 Isoforms in Regulating Mitochondrial Function. Curr Issues Mol Biol 2024; 46:8835-8851. [PMID: 39194739 DOI: 10.3390/cimb46080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
The sirtuin-1 (SIRT1) gene contains multiple exons that usually undergo alternative splicing. The exclusion of one or more exons causes domain loss in the alternatively spliced isoforms and may change their functions. However, it is not completely established to what extent the loss of a non-catalytic domain could affect its regulatory function. Using muscle cells and SIRT1-knockout cells, we examined the function of the constitutively spliced isoform (SIRT1-v1) versus the alternatively spliced isoforms SIRT1-v2 and SIRT1-v3 that had lost part of the N-terminal region. Our data indicate that partial loss of the N-terminal domains in SIRT1-v2 and SIRT1-v3 attenuated their function. The full-length SIRT1-v1 significantly increased the oxidative phosphorylation and ATP production rate. Furthermore, SIRT1-v1 specifically upregulated the mitochondrial respiratory complex I without affecting the activity of complexes II, III, and IV. Additionally, domain loss affected the regulation of site-specific lysine acetylation in the histone H4 protein, the gene expression of respiratory complex I subunits, and the metabolic balance of oxidative phosphorylation versus glycolysis. Since alternatively spliced isoforms tend to increase with advancing age, the impact of SIRT1 isoforms on mitochondrial respiratory complexes warrants further investigation.
Collapse
Affiliation(s)
- Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fathima S Ameer
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gohar Azhar
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jyotsna Shrivastava
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Shakshi Sharma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rachel Zhang
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Pandi B, Brenman S, Black A, Ng DCM, Lau E, Lam MPY. Tissue Usage Preference and Intrinsically Disordered Region Remodeling of Alternative Splicing Derived Proteoforms in the Heart. J Proteome Res 2024; 23:3161-3173. [PMID: 38456420 PMCID: PMC11296937 DOI: 10.1021/acs.jproteome.3c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
A computational analysis of mass spectrometry data was performed to uncover alternative splicing derived protein variants across chambers of the human heart. Evidence for 216 non-canonical isoforms was apparent in the atrium and the ventricle, including 52 isoforms not documented on SwissProt and recovered using an RNA sequencing derived database. Among non-canonical isoforms, 29 show signs of regulation based on statistically significant preferences in tissue usage, including a ventricular enriched protein isoform of tensin-1 (TNS1) and an atrium-enriched PDZ and LIM Domain 3 (PDLIM3) isoform 2 (PDLIM3-2/ALP-H). Examined variant regions that differ between alternative and canonical isoforms are highly enriched with intrinsically disordered regions. Moreover, over two-thirds of such regions are predicted to function in protein binding and RNA binding. The analysis here lends further credence to the notion that alternative splicing diversifies the proteome by rewiring intrinsically disordered regions, which are increasingly recognized to play important roles in the generation of biological function from protein sequences.
Collapse
Affiliation(s)
- Boomathi Pandi
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Stella Brenman
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Alexander Black
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Dominic C. M. Ng
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Edward Lau
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Maggie P. Y. Lam
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
7
|
Song Y, Parada G, Lee JTH, Hemberg M. Mining alternative splicing patterns in scRNA-seq data using scASfind. Genome Biol 2024; 25:197. [PMID: 39075577 PMCID: PMC11285346 DOI: 10.1186/s13059-024-03323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Single-cell RNA-seq (scRNA-seq) is widely used for transcriptome profiling, but most analyses focus on gene-level events, with less attention devoted to alternative splicing. Here, we present scASfind, a novel computational method to allow for quantitative analysis of cell type-specific splicing events using full-length scRNA-seq data. ScASfind utilizes an efficient data structure to store the percent spliced-in value for each splicing event. This makes it possible to exhaustively search for patterns among all differential splicing events, allowing us to identify marker events, mutually exclusive events, and events involving large blocks of exons that are specific to one or more cell types.
Collapse
Affiliation(s)
- Yuyao Song
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Guillermo Parada
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | - Martin Hemberg
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Haj Abdullah Alieh L, Cardoso de Toledo B, Hadarovich A, Toth-Petroczy A, Calegari F. Characterization of alternative splicing during mammalian brain development reveals the extent of isoform diversity and potential effects on protein structural changes. Biol Open 2024; 13:bio061721. [PMID: 39387301 PMCID: PMC11554263 DOI: 10.1242/bio.061721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Regulation of gene expression is critical for fate commitment of stem and progenitor cells during tissue formation. In the context of mammalian brain development, a plethora of studies have described how changes in the expression of individual genes characterize cell types across ontogeny and phylogeny. However, little attention has been paid to the fact that different transcripts can arise from any given gene through alternative splicing (AS). Considered a key mechanism expanding transcriptome diversity during evolution, assessing the full potential of AS on isoform diversity and protein function has been notoriously difficult. Here, we capitalize on the use of a validated reporter mouse line to isolate neural stem cells, neurogenic progenitors and neurons during corticogenesis and combine the use of short- and long-read sequencing to reconstruct the full transcriptome diversity characterizing neurogenic commitment. Extending available transcriptional profiles of the mammalian brain by nearly 50,000 new isoforms, we found that neurogenic commitment is characterized by a progressive increase in exon inclusion resulting in the profound remodeling of the transcriptional profile of specific cortical cell types. Most importantly, we computationally infer the biological significance of AS on protein structure by using AlphaFold2, revealing how radical protein conformational changes can arise from subtle changes in isoforms sequence. Together, our study reveals that AS has a greater potential to impact protein diversity and function than previously thought, independently from changes in gene expression.
Collapse
Affiliation(s)
| | | | - Anna Hadarovich
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Germany
| |
Collapse
|
9
|
Cai YD, Chow GK, Hidalgo S, Liu X, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of clock transcript mediates the response of circadian clocks to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593646. [PMID: 38766142 PMCID: PMC11100826 DOI: 10.1101/2024.05.10.593646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations and temperature compensation are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although clock (clk) gene encodes the critical activator of clock gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. We therefore sought to investigate whether clk exhibits AS in response to temperature and the functional changes of the differentially spliced transcripts. We observed that clk transcripts indeed undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative clk transcript, hereinafter termed clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is among the four amino acids deleted in CLK-cold protein. Using a combination of transgenic fly, tissue culture, and in vitro experiments, we demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing CLK occupancy at clock gene promoters. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature, which can be explained by the higher amounts of CLK-cold isoforms that lack S13 residue. This study provides new insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
10
|
Bouton L, Ecoutin A, Malard F, Campagne S. Small molecules modulating RNA splicing: a review of targets and future perspectives. RSC Med Chem 2024; 15:1109-1126. [PMID: 38665842 PMCID: PMC11042171 DOI: 10.1039/d3md00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, trans-acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.
Collapse
Affiliation(s)
- Léa Bouton
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Agathe Ecoutin
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| |
Collapse
|
11
|
de Reus AJEM, Basak O, Dykstra W, van Asperen JV, van Bodegraven EJ, Hol EM. GFAP-isoforms in the nervous system: Understanding the need for diversity. Curr Opin Cell Biol 2024; 87:102340. [PMID: 38401182 DOI: 10.1016/j.ceb.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein expressed in specific types of glial cells in the nervous system. The expression of GFAP is highly regulated during brain development and in neurological diseases. The presence of distinct GFAP-isoforms in various cell types, developmental stages, and diseases indicates that GFAP (post-)transcriptional regulation has a role in glial cell physiology and pathology. GFAP-isoforms differ in sub-cellular localisation, IF-network assembly properties, and IF-dynamics which results in distinct molecular interactions and mechanical properties of the IF-network. Therefore, GFAP (post-)transcriptional regulation is likely a mechanism by which radial glia, astrocytes, and glioma cells can modulate cellular function.
Collapse
Affiliation(s)
- Alexandra J E M de Reus
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Werner Dykstra
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessy V van Asperen
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Unversité Claude Bernard Lyon 1 CNRS UMR 5261, INSERM U1315, Lyon, France
| | - Emma J van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Zhao B, Deng J, Ma M, Li N, Zhou J, Li X, Luan T. Environmentally relevant concentrations of 2,3,7,8-TCDD induced inhibition of multicellular alternative splicing and transcriptional dysregulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170892. [PMID: 38346650 DOI: 10.1016/j.scitotenv.2024.170892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Alternative splicing (AS), found in approximately 95 % of human genes, significantly amplifies protein diversity and is implicated in disease pathogenesis when dysregulated. However, the precise involvement of AS in the toxic mechanisms induced by TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) remains incompletely elucidated. This study conducted a thorough global AS analysis in six human cell lines following TCDD exposure. Our findings revealed that environmentally relevant concentration (0.1 nM) of TCDD significantly suppressed AS events in all cell types, notably inhibiting diverse splicing events and reducing transcript diversity, potentially attributed to modifications in the splicing patterns of the inhibitory factor family, particularly hnRNP. And we identified 151 genes with substantial AS alterations shared among these cell types, particularly enriched in immune and metabolic pathways. Moreover, TCDD induced cell-specific changes in splicing patterns and transcript levels, with increased sensitivity notably in THP-1 monocyte, potentially linked to aberrant expression of pivotal genes within the spliceosome pathway (DDX5, EFTUD2, PUF60, RBM25, SRSF1, and CRNKL1). This study extends our understanding of disrupted alternative splicing and its relation to the multisystem toxicity of TCDD. It sheds light on how environmental toxins affect post-transcriptional regulatory processes, offering a fresh perspective for toxicology and disease etiology investigations.
Collapse
Affiliation(s)
- Bilin Zhao
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Na Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junlin Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Carrion SA, Michal JJ, Jiang Z. Alternative Transcripts Diversify Genome Function for Phenome Relevance to Health and Diseases. Genes (Basel) 2023; 14:2051. [PMID: 38002994 PMCID: PMC10671453 DOI: 10.3390/genes14112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Manipulation using alternative exon splicing (AES), alternative transcription start (ATS), and alternative polyadenylation (APA) sites are key to transcript diversity underlying health and disease. All three are pervasive in organisms, present in at least 50% of human protein-coding genes. In fact, ATS and APA site use has the highest impact on protein identity, with their ability to alter which first and last exons are utilized as well as impacting stability and translation efficiency. These RNA variants have been shown to be highly specific, both in tissue type and stage, with demonstrated importance to cell proliferation, differentiation and the transition from fetal to adult cells. While alternative exon splicing has a limited effect on protein identity, its ubiquity highlights the importance of these minor alterations, which can alter other features such as localization. The three processes are also highly interwoven, with overlapping, complementary, and competing factors, RNA polymerase II and its CTD (C-terminal domain) chief among them. Their role in development means dysregulation leads to a wide variety of disorders and cancers, with some forms of disease disproportionately affected by specific mechanisms (AES, ATS, or APA). Challenges associated with the genome-wide profiling of RNA variants and their potential solutions are also discussed in this review.
Collapse
Affiliation(s)
| | | | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-7620, USA; (S.A.C.); (J.J.M.)
| |
Collapse
|
14
|
Pandi B, Brenman S, Black A, Ng DCM, Lau E, Lam MPY. Tissue Usage Preference and Intrinsically Disordered Region Remodeling of Alternative Splicing Derived Proteoforms in the Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561375. [PMID: 37873130 PMCID: PMC10592692 DOI: 10.1101/2023.10.08.561375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A computational analysis of mass spectrometry data was performed to uncover alternative splicing derived protein variants across chambers of the human heart. Evidence for 216 non-canonical isoforms was apparent in the atrium and the ventricle, including 52 isoforms not documented on SwissProt and recovered using an RNA sequencing derived database. Among non-canonical isoforms, 29 show signs of regulation based on statistically significant preferences in tissue usage, including a ventricular enriched protein isoform of tensin-1 (TNS1) and an atrium-enriched PDZ and LIM Domain 3 (PDLIM3) isoform 2 (PDLIM3-2/ALP-H). Examined variant regions that differ between alternative and canonical isoforms are highly enriched in intrinsically disordered regions, and over two-thirds of such regions are predicted to function in protein binding and/or RNA binding. The analysis here lends further credence to the notion that alternative splicing diversifies the proteome by rewiring intrinsically disordered regions, which are increasingly recognized to play important roles in the generation of biological function from protein sequences.
Collapse
Affiliation(s)
- Boomathi Pandi
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stella Brenman
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alexander Black
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominic C. M. Ng
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edward Lau
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maggie P. Y. Lam
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Engelhard CA, Khani S, Derdak S, Bilban M, Kornfeld JW. Nanopore sequencing unveils the complexity of the cold-activated murine brown adipose tissue transcriptome. iScience 2023; 26:107190. [PMID: 37564700 PMCID: PMC10410515 DOI: 10.1016/j.isci.2023.107190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Accepted: 06/16/2023] [Indexed: 08/12/2023] Open
Abstract
Alternative transcription increases transcriptome complexity by expression of multiple transcripts per gene. Annotation and quantification of transcripts using short-read sequencing is non-trivial. Long-read sequencing aims at overcoming these problems by sequencing full-length transcripts. Activation of brown adipose tissue (BAT) thermogenesis involves major transcriptomic remodeling and positively affects metabolism via increased energy expenditure. We benchmark Oxford Nanopore Technology (ONT) long-read sequencing protocols to Illumina short-read sequencing assessing alignment characteristics, gene and transcript detection and quantification, differential gene and transcript expression, transcriptome reannotation, and differential transcript usage (DTU). We find ONT sequencing is superior to Illumina for transcriptome reassembly, reducing the risk of false-positive events by unambiguously mapping reads to transcripts. We identified novel isoforms of genes undergoing DTU in cold-activated BAT including Cars2, Adtrp, Acsl5, Scp2, Aldoa, and Pde4d, validated by real-time PCR. The reannotated murine BAT transcriptome established here provides a framework for future investigations into the regulation of BAT.
Collapse
Affiliation(s)
- Christoph Andreas Engelhard
- Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Sajjad Khani
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine & Core Facilities, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Jan-Wilhelm Kornfeld
- Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
16
|
Goldtzvik Y, Sen N, Lam SD, Orengo C. Protein diversification through post-translational modifications, alternative splicing, and gene duplication. Curr Opin Struct Biol 2023; 81:102640. [PMID: 37354790 DOI: 10.1016/j.sbi.2023.102640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Proteins provide the basis for cellular function. Having multiple versions of the same protein within a single organism provides a way of regulating its activity or developing novel functions. Post-translational modifications of proteins, by means of adding/removing chemical groups to amino acids, allow for a well-regulated and controlled way of generating functionally distinct protein species. Alternative splicing is another method with which organisms possibly generate new isoforms. Additionally, gene duplication events throughout evolution generate multiple paralogs of the same genes, resulting in multiple versions of the same protein within an organism. In this review, we discuss recent advancements in the study of these three methods of protein diversification and provide illustrative examples of how they affect protein structure and function.
Collapse
Affiliation(s)
- Yonathan Goldtzvik
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Neeladri Sen
- Department of Structural and Molecular Biology, University College London, London, United Kingdom. https://twitter.com/@NeeladriSen
| | - Su Datt Lam
- Department of Structural and Molecular Biology, University College London, London, United Kingdom; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
17
|
Busselez J, Uzbekov RE, Franco B, Pancione M. New insights into the centrosome-associated spliceosome components as regulators of ciliogenesis and tissue identity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1776. [PMID: 36717357 DOI: 10.1002/wrna.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
Biomolecular condensates are membrane-less assemblies of proteins and nucleic acids. Centrosomes are biomolecular condensates that play a crucial role in nuclear division, cytoskeletal remodeling, and cilia formation in animal cells. Spatial omics technology is providing new insights into the dynamic exchange of spliceosome components between the nucleus and the centrosome/cilium. Intriguingly, centrosomes are emerging as cytoplasmic sites for information storage, enriched with RNA molecules and RNA-processing proteins. Furthermore, growing evidence supports the view that nuclear spliceosome components assembled at the centrosome function as potential coordinators of splicing subprograms, pluripotency, and cell differentiation. In this article, we first discuss the current understanding of the centrosome/cilium complex, which controls both stem cell differentiation and pluripotency. We next explore the molecular mechanisms that govern splicing factor assembly and disassembly around the centrosome and examine how RNA processing pathways contribute to ciliogenesis. Finally, we discuss numerous unresolved compelling questions regarding the centrosome-associated spliceosome components and transcript variants within the cytoplasm as sources of RNA-based secondary messages in the regulation of cell identity and cell fate determination. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Processing.
Collapse
Affiliation(s)
- Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Rustem E Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medicine, Medical Genetics, University of Naples "Federico II", Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, Madrid, Spain
| |
Collapse
|
18
|
Titus MB, Chang AW, Popitsch N, Ebmeier CC, Bono JM, Olesnicky EC. The identification of protein and RNA interactors of the splicing factor Caper in the adult Drosophila nervous system. Front Mol Neurosci 2023; 16:1114857. [PMID: 37435576 PMCID: PMC10332324 DOI: 10.3389/fnmol.2023.1114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/19/2023] [Indexed: 07/13/2023] Open
Abstract
Post-transcriptional gene regulation is a fundamental mechanism that helps regulate the development and healthy aging of the nervous system. Mutations that disrupt the function of RNA-binding proteins (RBPs), which regulate post-transcriptional gene regulation, have increasingly been implicated in neurological disorders including amyotrophic lateral sclerosis, Fragile X Syndrome, and spinal muscular atrophy. Interestingly, although the majority of RBPs are expressed widely within diverse tissue types, the nervous system is often particularly sensitive to their dysfunction. It is therefore critical to elucidate how aberrant RNA regulation that results from the dysfunction of ubiquitously expressed RBPs leads to tissue specific pathologies that underlie neurological diseases. The highly conserved RBP and alternative splicing factor Caper is widely expressed throughout development and is required for the development of Drosophila sensory and motor neurons. Furthermore, caper dysfunction results in larval and adult locomotor deficits. Nonetheless, little is known about which proteins interact with Caper, and which RNAs are regulated by Caper. Here we identify proteins that interact with Caper in both neural and muscle tissue, along with neural specific Caper target RNAs. Furthermore, we show that a subset of these Caper-interacting proteins and RNAs genetically interact with caper to regulate Drosophila gravitaxis behavior.
Collapse
Affiliation(s)
- M. Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W. Chang
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Niko Popitsch
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Jeremy M. Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C. Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
19
|
Salz R, Saraiva-Agostinho N, Vorsteveld E, van der Made CI, Kersten S, Stemerdink M, Allen J, Volders PJ, Hunt SE, Hoischen A, 't Hoen PAC. SUsPECT: a pipeline for variant effect prediction based on custom long-read transcriptomes for improved clinical variant annotation. BMC Genomics 2023; 24:305. [PMID: 37280537 PMCID: PMC10245480 DOI: 10.1186/s12864-023-09391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Our incomplete knowledge of the human transcriptome impairs the detection of disease-causing variants, in particular if they affect transcripts only expressed under certain conditions. These transcripts are often lacking from reference transcript sets, such as Ensembl/GENCODE and RefSeq, and could be relevant for establishing genetic diagnoses. We present SUsPECT (Solving Unsolved Patient Exomes/gEnomes using Custom Transcriptomes), a pipeline based on the Ensembl Variant Effect Predictor (VEP) to predict variant impact on custom transcript sets, such as those generated by long-read RNA-sequencing, for downstream prioritization. Our pipeline predicts the functional consequence and likely deleteriousness scores for missense variants in the context of novel open reading frames predicted from any transcriptome. We demonstrate the utility of SUsPECT by uncovering potential mutational mechanisms of pathogenic variants in ClinVar that are not predicted to be pathogenic using the reference transcript annotation. In further support of SUsPECT's utility, we identified an enrichment of immune-related variants predicted to have a more severe molecular consequence when annotating with a newly generated transcriptome from stimulated immune cells instead of the reference transcriptome. Our pipeline outputs crucial information for further prioritization of potentially disease-causing variants for any disease and will become increasingly useful as more long-read RNA sequencing datasets become available.
Collapse
Affiliation(s)
- Renee Salz
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
| | - Nuno Saraiva-Agostinho
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Emil Vorsteveld
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
| | - Caspar I van der Made
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, and Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone Kersten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
| | - Merel Stemerdink
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Jamie Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Pieter-Jan Volders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Laboratory of Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, 3500, Belgium
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, and Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter A C 't Hoen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands.
| |
Collapse
|
20
|
Hazra A, Pal A, Kundu A. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]. Funct Integr Genomics 2023; 23:144. [PMID: 37133618 DOI: 10.1007/s10142-023-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Vigna mungo, a highly consumed crop in the pan-Asian countries, is vulnerable to several biotic and abiotic stresses. Understanding the post-transcriptional gene regulatory cascades, especially alternative splicing (AS), may underpin large-scale genetic improvements to develop stress-resilient varieties. Herein, a transcriptome based approach was undertaken to decipher the genome-wide AS landscape and splicing dynamics in order to establish the intricacies of their functional interactions in various tissues and stresses. RNA sequencing followed by high-throughput computational analyses identified 54,526 AS events involving 15,506 AS genes that generated 57,405 transcripts isoforms. Enrichment analysis revealed their involvement in diverse regulatory functions and demonstrated that transcription factors are splicing-intensive, splice variants of which are expressed differentially across tissues and environmental cues. Increased expression of a splicing regulator NHP2L1/SNU13 was found to co-occur with lower intron retention events. The host transcriptome is significantly impacted by differential isoform expression of 1172 and 765 AS genes that resulted in 1227 (46.8% up and 53.2% downregulated) and 831 (47.5% up and 52.5% downregulated) transcript isoforms under viral pathogenesis and Fe2+ stressed condition, respectively. However, genes experiencing AS operate differently from the differentially expressed genes, suggesting AS is a unique and independent mode of regulatory mechanism. Therefore, it can be inferred that AS mediates a crucial regulatory role across tissues and stressful situations and the results would provide an invaluable resource for future endeavours in V. mungo genomics.
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700091, India.
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
21
|
Ruiz-Ceja KA, Capasso D, Pinelli M, Del Prete E, Carrella D, di Bernardo D, Banfi S. Definition of the transcriptional units of inherited retinal disease genes by meta-analysis of human retinal transcriptome data. BMC Genomics 2023; 24:206. [PMID: 37072692 PMCID: PMC10111803 DOI: 10.1186/s12864-023-09300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/07/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Inherited retinal diseases (IRD) are genetically heterogeneous disorders that cause the dysfunction or loss of photoreceptor cells and ultimately lead to blindness. To date, next-generation sequencing procedures fail to detect pathogenic sequence variants in coding regions of known IRD disease genes in about 30-40% of patients. One of the possible explanations for this missing heritability is the presence of yet unidentified transcripts of known IRD genes. Here, we aimed to define the transcript composition of IRD genes in the human retina by a meta-analysis of publicly available RNA-seq datasets using an ad-hoc designed pipeline. RESULTS We analysed 218 IRD genes and identified 5,054 transcripts, 3,367 of which were not previously reported. We assessed their putative expression levels and focused our attention on 435 transcripts predicted to account for at least 5% of the expression of the corresponding gene. We looked at the possible impact of the newly identified transcripts at the protein level and experimentally validated a subset of them. CONCLUSIONS This study provides an unprecedented, detailed overview of the complexity of the human retinal transcriptome that can be instrumental in contributing to the resolution of some cases of missing heritability in IRD patients.
Collapse
Affiliation(s)
- Karla Alejandra Ruiz-Ceja
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Program in Molecular Life Science, University of Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Dalila Capasso
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomic and Experimental Medicine Program, University of Naples "Federico II", Largo S. Marcellino, 10, 80138, Napoli, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Eugenio Del Prete
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Diego Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
- Chemical Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125, Napoli, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy.
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via de Crecchio, 7, 80138, Napoli, Italy.
| |
Collapse
|
22
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
23
|
Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol 2023; 24:242-254. [PMID: 36229538 DOI: 10.1038/s41580-022-00545-z] [Citation(s) in RCA: 205] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Alternative splicing is a substantial contributor to the high complexity of transcriptomes of multicellular eukaryotes. In this Review, we discuss the accumulated evidence that most of this complexity is reflected at the protein level and fundamentally shapes the physiology and pathology of organisms. This notion is supported not only by genome-wide analyses but, mainly, by detailed studies showing that global and gene-specific modulations of alternative splicing regulate highly diverse processes such as tissue-specific and species-specific cell differentiation, thermal regulation, neuron self-avoidance, infrared sensing, the Warburg effect, maintenance of telomere length, cancer and autism spectrum disorders (ASD). We also discuss how mastering the control of alternative splicing paved the way to clinically approved therapies for hereditary diseases.
Collapse
Affiliation(s)
- Luciano E Marasco
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Moleculary Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Moleculary Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Fouani Y, Gholipour A, Oveisee M, Shahryari A, Saberi H, Mowla SJ, Malakootian M. Distinct gene expression patterns of SOX2 and SOX2OT variants in different types of brain tumours. J Genet 2023. [DOI: 10.1007/s12041-023-01423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
25
|
Lobas AA, Solovyeva EM, Levitsky LI, Goncharov AO, Lyssuk EY, Larin SS, Moshkovskii SA, Gorshkov MV. Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data. Int J Mol Sci 2023; 24:2466. [PMID: 36768787 PMCID: PMC9916885 DOI: 10.3390/ijms24032466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Alternative splicing is one of the main regulation pathways in living cells beyond simple changes in the level of protein expression. Most of the approaches proposed in proteomics for the identification of specific splicing isoforms require a preliminary deep transcriptomic analysis of the sample under study, which is not always available, especially in the case of the re-analysis of previously acquired data. Herein, we developed new algorithms for the identification and validation of protein splice isoforms in proteomic data in the absence of RNA sequencing of the samples under study. The bioinformatic approaches were tested on the results of proteome analysis of human melanoma cell lines, obtained earlier by high-resolution liquid chromatography and mass spectrometry (LC-MS). A search for alternative splicing events for each of the cell lines studied was performed against the database generated from all known transcripts (RefSeq) and the one composed of peptide sequences, which included all biologically possible combinations of exons. The identifications were filtered using the prediction of both retention times and relative intensities of fragment ions in the corresponding mass spectra. The fragmentation mass spectra corresponding to the discovered alternative splicing events were additionally examined for artifacts. Selected splicing events were further validated at the mRNA level by quantitative PCR.
Collapse
Affiliation(s)
- Anna A. Lobas
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta M. Solovyeva
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lev I. Levitsky
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anton O. Goncharov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Elena Y. Lyssuk
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Sergey S. Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Sergei A. Moshkovskii
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mikhail V. Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
26
|
Frankish A, Carbonell-Sala S, Diekhans M, Jungreis I, Loveland J, Mudge J, Sisu C, Wright J, Arnan C, Barnes I, Banerjee A, Bennett R, Berry A, Bignell A, Boix C, Calvet F, Cerdán-Vélez D, Cunningham F, Davidson C, Donaldson S, Dursun C, Fatima R, Giorgetti S, Giron C, Gonzalez J, Hardy M, Harrison P, Hourlier T, Hollis Z, Hunt T, James B, Jiang Y, Johnson R, Kay M, Lagarde J, Martin F, Gómez L, Nair S, Ni P, Pozo F, Ramalingam V, Ruffier M, Schmitt B, Schreiber J, Steed E, Suner MM, Sumathipala D, Sycheva I, Uszczynska-Ratajczak B, Wass E, Yang Y, Yates A, Zafrulla Z, Choudhary J, Gerstein M, Guigo R, Hubbard TJP, Kellis M, Kundaje A, Paten B, Tress M, Flicek P. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res 2023; 51:D942-D949. [PMID: 36420896 PMCID: PMC9825462 DOI: 10.1093/nar/gkac1071] [Citation(s) in RCA: 192] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.
Collapse
Affiliation(s)
- Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sílvia Carbonell-Sala
- Department of Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science andTechnology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA 95064, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St, Cambridge, MA 02139,USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Jane E Loveland
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Cristina Sisu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - James C Wright
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Carme Arnan
- Department of Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science andTechnology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - If Barnes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Abhimanyu Banerjee
- Department of Genetics, Stanford University, Palo Alto, CA, USA
- Department of Computer Science, Stanford University, Palo Alto, CA, USA
| | - Ruth Bennett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrew Berry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alexandra Bignell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carles Boix
- MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St, Cambridge, MA 02139,USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Ferriol Calvet
- Department of Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science andTechnology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Daniel Cerdán-Vélez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Claire Davidson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sarah Donaldson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Cagatay Dursun
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Reham Fatima
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stefano Giorgetti
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carlos Garcıa Giron
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jose Manuel Gonzalez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew Hardy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Peter W Harrison
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Zoe Hollis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Benjamin James
- MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St, Cambridge, MA 02139,USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Rory Johnson
- Department of Medical Oncology, Bern University Hospital, Murtenstrasse 35, 3008 Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Mike Kay
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Julien Lagarde
- Department of Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science andTechnology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Laura Martínez Gómez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Surag Nair
- Department of Genetics, Stanford University, Palo Alto, CA, USA
- Department of Computer Science, Stanford University, Palo Alto, CA, USA
| | - Pengyu Ni
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Vivek Ramalingam
- Department of Genetics, Stanford University, Palo Alto, CA, USA
- Department of Computer Science, Stanford University, Palo Alto, CA, USA
| | - Magali Ruffier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bianca M Schmitt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jacob M Schreiber
- Department of Genetics, Stanford University, Palo Alto, CA, USA
- Department of Computer Science, Stanford University, Palo Alto, CA, USA
| | - Emily Steed
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Marie-Marthe Suner
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Dulika Sumathipala
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Irina Sycheva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Barbara Uszczynska-Ratajczak
- Computational Biology of Noncoding RNA, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Elizabeth Wass
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yucheng T Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Andrew Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Zahoor Zafrulla
- Department of Genetics, Stanford University, Palo Alto, CA, USA
- Department of Computer Science, Stanford University, Palo Alto, CA, USA
| | - Jyoti S Choudhary
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Roderic Guigo
- Department of Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science andTechnology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, E-08003 Catalonia, Spain
| | - Tim J P Hubbard
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St, Cambridge, MA 02139,USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Palo Alto, CA, USA
- Department of Computer Science, Stanford University, Palo Alto, CA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA 95064, USA
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
27
|
O’Grady TM, Baddoo M, Flemington SA, Ishaq EY, Ungerleider NA, Flemington EK. Reversal of splicing infidelity is a pre-activation step in B cell differentiation. Front Immunol 2022; 13:1060114. [PMID: 36601126 PMCID: PMC9806119 DOI: 10.3389/fimmu.2022.1060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction B cell activation and differentiation is central to the adaptive immune response. Changes in exon usage can have major impacts on cellular signaling and differentiation but have not been systematically explored in differentiating B cells. Methods We analyzed exon usage and intron retention in RNA-Seq data from subsets of human B cells at various stages of differentiation, and in an in vitro laboratory model of B cell activation and differentiation (Epstein Barr virus infection). Results Blood naïve B cells were found to have an unusual splicing profile, with unannotated splicing events in over 30% of expressed genes. Splicing changed substantially upon naïve B cell entry into secondary lymphoid tissue and before activation, involving significant increases in exon commitment and reductions in intron retention. These changes preferentially involved short introns with weak splice sites and were likely mediated by an overall increase in splicing efficiency induced by the lymphoid environment. The majority of transcripts affected by splicing changes showed restoration of encoded conserved protein domains and/or reduced targeting to the nonsense-mediated decay pathway. Affected genes were enriched in functionally important immune cell activation pathways such as antigen-mediated signaling, cell cycle control and mRNA processing and splicing. Discussion Functional observations from donor B cell subsets in progressive states of differentiation and from timecourse experiments using the in vitro model suggest that these widespread changes in mRNA splicing play a role in preparing naïve B cells for the decisive step of antigen-mediated activation and differentiation.
Collapse
Affiliation(s)
- Tina M. O’Grady
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Melody Baddoo
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Samuel A. Flemington
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Eman Y. Ishaq
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nathan A. Ungerleider
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erik K. Flemington
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
28
|
Holguin-Cruz JA, Foster LJ, Gsponer J. Where protein structure and cell diversity meet. Trends Cell Biol 2022; 32:996-1007. [PMID: 35537902 DOI: 10.1016/j.tcb.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/21/2023]
Abstract
Protein-protein interaction networks - interactomes - are charted with the hope to understand how phenotypes emerge and how they are altered in disease states. Early efforts to map interactomes have focused on the assembly of context agnostic, reference networks. However, recent studies have mapped interactomes across different cell lines and tissues, finding highly variable interactomes due to the rewiring of protein-protein interactions in different contexts. Increasing evidence points to significant links between protein structure and interactome diversity seen across cell types and tissues. We discuss how recent findings support the key role of alternative splicing and phosphorylation, two well-established regulators of protein structural and functional diversity, in defining cell type- and tissue-specific interactomes. Moreover, we show that intrinsically disordered protein regions are most favorably equipped to support interactome rewiring by acting as hubs of protein structure and function regulation.
Collapse
Affiliation(s)
- Jorge A Holguin-Cruz
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
29
|
Martinez-Gomez L, Cerdán-Vélez D, Abascal F, Tress ML. Origins and Evolution of Human Tandem Duplicated Exon Substitution Events. Genome Biol Evol 2022; 14:6809199. [PMID: 36346145 PMCID: PMC9741552 DOI: 10.1093/gbe/evac162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
The mutually exclusive splicing of tandem duplicated exons produces protein isoforms that are identical save for a homologous region that allows for the fine tuning of protein function. Tandem duplicated exon substitution events are rare, yet highly important alternative splicing events. Most events are ancient, their isoforms are highly expressed, and they have significantly more pathogenic mutations than other splice events. Here, we analyzed the physicochemical properties and functional roles of the homologous polypeptide regions produced by the 236 tandem duplicated exon substitutions annotated in the human gene set. We find that the most important structural and functional residues in these homologous regions are maintained, and that most changes are conservative rather than drastic. Three quarters of the isoforms produced from tandem duplicated exon substitution events are tissue-specific, particularly in nervous and cardiac tissues, and tandem duplicated exon substitution events are enriched in functional terms related to structures in the brain and skeletal muscle. We find considerable evidence for the convergent evolution of tandem duplicated exon substitution events in vertebrates, arthropods, and nematodes. Twelve human gene families have orthologues with tandem duplicated exon substitution events in both Drosophila melanogaster and Caenorhabditis elegans. Six of these gene families are ion transporters, suggesting that tandem exon duplication in genes that control the flow of ions into the cell has an adaptive benefit. The ancient origins, the strong indications of tissue-specific functions, and the evidence of convergent evolution suggest that these events may have played important roles in the evolution of animal tissues and organs.
Collapse
Affiliation(s)
- Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Daniel Cerdán-Vélez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | | |
Collapse
|
30
|
Clinical variant interpretation and biologically relevant reference transcripts. NPJ Genom Med 2022; 7:59. [PMID: 36257961 PMCID: PMC9579139 DOI: 10.1038/s41525-022-00329-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Clinical variant interpretation is highly dependent on the choice of reference transcript. Although the longest transcript has traditionally been chosen as the reference, APPRIS principal and MANE Select transcripts, biologically supported reference sequences, are now available. In this study, we show that MANE Select and APPRIS principal transcripts are the best reference transcripts for clinical variation. APPRIS principal and MANE Select transcripts capture almost all ClinVar pathogenic variants, and they are particularly powerful over the 94% of coding genes in which they agree. We find that a vanishingly small number of ClinVar pathogenic variants affect alternative protein products. Alternative isoforms that are likely to be clinically relevant can be predicted using TRIFID scores, the highest scoring alternative transcripts are almost 700 times more likely to house pathogenic variants. We believe that APPRIS, MANE and TRIFID are essential tools for clinical variant interpretation.
Collapse
|
31
|
Mirzadeh Azad F, Taheri Bajgan E, Naeli P, Rudov A, Bagheri Moghadam M, Sadat Akhtar M, Gholipour A, Mowla SJ, Malakootian M. Differential Expression Pattern of linc-ROR Spliced Variants in Pluripotent and Non-Pluripotent Cell Lines. CELL JOURNAL 2022; 24:569-576. [PMID: 36259474 PMCID: PMC9617025 DOI: 10.22074/cellj.2022.8205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The human large intergenic non-coding RNA-regulator of reprogramming program (linc-ROR) is known as a stem cell specific linc-RNA. linc-ROR counteracts differentiation via sequestering microRNA-145 (miR-145) that targets OCT4 transcript. Despite the research on the expression and function, the exact structure of linc-ROR transcripts is not clear. Considering the contribution of alternative splicing in transcripts structures and function, identifying different spliced variants of linc-ROR is necessary for further functional analyses. We aimed to find the alternatively spliced transcripts of linc-ROR and investigate their expression pattern in stem and cancer cell lines and during neural differentiation of NT2 cells as a model for understanding linc-ROR role in stem cell and differentiation. MATERIALS AND METHODS In this experimental study, linc-ROR locus was scanned for identifying novel exons. Different primer sets were used to detect new spliced variants by reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing. Quantitative PCR (qPCR) and RT-PCR were employed to profile expression of linc-ROR transcripts in different cell lines and during neural differentiation of stem cells. RESULTS We could discover 13 novel spliced variants of linc-ROR harboring unique array of exons. Our work uncovered six novel exons, some of which were the product of exonized transposable elements. Monitoring expression profile of the linc-ROR spliced variants in a panel of pluripotent and non-pluripotent cells exhibited that all transcripts were primarily expressed in pluripotent cells. Moreover, the examined linc-ROR spliced variants showed a similar downregulation during neural differentiation of NT2 cells. CONCLUSION Altogether, our data showed despite the difference in the structure and composition of exons, various spliced variants of linc-ROR showed similar expression pattern in stem cells and through differentiation.
Collapse
Affiliation(s)
- Fatemeh Mirzadeh Azad
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran,Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Elham Taheri Bajgan
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Naeli
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran,Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Alexander Rudov
- Department of Biomolecular Sciences, University of Urbino, Via Saffi Urbino, Italy
| | - Mahrokh Bagheri Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Sadat Akhtar
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akram Gholipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Javad Mowla
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,Cardiogenetic Research CenterRajaie Cardiovascular Medical and Research CenterIran University
of Medical SciencesTehranIran
| |
Collapse
|
32
|
Tung KF, Lin WC. TEx-MST: tissue expression profiles of MANE select transcripts. Database (Oxford) 2022; 2022:6726258. [PMID: 36170113 PMCID: PMC9518666 DOI: 10.1093/database/baac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022]
Abstract
Recently, a new reference transcript dataset [Matched Annotation from the NCBI and EMBL-EBI (MANE) select] was released by NCBI and EMBL-EBI to make available a new unified representative transcript for human protein-coding genes. While the main purpose of MANE project is to provide a harmonized gene and transcript information standard, there is no explicit tissue expression information about these MANE select transcripts. In this report, we tried to provide useful expression profiles of MANE select transcripts in various normal human tissues to allow further interrogation of their molecular modulations and functional significance. We obtained the new V9 transcript expression dataset from the Genotype-Tissue Expression (GTEx) web portal. This new GTEx dataset, based on a long-read sequencing platform, affords better assessment of the expression of alternative spliced transcripts. This tissue expression profiles of MANE select transcripts (TEx-MST) database not only provides the basic information of MANE select transcripts but also tissue expression profiles on alternative transcripts in protein-coding genes. Users can initiate the interrogation by gene symbol searches or by browsing the MANE genes with various criteria (such as genome locations or expression rankings). We further utilized the GENCODE biotype feature to identify the top-ranked protein-coding transcripts by choosing the most expressed protein-coding transcripts from GTEx datasets (both V8 and V9 datasets). In summary, there are 18 083 genes matched between MANE and GTEx. Among them, 13 245 MANE select transcripts matched with the top-ranked protein-coding transcripts in GTEx V9 dataset, which underlined the dominate expression of MANE select transcripts. This TEx-MST web bioinformatic database provides a visualized user interface for the normal tissue expression patterns of MANE select transcripts using the newly released GTEx dataset. Database URL: TEx-MST is available at https://texmst.ibms.sinica.edu.tw/
Collapse
Affiliation(s)
- Kuo-Feng Tung
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan, R.O.C
| | - Wen-chang Lin
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan, R.O.C
- Institute of Biomedical Informatics, National Yang-Ming Chiao Tung University , Taipei 112, Taiwan, R.O.C
| |
Collapse
|
33
|
Pozo F, Rodriguez JM, Martínez Gómez L, Vázquez J, Tress ML. APPRIS principal isoforms and MANE Select transcripts define reference splice variants. Bioinformatics 2022; 38:ii89-ii94. [PMID: 36124785 PMCID: PMC9486585 DOI: 10.1093/bioinformatics/btac473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Selecting the splice variant that best represents a coding gene is a crucial first step in many experimental analyses, and vital for mapping clinically relevant variants. This study compares the longest isoforms, MANE Select transcripts, APPRIS principal isoforms, and expression data, and aims to determine which method is best for selecting biological important reference splice variants for large-scale analyses. RESULTS Proteomics analyses and human genetic variation data suggest that most coding genes have a single main protein isoform. We show that APPRIS principal isoforms and MANE Select transcripts best describe these main cellular isoforms, and find that using the longest splice variant as the representative is a poor strategy. Exons unique to the longest splice isoforms are not under selective pressure, and so are unlikely to be functionally relevant. Expression data are also a poor means of selecting the main splice variant. APPRIS principal and MANE Select exons are under purifying selection, while exons specific to alternative transcripts are not. There are MANE and APPRIS representatives for almost 95% of genes, and where they agree they are particularly effective, coinciding with the main proteomics isoform for over 98.2% of genes. AVAILABILITY AND IMPLEMENTATION APPRIS principal isoforms for human, mouse and other model species can be downloaded from the APPRIS database (https://appris.bioinfo.cnio.es), GENCODE genes (https://www.gencodegenes.org/) and the Ensembl website (https://www.ensembl.org). MANE Select transcripts for the human reference set are available from the Ensembl, GENCODE and RefSeq databases (https://www.ncbi.nlm.nih.gov/refseq/). Lists of splice variants where MANE and APPRIS coincide are available from the APPRIS database. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - José Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Laura Martínez Gómez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain,CIBER de Investigaciones Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | |
Collapse
|
34
|
Wang QS, Edahiro R, Namkoong H, Hasegawa T, Shirai Y, Sonehara K, Tanaka H, Lee H, Saiki R, Hyugaji T, Shimizu E, Katayama K, Kanai M, Naito T, Sasa N, Yamamoto K, Kato Y, Morita T, Takahashi K, Harada N, Naito T, Hiki M, Matsushita Y, Takagi H, Ichikawa M, Nakamura A, Harada S, Sandhu Y, Kabata H, Masaki K, Kamata H, Ikemura S, Chubachi S, Okamori S, Terai H, Morita A, Asakura T, Sasaki J, Morisaki H, Uwamino Y, Nanki K, Uchida S, Uno S, Nishimura T, Ishiguro T, Isono T, Shibata S, Matsui Y, Hosoda C, Takano K, Nishida T, Kobayashi Y, Takaku Y, Takayanagi N, Ueda S, Tada A, Miyawaki M, Yamamoto M, Yoshida E, Hayashi R, Nagasaka T, Arai S, Kaneko Y, Sasaki K, Tagaya E, Kawana M, Arimura K, Takahashi K, Anzai T, Ito S, Endo A, Uchimura Y, Miyazaki Y, Honda T, Tateishi T, Tohda S, Ichimura N, Sonobe K, Sassa CT, Nakajima J, Nakano Y, Nakajima Y, Anan R, Arai R, Kurihara Y, Harada Y, Nishio K, Ueda T, Azuma M, Saito R, Sado T, Miyazaki Y, Sato R, Haruta Y, Nagasaki T, Yasui Y, Hasegawa Y, Mutoh Y, Kimura T, Sato T, et alWang QS, Edahiro R, Namkoong H, Hasegawa T, Shirai Y, Sonehara K, Tanaka H, Lee H, Saiki R, Hyugaji T, Shimizu E, Katayama K, Kanai M, Naito T, Sasa N, Yamamoto K, Kato Y, Morita T, Takahashi K, Harada N, Naito T, Hiki M, Matsushita Y, Takagi H, Ichikawa M, Nakamura A, Harada S, Sandhu Y, Kabata H, Masaki K, Kamata H, Ikemura S, Chubachi S, Okamori S, Terai H, Morita A, Asakura T, Sasaki J, Morisaki H, Uwamino Y, Nanki K, Uchida S, Uno S, Nishimura T, Ishiguro T, Isono T, Shibata S, Matsui Y, Hosoda C, Takano K, Nishida T, Kobayashi Y, Takaku Y, Takayanagi N, Ueda S, Tada A, Miyawaki M, Yamamoto M, Yoshida E, Hayashi R, Nagasaka T, Arai S, Kaneko Y, Sasaki K, Tagaya E, Kawana M, Arimura K, Takahashi K, Anzai T, Ito S, Endo A, Uchimura Y, Miyazaki Y, Honda T, Tateishi T, Tohda S, Ichimura N, Sonobe K, Sassa CT, Nakajima J, Nakano Y, Nakajima Y, Anan R, Arai R, Kurihara Y, Harada Y, Nishio K, Ueda T, Azuma M, Saito R, Sado T, Miyazaki Y, Sato R, Haruta Y, Nagasaki T, Yasui Y, Hasegawa Y, Mutoh Y, Kimura T, Sato T, Takei R, Hagimoto S, Noguchi Y, Yamano Y, Sasano H, Ota S, Nakamori Y, Yoshiya K, Saito F, Yoshihara T, Wada D, Iwamura H, Kanayama S, Maruyama S, Yoshiyama T, Ohta K, Kokuto H, Ogata H, Tanaka Y, Arakawa K, Shimoda M, Osawa T, Tateno H, Hase I, Yoshida S, Suzuki S, Kawada M, Horinouchi H, Saito F, Mitamura K, Hagihara M, Ochi J, Uchida T, Baba R, Arai D, Ogura T, Takahashi H, Hagiwara S, Nagao G, Konishi S, Nakachi I, Murakami K, Yamada M, Sugiura H, Sano H, Matsumoto S, Kimura N, Ono Y, Baba H, Suzuki Y, Nakayama S, Masuzawa K, Namba S, Shiroyama T, Noda Y, Niitsu T, Adachi Y, Enomoto T, Amiya S, Hara R, Yamaguchi Y, Murakami T, Kuge T, Matsumoto K, Yamamoto Y, Yamamoto M, Yoneda M, Tomono K, Kato K, Hirata H, Takeda Y, Koh H, Manabe T, Funatsu Y, Ito F, Fukui T, Shinozuka K, Kohashi S, Miyazaki M, Shoko T, Kojima M, Adachi T, Ishikawa M, Takahashi K, Inoue T, Hirano T, Kobayashi K, Takaoka H, Watanabe K, Miyazawa N, Kimura Y, Sado R, Sugimoto H, Kamiya A, Kuwahara N, Fujiwara A, Matsunaga T, Sato Y, Okada T, Hirai Y, Kawashima H, Narita A, Niwa K, Sekikawa Y, Nishi K, Nishitsuji M, Tani M, Suzuki J, Nakatsumi H, Ogura T, Kitamura H, Hagiwara E, Murohashi K, Okabayashi H, Mochimaru T, Nukaga S, Satomi R, Oyamada Y, Mori N, Baba T, Fukui Y, Odate M, Mashimo S, Makino Y, Yagi K, Hashiguchi M, Kagyo J, Shiomi T, Fuke S, Saito H, Tsuchida T, Fujitani S, Takita M, Morikawa D, Yoshida T, Izumo T, Inomata M, Kuse N, Awano N, Tone M, Ito A, Nakamura Y, Hoshino K, Maruyama J, Ishikura H, Takata T, Odani T, Amishima M, Hattori T, Shichinohe Y, Kagaya T, Kita T, Ohta K, Sakagami S, Koshida K, Hayashi K, Shimizu T, Kozu Y, Hiranuma H, Gon Y, Izumi N, Nagata K, Ueda K, Taki R, Hanada S, Kawamura K, Ichikado K, Nishiyama K, Muranaka H, Nakamura K, Hashimoto N, Wakahara K, Koji S, Omote N, Ando A, Kodama N, Kaneyama Y, Maeda S, Kuraki T, Matsumoto T, Yokote K, Nakada TA, Abe R, Oshima T, Shimada T, Harada M, Takahashi T, Ono H, Sakurai T, Shibusawa T, Kimizuka Y, Kawana A, Sano T, Watanabe C, Suematsu R, Sageshima H, Yoshifuji A, Ito K, Takahashi S, Ishioka K, Nakamura M, Masuda M, Wakabayashi A, Watanabe H, Ueda S, Nishikawa M, Chihara Y, Takeuchi M, Onoi K, Shinozuka J, Sueyoshi A, Nagasaki Y, Okamoto M, Ishihara S, Shimo M, Tokunaga Y, Kusaka Y, Ohba T, Isogai S, Ogawa A, Inoue T, Fukuyama S, Eriguchi Y, Yonekawa A, Kan-O K, Matsumoto K, Kanaoka K, Ihara S, Komuta K, Inoue Y, Chiba S, Yamagata K, Hiramatsu Y, Kai H, Asano K, Oguma T, Ito Y, Hashimoto S, Yamasaki M, Kasamatsu Y, Komase Y, Hida N, Tsuburai T, Oyama B, Takada M, Kanda H, Kitagawa Y, Fukuta T, Miyake T, Yoshida S, Ogura S, Abe S, Kono Y, Togashi Y, Takoi H, Kikuchi R, Ogawa S, Ogata T, Ishihara S, Kanehiro A, Ozaki S, Fuchimoto Y, Wada S, Fujimoto N, Nishiyama K, Terashima M, Beppu S, Yoshida K, Narumoto O, Nagai H, Ooshima N, Motegi M, Umeda A, Miyagawa K, Shimada H, Endo M, Ohira Y, Watanabe M, Inoue S, Igarashi A, Sato M, Sagara H, Tanaka A, Ohta S, Kimura T, Shibata Y, Tanino Y, Nikaido T, Minemura H, Sato Y, Yamada Y, Hashino T, Shinoki M, Iwagoe H, Takahashi H, Fujii K, Kishi H, Kanai M, Imamura T, Yamashita T, Yatomi M, Maeno T, Hayashi S, Takahashi M, Kuramochi M, Kamimaki I, Tominaga Y, Ishii T, Utsugi M, Ono A, Tanaka T, Kashiwada T, Fujita K, Saito Y, Seike M, Watanabe H, Matsuse H, Kodaka N, Nakano C, Oshio T, Hirouchi T, Makino S, Egi M, Omae Y, Nannya Y, Ueno T, Takano T, Katayama K, Ai M, Kumanogoh A, Sato T, Hasegawa N, Tokunaga K, Ishii M, Koike R, Kitagawa Y, Kimura A, Imoto S, Miyano S, Ogawa S, Kanai T, Fukunaga K, Okada Y. The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force. Nat Commun 2022; 13:4830. [PMID: 35995775 PMCID: PMC9395416 DOI: 10.1038/s41467-022-32276-2] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/25/2022] [Indexed: 11/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.
Collapse
Affiliation(s)
- Qingbo S Wang
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Hasegawa
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Lee
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Takayoshi Hyugaji
- Division of Health Medical Intelligence, Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Kotoe Katayama
- Division of Health Medical Intelligence, Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Masahiro Kanai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Noah Sasa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of General Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Makoto Hiki
- Department of Emergency and Disaster Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
- Department of Cardiovascular Biology and Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Matsushita
- Department of Internal Medicine and Rheumatology, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Haruhi Takagi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Masako Ichikawa
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Ai Nakamura
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Sonoko Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuuki Sandhu
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Atsuho Morita
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Morisaki
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kosaku Nanki
- Division of Gastroenterology and Hepatology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sho Uchida
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyasu Nishimura
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
- Keio University Health Center, Tokyo, Japan
| | - Takashri Ishiguro
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Taisuke Isono
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Shun Shibata
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Yuma Matsui
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Chiaki Hosoda
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Kenji Takano
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Takashi Nishida
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Yoichi Kobayashi
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Yotaro Takaku
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Noboru Takayanagi
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Soichiro Ueda
- JCHO (Japan Community Health care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Ai Tada
- JCHO (Japan Community Health care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Masayoshi Miyawaki
- JCHO (Japan Community Health care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Masaomi Yamamoto
- JCHO (Japan Community Health care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Eriko Yoshida
- JCHO (Japan Community Health care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Reina Hayashi
- JCHO (Japan Community Health care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Tomoki Nagasaka
- JCHO (Japan Community Health care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Sawako Arai
- JCHO (Japan Community Health care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Yutaro Kaneko
- JCHO (Japan Community Health care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Kana Sasaki
- JCHO (Japan Community Health care Organization) Saitama Medical Center, Internal Medicine, Saitama, Japan
| | - Etsuko Tagaya
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Masatoshi Kawana
- Department of General Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Ken Arimura
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kunihiko Takahashi
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuhiko Anzai
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Ito
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akifumi Endo
- Clinical Research Center, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Yuji Uchimura
- Department of Medical Informatics, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Yasunari Miyazaki
- Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Honda
- Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoya Tateishi
- Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Tohda
- Clinical Laboratory, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Naoya Ichimura
- Clinical Laboratory, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Kazunari Sonobe
- Clinical Laboratory, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Chihiro Tani Sassa
- Clinical Laboratory, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Jun Nakajima
- Clinical Laboratory, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Yasushi Nakano
- Kawasaki Municipal Ida Hospital, Department of Internal Medicine, Kawasaki, Japan
| | - Yukiko Nakajima
- Kawasaki Municipal Ida Hospital, Department of Internal Medicine, Kawasaki, Japan
| | - Ryusuke Anan
- Kawasaki Municipal Ida Hospital, Department of Internal Medicine, Kawasaki, Japan
| | - Ryosuke Arai
- Kawasaki Municipal Ida Hospital, Department of Internal Medicine, Kawasaki, Japan
| | - Yuko Kurihara
- Kawasaki Municipal Ida Hospital, Department of Internal Medicine, Kawasaki, Japan
| | - Yuko Harada
- Kawasaki Municipal Ida Hospital, Department of Internal Medicine, Kawasaki, Japan
| | - Kazumi Nishio
- Kawasaki Municipal Ida Hospital, Department of Internal Medicine, Kawasaki, Japan
| | - Tetsuya Ueda
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Masanori Azuma
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Ryuichi Saito
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Toshikatsu Sado
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Yoshimune Miyazaki
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Ryuichi Sato
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Yuki Haruta
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Tadao Nagasaki
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Yoshinori Yasui
- Department of Infection Control, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Yoshikazu Mutoh
- Department of Infectious Diseases, Tosei General Hospital, Seto, Japan
| | - Tomoki Kimura
- Department of Respiratory, Allergic Diseases Internal Medicine, Tosei General Hospital, Seto, Japan
| | - Tomonori Sato
- Department of Respiratory, Allergic Diseases Internal Medicine, Tosei General Hospital, Seto, Japan
| | - Reoto Takei
- Department of Respiratory, Allergic Diseases Internal Medicine, Tosei General Hospital, Seto, Japan
| | - Satoshi Hagimoto
- Department of Respiratory, Allergic Diseases Internal Medicine, Tosei General Hospital, Seto, Japan
| | - Yoichiro Noguchi
- Department of Respiratory, Allergic Diseases Internal Medicine, Tosei General Hospital, Seto, Japan
| | - Yasuhiko Yamano
- Department of Respiratory, Allergic Diseases Internal Medicine, Tosei General Hospital, Seto, Japan
| | - Hajime Sasano
- Department of Respiratory, Allergic Diseases Internal Medicine, Tosei General Hospital, Seto, Japan
| | - Sho Ota
- Department of Respiratory, Allergic Diseases Internal Medicine, Tosei General Hospital, Seto, Japan
| | - Yasushi Nakamori
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | - Kazuhisa Yoshiya
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | - Fukuki Saito
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | - Tomoyuki Yoshihara
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | - Daiki Wada
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | - Hiromu Iwamura
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | - Syuji Kanayama
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | - Shuhei Maruyama
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Moriguchi, Japan
| | - Takashi Yoshiyama
- Japan Anti-Tuberculosis Association (JATA) Fukujuji Hospital, Kiyose, Japan
| | - Ken Ohta
- Japan Anti-Tuberculosis Association (JATA) Fukujuji Hospital, Kiyose, Japan
| | - Hiroyuki Kokuto
- Japan Anti-Tuberculosis Association (JATA) Fukujuji Hospital, Kiyose, Japan
| | - Hideo Ogata
- Japan Anti-Tuberculosis Association (JATA) Fukujuji Hospital, Kiyose, Japan
| | - Yoshiaki Tanaka
- Japan Anti-Tuberculosis Association (JATA) Fukujuji Hospital, Kiyose, Japan
| | - Kenichi Arakawa
- Japan Anti-Tuberculosis Association (JATA) Fukujuji Hospital, Kiyose, Japan
| | - Masafumi Shimoda
- Japan Anti-Tuberculosis Association (JATA) Fukujuji Hospital, Kiyose, Japan
| | - Takeshi Osawa
- Japan Anti-Tuberculosis Association (JATA) Fukujuji Hospital, Kiyose, Japan
| | - Hiroki Tateno
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Isano Hase
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Shuichi Yoshida
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Shoji Suzuki
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Miki Kawada
- Department of Infectious Diseases, Saitama City Hospital, Saitama, Japan
| | - Hirohisa Horinouchi
- Department of General Thoracic Surgery, Saitama City Hospital, Saitama, Japan
| | - Fumitake Saito
- Department of Pulmonary Medicine, Eiju General Hospital, Tokyo, Japan
| | - Keiko Mitamura
- Division of Infection Control, Eiju General Hospital, Tokyo, Japan
| | - Masao Hagihara
- Department of Hematology, Eiju General Hospital, Tokyo, Japan
| | - Junichi Ochi
- Department of Pulmonary Medicine, Eiju General Hospital, Tokyo, Japan
| | - Tomoyuki Uchida
- Department of Hematology, Eiju General Hospital, Tokyo, Japan
| | - Rie Baba
- Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Daisuke Arai
- Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | | | | | | | - Genta Nagao
- Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | | | | | - Koji Murakami
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichiro Matsumoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nozomu Kimura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshinao Ono
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Baba
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Suzuki
- Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Sohei Nakayama
- Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Keita Masuzawa
- Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshimi Noda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Niitsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takatoshi Enomoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Saori Amiya
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Reina Hara
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Teruaki Murakami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Tomoki Kuge
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kinnosuke Matsumoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuji Yamamoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Yamamoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Midori Yoneda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
| | - Kazuto Kato
- Department of Biomedical Ethics and Public Policy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | - Tomohisa Shoko
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Mitsuaki Kojima
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Tomohiro Adachi
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Motonao Ishikawa
- Department of Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Kenichiro Takahashi
- Department of Pediatrics, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Takashi Inoue
- Internal Medicine, Sano Kosei General Hospital, Sano, Japan
| | | | | | | | - Kazuyoshi Watanabe
- Japan Community Health care Organization Kanazawa Hospital, Kanazawa, Japan
| | - Naoki Miyazawa
- Department of Respiratory Medicine, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Yasuhiro Kimura
- Department of Respiratory Medicine, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Reiko Sado
- Department of Respiratory Medicine, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Hideyasu Sugimoto
- Department of Respiratory Medicine, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Akane Kamiya
- Department of Clinical Laboratory, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Naota Kuwahara
- Internal Medicine, Internal Medicine Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Akiko Fujiwara
- Internal Medicine, Internal Medicine Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Tomohiro Matsunaga
- Internal Medicine, Internal Medicine Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Yoko Sato
- Internal Medicine, Internal Medicine Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Takenori Okada
- Internal Medicine, Internal Medicine Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Yoshihiro Hirai
- Department of Respiratory Medicine, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, Kawasaki, Japan
| | - Hidetoshi Kawashima
- Department of Respiratory Medicine, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, Kawasaki, Japan
| | - Atsuya Narita
- Department of Respiratory Medicine, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, Kawasaki, Japan
| | - Kazuki Niwa
- Department of General Internal Medicine, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, Kawasaki, Japan
| | - Yoshiyuki Sekikawa
- Department of General Internal Medicine, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, Kawasaki, Japan
| | - Koichi Nishi
- Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | | | - Mayuko Tani
- Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Junya Suzuki
- Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | | | - Takashi Ogura
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Hideya Kitamura
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Eri Hagiwara
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Kota Murohashi
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | - Takao Mochimaru
- Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Department of Allergy, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Shigenari Nukaga
- Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Ryosuke Satomi
- Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Yoshitaka Oyamada
- Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Department of Allergy, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Nobuaki Mori
- Department of General Internal Medicine and Infectious Diseases, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Tomoya Baba
- Department of Respiratory Medicine, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Yasutaka Fukui
- Department of Respiratory Medicine, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Mitsuru Odate
- Department of Respiratory Medicine, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Shuko Mashimo
- Department of Respiratory Medicine, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Yasushi Makino
- Department of Respiratory Medicine, Toyohashi Municipal Hospital, Toyohashi, Japan
| | | | | | | | | | - Satoshi Fuke
- KKR Sapporo Medical Center, Department of respiratory medicine, Sapporo, Japan
| | - Hiroshi Saito
- KKR Sapporo Medical Center, Department of respiratory medicine, Sapporo, Japan
| | - Tomoya Tsuchida
- Division of General Internal Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shigeki Fujitani
- Department of Emergency and Critical Care Medicine, St.Marianna University School of Medicine, Kawasaki, Japan
| | - Mumon Takita
- Department of Emergency and Critical Care Medicine, St.Marianna University School of Medicine, Kawasaki, Japan
| | - Daiki Morikawa
- Department of Emergency and Critical Care Medicine, St.Marianna University School of Medicine, Kawasaki, Japan
| | - Toru Yoshida
- Department of Emergency and Critical Care Medicine, St.Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | - Mari Tone
- Japanese Red Cross Medical Center, Tokyo, Japan
| | | | - Yoshihiko Nakamura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kota Hoshino
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Junichi Maruyama
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tohru Takata
- Department of Infection Control, Fukuoka University Hospital, Fukuoka, Japan
| | - Toshio Odani
- Department of Rheumatology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Masaru Amishima
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Takeshi Hattori
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Yasuo Shichinohe
- Department of Emergency and Critical Care Medicine, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Takashi Kagaya
- National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Toshiyuki Kita
- National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Kazuhide Ohta
- National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Satoru Sakagami
- National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Kiyoshi Koshida
- National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Kentaro Hayashi
- Nihon University School of Medicine, Department of Internal Medicine, Division of Respiratory Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Nihon University School of Medicine, Department of Internal Medicine, Division of Respiratory Medicine, Tokyo, Japan
| | - Yutaka Kozu
- Nihon University School of Medicine, Department of Internal Medicine, Division of Respiratory Medicine, Tokyo, Japan
| | - Hisato Hiranuma
- Nihon University School of Medicine, Department of Internal Medicine, Division of Respiratory Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Nihon University School of Medicine, Department of Internal Medicine, Division of Respiratory Medicine, Tokyo, Japan
| | | | | | - Ken Ueda
- Musashino Red Cross Hospital, Musashino, Japan
| | - Reiko Taki
- Musashino Red Cross Hospital, Musashino, Japan
| | | | - Kodai Kawamura
- Division of Respiratory Medicine, Social Welfare Organization Saiseikai Imperial Gift Foundation, Inc., Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Kazuya Ichikado
- Division of Respiratory Medicine, Social Welfare Organization Saiseikai Imperial Gift Foundation, Inc., Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Kenta Nishiyama
- Division of Respiratory Medicine, Social Welfare Organization Saiseikai Imperial Gift Foundation, Inc., Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Hiroyuki Muranaka
- Division of Respiratory Medicine, Social Welfare Organization Saiseikai Imperial Gift Foundation, Inc., Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Kazunori Nakamura
- Division of Respiratory Medicine, Social Welfare Organization Saiseikai Imperial Gift Foundation, Inc., Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Wakahara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sakamoto Koji
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norihito Omote
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Ando
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhiro Kodama
- Fukuoka Tokushukai Hospital, Department of Internal Medicine, Kasuga, Japan
| | - Yasunari Kaneyama
- Fukuoka Tokushukai Hospital, Department of Internal Medicine, Kasuga, Japan
| | - Shunsuke Maeda
- Fukuoka Tokushukai Hospital, Department of Internal Medicine, Kasuga, Japan
| | - Takashige Kuraki
- Fukuoka Tokushukai Hospital, Respiratory Medicine, Kasuga, Japan
| | | | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ryuzo Abe
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Taku Oshima
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tadanaga Shimada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masahiro Harada
- National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Takeshi Takahashi
- National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Hiroshi Ono
- National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Toshihiro Sakurai
- National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | | | - Yoshifumi Kimizuka
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Tomoya Sano
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Chie Watanabe
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Ryohei Suematsu
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Ayumi Yoshifuji
- Department of Internal Medicine, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Kazuto Ito
- Department of Internal Medicine, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Saeko Takahashi
- Department of Pulmonary Medicine, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Kota Ishioka
- Department of Pulmonary Medicine, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Morio Nakamura
- Department of Pulmonary Medicine, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Makoto Masuda
- Department of Respiratory Medicine, Fujisawa City Hospital, Fujisawa, Japan
| | - Aya Wakabayashi
- Department of Respiratory Medicine, Fujisawa City Hospital, Fujisawa, Japan
| | - Hiroki Watanabe
- Department of Respiratory Medicine, Fujisawa City Hospital, Fujisawa, Japan
| | - Suguru Ueda
- Department of Respiratory Medicine, Fujisawa City Hospital, Fujisawa, Japan
| | - Masanori Nishikawa
- Department of Respiratory Medicine, Fujisawa City Hospital, Fujisawa, Japan
| | | | | | | | | | | | - Yoji Nagasaki
- Department of Infectious Disease and Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Masaki Okamoto
- Department of Respirology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
- Division of Respirology, Rheumatology, and Neurology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sayoko Ishihara
- Department of Infectious Disease, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Masatoshi Shimo
- Department of Infectious Disease, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yoshihisa Tokunaga
- Department of Respirology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
- Division of Respirology, Rheumatology, and Neurology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yu Kusaka
- Ome Municipal General Hospital, Ome, Japan
| | | | | | - Aki Ogawa
- Ome Municipal General Hospital, Ome, Japan
| | | | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Eriguchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akiko Yonekawa
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | - Yoshiaki Inoue
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hirayasu Kai
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Tsuyoshi Oguma
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yoko Ito
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Yamasaki
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yu Kasamatsu
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuko Komase
- Department of Respiratory Internal Medicine, St Marianna University School of Medicine, Yokohama-City Seibu Hospital, Yokohama, Japan
| | - Naoya Hida
- Department of Respiratory Internal Medicine, St Marianna University School of Medicine, Yokohama-City Seibu Hospital, Yokohama, Japan
| | - Takahiro Tsuburai
- Department of Respiratory Internal Medicine, St Marianna University School of Medicine, Yokohama-City Seibu Hospital, Yokohama, Japan
| | - Baku Oyama
- Department of Respiratory Internal Medicine, St Marianna University School of Medicine, Yokohama-City Seibu Hospital, Yokohama, Japan
| | | | | | - Yuichiro Kitagawa
- Gifu University School of Medicine Graduate School of Medicine, Emergency and Disaster Medicine, Gifu, Japan
| | - Tetsuya Fukuta
- Gifu University School of Medicine Graduate School of Medicine, Emergency and Disaster Medicine, Gifu, Japan
| | - Takahito Miyake
- Gifu University School of Medicine Graduate School of Medicine, Emergency and Disaster Medicine, Gifu, Japan
| | - Shozo Yoshida
- Gifu University School of Medicine Graduate School of Medicine, Emergency and Disaster Medicine, Gifu, Japan
| | - Shinji Ogura
- Gifu University School of Medicine Graduate School of Medicine, Emergency and Disaster Medicine, Gifu, Japan
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University Hospital, Tokyo, Japan
| | - Yuta Kono
- Department of Respiratory Medicine, Tokyo Medical University Hospital, Tokyo, Japan
| | - Yuki Togashi
- Department of Respiratory Medicine, Tokyo Medical University Hospital, Tokyo, Japan
| | - Hiroyuki Takoi
- Department of Respiratory Medicine, Tokyo Medical University Hospital, Tokyo, Japan
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Hospital, Tokyo, Japan
| | | | | | | | - Arihiko Kanehiro
- Okayama Rosai Hospital, Okayama, Japan
- Himeji St. Mary's Hospital, Himeji, Japan
| | | | | | - Sae Wada
- Okayama Rosai Hospital, Okayama, Japan
| | | | - Kei Nishiyama
- Emergency & Critical Care, Niigata University, Niigata, Japan
| | - Mariko Terashima
- Emergency & Critical Care Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Satoru Beppu
- Emergency & Critical Care Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kosuke Yoshida
- Emergency & Critical Care Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Osamu Narumoto
- National Hospital Organization Tokyo Hospital Hospital, Kiyose, Japan
| | - Hideaki Nagai
- National Hospital Organization Tokyo Hospital Hospital, Kiyose, Japan
| | - Nobuharu Ooshima
- National Hospital Organization Tokyo Hospital Hospital, Kiyose, Japan
| | | | - Akira Umeda
- Department of General Medicine, School of Medicine, International University of Health and Welfare Shioya Hospital, Ohtawara, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare Shioya Hospital, Ohtawara, Japan
| | - Hisato Shimada
- Department of Respiratory Medicine, International University of Health and Welfare Shioya Hospital, Ohtawara, Japan
| | - Mayu Endo
- Department of Clinical Laboratory, International University of Health and Welfare Shioya Hospital, Ohtawara, Japan
| | - Yoshiyuki Ohira
- Department of General Medicine, School of Medicine, International University of Health and Welfare Shioya Hospital, Ohtawara, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hironori Sagara
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Akihiko Tanaka
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Shin Ohta
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Tomoyuki Kimura
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takefumi Nikaido
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Minemura
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yuki Sato
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | - Hajime Iwagoe
- Division of Infectious Diseases, Kumamoto City Hospital, Kumamoto, Japan
| | - Hiroshi Takahashi
- Department of Respiratory Medicine, Kumamoto City Hospital, Kumamoto, Japan
| | - Kazuhiko Fujii
- Department of Respiratory Medicine, Kumamoto City Hospital, Kumamoto, Japan
| | - Hiroto Kishi
- Department of Respiratory Medicine, Kumamoto City Hospital, Kumamoto, Japan
| | - Masayuki Kanai
- Department of Emergency and Critical Care Medicine, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Tomonori Imamura
- Department of Emergency and Critical Care Medicine, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Tatsuya Yamashita
- Department of Emergency and Critical Care Medicine, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Masakiyo Yatomi
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshitaka Maeno
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Mai Takahashi
- National hospital organization Saitama Hospital, Wako, Japan
| | | | - Isamu Kamimaki
- National hospital organization Saitama Hospital, Wako, Japan
| | | | - Tomoo Ishii
- Tokyo Medical University Ibaraki Medical Center, Inashiki, Japan
| | - Mitsuyoshi Utsugi
- Department of Internal Medicine, Kiryu Kosei General Hospital, Kiryu, Japan
| | - Akihiro Ono
- Department of Internal Medicine, Kiryu Kosei General Hospital, Kiryu, Japan
| | - Toru Tanaka
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takeru Kashiwada
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazue Fujita
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshinobu Saito
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hiroko Watanabe
- Division of Respiratory Medicine, Tsukuba Kinen General Hospital, Tsukuba, Japan
| | - Hiroto Matsuse
- Division of Respiratory Medicine, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Norio Kodaka
- Division of Respiratory Medicine, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Chihiro Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Takeshi Oshio
- Division of Respiratory Medicine, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Takatomo Hirouchi
- Division of Respiratory Medicine, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Shohei Makino
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Moritoki Egi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yosuke Omae
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Takafumi Ueno
- Department of Biomolecular Engineering, Graduate School of Tokyo Institute of Technology, Tokyo, Japan
| | - Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Masumi Ai
- Department of Insured Medical Care Management, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ryuji Koike
- Medical Innovation Promotion Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Takanori Kanai
- Keio University Health Center, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
35
|
Proteotranscriptomics - A facilitator in omics research. Comput Struct Biotechnol J 2022; 20:3667-3675. [PMID: 35891789 PMCID: PMC9293588 DOI: 10.1016/j.csbj.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
Applications in omics research, such as comparative transcriptomics and proteomics, require the knowledge of the species-specific gene sequence and benefit from a comprehensive high-quality annotation of the coding genes to achieve high coverage. While protein-coding genes can in simple cases be detected by scanning the genome for open reading frames, in more complex genomes exonic sequences are separated by introns. Despite advances in sequencing technologies that allow for ever-growing numbers of genomes, the quality of many of the provided genome assemblies do not reach reference quality. These non-contiguous assemblies with gaps and the necessity to predict splice sites limit accurate gene annotation from solely genomic data. In contrast, the transcriptome only contains transcribed gene regions, is devoid of introns and thus provides the optimal basis for the identification of open reading frames. The additional integration of proteomics data to validate predicted protein-coding genes further enriches for accurate gene models. This review outlines the principles of the proteotranscriptomics approach, discusses common challenges and suggests methods for improvement.
Collapse
|
36
|
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 2022; 23:697-710. [PMID: 35821097 DOI: 10.1038/s41576-022-00514-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.
Collapse
Affiliation(s)
- Charlotte J Wright
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK. .,Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
37
|
Dominant transcript expression profiles of human protein-coding genes interrogated with GTEx dataset. Sci Rep 2022; 12:6969. [PMID: 35484179 PMCID: PMC9050722 DOI: 10.1038/s41598-022-10619-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
The discovery and quantification of mRNA transcripts using short-read next-generation sequencing (NGS) data is a complicated task. There are far more alternative mRNA transcripts expressed by human genes than can be identified from NGS transcriptome data and various bioinformatic pipelines, while the numbers of annotated human protein-coding genes has gradually declined in recent years. It is essential to learn more about the thorough tissue expression profiles of alternative transcripts in order to obtain their molecular modulations and actual functional significance. In this report, we present a bioinformatic database for interrogating the representative tissue of human protein-coding transcripts. The database allows researchers to visually explore the top-ranked transcript expression profiles in particular tissue types. Most transcripts of protein-coding genes were found to have certain tissue expression patterns. This observation demonstrated that many alternative transcripts were particularly modulated in different cell types. This user-friendly tool visually represents transcript expression profiles in a tissue-specific manner. Identification of tissue specific protein-coding genes and transcripts is a substantial advance towards interpreting their biological functions and further functional genomics studies.
Collapse
|
38
|
Davis KW, Bilancia CG, Martin M, Vanzo R, Rimmasch M, Hom Y, Uddin M, Serrano MA. NeuroSCORE is a genome-wide omics-based model that identifies candidate disease genes of the central nervous system. Sci Rep 2022; 12:5427. [PMID: 35361823 PMCID: PMC8971396 DOI: 10.1038/s41598-022-08938-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
To identify candidate disease genes of central nervous system (CNS) phenotypes, we created the Neurogenetic Systematic Correlation of Omics-Related Evidence (NeuroSCORE). We identified five genome-wide metrics highly associated with CNS phenotypes to score 19,601 protein-coding genes. Genes scored one point per metric (range: 0-5), identifying 8298 scored genes (scores ≥ 1) and 1601 "high scoring" genes (scores ≥ 3). Using logistic regression, we determined the odds ratio that genes with a NeuroSCORE from 1 to 5 would be associated with known CNS-related phenotypes compared to genes that scored zero. We tested NeuroSCORE using microarray copy number variants (CNVs) in case-control cohorts and aggregate mouse model data. High scoring genes are associated with CNS phenotypes (OR = 5.5, p < 2E-16), enriched in case CNVs, and mouse ortholog genes that cause behavioral and nervous system abnormalities. We identified 1058 high scoring genes with no disease association in OMIM. Transforming the logistic regression results indicates high scoring genes have an 84-92% chance of being associated with a CNS phenotype. Top scoring genes include GRIA1, MAP4K4, SF1, TNPO2, and ZSWIM8. Finally, we interrogated CNVs in the Clinical Genome Resource, finding the majority of clinically significant CNVs contain high scoring genes. These findings can direct future research and improve molecular diagnostics.
Collapse
Affiliation(s)
- Kyle W Davis
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Colleen G Bilancia
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Megan Martin
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Rena Vanzo
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Megan Rimmasch
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Yolanda Hom
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Moises A Serrano
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA.
| |
Collapse
|
39
|
Wiegel D, Dammann CEL, Nielsen HC. ErbB4 alternative splicing mediates fetal mouse alveolar type II cell differentiation in vitro. Pediatr Res 2022:10.1038/s41390-022-02013-y. [PMID: 35338350 PMCID: PMC9509489 DOI: 10.1038/s41390-022-02013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Alternative splicing (AS) creates different protein isoforms, an important mechanism regulating cell-specific function. Little is known about AS in lung development, particularly in alveolar type II (ATII) cells. ErbB4 receptor isoforms Jma and Jmb have significant and opposing functions in the brain, heart, and lung development and/or disease. However, the regulators of ErbB4 AS are unknown. ErbB4 AS regulators in fetal mouse ATII cells control its function in ATII cell maturation. METHODS Candidate ErbB4 AS regulators were found using in silico analysis. Their developmental expression was studied in fetal mouse ATII cells. The effects of splice factor downregulation and upregulation on ATII cell maturation were analyzed. RESULTS ErbB4-Jma increased significantly in ATII cells after gestation E16.5. In silico analysis found four candidate splice factors: FOX2, CUG/CELF1, TIAR, and HUB. Fetal ATII cells expressed these factors in distinct developmental profiles. HUB downregulation in E17.5 ATII cells increased Jma isoform levels and Sftpb gene expression and decreased Jmb. HUB overexpression decreased Jma and Sftpb. CONCLUSIONS ErbB4 AS is developmentally controlled by HUB in fetal ATII cells, promoting ATII differentiation. Regulated AS expression during ATII cell differentiation suggests novel therapeutic strategies to approach human disease. IMPACT Alternative splicing (AS) of the ErbB4 receptor, involving mutually exclusive exon inclusion, creates Jma and Jmb isoforms with distinct differences in receptor processing and function. The Jma isoform of ErbB4 promotes differentiation of fetal lung alveolar type II cells. The AS is mediated in part by the RNA-binding protein HUB. The molecular mechanism of AS for ErbB4 has not been previously described. The regulation of ErbB4 AS has important implications in the development of organs, such as the lung, brain, and heart, and for disease, including cancer.
Collapse
Affiliation(s)
- Dorothea Wiegel
- Hannover Medical School, 30625, Hannover, Germany
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, 02111, USA
| | - Christiane E L Dammann
- Hannover Medical School, 30625, Hannover, Germany
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, 02111, USA
- Graduate School for Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Heber C Nielsen
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, 02111, USA.
- Graduate School for Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
40
|
Yang W, Zhao P, Cao P, Miao C, Ji X, Gao Y, Li P, Cheng J. Global interpretation of novel alternative splicing events in human congenital pulmonary airway malformations: A pilot study. J Cell Biochem 2022; 123:736-745. [PMID: 35064685 DOI: 10.1002/jcb.30216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Weili Yang
- Department of Pediatric Surgery The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
| | - Pu Zhao
- Department of Neonatology Shaanxi Provincial People's Hospital Xi'an Shaanxi China
| | - Ping Cao
- Department of Pediatric Surgery The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
| | - Chunlin Miao
- Department of Pediatric Surgery The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
| | - Xiang Ji
- Department of Pediatric Surgery The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
| | - Ya Gao
- Department of Pediatric Surgery The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
| | - Peng Li
- Department of Pediatric Surgery The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jiwen Cheng
- Department of Pediatric Surgery The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
41
|
Hao W, Yang Z, Sun Y, Li J, Zhang D, Liu D, Yang X. Characterization of Alternative Splicing Events in Porcine Skeletal Muscles with Different Intramuscular Fat Contents. Biomolecules 2022; 12:biom12020154. [PMID: 35204660 PMCID: PMC8961525 DOI: 10.3390/biom12020154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Meat quality is one of the most important economic traits in pig breeding and production. Intramuscular fat (IMF) is a major factor that improves meat quality. To better understand the alternative splicing (AS) events underlying meat quality, long-read isoform sequencing (Iso-seq) was used to identify differential (D)AS events between the longissimus thoracis (LT) and semitendinosus (ST), which differ in IMF content, together with short-read RNA-seq. Through Iso-seq analysis, we identified a total of 56,789 novel transcripts covering protein-coding genes, lncRNA, and fusion transcripts that were not previously annotated in pigs. We also identified 456,965 AS events, among which 3930 were DAS events, corresponding to 2364 unique genes. Through integrative analysis of Iso-seq and RNA-seq, we identified 1174 differentially expressed genes (DEGs), among which 122 were DAS genes, i.e., DE-DAS genes. There are 12 overlapped pathways between the top 20 DEGs and DE-DAS genes, as revealed by KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, indicating that DE-DAS genes play important roles in the differential phenotype of LT and ST. Further analysis showed that upregulated DE-DAS genes are more important than downregulated ones in IMF deposition. Fatty acid degradation and the PPAR (peroxisome proliferator-activated receptor) signaling pathway were found to be the most important pathways regulating the differential fat deposition of the two muscles. The results update the existing porcine genome annotations and provide data for the in-depth exploration of the mechanisms underlying meat quality and IMF deposition.
Collapse
Affiliation(s)
- Wanjun Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Zewei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Jiaxin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
- Correspondence: (D.L.); (X.Y.); Tel.: +86-451-8667-7458 (D.L.); +86-451-5519-1738 (X.Y.)
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
- Correspondence: (D.L.); (X.Y.); Tel.: +86-451-8667-7458 (D.L.); +86-451-5519-1738 (X.Y.)
| |
Collapse
|
42
|
Rodriguez JM, Pozo F, Cerdán-Vélez D, Di Domenico T, Vázquez J, Tress M. APPRIS: selecting functionally important isoforms. Nucleic Acids Res 2022; 50:D54-D59. [PMID: 34755885 PMCID: PMC8728124 DOI: 10.1093/nar/gkab1058] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
APPRIS (https://appris.bioinfo.cnio.es) is a well-established database housing annotations for protein isoforms for a range of species. APPRIS selects principal isoforms based on protein structure and function features and on cross-species conservation. Most coding genes produce a single main protein isoform and the principal isoforms chosen by the APPRIS database best represent this main cellular isoform. Human genetic data, experimental protein evidence and the distribution of clinical variants all support the relevance of APPRIS principal isoforms. APPRIS annotations and principal isoforms have now been expanded to 10 model organisms. In this paper we highlight the most recent updates to the database. APPRIS annotations have been generated for two new species, cow and chicken, the protein structural information has been augmented with reliable models from the EMBL-EBI AlphaFold database, and we have substantially expanded the confirmatory proteomics evidence available for the human genome. The most significant change in APPRIS has been the implementation of TRIFID functional isoform scores. TRIFID functional scores are assigned to all splice isoforms, and APPRIS uses the TRIFID functional scores and proteomics evidence to determine principal isoforms when core methods cannot.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Fernando Pozo
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Daniel Cerdán-Vélez
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Tomás Di Domenico
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Michael L Tress
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| |
Collapse
|
43
|
Bunda A, Andrade A. BaseScope™ Approach to Visualize Alternative Splice Variants in Tissue. Methods Mol Biol 2022; 2537:185-196. [PMID: 35895265 DOI: 10.1007/978-1-0716-2521-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Defining the cell-specific alternative splicing landscape in complex tissues is an important goal to gain functional insights. Deep-sequencing techniques coupled to genetic strategies for cell identification has provided important cues on cell-specific exon usage in complex tissues like the nervous system. BaseScope™ has emerged as a powerful and highly sensitive alternative to in situ hybridization to determine exon composition in tissue with spatial and morphological context. In this protocol, we will review how BaseScope was utilized to detect the e37a-Cacna1b splice variant of the presynaptic calcium channel CaV2.2 or N-type. This splice variant arises from a pair of mutually exclusive exons (e37a and e37b). E37a-Cacna1b is heavily underrepresented relative to e37b-Cacna1b and both exons share 60% of their sequence. By using BaseScope™, we were able to discover that e37a-Cacna1b is expressed in excitatory pyramidal neurons of hippocampus and cortex, as well as motor neurons of the ventral horn of the spinal cord.
Collapse
Affiliation(s)
- Alexandra Bunda
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Arturo Andrade
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA.
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
44
|
Kashkan I, Timofeyenko K, Růžička K. How alternative splicing changes the properties of plant proteins. QUANTITATIVE PLANT BIOLOGY 2022; 3:e14. [PMID: 37077961 PMCID: PMC10095807 DOI: 10.1017/qpb.2022.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 05/03/2023]
Abstract
Most plant primary transcripts undergo alternative splicing (AS), and its impact on protein diversity is a subject of intensive investigation. Several studies have uncovered various mechanisms of how particular protein splice isoforms operate. However, the common principles behind the AS effects on protein function in plants have rarely been surveyed. Here, on the selected examples, we highlight diverse tissue expression patterns, subcellular localization, enzymatic activities, abilities to bind other molecules and other relevant features. We describe how the protein isoforms mutually interact to underline their intriguing roles in altering the functionality of protein complexes. Moreover, we also discuss the known cases when these interactions have been placed inside the autoregulatory loops. This review is particularly intended for plant cell and developmental biologists who would like to gain inspiration on how the splice variants encoded by their genes of interest may coordinately work.
Collapse
Affiliation(s)
- Ivan Kashkan
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno62500, Czech Republic
| | - Ksenia Timofeyenko
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno62500, Czech Republic
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Author for correspondence: K. Růžička, E-mail:
| |
Collapse
|
45
|
Qi X, Gu H, Qu L. Transcriptome-Wide Analyses Identify Dominant as the Predominantly Non-Conservative Alternative Splicing Inheritance Patterns in F1 Chickens. Front Genet 2021; 12:774240. [PMID: 34925458 PMCID: PMC8678468 DOI: 10.3389/fgene.2021.774240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Transcriptome analysis has been used to investigate many economically traits in chickens; however, alternative splicing still lacks a systematic method of study that is able to promote proteome diversity, and fine-tune expression dynamics. Hybridization has been widely utilized in chicken breeding due to the resulting heterosis, but the dynamic changes in alternative splicing during this process are significant yet unclear. In this study, we performed a reciprocal crossing experiment involving the White Leghorn and Cornish Game chicken breeds which exhibit major differences in body size and reproductive traits, and conducted RNA sequencing of the brain, muscle, and liver tissues to identify the inheritance patterns. A total of 40 515 and 42 612 events were respectively detected in the brain and muscle tissues, with 39 843 observed in the liver; 2807, 4242, and 4538 events significantly different between two breeds were identified in the brain, muscle, and liver tissues, respectively. The hierarchical cluster of tissues from different tissues from all crosses, based on the alternative splicing profiles, suggests high tissue and strain specificity. Furthermore, a comparison between parental strains and hybrid crosses indicated that over one third of alternative splicing genes showed conserved patterns in all three tissues, while the second prevalent pattern was non-additive, which included both dominant and transgressive patterns; this meant that the dominant pattern plays a more important role than suppression. Our study provides an overview of the inheritance patterns of alternative splicing in layer and broiler chickens, to better understand post-transcriptional regulation during hybridization.
Collapse
Affiliation(s)
- Xin Qi
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongchang Gu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Titus MB, Chang AW, Olesnicky EC. Exploring the Diverse Functional and Regulatory Consequences of Alternative Splicing in Development and Disease. Front Genet 2021; 12:775395. [PMID: 34899861 PMCID: PMC8652244 DOI: 10.3389/fgene.2021.775395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a fundamental mechanism of eukaryotic RNA regulation that increases the transcriptomic and proteomic complexity within an organism. Moreover, alternative splicing provides a framework for generating unique yet complex tissue- and cell type-specific gene expression profiles, despite using a limited number of genes. Recent efforts to understand the negative consequences of aberrant splicing have increased our understanding of developmental and neurodegenerative diseases such as spinal muscular atrophy, frontotemporal dementia and Parkinsonism linked to chromosome 17, myotonic dystrophy, and amyotrophic lateral sclerosis. Moreover, these studies have led to the development of innovative therapeutic treatments for diseases caused by aberrant splicing, also known as spliceopathies. Despite this, a paucity of information exists on the physiological roles and specific functions of distinct transcript spliceforms for a given gene. Here, we will highlight work that has specifically explored the distinct functions of protein-coding spliceforms during development. Moreover, we will discuss the use of alternative splicing of noncoding exons to regulate the stability and localization of RNA transcripts.
Collapse
Affiliation(s)
- M Brandon Titus
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W Chang
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C Olesnicky
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
47
|
Sun D, Li X, Yin Z, Hou Z. The Full-Length Transcriptome Provides New Insights Into the Transcript Complexity of Abdominal Adipose and Subcutaneous Adipose in Pekin Ducks. Front Physiol 2021; 12:767739. [PMID: 34858212 PMCID: PMC8631521 DOI: 10.3389/fphys.2021.767739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023] Open
Abstract
Adipose tissues have a central role in organisms, and adipose content is a crucial economic trait of poultry. Pekin duck is an ideal model to study the mechanism of abdominal and subcutaneous adipose deposition for its high ability of adipose synthesis and deposition. Alternative splicing contributes to functional diversity in abdominal and subcutaneous adipose. However, there has been no systematic analysis of the dynamics of differential alternative splicing of abdominal and subcutaneous adipose in Pekin duck. In our study, the Pacific Biosciences (PacBio) Iso-Seq technology was applied to explore the transcriptional complexity of abdominal and subcutaneous adipose in Pekin ducks. In total, 143,931 and 111,337 full-length non-chimeric transcriptome sequences of abdominal and subcutaneous adipocytes were obtained from 41.78 GB raw data, respectively. These data led us to identify 19,212 long non-coding RNAs (lncRNAs) and 74,571 alternative splicing events. In addition, combined with the next-generation sequencing technology, we correlated the structure and function annotation with the differential expression profiles of abdominal and subcutaneous adipose transcripts. This study identified lots of novel alternative splicing events and major transcripts of transcription factors related to adipose synthesis. STAT3 was reported as a vital gene for adipogenesis, and we found that its major transcript is STAT3-1, which may play a considerable role in the process of adipose synthesis in Pekin duck. This study greatly increases our understanding of the gene models, genome annotations, genome structures, and the complexity and diversity of abdominal and subcutaneous adipose in Pekin duck. These data provide insights into the regulation of alternative splicing events, which form an essential part of transcript diversity during adipogenesis in poultry. The results of this study provide an invaluable resource for studying alternative splicing and tissue-specific expression.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoqin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhongtao Yin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhuocheng Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Louadi Z, Elkjaer ML, Klug M, Lio CT, Fenn A, Illes Z, Bongiovanni D, Baumbach J, Kacprowski T, List M, Tsoy O. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases. Genome Biol 2021; 22:327. [PMID: 34857024 PMCID: PMC8638120 DOI: 10.1186/s13059-021-02538-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.
Collapse
Affiliation(s)
- Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Klug
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Chit Tong Lio
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Amit Fenn
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dario Bongiovanni
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5000, Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany.
| |
Collapse
|
49
|
Li Y, Wang J, Elzo MA, Fan H, Du K, Xia S, Shao J, Lai T, Hu S, Jia X, Lai S. Molecular Profiling of DNA Methylation and Alternative Splicing of Genes in Skeletal Muscle of Obese Rabbits. Curr Issues Mol Biol 2021; 43:1558-1575. [PMID: 34698087 PMCID: PMC8929151 DOI: 10.3390/cimb43030110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
DNA methylation and the alternative splicing of precursor messenger RNAs (pre-mRNAs) are two important genetic modification mechanisms. However, both are currently uncharacterized in the muscle metabolism of rabbits. Thus, we constructed the Tianfu black rabbit obesity model (obese rabbits fed with a 10% high-fat diet and control rabbits from 35 days to 70 days) and collected the skeletal muscle samples from the two groups for Genome methylation sequencing and RNA sequencing. DNA methylation data showed that the promoter regions of 599 genes and gene body region of 2522 genes had significantly differential methylation rates between the two groups, of which 288 genes had differential methylation rates in promoter and gene body regions. Analysis of alternative splicing showed 555 genes involved in exon skipping (ES) patterns, and 15 genes existed in differential methylation regions. Network analysis showed that 20 hub genes were associated with ubiquitinated protein degradation, muscle development pathways, and skeletal muscle energy metabolism. Our findings suggest that the two types of genetic modification have potential regulatory effects on skeletal muscle development and provide a basis for further mechanistic studies in the rabbit.
Collapse
Affiliation(s)
- Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Huimei Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Kun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Tianfu Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Shenqiang Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
- Correspondence:
| |
Collapse
|
50
|
Martinez Gomez L, Pozo F, Walsh TA, Abascal F, Tress ML. The clinical importance of tandem exon duplication-derived substitutions. Nucleic Acids Res 2021; 49:8232-8246. [PMID: 34302486 PMCID: PMC8373072 DOI: 10.1093/nar/gkab623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023] Open
Abstract
Most coding genes in the human genome are annotated with multiple alternative transcripts. However, clear evidence for the functional relevance of the protein isoforms produced by these alternative transcripts is often hard to find. Alternative isoforms generated from tandem exon duplication-derived substitutions are an exception. These splice events are rare, but have important functional consequences. Here, we have catalogued the 236 tandem exon duplication-derived substitutions annotated in the GENCODE human reference set. We find that more than 90% of the events have a last common ancestor in teleost fish, so are at least 425 million years old, and twenty-one can be traced back to the Bilateria clade. Alternative isoforms generated from tandem exon duplication-derived substitutions also have significantly more clinical impact than other alternative isoforms. Tandem exon duplication-derived substitutions have >25 times as many pathogenic and likely pathogenic mutations as other alternative events. Tandem exon duplication-derived substitutions appear to have vital functional roles in the cell and may have played a prominent part in metazoan evolution.
Collapse
Affiliation(s)
- Laura Martinez Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Thomas A Walsh
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain.,Eukaryotic Annotation Team, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA. UK
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|