1
|
Qian MF, Bevacqua RJ, Coykendall VM, Liu X, Zhao W, Chang CA, Gu X, Dai XQ, MacDonald PE, Kim SK. HNF1α maintains pancreatic α and β cell functions in primary human islets. JCI Insight 2023; 8:e170884. [PMID: 37943614 PMCID: PMC10807710 DOI: 10.1172/jci.insight.170884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
HNF1A haploinsufficiency underlies the most common form of human monogenic diabetes (HNF1A-maturity onset diabetes of the young [HNF1A-MODY]), and hypomorphic HNF1A variants confer type 2 diabetes risk. But a lack of experimental systems for interrogating mature human islets has limited our understanding of how the transcription factor HNF1α regulates adult islet function. Here, we combined conditional genetic targeting in human islet cells, RNA-Seq, chromatin mapping with cleavage under targets and release using nuclease (CUT&RUN), and transplantation-based assays to determine HNF1α-regulated mechanisms in adult human pancreatic α and β cells. Short hairpin RNA-mediated (shRNA-mediated) suppression of HNF1A in primary human pseudoislets led to blunted insulin output and dysregulated glucagon secretion after transplantation in mice, recapitulating phenotypes observed in patients with diabetes. These deficits corresponded with altered expression of genes encoding factors critical for hormone secretion, including calcium channel subunits, ATPase transporters, and extracellular matrix constituents. Additionally, HNF1A loss led to upregulation of transcriptional repressors, providing evidence for a mechanism of transcriptional derepression through HNF1α. CUT&RUN mapping of HNF1α DNA binding sites in primary human islets imputed a subset of HNF1α-regulated genes as direct targets. These data elucidate mechanistic links between HNF1A loss and diabetic phenotypes in mature human α and β cells.
Collapse
Affiliation(s)
- Mollie F. Qian
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Romina J. Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vy M.N. Coykendall
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Xiong Liu
- Department of Pharmacology and
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Charles A. Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Diabetes Research Center
| | - Xiao-Qing Dai
- Department of Pharmacology and
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology and
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Diabetes Research Center
- Departments of Medicine and Pediatrics (Endocrinology), and
- Northern California JDRF Center of Excellence, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Mozhui K, Kim H, Villani F, Haghani A, Sen S, Horvath S. Pleiotropic influence of DNA methylation QTLs on physiological and ageing traits. Epigenetics 2023; 18:2252631. [PMID: 37691384 PMCID: PMC10496549 DOI: 10.1080/15592294.2023.2252631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is influenced by genetic and non-genetic factors. Here, we chart quantitative trait loci (QTLs) that modulate levels of methylation at highly conserved CpGs using liver methylome data from mouse strains belonging to the BXD family. A regulatory hotspot on chromosome 5 had the highest density of trans-acting methylation QTLs (trans-meQTLs) associated with multiple distant CpGs. We refer to this locus as meQTL.5a. Trans-modulated CpGs showed age-dependent changes and were enriched in developmental genes, including several members of the MODY pathway (maturity onset diabetes of the young). The joint modulation by genotype and ageing resulted in a more 'aged methylome' for BXD strains that inherited the DBA/2J parental allele at meQTL.5a. Further, several gene expression traits, body weight, and lipid levels mapped to meQTL.5a, and there was a modest linkage with lifespan. DNA binding motif and protein-protein interaction enrichment analyses identified the hepatic nuclear factor, Hnf1a (MODY3 gene in humans), as a strong candidate. The pleiotropic effects of meQTL.5a could contribute to variations in body size and metabolic traits, and influence CpG methylation and epigenetic ageing that could have an impact on lifespan.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hyeonju Kim
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Bernstein D, Golson ML, Kaestner KH. Epigenetic control of β-cell function and failure. Diabetes Res Clin Pract 2017; 123:24-36. [PMID: 27918975 PMCID: PMC5250585 DOI: 10.1016/j.diabres.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes is a highly heritable disease, but only ∼15% of this heritability can be explained by known genetic variant loci. In fact, body mass index is more predictive of diabetes than any of the common risk alleles identified by genome-wide association studies. This discrepancy may be explained by epigenetic inheritance, whereby changes in gene regulation can be passed along to offspring. Epigenetic changes throughout an organism's lifetime, based on environmental factors such as chemical exposures, diet, physical activity, and age, can also affect gene expression and susceptibility to diabetes. Recently, novel genome-wide assays of epigenetic marks have resulted in a greater understanding of how genetics, epigenetics, and the environment interact in the development and inheritance of diabetes.
Collapse
Affiliation(s)
- Diana Bernstein
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Cebola I, Rodríguez-Seguí SA, Cho CHH, Bessa J, Rovira M, Luengo M, Chhatriwala M, Berry A, Ponsa-Cobas J, Maestro MA, Jennings RE, Pasquali L, Morán I, Castro N, Hanley NA, Gomez-Skarmeta JL, Vallier L, Ferrer J. TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors. Nat Cell Biol 2015; 17:615-626. [PMID: 25915126 PMCID: PMC4434585 DOI: 10.1038/ncb3160] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 03/13/2015] [Indexed: 02/02/2023]
Abstract
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas.
Collapse
Affiliation(s)
- Inês Cebola
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Santiago A. Rodríguez-Seguí
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Candy H.-H. Cho
- Wellcome Trust and MRC Stem Cells Centre, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery and Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - José Bessa
- Instituto de Biologia Molecular e Celular (IBMC), 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Meritxell Rovira
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Mario Luengo
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Mariya Chhatriwala
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Andrew Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Joan Ponsa-Cobas
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Miguel Angel Maestro
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Rachel E. Jennings
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Lorenzo Pasquali
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Ignasi Morán
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Natalia Castro
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Neil A. Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
- Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WU, United Kingdom
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Ludovic Vallier
- Wellcome Trust and MRC Stem Cells Centre, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery and Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jorge Ferrer
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
- Genomic Programming of Beta-cells Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| |
Collapse
|
5
|
Sandovici I, Hammerle CM, Ozanne SE, Constância M. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell Mol Life Sci 2013; 70:1575-95. [PMID: 23463236 PMCID: PMC11113912 DOI: 10.1007/s00018-013-1297-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/26/2022]
Abstract
The development of the endocrine pancreas is controlled by a hierarchical network of transcriptional regulators. It is increasingly evident that this requires a tightly interconnected epigenetic "programme" to drive endocrine cell differentiation and maintain islet function. Epigenetic regulators such as DNA and histone-modifying enzymes are now known to contribute to determination of pancreatic cell lineage, maintenance of cellular differentiation states, and normal functioning of adult pancreatic endocrine cells. Persistent effects of an early suboptimal environment, known to increase risk of type 2 diabetes in later life, can alter the epigenetic control of transcriptional master regulators, such as Hnf4a and Pdx1. Recent genome-wide analyses also suggest that an altered epigenetic landscape is associated with the β cell failure observed in type 2 diabetes and aging. At the cellular level, epigenetic mechanisms may provide a mechanistic link between energy metabolism and stable patterns of gene expression. Key energy metabolites influence the activity of epigenetic regulators, which in turn alter transcription to maintain cellular homeostasis. The challenge is now to understand the detailed molecular mechanisms that underlie these diverse roles of epigenetics, and the extent to which they contribute to the pathogenesis of type 2 diabetes. In-depth understanding of the developmental and environmental epigenetic programming of the endocrine pancreas has the potential to lead to novel therapeutic approaches in diabetes.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
| | - Constanze M. Hammerle
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
| | - Susan E. Ozanne
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
| |
Collapse
|
6
|
Xie R, Everett LJ, Lim HW, Patel NA, Schug J, Kroon E, Kelly OG, Wang A, D'Amour KA, Robins AJ, Won KJ, Kaestner KH, Sander M. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell 2013; 12:224-37. [PMID: 23318056 DOI: 10.1016/j.stem.2012.11.023] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/30/2012] [Accepted: 11/30/2012] [Indexed: 02/06/2023]
Abstract
Embryonic development is characterized by dynamic changes in gene expression, yet the role of chromatin remodeling in these cellular transitions remains elusive. To address this question, we profiled the transcriptome and select chromatin modifications at defined stages during pancreatic endocrine differentiation of human embryonic stem cells. We identify removal of Polycomb group (PcG)-mediated repression on stage-specific genes as a key mechanism for the induction of developmental regulators. Furthermore, we discover that silencing of transitory genes during lineage progression associates with reinstatement of PcG-dependent repression. Significantly, in vivo- but not in vitro-differentiated endocrine cells exhibit close similarity to primary human islets in regard to transcriptome and chromatin structure. We further demonstrate that endocrine cells produced in vitro do not fully eliminate PcG-mediated repression on endocrine-specific genes, probably contributing to their malfunction. These studies reveal dynamic chromatin remodeling during developmental lineage progression and identify possible strategies for improving cell differentiation in culture.
Collapse
Affiliation(s)
- Ruiyu Xie
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
van Arensbergen J, García-Hurtado J, Maestro MA, Correa-Tapia M, Rutter GA, Vidal M, Ferrer J. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells. Genes Dev 2012; 27:52-63. [PMID: 23271347 DOI: 10.1101/gad.206094.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polycomb-mediated gene repression is essential for embryonic development, yet its precise role in lineage-specific programming is poorly understood. Here we inactivated Ring1b, encoding a polycomb-repressive complex 1 subunit, in pancreatic multipotent progenitors (Ring1b(progKO)). This caused transcriptional derepression of a subset of direct Ring1b target genes in differentiated pancreatic islet cells. Unexpectedly, Ring1b inactivation in differentiated islet β cells (Ring1b(βKO)) did not cause derepression, even after multiple rounds of cell division, suggesting a role for Ring1b in the establishment but not the maintenance of repression. Consistent with this notion, derepression in Ring1b(progKO) islets occurred preferentially in genes that were targeted de novo by Ring1b during pancreas development. The results support a model in which Ring1b bookmarks its target genes during embryonic development, and these genes are maintained in a repressed state through Ring1b-independent mechanisms in terminally differentiated cells. This work provides novel insights into how epigenetic mechanisms contribute to shaping the transcriptional identity of differentiated lineages.
Collapse
Affiliation(s)
- Joris van Arensbergen
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Muck JS, Kandasamy K, Englmann A, Günther M, Zink D. Perinuclear positioning of the inactive human cystic fibrosis gene depends on CTCF, A-type lamins and an active histone deacetylase. J Cell Biochem 2012; 113:2607-21. [PMID: 22422629 DOI: 10.1002/jcb.24136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nuclear positioning of mammalian genes often correlates with their functional state. For instance, the human cystic fibrosis transmembrane conductance regulator (CFTR) gene associates with the nuclear periphery in its inactive state, but occupies interior positions when active. It is not understood how nuclear gene positioning is determined. Here, we investigated trichostatin A (TSA)-induced repositioning of CFTR in order to address molecular mechanisms controlling gene positioning. Treatment with the histone deacetylase (HDAC) inhibitor TSA induced increased histone acetylation and CFTR repositioning towards the interior within 20 min. When CFTR localized in the nuclear interior (either after TSA treatment or when the gene was active) consistent histone H3 hyperacetylation was observed at a CTCF site close to the CFTR promoter. Knockdown experiments revealed that CTCF was essential for perinuclear CFTR positioning and both, CTCF knockdown as well as TSA treatment had similar and CFTR-specific effects on radial positioning. Furthermore, knockdown experiments revealed that also A-type lamins were required for the perinuclear positioning of CFTR. Together, the results showed that CTCF, A-type lamins and an active HDAC were essential for perinuclear positioning of CFTR and these components acted on a CTCF site adjacent to the CFTR promoter. The results are consistent with the idea that CTCF bound close to the CFTR promoter, A-type lamins and an active HDAC form a complex at the nuclear periphery, which becomes disrupted upon inhibition of the HDAC, leading to the observed release of CFTR.
Collapse
Affiliation(s)
- Joscha S Muck
- Institute of Bioengineering and Nanotechnology (IBN), Department of Cell and Tissue Engineering, 31 Biopolis Way, The Nanos, Singapore 138669
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
Eukaryotic gene expression is an intricate multistep process, regulated within the cell nucleus through the activation or repression of RNA synthesis, processing, cytoplasmic export, and translation into protein. The major regulators of gene expression are chromatin remodeling and transcription machineries that are locally recruited to genes. However, enzymatic activities that act on genes are not ubiquitously distributed throughout the nucleoplasm, but limited to specific and spatially defined foci that promote preferred higher-order chromatin arrangements. The positioning of genes within the nuclear landscape relative to specific functional landmarks plays an important role in gene regulation and disease.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Boj SF, Petrov D, Ferrer J. Epistasis of transcriptomes reveals synergism between transcriptional activators Hnf1alpha and Hnf4alpha. PLoS Genet 2010; 6:e1000970. [PMID: 20523905 PMCID: PMC2877749 DOI: 10.1371/journal.pgen.1000970] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/23/2010] [Indexed: 01/16/2023] Open
Abstract
The transcription of individual genes is determined by combinatorial interactions between DNA-binding transcription factors. The current challenge is to understand how such combinatorial interactions regulate broad genetic programs that underlie cellular functions and disease. The transcription factors Hnf1alpha and Hnf4alpha control pancreatic islet beta-cell function and growth, and mutations in their genes cause closely related forms of diabetes. We have now exploited genetic epistasis to examine how Hnf1alpha and Hnf4alpha functionally interact in pancreatic islets. Expression profiling in islets from either Hnf1a(+/-) or pancreas-specific Hnf4a mutant mice showed that the two transcription factors regulate a strikingly similar set of genes. We integrated expression and genomic binding studies and show that the shared transcriptional phenotype of these two mutant models is linked to common direct targets, rather than to known effects of Hnf1alpha on Hnf4a gene transcription. Epistasis analysis with transcriptomes of single- and double-mutant islets revealed that Hnf1alpha and Hnf4alpha regulate common targets synergistically. Hnf1alpha binding in Hnf4a-deficient islets was decreased in selected targets, but remained unaltered in others, thus suggesting that the mechanisms for synergistic regulation are gene-specific. These findings provide an in vivo strategy to study combinatorial gene regulation and reveal how Hnf1alpha and Hnf4alpha control a common islet-cell regulatory program that is defective in human monogenic diabetes.
Collapse
Affiliation(s)
- Sylvia F. Boj
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Dimitri Petrov
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jorge Ferrer
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Endocrinology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
van Arensbergen J, García-Hurtado J, Moran I, Maestro MA, Xu X, Van de Casteele M, Skoudy AL, Palassini M, Heimberg H, Ferrer J. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res 2010; 20:722-32. [PMID: 20395405 DOI: 10.1101/gr.101709.109] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The epigenome changes that underlie cellular differentiation in developing organisms are poorly understood. To gain insights into how pancreatic beta-cells are programmed, we profiled key histone methylations and transcripts in embryonic stem cells, multipotent progenitors of the nascent embryonic pancreas, purified beta-cells, and 10 differentiated tissues. We report that despite their endodermal origin, beta-cells show a transcriptional and active chromatin signature that is most similar to ectoderm-derived neural tissues. In contrast, the beta-cell signature of trimethylated H3K27, a mark of Polycomb-mediated repression, clusters with pancreatic progenitors, acinar cells and liver, consistent with the epigenetic transmission of this mark from endoderm progenitors to their differentiated cellular progeny. We also identified two H3K27 methylation events that arise in the beta-cell lineage after the pancreatic progenitor stage. One is a wave of cell-selective de novo H3K27 trimethylation in non-CpG island genes. Another is the loss of bivalent and H3K27me3-repressed chromatin in a core program of neural developmental regulators that enables a convergence of the gene activity state of beta-cells with that of neural cells. These findings reveal a dynamic regulation of Polycomb repression programs that shape the identity of differentiated beta-cells.
Collapse
Affiliation(s)
- Joris van Arensbergen
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Tissue-specific transcriptional regulation is central to human disease1. To identify regulatory DNA active in human pancreatic islets, we profiled chromatin by FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements)2–4 coupled with high-throughput sequencing. We identified ~80,000 open chromatin sites. Comparison of islet FAIRE-seq to five non-islet cell lines revealed ~3,300 physically linked clusters of islet-selective open chromatin sites, which typically encompassed single genes exhibiting islet-specific expression. We mapped sequence variants to open chromatin sites and found that rs7903146, a TCF7L2 intronic variant strongly associated with type 2 diabetes (T2D)5, is located in islet-selective open chromatin. We show that rs7903146 heterozygotes exhibit allelic imbalance in islet FAIRE signal, and that the variant alters enhancer activity, indicating that genetic variation at this locus acts in cis with local chromatin and regulatory changes. These findings illuminate the tissue-specific organization of cis-regulatory elements, and show that FAIRE-seq can guide identification of regulatory variants important for disease.
Collapse
|
14
|
Servitja JM, Pignatelli M, Maestro MA, Cardalda C, Boj SF, Lozano J, Blanco E, Lafuente A, McCarthy MI, Sumoy L, Guigó R, Ferrer J. Hnf1alpha (MODY3) controls tissue-specific transcriptional programs and exerts opposed effects on cell growth in pancreatic islets and liver. Mol Cell Biol 2009; 29:2945-59. [PMID: 19289501 PMCID: PMC2682018 DOI: 10.1128/mcb.01389-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/29/2008] [Accepted: 03/02/2009] [Indexed: 01/08/2023] Open
Abstract
Heterozygous HNF1A mutations cause pancreatic-islet beta-cell dysfunction and monogenic diabetes (MODY3). Hnf1alpha is known to regulate numerous hepatic genes, yet knowledge of its function in pancreatic islets is more limited. We now show that Hnf1a deficiency in mice leads to highly tissue-specific changes in the expression of genes involved in key functions of both islets and liver. To gain insights into the mechanisms of tissue-specific Hnf1alpha regulation, we integrated expression studies of Hnf1a-deficient mice with identification of direct Hnf1alpha targets. We demonstrate that Hnf1alpha can bind in a tissue-selective manner to genes that are expressed only in liver or islets. We also show that Hnf1alpha is essential only for the transcription of a minor fraction of its direct-target genes. Even among genes that were expressed in both liver and islets, the subset of targets showing functional dependence on Hnf1alpha was highly tissue specific. This was partly explained by the compensatory occupancy by the paralog Hnf1beta at selected genes in Hnf1a-deficient liver. In keeping with these findings, the biological consequences of Hnf1a deficiency were markedly different in islets and liver. Notably, Hnf1a deficiency led to impaired large-T-antigen-induced growth and oncogenesis in beta cells yet enhanced proliferation in hepatocytes. Collectively, these findings show that Hnf1alpha governs broad, highly tissue-specific genetic programs in pancreatic islets and liver and reveal key consequences of Hnf1a deficiency relevant to the pathophysiology of monogenic diabetes.
Collapse
Affiliation(s)
- Joan-Marc Servitja
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fedorova E, Zink D. Nuclear architecture and gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2174-84. [PMID: 18718493 DOI: 10.1016/j.bbamcr.2008.07.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/15/2008] [Accepted: 07/20/2008] [Indexed: 12/27/2022]
Abstract
The spatial organization of eukaryotic genomes in the cell nucleus is linked to their transcriptional regulation. In mammals, on which this review will focus, transcription-related chromatin positioning is regulated at the level of chromosomal sub-domains and individual genes. Most of the chromatin remains stably positioned during interphase. However, some loci display dynamic relocalizations upon transcriptional activation, which are dependent on nuclear actin and myosin. Transcription factors in association with chromatin modifying complexes seem to play a central role in regulating chromatin dynamics and positioning. Recent results obtained in this regard also give insight into the question how the different levels of transcriptional regulation are integrated and coordinated with other processes involved in gene expression. Corresponding findings will be discussed.
Collapse
Affiliation(s)
- Elena Fedorova
- Russian Academy of Sciences, I.P. Pavlov Institute of Physiology, Department of Sensory Physiology, Nab. Makarova 6, 199034 St. Petersburg, Russia
| | | |
Collapse
|
16
|
Lockerbie RO, Eddé B, Prochiantz A. Cyclic AMP-dependent protein phosphorylation in isolated neuronal growth cones from developing rat forebrain. J Neurochem 1989; 31:202-14. [PMID: 2537377 DOI: 10.1016/j.devcel.2014.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/07/2014] [Accepted: 08/28/2014] [Indexed: 12/19/2022]
Abstract
We have shown recently that neuronal growth cones isolated from developing rat forebrain possess an appreciable activity of adenylate cyclase, which produces cyclic AMP and can be stimulated by various neurotransmitter receptor agonists and by forskolin. To investigate cyclic AMP-mediated biochemical mechanisms in isolated growth cones, we have centered the present study on cyclic AMP-dependent protein phosphorylation. One-dimensional gel electrophoretic analysis showed that cyclic AMP analogs increased incorporation of 32P into several phosphoproteins in molecular mass ranges of 50-58 and 76-82 kilodaltons, including those of 82, 76, and 51 kilodaltons. Two-dimensional electrophoresis, using isoelectric focusing in the first dimension, resolved phosphorylated alpha- and beta-tubulin species, actin, a very acidic protein (isoelectric point 4.0) with a molecular mass of 93 kilodaltons, and two proteins (x and x') closely neighboring beta-tubulin. Two other phosphoproteins seen in the gels had molecular masses of 56 and 51 kilodaltons (respective isoelectric points, 4.5 and 4.4) and, along with the 93-kilodalton phosphoprotein, were highly enriched in the isolated growth cones. Only the tubulin and actin species were major proteins in the isolated growth cones. Cyclic AMP analogs enhanced incorporation of 32P into phosphoproteins x and x', and, as assessed by immunoprecipitation, into beta-tubulin. Peptide digest experiments suggested that phosphoproteins x and x' are unrelated to beta-tubulin. Nonequilibrium two-dimensional electrophoresis resolved many phosphoproteins, of which a 79- and 75-kilodalton doublet, a 74-kilodalton species, and a 58-kilodalton doublet showed enhanced incorporation of 32P in the presence of cyclic AMP.
Collapse
Affiliation(s)
- R O Lockerbie
- Chaire de Neuropharmacologie, INSERM U 114, Collège de France, Paris
| | | | | |
Collapse
|