1
|
Quarin SM, Vang D, Dima RI, Stan G, Strobbia P. AI in SERS sensing moving from discriminative to generative. NPJ BIOSENSING 2025; 2:9. [PMID: 39991468 PMCID: PMC11845314 DOI: 10.1038/s44328-025-00033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
This perspective discusses the present and future role of artificial intelligence (AI) and machine learning (ML) in surface-enhanced Raman scattering (SERS) sensing. Our goal is to guide the reader through current applications, mainly focused on discriminative approaches aimed at developing new and improved SERS diagnostic capabilities, towards the future role of AI in SERS sensing, with the use of generative approaches to design new materials and biomaterials.
Collapse
Affiliation(s)
- Steven M. Quarin
- Department of Chemistry, University of Cincinnati, Cincinnati, OH USA
| | - Der Vang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH USA
| | - Ruxandra I. Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, OH USA
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH USA
| | - Pietro Strobbia
- Department of Chemistry, University of Cincinnati, Cincinnati, OH USA
| |
Collapse
|
2
|
Niu J, Qiao Y, Yang X, Chen X, Li H, Guo Y, Zhang W, Wang Z. Protease and Bacillus coagulans Supplementation in a Low-Protein Diet Improves Broiler Growth, Promotes Amino Acid Transport Gene Activity, Strengthens Intestinal Barriers, and Alters the Cecal Microbial Composition. Animals (Basel) 2025; 15:170. [PMID: 39858172 PMCID: PMC11758613 DOI: 10.3390/ani15020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Low-protein (LPRO) diets can effectively reduce feed costs and decrease environmental pollution, making them an important pathway to enhance the sustainability of livestock production. However, they may have adverse effects on the growth performance of broiler chickens, which has limited their widespread application. This study aims to explore the impact of adding protease (PRO) to LPRO diets on the growth performance of broiler chickens, especially under conditions with or without the presence of Bacillus coagulans (BC), in order to provide theoretical support for the scientific application and promotion of LPRO feeds. We selected 432 one-day-old broiler chickens and divided them into four treatment groups, which were fed with the control (CON) diet, the LPRO diet, the PRO diet (LPRO diet with added protease), and the PAB diet (PRO diet with added BC). The LPRO group demonstrated decreased growth performance while both PRO and PAB diets resulted in a significant increase (p < 0.05). Both PRO and PAB diets significantly enhanced the expression of amino acid transport genes and tight junction genes (p < 0.05) and optimized the composition of the intestinal microbiota. Overall, LPRO diets have a detrimental effect on the growth of broiler chickens, while the PRO and PAB diets effectively counteract these negative effects by improving protein digestion, amino acid absorption, and intestinal health.
Collapse
Affiliation(s)
- Junlong Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Yingying Qiao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450003, China;
| | - Xiaopeng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Xiaoshuang Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Hongfei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.N.); (X.Y.); (X.C.); (H.L.); (Y.G.)
| |
Collapse
|
3
|
Baek J, Park J, Kim Y. Nucleic acid detection with single-base specificity integrating isothermal amplification and light-up aptamer probes. NANOSCALE 2024; 16:20067-20072. [PMID: 39377120 DOI: 10.1039/d4nr01638f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We report a novel platform for label-free nucleic acid detection using isothermal amplification and light-up aptamer probes. This assay converts double-stranded amplicons into single-stranded targets to enable sequence-specific hybridization with split dapoxyl aptamer probes, offering attomolar sensitivity and single-base specificity.
Collapse
Affiliation(s)
- Jaekyun Baek
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihyun Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngeun Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Licheri M, Licheri MF, Mehinagic K, Ruggli N, Dijkman R. A Novel and Rapid Selective Viral Genome Amplification and Sequencing Method for African Swine Fever Virus. Viruses 2024; 16:1664. [PMID: 39599779 PMCID: PMC11598870 DOI: 10.3390/v16111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of African swine fever, a highly contagious hemorrhagic disease affecting both wild boars and domestic pigs with lethality rates up to 100%. Until now, the most effective measure to prevent an outbreak of ASFV was early detection. In this situation, whole genome sequencing (WGS) allows the gathering of detailed information about the identity and epidemiology of the virus. However, due to the large genome size and complex genome ends, WGS is challenging. Current WGS workflows require either elaborate enrichment methods or are based on tiled PCR approaches, which are susceptible to genetic differences between ASFV strains. To overcome this, we developed a novel approach for WGS of ASFV, using the Phi29 DNA polymerase-based multiple displacement amplification in combination with only seven primers. Furthermore, we applied an alkaline-based DNA denaturation step to significantly increase the number of viral reads, which resolves the near-full genome of ASFV. This novel isothermal WGS approach can be used in authorized laboratories for the genomic epidemiological analysis of ASFV outbreaks caused by different genotypes.
Collapse
Affiliation(s)
- Matthias Licheri
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
| | - Manon Flore Licheri
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | - Kemal Mehinagic
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- European Virus Bioinformatics Center, 07743 Jena, Germany
| |
Collapse
|
5
|
Chen W, Zhou C, Su X, Yin X, Yuan W, Hu C, Zhao W. Revealing the Genetic Diversity of Chinese Chlamydia trachomatis Strains Directly From Clinical Samples Through Selective Whole Genome Amplification. J Infect Dis 2024; 230:857-867. [PMID: 38547503 DOI: 10.1093/infdis/jiae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/27/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Chlamydia trachomatis is the causative agent of the most prevalent bacterial sexually transmitted infections globally. Whole genome sequencing is essential for molecular Chlamydia surveillance; however, its application is hampered by the pathogen's low abundance in clinical specimens and the expensive labor-intensive nature of existing enrichment methodologies for Chlamydia. METHODS We developed a targeted whole genome amplification tool termed SWITCH by integrating phi29 DNA polymerase-mediated amplification with meticulously designed primer sets to enrich the C trachomatis genome, followed by whole genome sequencing. This method underwent evaluation through testing synthetic and clinical specimens. RESULTS SWITCH demonstrated robust ability to achieve up to 98.3% genomic coverage of C trachomatis from as few as 26.4 genomic copies present in synthetic specimens, and it exhibited excellent performance across diverse C trachomatis serovars. Utilizing SWITCH, we directly generated 21 Chlamydia genomes from 26 clinical samples, enabling us to gain insights into the genetic relationships and phylogeny of current Chlamydia strains circulating in the country. Remarkably, this study marked the first instance of generating Chinese Chlamydia genomes directly from clinical samples. CONCLUSIONS SWITCH represents a practical cost-efficient approach to enrich the Chlamydia genome directly from clinical specimens, offering an efficient avenue for molecular surveillance of Chlamydia.
Collapse
Affiliation(s)
- Wentao Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chuchan Zhou
- Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Xin Su
- Department of Clinical Laboratory, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Xiaona Yin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Weixi Yuan
- Department of Clinical Laboratory, Foshan Women and Children Hospital, Foshan, China
| | - Chuncai Hu
- Department of Clinical Laboratory, Lecong Hospital of Shunde, Foshan, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Licheri M, Licheri MF, Probst L, Sägesser C, Bittel P, Suter-Riniker F, Dijkman R. A novel isothermal whole genome sequencing approach for Monkeypox Virus. Sci Rep 2024; 14:22333. [PMID: 39333274 PMCID: PMC11437064 DOI: 10.1038/s41598-024-73613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Monkeypox virus (MPXV) is the zoonotic agent responsible for mpox, an often-self-limiting pox-like disease. Since May 2022, an outbreak characterized by increased human-to-human transmission was detected outside the endemic regions. Whole genome sequencing (WGS) has been successfully used to keep track of viral evolution during outbreaks or for surveillance of multiple pathogens of public health significance. Current WGS protocols for MPXV are either based on metagenomic sequencing or tiled-PCR amplification. The latter allows multiplexing due to the efficient enrichment of the viral DNA, however, mutations or the presence of different clades can negatively influence genome coverage yield. Here, we present the establishment of a novel isothermal WGS method for MPXV based on Phi29 DNA polymerase-based multiple displacement amplification (MDA) properties making use of only 6 primers. This approach yielded from 88% up to 100% genome coverage using either alkaline denatured extracted DNA or clinical material as starting material, with the highest coverage generated by clinical material. We demonstrate that this novel isothermal WGS protocol is suitable for monitoring viral evolution during MPXV outbreaks and surveillance in any conventional laboratory setting.
Collapse
Affiliation(s)
- Matthias Licheri
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Lukas Probst
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Cora Sägesser
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Pascal Bittel
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
- European Virus Bioinformatics Center (EVBC), Jena, Germany.
| |
Collapse
|
7
|
Wirth JS, Katz LS, Williams GM, Chen JC. primerForge: a Python program for identifying primer pairs capable of distinguishing groups of genomes from each other. JOURNAL OF OPEN SOURCE SOFTWARE 2024; 9:10.21105/joss.06850. [PMID: 39624182 PMCID: PMC11611387 DOI: 10.21105/joss.06850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
In both molecular epidemiology and microbial ecology, it is useful to be able to categorize specific strains of microorganisms in either an ingroup or an outgroup in a given population, e.g. to distinguish a pathogenic strain of interest from its non-virulent relatives. An "ingroup" refers to a group of microbes that are the primary focus of study or interest. Conversely, an "outgroup" consists of microbes that are closely-related to, but have evolved separately from, the ingroup. While whole genome sequencing and downstream phylogenetic analyses can be employed to do this, these techniques are often slow and can be resource intensive. Additionally, the laboratory would have to sequence the whole genome to use these tools to determine whether or not a new sample is part of the ingroup or outgroup. Alternatively, polymerase chain reaction (PCR) can be used to amplify regions of genetic material that are specific to the strain(s) of interest. PCR is faster, less expensive, and more accessible than whole genome sequencing, so having a PCR-based approach can accelerate the detection of specific strain(s) of microbes and facilitate diagnoses and/or population studies.
Collapse
Affiliation(s)
- Joseph S Wirth
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Lee S Katz
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Grant M Williams
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jessica C Chen
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
8
|
Pilling OA, Sundararaman SA, Brisson D, Beiting DP. Turning the needle into the haystack: Culture-independent amplification of complex microbial genomes directly from their native environment. PLoS Pathog 2024; 20:e1012418. [PMID: 39264872 PMCID: PMC11392400 DOI: 10.1371/journal.ppat.1012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionized microbiology, but many microbes exist at low abundance in their natural environment and/or are difficult, if not impossible, to culture in the laboratory. This makes it challenging to use HTS to study the genomes of many important microbes and pathogens. In this review, we discuss the development and application of selective whole genome amplification (SWGA) to allow whole or partial genomes to be sequenced for low abundance microbes directly from complex biological samples. We highlight ways in which genomic data generated by SWGA have been used to elucidate the population dynamics of important human pathogens and monitor development of antimicrobial resistance and the emergence of potential outbreaks. We also describe the limitations of this method and propose some potential innovations that could be used to improve the quality of SWGA and lower the barriers to using this method across a wider range of infectious pathogens.
Collapse
Affiliation(s)
- Olivia A. Pilling
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sesh A. Sundararaman
- Department of Pediatrics, Children’s Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dustin Brisson
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Pennsylvania, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Yan W, Tan L, Mengshan L, Weihong Z, Sheng S, Jun W, Fu-An W. Time series-based hybrid ensemble learning model with multivariate multidimensional feature coding for DNA methylation prediction. BMC Genomics 2023; 24:758. [PMID: 38082253 PMCID: PMC10712061 DOI: 10.1186/s12864-023-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND DNA methylation is a form of epigenetic modification that impacts gene expression without modifying the DNA sequence, thereby exerting control over gene function and cellular development. The prediction of DNA methylation is vital for understanding and exploring gene regulatory mechanisms. Currently, machine learning algorithms are primarily used for model construction. However, several challenges remain to be addressed, including limited prediction accuracy, constrained generalization capability, and insufficient learning capacity. RESULTS In response to the aforementioned challenges, this paper leverages the similarities between DNA sequences and time series to introduce a time series-based hybrid ensemble learning model, called Multi2-Con-CAPSO-LSTM. The model utilizes multivariate and multidimensional encoding approach, combining three types of time series encodings with three kinds of genetic feature encodings, resulting in a total of nine types of feature encoding matrices. Convolutional Neural Networks are utilized to extract features from DNA sequences, including temporal, positional, physicochemical, and genetic information, thereby creating a comprehensive feature matrix. The Long Short-Term Memory model is then optimized using the Chaotic Accelerated Particle Swarm Optimization algorithm for predicting DNA methylation. CONCLUSIONS Through cross-validation experiments conducted on 17 species involving three types of DNA methylation (6 mA, 5hmC, and 4mC), the results demonstrate the robust predictive capabilities of the Multi2-Con-CAPSO-LSTM model in DNA methylation prediction across various types and species. Compared with other benchmark models, the Multi2-Con-CAPSO-LSTM model demonstrates significant advantages in sensitivity, specificity, accuracy, and correlation. The model proposed in this paper provides valuable insights and inspiration across various disciplines, including sequence alignment, genetic evolution, time series analysis, and structure-activity relationships.
Collapse
Affiliation(s)
- Wu Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| | - Li Tan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Li Mengshan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
| | - Zhou Weihong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Wang Jun
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Wu Fu-An
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
10
|
Xia H, Zhang Z, Luo C, Wei K, Li X, Mu X, Duan M, Zhu C, Jin L, He X, Tang L, Hu L, Guan Y, Lam DCC, Yang J. MultiPrime: A reliable and efficient tool for targeted next-generation sequencing. IMETA 2023; 2:e143. [PMID: 38868227 PMCID: PMC10989836 DOI: 10.1002/imt2.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 06/14/2024]
Abstract
We present multiPrime, a novel tool that automatically designs minimal primer sets for targeted next-generation sequencing, tailored to specific microbiomes or genes. MultiPrime enhances primer coverage by designing primers with mismatch tolerance and ensures both high compatibility and specificity. We evaluated the performance of multiPrime using a data set of 43,016 sequences from eight viruses. Our results demonstrated that multiPrime outperformed conventional tools, and the primer set designed by multiPrime successfully amplified the target amplicons. Furthermore, we expanded the application of multiPrime to 30 types of viruses and validated the work efficacy of multiPrime-designed primers in 80 clinical specimens. The subsequent sequencing outcomes from these primers indicated a sensitivity of 94% and a specificity of 89%.
Collapse
Affiliation(s)
- Han Xia
- School of Automation Science and Engineering, Faculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'anChina
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'anChina
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Zhe Zhang
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong KongChina
| | - Chen Luo
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Kangfei Wei
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Xuming Li
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Xiyu Mu
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Meilin Duan
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Chuanlong Zhu
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Luyi Jin
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Xiaoqing He
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Lingjie Tang
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Long Hu
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Yuanlin Guan
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - David C. C. Lam
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong KongChina
| | - Junbo Yang
- Department of Research and DevelopmentHugobiotechBeijingChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|