1
|
Lei H, Li J, Zhao B, Kou SH, Xiao F, Chen T, Wang SM. Evolutionary origin of germline pathogenic variants in human DNA mismatch repair genes. Hum Genomics 2024; 18:5. [PMID: 38287404 PMCID: PMC10823654 DOI: 10.1186/s40246-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Mismatch repair (MMR) system is evolutionarily conserved for genome stability maintenance. Germline pathogenic variants (PVs) in MMR genes that lead to MMR functional deficiency are associated with high cancer risk. Knowing the evolutionary origin of germline PVs in human MMR genes will facilitate understanding the biological base of MMR deficiency in cancer. However, systematic knowledge is lacking to address the issue. In this study, we performed a comprehensive analysis to know the evolutionary origin of human MMR PVs. METHODS We retrieved MMR gene variants from the ClinVar database. The genomes of 100 vertebrates were collected from the UCSC genome browser and ancient human sequencing data were obtained through comprehensive data mining. Cross-species conservation analysis was performed based on the phylogenetic relationship among 100 vertebrates. Rescaled ancient sequencing data were used to perform variant calling for archeological analysis. RESULTS Using the phylogenetic approach, we traced the 3369 MMR PVs identified in modern humans in 99 non-human vertebrate genomes but found no evidence for cross-species conservation as the source for human MMR PVs. Using the archeological approach, we searched the human MMR PVs in over 5000 ancient human genomes dated from 45,045 to 100 years before present and identified a group of MMR PVs shared between modern and ancient humans mostly within 10,000 years with similar quantitative patterns. CONCLUSION Our study reveals that MMR PVs in modern humans were arisen within the recent human evolutionary history.
Collapse
Affiliation(s)
- Huijun Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Si Hoi Kou
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Fengxia Xiao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Tianhui Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
2
|
Bozdag GO, Ono J. Evolution and molecular bases of reproductive isolation. Curr Opin Genet Dev 2022; 76:101952. [PMID: 35849861 PMCID: PMC10210581 DOI: 10.1016/j.gde.2022.101952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
The most challenging problem in speciation research is disentangling the relative strength and order in which different reproductive barriers evolve. Here, we review recent developments in the study of reproductive isolation in yeasts. With over a thousand genome-sequenced isolates readily available for testing the viability, sterility, and fitness of both intraspecies and interspecies hybrid crosses, Saccharomyces yeasts are an ideal model to study such fundamental questions. Our survey demonstrates that, while chromosomal-level mutations are widespread at the intraspecific level, anti-recombination-driven chromosome missegregation is the primary reproductive barrier between species. Finally, despite their strength, all of these postzygotic barriers can be resolved through the asexual life history of hybrids.
Collapse
Affiliation(s)
- G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. https://twitter.com/ozan_g_b
| | - Jasmine Ono
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Evolutionary Significance of Fungal Hypermutators: Lessons Learned from Clinical Strains and Implications for Fungal Plant Pathogens. mSphere 2022; 7:e0008722. [PMID: 35638358 PMCID: PMC9241500 DOI: 10.1128/msphere.00087-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid evolution of fungal pathogens poses a serious threat to medicine and agriculture. The mutation rate determines the pace of evolution of a fungal pathogen. Hypermutator fungal strains have an elevated mutation rate owing to certain defects such as those in the DNA mismatch repair system. Studies in Saccharomyces cerevisiae show that hypermutators expedite evolution by generating beneficial alleles at a faster pace than the wild-type strains. However, an accumulation of deleterious alleles in a hypermutator may reduce its fitness. The balance between fitness cost and mutation benefit determines the prevalence of hypermutators in a population. This balance is affected by a complex interaction of ploidy, mode of reproduction, population size, and recent population history. Studies in human fungal pathogens like Aspergillus fumigatus, Candida albicans, Candida glabrata, Cryptococcus deuterogattii, and Cryptococcus neoformans have highlighted the importance of hypermutators in host adaptation and development of antifungal resistance. However, a critical examination of hypermutator biology, experimental evolution studies, and epidemiological studies suggests that hypermutators may impact evolutionary investigations. This review aims to integrate the knowledge about biology, experimental evolution, and dynamics of fungal hypermutators to critically examine the evolutionary role of hypermutators in fungal pathogen populations and project implications of hypermutators in the evolution of fungal plant pathogen populations. Understanding the factors determining the emergence and evolution of fungal hypermutators can open a novel avenue of managing rapidly evolving fungal pathogens in medicine and agriculture.
Collapse
|
4
|
Fijarczyk A, Hénault M, Marsit S, Charron G, Landry CR. Heterogeneous Mutation Rates and Spectra in Yeast Hybrids. Genome Biol Evol 2021; 13:6462191. [PMID: 34908117 PMCID: PMC8715523 DOI: 10.1093/gbe/evab282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Mutation rates and spectra vary between species and among populations. Hybridization can contribute to this variation, but its role remains poorly understood. Estimating mutation rates requires controlled conditions where the effect of natural selection can be minimized. One way to achieve this is through mutation accumulation experiments coupled with genome sequencing. Here, we investigate 400 mutation accumulation lines initiated from 11 genotypes spanning intralineage, interlineage, and interspecific crosses of the yeasts Saccharomyces paradoxus and S. cerevisiae and propagated for 770 generations. We find significant differences in mutation rates and spectra among crosses, which are not related to the level of divergence of parental strains but are specific to some genotype combinations. Differences in number of generations and departures from neutrality play a minor role, whereas polyploidy and loss of heterozygosity impact mutation rates in some of the hybrid crosses in an opposite way.
Collapse
Affiliation(s)
- Anna Fijarczyk
- Département de Biologie, Université Laval, Québec, Québec, Canada.,Institut de Biologie Intégrative et des Systemes (IBIS), Université Laval, Québec, Québec, Canada.,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, Canada.,PROTEO, Le Réseau Québécois de Recherche sur la Fonction, La Structure et L'Ingénierie des Protéines, Université Laval, Québec, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Mathieu Hénault
- Département de Biologie, Université Laval, Québec, Québec, Canada.,Institut de Biologie Intégrative et des Systemes (IBIS), Université Laval, Québec, Québec, Canada.,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, Canada.,PROTEO, Le Réseau Québécois de Recherche sur la Fonction, La Structure et L'Ingénierie des Protéines, Université Laval, Québec, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Souhir Marsit
- Département de Biologie, Université Laval, Québec, Québec, Canada.,Institut de Biologie Intégrative et des Systemes (IBIS), Université Laval, Québec, Québec, Canada.,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, Canada.,PROTEO, Le Réseau Québécois de Recherche sur la Fonction, La Structure et L'Ingénierie des Protéines, Université Laval, Québec, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Guillaume Charron
- Département de Biologie, Université Laval, Québec, Québec, Canada.,Institut de Biologie Intégrative et des Systemes (IBIS), Université Laval, Québec, Québec, Canada.,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, Canada.,PROTEO, Le Réseau Québécois de Recherche sur la Fonction, La Structure et L'Ingénierie des Protéines, Université Laval, Québec, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Christian R Landry
- Département de Biologie, Université Laval, Québec, Québec, Canada.,Institut de Biologie Intégrative et des Systemes (IBIS), Université Laval, Québec, Québec, Canada.,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, Canada.,PROTEO, Le Réseau Québécois de Recherche sur la Fonction, La Structure et L'Ingénierie des Protéines, Université Laval, Québec, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Québec, Canada
| |
Collapse
|
5
|
Ollodart AR, Yeh CLC, Miller AW, Shirts BH, Gordon AS, Dunham MJ. Multiplexing mutation rate assessment: determining pathogenicity of Msh2 variants in Saccharomyces cerevisiae. Genetics 2021; 218:iyab058. [PMID: 33848333 PMCID: PMC8225350 DOI: 10.1093/genetics/iyab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 01/01/2023] Open
Abstract
Despite the fundamental importance of mutation rate as a driving force in evolution and disease risk, common methods to assay mutation rate are time-consuming and tedious. Established methods such as fluctuation tests and mutation accumulation experiments are low-throughput and often require significant optimization to ensure accuracy. We established a new method to determine the mutation rate of many strains simultaneously by tracking mutation events in a chemostat continuous culture device and applying deep sequencing to link mutations to alleles of a DNA-repair gene. We applied this method to assay the mutation rate of hundreds of Saccharomyces cerevisiae strains carrying mutations in the gene encoding Msh2, a DNA repair enzyme in the mismatch repair pathway. Loss-of-function mutations in MSH2 are associated with hereditary nonpolyposis colorectal cancer, an inherited disorder that increases risk for many different cancers. However, the vast majority of MSH2 variants found in human populations have insufficient evidence to be classified as either pathogenic or benign. We first benchmarked our method against Luria-Delbrück fluctuation tests using a collection of published MSH2 missense variants. Our pooled screen successfully identified previously characterized nonfunctional alleles as high mutators. We then created an additional 185 human missense variants in the yeast ortholog, including both characterized and uncharacterized alleles curated from ClinVar and other clinical testing data. In a set of alleles of known pathogenicity, our assay recapitulated ClinVar's classification; we then estimated pathogenicity for 157 variants classified as uncertain or conflicting reports of significance. This method is capable of studying the mutation rate of many microbial species and can be applied to problems ranging from the generation of high-fidelity polymerases to measuring the frequency of antibiotic resistance emergence.
Collapse
Affiliation(s)
- Anja R Ollodart
- Molecular Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| | - Chiann-Ling C Yeh
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| | - Aaron W Miller
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| | - Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Adam S Gordon
- Department of Pharmacology, Northwestern University, Chicago, IL 60208, USA
| | - Maitreya J Dunham
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Bereketoglu C, Nacar G, Sari T, Mertoglu B, Pradhan A. Transcriptomic analysis of nonylphenol effect on Saccharomyces cerevisiae. PeerJ 2021; 9:e10794. [PMID: 33614281 PMCID: PMC7882136 DOI: 10.7717/peerj.10794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
Nonylphenol (NP) is a bioaccumulative environmental estrogen that is widely used as a nonionic surfactant. We have previously examined short-term effects of NP on yeast cells using microarray technology. In the present study, we investigated the adaptive response of Saccharomyces cerevisiae BY4742 cells to NP exposure by analyzing genome-wide transcriptional profiles using RNA-sequencing. We used 2 mg/L NP concentration for 40 days of exposure. Gene expression analysis showed that a total of 948 genes were differentially expressed. Of these, 834 genes were downregulated, while 114 genes were significantly upregulated. GO enrichment analysis revealed that 369 GO terms were significantly affected by NP exposure. Further analysis showed that many of the differentially expressed genes were associated with oxidative phosphorylation, iron and copper acquisition, autophagy, pleiotropic drug resistance and cell cycle progression related processes such as DNA and mismatch repair, chromosome segregation, spindle checkpoint activity, and kinetochore organization. Overall, these results provide considerable information and a comprehensive understanding of the adaptive response to NP exposure at the gene expression level.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay, Turkey
| | - Gozde Nacar
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Tugba Sari
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Bulent Mertoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
7
|
Loeillet S, Herzog M, Puddu F, Legoix P, Baulande S, Jackson SP, Nicolas AG. Trajectory and uniqueness of mutational signatures in yeast mutators. Proc Natl Acad Sci U S A 2020; 117:24947-24956. [PMID: 32968016 PMCID: PMC7547211 DOI: 10.1073/pnas.2011332117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The acquisition of mutations plays critical roles in adaptation, evolution, senescence, and tumorigenesis. Massive genome sequencing has allowed extraction of specific features of many mutational landscapes but it remains difficult to retrospectively determine the mechanistic origin(s), selective forces, and trajectories of transient or persistent mutations and genome rearrangements. Here, we conducted a prospective reciprocal approach to inactivate 13 single or multiple evolutionary conserved genes involved in distinct genome maintenance processes and characterize de novo mutations in 274 diploid Saccharomyces cerevisiae mutation accumulation lines. This approach revealed the diversity, complexity, and ultimate uniqueness of mutational landscapes, differently composed of base substitutions, small insertions/deletions (InDels), structural variants, and/or ploidy variations. Several landscapes parallel the repertoire of mutational signatures in human cancers while others are either novel or composites of subsignatures resulting from distinct DNA damage lesions. Notably, the increase of base substitutions in the homologous recombination-deficient Rad51 mutant, specifically dependent on the Polζ translesion polymerase, yields COSMIC signature 3 observed in BRCA1/BRCA2-mutant breast cancer tumors. Furthermore, "mutome" analyses in highly polymorphic diploids and single-cell bottleneck lineages revealed a diverse spectrum of loss-of-heterozygosity (LOH) signatures characterized by interstitial and terminal chromosomal events resulting from interhomolog mitotic cross-overs. Following the appearance of heterozygous mutations, the strong stimulation of LOHs in the rad27/FEN1 and tsa1/PRDX1 backgrounds leads to fixation of homozygous mutations or their loss along the lineage. Overall, these mutomes and their trajectories provide a mechanistic framework to understand the origin and dynamics of genome variations that accumulate during clonal evolution.
Collapse
Affiliation(s)
- Sophie Loeillet
- Institut Curie, Paris Sciences et Lettres Research University, CNRS, UMR3244, 75248 Paris Cedex 05, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, CNRS, UMR3244, 75248 Paris Cedex 05, France
| | - Mareike Herzog
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, Cambridge CB2 1QN, United Kingdom
| | - Fabio Puddu
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, Cambridge CB2 1QN, United Kingdom
| | - Patricia Legoix
- ICGex NGS Platform, Institut Curie, 75248 Paris Cedex 05, France
| | - Sylvain Baulande
- ICGex NGS Platform, Institut Curie, 75248 Paris Cedex 05, France
| | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, Cambridge CB2 1QN, United Kingdom
| | - Alain G Nicolas
- Institut Curie, Paris Sciences et Lettres Research University, CNRS, UMR3244, 75248 Paris Cedex 05, France;
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, CNRS, UMR3244, 75248 Paris Cedex 05, France
| |
Collapse
|
8
|
Raghavan V, Aquadro CF, Alani E. Baker's Yeast Clinical Isolates Provide a Model for How Pathogenic Yeasts Adapt to Stress. Trends Genet 2019; 35:804-817. [PMID: 31526615 PMCID: PMC6825890 DOI: 10.1016/j.tig.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
Global outbreaks of drug-resistant fungi such as Candida auris are thought to be due at least in part to excessive use of antifungal drugs. Baker's yeast Saccharomyces cerevisiae has gained importance as an emerging opportunistic fungal pathogen that can cause infections in immunocompromised patients. Analyses of over 1000 S. cerevisiae isolates are providing rich resources to better understand how fungi can grow in human environments. A large percentage of clinical S. cerevisiae isolates are heterozygous across many nucleotide sites, and a significant proportion are of mixed ancestry and/or are aneuploid or polyploid. Such features potentially facilitate adaptation to new environments. These observations provide strong impetus for expanding genomic and molecular studies on clinical and wild isolates to understand the prevalence of genetic diversity and instability-generating mechanisms, and how they are selected for and maintained. Such work can also lead to the identification of new targets for antifungal drugs.
Collapse
Affiliation(s)
- Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Raghavan V, Bui DT, Al-Sweel N, Friedrich A, Schacherer J, Aquadro CF, Alani E. Incompatibilities in Mismatch Repair Genes MLH1-PMS1 Contribute to a Wide Range of Mutation Rates in Human Isolates of Baker's Yeast. Genetics 2018; 210:1253-1266. [PMID: 30348651 PMCID: PMC6283166 DOI: 10.1534/genetics.118.301550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Laboratory baker's yeast strains bearing an incompatible combination of MLH1 and PMS1 mismatch repair alleles are mutators that can adapt more rapidly to stress, but do so at the cost of long-term fitness. We identified 18 baker's yeast isolates from 1011 surveyed that contain the incompatible MLH1-PMS1 genotype in a heterozygous state. Surprisingly, the incompatible combination from two human clinical heterozygous diploid isolates, YJS5845 and YJS5885, contain the exact MLH1 (S288c-derived) and PMS1 (SK1-derived) open reading frames originally shown to confer incompatibility. While these isolates were nonmutators, their meiotic spore clone progeny displayed mutation rates in a DNA slippage assay that varied over a 340-fold range. This range was 30-fold higher than observed between compatible and incompatible combinations of laboratory strains. Genotyping analysis indicated that MLH1-PMS1 incompatibility was the major driver of mutation rate in the isolates. The variation in the mutation rate of incompatible spore clones could be due to background suppressors and enhancers, as well as aneuploidy seen in the spore clones. Our data are consistent with the observed variance in mutation rate contributing to adaptation to stress conditions (e.g., in a human host) through the acquisition of beneficial mutations, with high mutation rates leading to long-term fitness costs that are buffered by mating or eliminated through natural selection.
Collapse
Affiliation(s)
- Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Duyen T Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Anne Friedrich
- Université de Strasbourg, Centre National de la Recherche Scientifique, Laboratory of Molecular Genetics, Genomics and Microbiology (GMGM) UMR 7156, F-67000, France
| | - Joseph Schacherer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Laboratory of Molecular Genetics, Genomics and Microbiology (GMGM) UMR 7156, F-67000, France
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
10
|
Dion-Côté AM, Barbash DA. Beyond speciation genes: an overview of genome stability in evolution and speciation. Curr Opin Genet Dev 2017; 47:17-23. [PMID: 28830007 DOI: 10.1016/j.gde.2017.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 01/03/2023]
Abstract
Genome stability ensures individual fitness and reliable transmission of genetic information. Hybridization between diverging lineages can trigger genome instability, highlighting its potential role in post-zygotic reproductive isolation. We argue that genome instability is not merely one of several types of hybrid incompatibility, but rather that genome stability is one of the very first and most fundamental traits that can break down when two diverged genomes are combined. Future work will reveal how frequent and predictable genome instability is in hybrids, how it affects hybrid fitness, and whether it is a direct cause or consequence of speciation.
Collapse
Affiliation(s)
- Anne-Marie Dion-Côté
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, United States
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, United States.
| |
Collapse
|
11
|
Skelly DA, Magwene PM, Meeks B, Murphy HA. Known mutator alleles do not markedly increase mutation rate in clinical Saccharomyces cerevisiae strains. Proc Biol Sci 2017; 284:20162672. [PMID: 28404772 PMCID: PMC5394658 DOI: 10.1098/rspb.2016.2672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/17/2017] [Indexed: 11/12/2022] Open
Abstract
Natural selection has the potential to act on all phenotypes, including genomic mutation rate. Classic evolutionary theory predicts that in asexual populations, mutator alleles, which cause high mutation rates, can fix due to linkage with beneficial mutations. This phenomenon has been demonstrated experimentally and may explain the frequency of mutators found in bacterial pathogens. By contrast, in sexual populations, recombination decouples mutator alleles from beneficial mutations, preventing mutator fixation. In the facultatively sexual yeast Saccharomyces cerevisiae, segregating alleles of MLH1 and PMS1 have been shown to be incompatible, causing a high mutation rate when combined. These alleles had never been found together naturally, but were recently discovered in a cluster of clinical isolates. Here we report that the incompatible mutator allele combination only marginally elevates mutation rate in these clinical strains. Genomic and phylogenetic analyses provide no evidence of a historically elevated mutation rate. We conclude that the effect of the mutator alleles is dampened by background genetic modifiers. Thus, the relationship between mutation rate and microbial pathogenicity may be more complex than once thought. Our findings provide rare observational evidence that supports evolutionary theory suggesting that sexual organisms are unlikely to harbour alleles that increase their genomic mutation rate.
Collapse
Affiliation(s)
| | | | - Brianna Meeks
- Department of Biology, The College of William and Mary, Williamsburg, VA, USA
| | - Helen A Murphy
- Department of Biology, The College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
12
|
Bui DT, Friedrich A, Al-Sweel N, Liti G, Schacherer J, Aquadro CF, Alani E. Mismatch Repair Incompatibilities in Diverse Yeast Populations. Genetics 2017; 205:1459-1471. [PMID: 28193730 PMCID: PMC5378106 DOI: 10.1534/genetics.116.199513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 11/18/2022] Open
Abstract
An elevated mutation rate can provide cells with a source of mutations to adapt to changing environments. We identified a negative epistatic interaction involving naturally occurring variants in the MLH1 and PMS1 mismatch repair (MMR) genes of Saccharomyces cerevisiae We hypothesized that this MMR incompatibility, created through mating between divergent S. cerevisiae, yields mutator progeny that can rapidly but transiently adapt to an environmental stress. Here we analyzed the MLH1 and PMS1 genes across 1010 S. cerevisiae natural isolates spanning a wide range of ecological sources (tree exudates, Drosophila, fruits, and various fermentation and clinical isolates) and geographical sources (Europe, America, Africa, and Asia). We identified one homozygous clinical isolate and 18 heterozygous isolates containing the incompatible MMR genotype. The MLH1-PMS1 gene combination isolated from the homozygous clinical isolate conferred a mutator phenotype when expressed in the S288c laboratory background. Using a novel reporter to measure mutation rates, we showed that the overall mutation rate in the homozygous incompatible background was similar to that seen in compatible strains, indicating the presence of suppressor mutations in the clinical isolate that lowered its mutation rate. This observation and the identification of 18 heterozygous isolates, which can lead to MMR incompatible genotypes in the offspring, are consistent with an elevated mutation rate rapidly but transiently facilitating adaptation. To avoid long-term fitness costs, the incompatibility is apparently buffered by mating or by acquiring suppressors. These observations highlight effective strategies in eukaryotes to avoid long-term fitness costs associated with elevated mutation rates.
Collapse
Affiliation(s)
- Duyen T Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Anne Friedrich
- Université de Strasbourg, Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie, Unité Mixte de Recherche, 7156, F-67000 Strasbourg, France
| | - Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice, 06107 Nice, France
| | - Joseph Schacherer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie, Unité Mixte de Recherche, 7156, F-67000 Strasbourg, France
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
13
|
Hou J, Fournier T, Schacherer J. Species-wide survey reveals the various flavors of intraspecific reproductive isolation in yeast. FEMS Yeast Res 2016; 16:fow048. [PMID: 27288348 DOI: 10.1093/femsyr/fow048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/13/2022] Open
Abstract
Exploring the origin and extent of reproductive isolation within the same species is valuable to capture early events to the onset of speciation. In multiple genetic models, reproductive isolation was recently observed at the intraspecific scale, indicating that the raw potential for speciation segregates readily within populations, which could be a rule rather than an exception in a broad context. We briefly recapitulate the molecular evidence of intrinsic post-zygotic isolation in major model organisms including Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster and their close relatives. We then focus on recent advances in yeast and review the genetic basis of post-zygotic isolation within and between multiple members of the Saccharomyces genus, especially in Saccharomyces cerevisiae We discuss the role of various mechanisms involved in the onset of reproductive isolation including DNA sequence divergence, chromosomal rearrangement, cytonuclear as well as nuclear-nuclear genetic incompatibilities and provide a comparative view along a continuum of genetic differentiation, which encompasses intraspecific populations, recent delineating nascent species as well as closely related sister species in the same subphylum.
Collapse
Affiliation(s)
- Jing Hou
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS UMR 7156, Strasbourg, France
| | - Téo Fournier
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS UMR 7156, Strasbourg, France
| |
Collapse
|
14
|
Lee AH, Fidock DA. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites. PLoS One 2016; 11:e0154166. [PMID: 27100094 PMCID: PMC4839739 DOI: 10.1371/journal.pone.0154166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/09/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring detrimental fitness costs.
Collapse
Affiliation(s)
- Andrew H. Lee
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, United States of America
| |
Collapse
|
15
|
Hussain S. A new conceptual framework for investigating complex genetic disease. Front Genet 2015; 6:327. [PMID: 26583033 PMCID: PMC4631989 DOI: 10.3389/fgene.2015.00327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/21/2015] [Indexed: 01/17/2023] Open
Abstract
Some common diseases are known to have an inherited component, however, their population- and familial-incidence patterns do not conform to any known monogenic Mendelian pattern of inheritance and instead they are currently much better explained if an underlying polygenic architecture is posited. Studies that have attempted to identify the causative genetic factors have been designed on this polygenic framework, but so far the yield has been largely unsatisfactory. Based on accumulating recent observations concerning the roles of somatic mosaicism in disease, in this article a second framework which posits a single gene-two hit model which can be modulated by a mutator/anti-mutator genetic background is suggested. I discuss whether such a model can be considered a viable alternative based on current knowledge, its advantages over the current polygenic framework, and describe practical routes via which the new framework can be investigated.
Collapse
Affiliation(s)
- Shobbir Hussain
- Department of Biology and Biochemistry, University of BathBath, UK
| |
Collapse
|
16
|
Bomblies K, Higgins JD, Yant L. Meiosis evolves: adaptation to external and internal environments. THE NEW PHYTOLOGIST 2015; 208:306-23. [PMID: 26075313 DOI: 10.1111/nph.13499] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/03/2015] [Indexed: 05/23/2023]
Abstract
306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - James D Higgins
- Department of Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Levi Yant
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Bui DT, Dine E, Anderson JB, Aquadro CF, Alani EE. A Genetic Incompatibility Accelerates Adaptation in Yeast. PLoS Genet 2015; 11:e1005407. [PMID: 26230253 PMCID: PMC4521705 DOI: 10.1371/journal.pgen.1005407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022] Open
Abstract
During mismatch repair (MMR) MSH proteins bind to mismatches that form as the result of DNA replication errors and recruit MLH factors such as Mlh1-Pms1 to initiate excision and repair steps. Previously, we identified a negative epistatic interaction involving naturally occurring polymorphisms in the MLH1 and PMS1 genes of baker’s yeast. Here we hypothesize that a mutagenic state resulting from this negative epistatic interaction increases the likelihood of obtaining beneficial mutations that can promote adaptation to stress conditions. We tested this by stressing yeast strains bearing mutagenic (incompatible) and non-mutagenic (compatible) mismatch repair genotypes. Our data show that incompatible populations adapted more rapidly and without an apparent fitness cost to high salt stress. The fitness advantage of incompatible populations was rapid but disappeared over time. The fitness gains in both compatible and incompatible strains were due primarily to mutations in PMR1 that appeared earlier in incompatible evolving populations. These data demonstrate a rapid and reversible role (by mating) for genetic incompatibilities in accelerating adaptation in eukaryotes. They also provide an approach to link experimental studies to observational population genomics. In nature, bacterial populations with high mutation rates can adapt faster to new environments by acquiring beneficial mutations. However, such populations also accumulate harmful mutations that reduce their fitness. We show that the model eukaryote baker’s yeast can use a similar mutator strategy to adapt to new environments. The mutator state that we observed resulted from an incompatibility involving two genes, MLH1 and PMS1, that work together to remove DNA replication errors through a spellchecking mismatch repair mechanism. This incompatibility can occur through mating between baker’s yeast from different genetic backgrounds, yielding mutator offspring containing an MLH1-PMS1 combination not present in either parent. Interestingly, these offspring adapted more rapidly to stress, compared to the parental strains, and did so without an overall loss in fitness. DNA sequencing analyses of baker’s yeast strains from across the globe support the presence of incompatible hybrid yeast strains in nature. These observations provide a powerful model to understand how the segregation of defects in DNA mismatch repair can serve as an effective strategy to enable eukaryotes to adapt to changing environments.
Collapse
Affiliation(s)
- Duyen T. Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elliot Dine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - James B. Anderson
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Eric E. Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast. Nat Commun 2015; 6:7214. [PMID: 26008139 PMCID: PMC4445460 DOI: 10.1038/ncomms8214] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Genetic variation within a species could cause negative epistasis leading to reduced hybrid fitness and post-zygotic reproductive isolation. Recent studies in yeasts revealed chromosomal rearrangements as a major mechanism dampening intraspecific hybrid fertility on rich media. Here, by analysing a large number of Saccharomyces cerevisiae crosses on different culture conditions, we show environment-specific genetic incompatibility segregates readily within yeast and contributes to reproductive isolation. Over 24% (117 out of 481) of cases tested show potential epistasis, among which 6.7% (32 out of 481) are severe, with at least 20% of progeny loss on tested conditions. Based on the segregation patterns, we further characterize a two-locus Dobzhansky–Müller incompatibility case leading to offspring respiratory deficiency caused by nonsense mutation in a nuclear-encoding mitochondrial gene and tRNA suppressor. We provide evidence that this precise configuration could be adaptive in fluctuating environments, highlighting the role of ecological selection in the onset of genetic incompatibility and reproductive isolation in yeast. Chromosomal rearrangements may hamper intraspecific hybrid fertility. Here the authors show that environment-specific genetic incompatibility segregates readily within intermating populations and leads to intrinsic reproductive isolation within a yeast species.
Collapse
|
19
|
Wright KM, Arnold B, Xue K, Šurinová M, O'Connell J, Bomblies K. Selection on meiosis genes in diploid and tetraploid Arabidopsis arenosa. Mol Biol Evol 2014; 32:944-55. [PMID: 25543117 DOI: 10.1093/molbev/msu398] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Meiotic chromosome segregation is critical for fertility across eukaryotes, and core meiotic processes are well conserved even between kingdoms. Nevertheless, recent work in animals has shown that at least some meiosis genes are highly diverse or strongly differentiated among populations. What drives this remains largely unknown. We previously showed that autotetraploid Arabidopsis arenosa evolved stable meiosis, likely through reduced crossover rates, and that associated with this there is strong evidence for selection in a subset of meiosis genes known to affect axis formation, synapsis, and crossover frequency. Here, we use genome-wide data to study the molecular evolution of 70 meiosis genes in a much wider sample of A. arenosa. We sample the polyploid lineage, a diploid lineage from the Carpathian Mountains, and a more distantly related diploid lineage from the adjacent, but biogeographically distinct Pannonian Basin. We find that not only did selection act on meiosis genes in the polyploid lineage but also independently on a smaller subset of meiosis genes in Pannonian diploids. Functionally related genes are targeted by selection in these distinct contexts, and in two cases, independent sweeps occurred in the same loci. The tetraploid lineage has sustained selection on more genes, has more amino acid changes in each, and these more often affect conserved or potentially functional sites. We hypothesize that Pannonian diploid and tetraploid A. arenosa experienced selection on structural proteins that mediate sister chromatid cohesion, the formation of meiotic chromosome axes, and synapsis, likely for different underlying reasons.
Collapse
Affiliation(s)
- Kevin M Wright
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Brian Arnold
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Katherine Xue
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Maria Šurinová
- Institute of Botany, Academy of Sciences of the Czech Republic, Pruhonice, Czech Republic
| | - Jeremy O'Connell
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Kirsten Bomblies
- Department of Evolutionary and Organismic Biology, Harvard University
| |
Collapse
|
20
|
Hou J, Friedrich A, de Montigny J, Schacherer J. Chromosomal rearrangements as a major mechanism in the onset of reproductive isolation in Saccharomyces cerevisiae. Curr Biol 2014; 24:1153-9. [PMID: 24814147 DOI: 10.1016/j.cub.2014.03.063] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
Understanding the molecular basis of how reproductive isolation evolves between individuals from the same species offers valuable insight into patterns of genetic differentiation as well as the onset of speciation [1, 2]. The yeast Saccharomyces cerevisiae constitutes an ideal model partly due to its vast ecological range, high level of genetic diversity [3-6], and laboratory-amendable sexual reproduction. Between S. cerevisiae and its sibling species in the Saccharomyces sensu stricto complex, reproductive isolation acts postzygotically and could be attributed to chromosomal rearrangements [7], cytonuclear incompatibility [8, 9], and antirecombination [10, 11], although the implication of these mechanisms at the incipient stage of speciation remains unclear due to further divergence in the nascent species. Recently, several studies assessed the onset of intraspecific reproductive isolation in S. cerevisiae by evaluating the effect of the mismatch repair system [12-14] or by fostering incipient speciation using the same initial genetic background [15-18]. Nevertheless, the overall genetic diversity within this species was largely overlooked, and no systematic evaluation has been performed. Here, we carried out the first species-wide survey for postzygotic reproductive isolation in S. cerevisiae. We crossed 60 natural isolates sampled from diverse niches with the reference strain S288c and identified 16 cases of reproductive isolation with reduced offspring viabilities ranging from 44% to 86%. Using different mapping strategies, we identified reciprocal translocations in a large fraction of all isolates surveyed, indicating that large-scale chromosomal rearrangements might play a major role in the onset of reproductive isolation in this species.
Collapse
Affiliation(s)
- Jing Hou
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156, 67083 Strasbourg, France
| | - Anne Friedrich
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156, 67083 Strasbourg, France
| | - Jacky de Montigny
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156, 67083 Strasbourg, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156, 67083 Strasbourg, France.
| |
Collapse
|
21
|
Leducq JB. Ecological Genomics of Adaptation and Speciation in Fungi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:49-72. [DOI: 10.1007/978-94-007-7347-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Revisiting Mortimer's Genome Renewal Hypothesis: heterozygosity, homothallism, and the potential for adaptation in yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:37-48. [PMID: 24277294 DOI: 10.1007/978-94-007-7347-9_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In diploid organisms, the frequency and nature of sexual cycles have a major impact on genome-wide patterns of heterozygosity. Recent population genomic surveys in the budding yeast, Saccharomyces cerevisiae, have revealed surprising levels of genomic heterozygosity in what has been traditionally considered a highly inbred organism. I review evidence and hypotheses regarding the generation, maintenance, and evolutionary consequences of genomic heterozygosity in S. cerevisiae. I propose that high levels of heterozygosity in S. cerevisiae, arising from population admixture due to human domestication, coupled with selfing during rare sexual cycles, can facilitate rapid adaptation to novel environments.
Collapse
|
23
|
Abstract
Dissecting the molecular basis of quantitative traits is a significant challenge and is essential for understanding complex diseases. Even in model organisms, precisely determining causative genes and their interactions has remained elusive, due in part to difficulty in narrowing intervals to single genes and in detecting epistasis or linked quantitative trait loci. These difficulties are exacerbated by limitations in experimental design, such as low numbers of analyzed individuals or of polymorphisms between parental genomes. We address these challenges by applying three independent high-throughput approaches for QTL mapping to map the genetic variants underlying 11 phenotypes in two genetically distant Saccharomyces cerevisiae strains, namely (1) individual analysis of >700 meiotic segregants, (2) bulk segregant analysis, and (3) reciprocal hemizygosity scanning, a new genome-wide method that we developed. We reveal differences in the performance of each approach and, by combining them, identify eight polymorphic genes that affect eight different phenotypes: colony shape, flocculation, growth on two nonfermentable carbon sources, and resistance to two drugs, salt, and high temperature. Our results demonstrate the power of individual segregant analysis to dissect QTL and address the underestimated contribution of interactions between variants. We also reveal confounding factors like mutations and aneuploidy in pooled approaches, providing valuable lessons for future designs of complex trait mapping studies.
Collapse
|
24
|
Fay JC. The molecular basis of phenotypic variation in yeast. Curr Opin Genet Dev 2013; 23:672-7. [PMID: 24269094 DOI: 10.1016/j.gde.2013.10.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/19/2013] [Accepted: 10/24/2013] [Indexed: 11/19/2022]
Abstract
The power of yeast genetics has now been extensively applied to phenotypic variation among strains of Saccharomyces cerevisiae. As a result, over 100 genes and numerous sequence variants have been identified, providing us with a general characterization of mutations underlying quantitative trait variation. Most quantitative trait alleles exert considerable phenotypic effects and alter conserved amino acid positions within protein coding sequences. When examined, quantitative trait alleles influence the expression of numerous genes, most of which are unrelated to an allele's phenotypic effect. The profile of quantitative trait alleles has proven useful to reverse quantitative genetics approaches and supports the use of systems genetics approaches to synthesize the molecular basis of trait variation across multiple strains.
Collapse
Affiliation(s)
- Justin C Fay
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University, St. Louis, MO, United States.
| |
Collapse
|
25
|
Plys AJ, Rogacheva MV, Greene EC, Alani E. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair. J Mol Biol 2012; 422:192-203. [PMID: 22659005 DOI: 10.1016/j.jmb.2012.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/17/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023]
Abstract
DNA mismatch repair (MMR) models have proposed that MSH (MutS homolog) proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH (MutL homolog) proteins (primarily Mlh1-Pms1 in baker's yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20-30 nm) unstructured arms that connect two terminal globular domains. These arms can vary between 100 and 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker's yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR.
Collapse
Affiliation(s)
- Aaron J Plys
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2073, USA
| | | | | | | |
Collapse
|
26
|
Ma X, Rogacheva MV, Nishant KT, Zanders S, Bustamante CD, Alani E. Mutation hot spots in yeast caused by long-range clustering of homopolymeric sequences. Cell Rep 2012; 1:36-42. [PMID: 22832106 DOI: 10.1016/j.celrep.2011.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 09/29/2011] [Accepted: 10/21/2011] [Indexed: 11/18/2022] Open
Abstract
Evolutionary theory assumes that mutations occur randomly in the genome; however, studies performed in a variety of organisms indicate the existence of context-dependent mutation biases. Sources of mutagenesis variation across large genomic contexts (e.g., hundreds of bases) have not been identified. Here, we use high-coverage whole-genome sequencing of a conditional mismatch repair mutant line of diploid yeast to identify mutations that accumulated after 160 generations of growth. The vast majority of the mutations accumulated as insertion/deletions (in/dels) in homopolymeric [poly(dA:dT)] and repetitive DNA tracts. Surprisingly, the likelihood of an in/del mutation in a given poly(dA:dT) tract is increased by the presence of nearby poly(dA:dT) tracts in up to a 1,000 bp region centered on the given tract. Our work suggests that specific mutation hot spots can contribute disproportionately to the genetic variation that is introduced into populations and provides long-range genomic sequence context that contributes to mutagenesis.
Collapse
Affiliation(s)
- Xin Ma
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
27
|
Mancera E, Bourgon R, Huber W, Steinmetz LM. Genome-wide survey of post-meiotic segregation during yeast recombination. Genome Biol 2011; 12:R36. [PMID: 21481229 PMCID: PMC3218862 DOI: 10.1186/gb-2011-12-4-r36] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/27/2011] [Accepted: 04/11/2011] [Indexed: 11/24/2022] Open
Abstract
Background When mismatches in heteroduplex DNA formed during meiotic recombination are left unrepaired, post-meiotic segregation of the two mismatched alleles occurs during the ensuing round of mitosis. This gives rise to somatic mosaicism in multicellular organisms and leads to unexpected allelic combinations among progeny. Despite its implications for inheritance, post-meiotic segregation has been studied at only a few loci. Results By genotyping tens of thousands of genetic markers in yeast segregants and their clonal progeny, we analyzed post-meiotic segregation at a genome-wide scale. We show that post-meiotic segregation occurs in close to 10% of recombination events. Although the overall number of markers affected in a single meiosis is small, the rate of post-meiotic segregation is more than five orders of magnitude larger than the base substitution mutation rate. Post-meiotic segregation took place with equal relative frequency in crossovers and non-crossovers, and usually at the edges of gene conversion tracts. Furthermore, post-meiotic segregation tended to occur in markers that are isolated from other heterozygosities and preferentially at polymorphism types that are relatively uncommon in the yeast species. Conclusions Overall, our survey reveals the genome-wide characteristics of post-meiotic segregation. The results show that post-meiotic segregation is widespread in meiotic recombination and could be a significant determinant of allelic inheritance and allele frequencies at the population level.
Collapse
Affiliation(s)
- Eugenio Mancera
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
28
|
Liti G, Haricharan S, Cubillos FA, Tierney AL, Sharp S, Bertuch AA, Parts L, Bailes E, Louis EJ. Segregating YKU80 and TLC1 alleles underlying natural variation in telomere properties in wild yeast. PLoS Genet 2009; 5:e1000659. [PMID: 19763176 PMCID: PMC2734985 DOI: 10.1371/journal.pgen.1000659] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022] Open
Abstract
In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres. Telomere length is a complex trait that varies among individuals. Its regulation is critical to the process of aging, and altered length control can result in either senescence or immortalization. We detected extreme variation between different subpopulations of the wild yeast S. paradoxus, the closest relative to S. cerevisiae. By tagging individual telomeric ends in these two groups, we show that regardless of the total number of telomeric repeats, the critical length at which any telomere is replenished remains conserved. To detect the quantitative trait loci (QTLs) behind the length variation, we used the two sub-populations with the most polar distribution to generate progeny and perform linkage analysis. Further, we validated that naturally occurring sequence variations in YKU80 and TLC1, two genes previously shown to be important for telomere length maintenance, can explain part of the variation. We also identified other loci that influence both telomere length and gene silencing. Further investigation will provide more insights into the underlying genetic mechanism behind normal telomere regulation, potentially relevant in aging and aging-related disease such as cancer.
Collapse
Affiliation(s)
- Gianni Liti
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (GL); (EJL)
| | - Svasti Haricharan
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Baylor College of Medicine, Houston, Texas, United States of America
| | - Francisco A. Cubillos
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Anna L. Tierney
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sarah Sharp
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Alison A. Bertuch
- Baylor College of Medicine, Houston, Texas, United States of America
| | - Leopold Parts
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Elizabeth Bailes
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Edward J. Louis
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (GL); (EJL)
| |
Collapse
|
29
|
Keller PJ, Knop M. Evolution of mutational robustness in the yeast genome: a link to essential genes and meiotic recombination hotspots. PLoS Genet 2009; 5:e1000533. [PMID: 19557188 PMCID: PMC2694357 DOI: 10.1371/journal.pgen.1000533] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/22/2009] [Indexed: 01/21/2023] Open
Abstract
Deleterious mutations inevitably emerge in any evolutionary process and are speculated to decisively influence the structure of the genome. Meiosis, which is thought to play a major role in handling mutations on the population level, recombines chromosomes via non-randomly distributed hot spots for meiotic recombination. In many genomes, various types of genetic elements are distributed in patterns that are currently not well understood. In particular, important (essential) genes are arranged in clusters, which often cannot be explained by a functional relationship of the involved genes. Here we show by computer simulation that essential gene (EG) clustering provides a fitness benefit in handling deleterious mutations in sexual populations with variable levels of inbreeding and outbreeding. We find that recessive lethal mutations enforce a selective pressure towards clustered genome architectures. Our simulations correctly predict (i) the evolution of non-random distributions of meiotic crossovers, (ii) the genome-wide anti-correlation of meiotic crossovers and EG clustering, (iii) the evolution of EG enrichment in pericentromeric regions and (iv) the associated absence of meiotic crossovers (cold centromeres). Our results furthermore predict optimal crossover rates for yeast chromosomes, which match the experimentally determined rates. Using a Saccharomyces cerevisiae conditional mutator strain, we show that haploid lethal phenotypes result predominantly from mutation of single loci and generally do not impair mating, which leads to an accumulation of mutational load following meiosis and mating. We hypothesize that purging of deleterious mutations in essential genes constitutes an important factor driving meiotic crossover. Therefore, the increased robustness of populations to deleterious mutations, which arises from clustered genome architectures, may provide a significant selective force shaping crossover distribution. Our analysis reveals a new aspect of the evolution of genome architectures that complements insights about molecular constraints, such as the interference of pericentromeric crossovers with chromosome segregation.
Collapse
Affiliation(s)
- Philipp J. Keller
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Michael Knop
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany
| |
Collapse
|
30
|
Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O'Kelly MJT, van Oudenaarden A, Barton DBH, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ. Population genomics of domestic and wild yeasts. Nature 2009; 458:337-41. [PMID: 19212322 PMCID: PMC2659681 DOI: 10.1038/nature07743] [Citation(s) in RCA: 1084] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 12/22/2008] [Indexed: 11/30/2022]
Abstract
Since the completion of the genome sequence of Saccharomyces cerevisiae in 19961,2, there has been an exponential increase in complete genome sequences accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions3,4, population structure5-8, and sexual versus asexual reproduction9,10. Less well understood at the whole genome level are the evolutionary processes acting within populations and species leading to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to four-fold or more coverage of the genome sequences of over seventy isolates of the baker's yeast, S. cerevisiae, and its closest relative, S. paradoxus. We examine variation in gene content, SNPs, indels, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. Interestingly, S. paradoxus populations are well delineated along geographic boundaries while the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of S. cerevisiae consists of a few well-defined geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variation.
Collapse
Affiliation(s)
- Gianni Liti
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gerke J, Lorenz K, Cohen B. Genetic interactions between transcription factors cause natural variation in yeast. Science 2009; 323:498-501. [PMID: 19164747 PMCID: PMC4984536 DOI: 10.1126/science.1166426] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our understanding of the genetic basis of phenotypic diversity is limited by the paucity of examples in which multiple, interacting loci have been identified. We show that natural variation in the efficiency of sporulation, the program in yeast that initiates the sexual phase of the life cycle, between oak tree and vineyard strains is due to allelic variation between four nucleotide changes in three transcription factors: IME1, RME1, and RSF1. Furthermore, we identified that selection has shaped quantitative variation in yeast sporulation between strains. These results illustrate how genetic interactions between transcription factors are a major source of phenotypic diversity within species.
Collapse
Affiliation(s)
- Justin Gerke
- Department of Genetics, Washington University School of Medicine. St. Louis, MO, 63108
| | - Kim Lorenz
- Department of Genetics, Washington University School of Medicine. St. Louis, MO, 63108
| | - Barak Cohen
- Department of Genetics, Washington University School of Medicine. St. Louis, MO, 63108
| |
Collapse
|
32
|
Noor MAF. Mutagenesis from meiotic recombination is not a primary driver of sequence divergence between Saccharomyces species. Mol Biol Evol 2008; 25:2439-44. [PMID: 18723832 DOI: 10.1093/molbev/msn186] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Local rates of recombination positively correlate with DNA sequence diversity in many species. To test whether this relationship stems from mutagenicity of meiotic recombination, studies often look for a similar association between local rates of recombination and sequence "divergence" between species. Because recombination is mutagenic in yeast, I evaluate this assay by testing whether noncoding DNA sequence divergence between Saccharomyces species is related to measures of meiotic double-strand DNA breaks or crossover rates derived from Saccharomyces cerevisiae. Contrary to expectation, I find that sequence divergence is either uncorrelated or negatively correlated with rates of both double-strand break and crossover. Several caveats are mentioned, but these results suggest that mutagenesis from meiotic recombination is not the primary driver of sequence divergence between Saccharomyces species. This study demonstrates that the association between interspecies nucleotide divergence and local recombination rates is not always a reliable indicator of recombination's mutagenicity.
Collapse
Affiliation(s)
- Mohamed A F Noor
- Biology Department, Duke University, Durham, North Carolina, USA.
| |
Collapse
|