1
|
Aguilar R, Rosenberg M, Levy V, Lee JT. An evolving landscape of PRC2-RNA interactions in chromatin regulation. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00850-3. [PMID: 40307460 DOI: 10.1038/s41580-025-00850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
A major unsolved problem in epigenetics is how RNA regulates Polycomb repressive complex 2 (PRC2), a complex that trimethylates histone H3 Lys27 (H3K27me3) to form repressive chromatin. Key questions include how PRC2 binds RNA in vivo and what the functional consequences of binding are. In this Perspective, we expound on the viewpoint that RNA is integral to the stepwise regulation of PRC2 activity. Using the long non-coding RNA XIST and X chromosome inactivation as a model, we discuss evidence indicating that RNA is involved in PRC2 recruitment onto chromatin, in induction of its catalytic activity and in its eviction from chromatin. Studies have also implicated RNA in controlling promoter-proximal pausing of RNA polymerase II. The cumulative data argue that the functional consequences of PRC2-RNA interactions crucially depend on RNA conformation. We recognize that alternative hypotheses exist and therefore we attempt to integrate contrary data. Thus, although an RNA-rich landscape is emerging for Polycomb complexes, additional work is required to resolve a broad range of data interpretations.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Michael Rosenberg
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Vered Levy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Noreen S, Simonelli N, Benedetti R, Carafa V, Grieco M, Ambrosino C, Dell'Aversana C, Nebbioso A, Conte M, Del Gaudio N, Altucci L. Unravelling the impact of the chromobox proteins in human cancers. Cell Death Dis 2025; 16:238. [PMID: 40175347 PMCID: PMC11965368 DOI: 10.1038/s41419-025-07585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Chromobox (CBX) proteins play a crucial role in regulating epigenetic processes. They are extensively involved in various biological processes, including embryonic development, stem cell maintenance, cell proliferation and apoptosis control. The disruption and malfunction of CBXs in cancer typically results in the interference or abnormal activation of developmental pathways, which facilitate the onset, growth, and advancement of cancer. This review initially introduces the physiological properties and functions of the CBXs. Subsequently, it examines the involvement of CBXs in different cancer types. Cancer hallmarks driven by CBXs are mediated through multiple mechanisms, including changes in gene expression patterns, epigenetic dysregulation of chromatin control, disruption of intracellular signaling and alterations in cell metabolism. The study also highlights novel potential anticancer therapeutics targeting CBXs in cancer. In this review we provide novel perspectives and a solid foundation for future investigations on CBXs as promising therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Shabana Noreen
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Nicla Simonelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
- UP Medical Epigenetics, AOU Vanvitelli, Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
- Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Michele Grieco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Carmela Dell'Aversana
- Department of Medicine and Surgery, LUM University, Casamassima, BA, Italy
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS)-National Research Council (CNR), 80131, Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
- UP Medical Epigenetics, AOU Vanvitelli, Naples, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Via del Casale Di San Pio V 44, 00165, Rome, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.
- UP Medical Epigenetics, AOU Vanvitelli, Naples, Italy.
- Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy.
| |
Collapse
|
3
|
Peng WG, Getachew A, Zhou Y. Decoding the epigenetic and transcriptional basis of direct cardiac reprogramming. Stem Cells 2025; 43:sxaf002. [PMID: 39851272 PMCID: PMC11904897 DOI: 10.1093/stmcls/sxaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Heart disease, particularly resulting from myocardial infarction (MI), continues to be a leading cause of mortality, largely due to the limited regenerative capacity of the human heart. Current therapeutic approaches seek to generate new cardiomyocytes from alternative sources. Direct cardiac reprogramming, which converts fibroblasts into induced cardiomyocytes (iCMs), offers a promising alternative by enabling in situ cardiac regeneration and minimizing tumorigenesis concerns. Here we review recent advancements in the understanding of transcriptional and epigenetic mechanisms underlying cardiac reprogramming, with a focus on key early-stage molecular events, including epigenetic barriers and regulatory mechanisms that facilitate reprogramming. Despite substantial progress, human cardiac fibroblast reprogramming and iCM maturation remain areas for further exploration. We also discuss the combinatorial roles of reprogramming factors in governing transcriptional and epigenetic changes. This review consolidates current knowledge and proposes future directions for promoting the translational potential of cardiac reprogramming techniques.
Collapse
Affiliation(s)
- William G Peng
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Anteneh Getachew
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Yang Zhou
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| |
Collapse
|
4
|
Schüle KM, Probst S. Epigenetic control of cell identities from epiblast to gastrulation. FEBS J 2025. [PMID: 39985220 DOI: 10.1111/febs.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic modifications of chromatin are essential for the establishment of cell identities during embryogenesis. Between embryonic days 3.5-7.5 of murine development, major cell lineage decisions are made that discriminate extraembryonic and embryonic tissues, and the embryonic primary germ layers are formed, thereby laying down the basic body plan. In this review, we cover the contribution of dynamic chromatin modifications by DNA methylation, changes of chromatin accessibility, and histone modifications, that in combination with transcription factors control gene expression programs of different cell types. We highlight the differences in regulation of enhancer and promoter marks and discuss their requirement in cell lineage specification. Importantly, in many cases, lineage-specific targeting of epigenetic modifiers is carried out by pioneer or master transcription factors, that in sum mediate the chromatin landscape and thereby control the transcription of cell-type-specific gene programs and thus, cell identities.
Collapse
Affiliation(s)
- Katrin M Schüle
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Simone Probst
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
| |
Collapse
|
5
|
Brulé B, Alcalá-Vida R, Penaud N, Scuto J, Mounier C, Seguin J, Khodaverdian SV, Cosquer B, Birmelé E, Le Gras S, Decraene C, Boutillier AL, Merienne K. Accelerated epigenetic aging in Huntington's disease involves polycomb repressive complex 1. Nat Commun 2025; 16:1550. [PMID: 39934111 DOI: 10.1038/s41467-025-56722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Loss of epigenetic information during physiological aging compromises cellular identity, leading to de-repression of developmental genes. Here, we assessed the epigenomic landscape of vulnerable neurons in two reference mouse models of Huntington neurodegenerative disease (HD), using cell-type-specific multi-omics, including temporal analysis at three disease stages via FANS-CUT&Tag. We show accelerated de-repression of developmental genes in HD striatal neurons, involving histone re-acetylation and depletion of H2AK119 ubiquitination and H3K27 trimethylation marks, which are catalyzed by polycomb repressive complexes 1 and 2 (PRC1 and PRC2), respectively. We further identify a PRC1-dependent subcluster of bivalent developmental transcription factors that is re-activated in HD striatal neurons. This mechanism likely involves progressive paralog switching between PRC1-CBX genes, which promotes the upregulation of normally low-expressed PRC1-CBX2/4/8 isoforms in striatal neurons, alongside the down-regulation of predominant PRC1-CBX isoforms in these cells (e.g., CBX6/7). Collectively, our data provide evidence for PRC1-dependent accelerated epigenetic aging in HD vulnerable neurons.
Collapse
Affiliation(s)
- Baptiste Brulé
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Rafael Alcalá-Vida
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, Alicante, Spain
| | - Noémie Penaud
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Jil Scuto
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Coline Mounier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Jonathan Seguin
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | | | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Etienne Birmelé
- University of Strasbourg, Strasbourg, France
- IRMA, Strasbourg, France
| | - Stéphanie Le Gras
- University of Strasbourg, Strasbourg, France
- Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- CNRS UMR7104, Strasbourg, France
- INSERM U1258, Strasbourg, France
| | - Charles Decraene
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France.
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France.
- University of Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Murphy AE, Askarova A, Lenhard B, Skene NG, Marzi S. Predicting gene expression from histone marks using chromatin deep learning models depends on histone mark function, regulatory distance and cellular states. Nucleic Acids Res 2025; 53:gkae1212. [PMID: 39660643 PMCID: PMC11879020 DOI: 10.1093/nar/gkae1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/12/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024] Open
Abstract
To understand the complex relationship between histone mark activity and gene expression, recent advances have used in silico predictions based on large-scale machine learning models. However, these approaches have omitted key contributing factors like cell state, histone mark function or distal effects, which impact the relationship, limiting their findings. Moreover, downstream use of these models for new biological insight is lacking. Here, we present the most comprehensive study of this relationship to date - investigating seven histone marks in eleven cell types across a diverse range of cell states. We used convolutional and attention-based models to predict transcription from histone mark activity at promoters and distal regulatory elements. Our work shows that histone mark function, genomic distance and cellular states collectively influence a histone mark's relationship with transcription. We found that no individual histone mark is consistently the strongest predictor of gene expression across all genomic and cellular contexts. This highlights the need to consider all three factors when determining the effect of histone mark activity on transcriptional state. Furthermore, we conducted in silico histone mark perturbation assays, uncovering functional and disease related loci and highlighting frameworks for the use of chromatin deep learning models to uncover new biological insight.
Collapse
Affiliation(s)
- Alan E Murphy
- UK Dementia Research Institute at Imperial College London, 86 Wood Lane, London W12 0BZ, UK
- Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Aydan Askarova
- UK Dementia Research Institute at Imperial College London, 86 Wood Lane, London W12 0BZ, UK
- Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Nathan G Skene
- UK Dementia Research Institute at Imperial College London, 86 Wood Lane, London W12 0BZ, UK
- Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Sarah J Marzi
- Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
- UK Dementia Research Institute at King’s College London, 338 Euston Road, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 9RT, UK
| |
Collapse
|
7
|
Yang Q, Zhou Z, Li L, Lu R, Hou G, Huang C, Huang J, Li H, Zhang Y, Li J, Zhang Y, Xu A, Chen R, Wang Y, Zhao X, Huang J, Wang Y, Zhao X, Yu J. The NEXT complex regulates H3K27me3 levels to affect cancer progression by degrading G4/U-rich lncRNAs. Nucleic Acids Res 2025; 53:gkaf107. [PMID: 39988317 PMCID: PMC11840553 DOI: 10.1093/nar/gkaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Polycomb repressive complex 2 (PRC2) is responsible for depositing H3K27me3 and plays essential roles in gene silencing during development and cancer. Meanwhile, the nuclear exosome targeting (NEXT) complex facilitates the degradation of numerous noncoding RNAs in the nucleoplasm. Here we find that the functional deficiency of the NEXT complex leads to an overall decrease in H3K27me3 levels. Specifically, ZCCHC8 depletion results in significant upregulation of nascent long noncoding RNAs (lncRNAs) containing G-quadruplex (G4) and U-Rich motifs (G4/U-Rich lncRNAs). The G4 motif binds to EZH2, blocking the chromatin recruitment of PRC2, while the U-Rich motif is specifically recognized by the NEXT complex for RNA exosome-mediated degradation. In tumor tissues with high ZCCHC8 expression in clear cell renal cell carcinoma (ccRCC) and lung adenocarcinoma (LUAD) patients, the NEXT complex excessively degrades nascent G4/U-Rich lncRNAs. Consequently, PRC2 core subunits are released and recruited to neighboring genomic loci, resulting in increased H3K27me3 levels and downregulation of adjacent genes, including tumor suppressors like SEMA5A and ARID1A. Notably, the EZH2 inhibitor Tazemetostat (EPZ-6438) exhibits greater sensitivity in cells with higher ZCCHC8 expression. Altogether, our findings demonstrate a novel mechanism that the NEXT complex regulates H3K27me3 levels by degrading nascent G4/U-Rich lncRNAs in cancer cells.
Collapse
Affiliation(s)
- Qianqian Yang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Guofang Hou
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Hongyan Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yafan Zhang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Junya Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yixin Zhang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Anan Xu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yiwei Wang
- Department of Urology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaojing Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| |
Collapse
|
8
|
O'Geen H, Mihalovits A, Brophy BD, Yang H, Miller MW, Lee CJ, Segal DJ, Tomkova M. De-novo DNA Methylation of Bivalent Promoters Induces Gene Activation through PRC2 Displacement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636872. [PMID: 39975160 PMCID: PMC11839071 DOI: 10.1101/2025.02.07.636872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Promoter DNA methylation is a key epigenetic mark, commonly associated with gene silencing. However, we noticed that a positive association between promoter DNA methylation and expression is surprisingly common in cancer. Here, we use hit-and-run CRISPR/dCas9 epigenome editing to evaluate how deposition of DNA methylation can regulate gene expression dependent on pre-existing chromatin environment. While the predominant effect of DNA methylation in non-bivalent promoters is gene repression, we show that in bivalent promoters this often leads to gene activation. We demonstrate that gain of DNA methylation leads to reduced MTF2 binding and eviction of H3K27me3, a repressive mark that guards bivalent genes against activation. Our cancer patient data analyses reveal that in cancer, this mechanism likely leads to activation of a large group of transcription factors regulating pluripotency, apoptosis, and senescence signalling. In conclusion, our study uncovers an activating role of DNA methylation in bivalent promoters, with broad implications for cancer and development.
Collapse
|
9
|
Low BH, Kaliskar KK, Perna S, Lee B. Cross-cellular analysis of chromatin accessibility markers H3K4me3 and DNase in the context of detecting cell-identity genes: An "all-or-nothing" approach. J Bioinform Comput Biol 2025; 23:2540002. [PMID: 40169369 DOI: 10.1142/s0219720025400025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Cell identity is often associated to a subset of highly-expressed genes that define the cell processes, as opposed to essential genes that are always active. Cell-specific genes may be defined in opposition to essential genes, or via experimental means. Detection of said cell-specific genes is often a primary goal in the study of novel biosamples. Chromatin accessibility markers (such as DNase and H3K4me3) help identify actively transcribed genes, but data can be difficult to come by for entirely novel biosamples. In this study, we investigate the possibility of associating the cell-specificity status of genes with chromatin accessibility markers from different cell lines, and we suggest that the number of cell lines in which a gene is found to be marked by DNase/H3K4me3 is predictive of the essentiality status itself. We define a measure called the Cross-cellular Chromatin Openness (CCO) level, and show that it is associated with the essentiality status using two differentiation experiments. We then compare the CCO-level predictive power to existing scRNA-Seq and bulk RNA-Seq methods, showing it has good concordance when applicable.
Collapse
Affiliation(s)
- Boon How Low
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Kaushal Krishna Kaliskar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Stefano Perna
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Bernett Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| |
Collapse
|
10
|
Toothacre NE, Rodríguez-Acevedo KL, Wiggins KJ, Scharer CD, Anguera MC. Xist RNA Dependent and Independent Mechanisms Regulate Dynamic X Chromosome Inactivation in B Lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635124. [PMID: 39975415 PMCID: PMC11838359 DOI: 10.1101/2025.01.27.635124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
X-Chromosome Inactivation (XCI) involves epigenetic pathways to equalize X-linked gene expression between female and male mammals. XCI is dynamic in female B cells, as cytological enrichment of Xist RNA and heterochromatic marks on the inactive X-chromosome (Xi) are absent in naïve B cells yet return following mitogenic stimulation. Here, we asked whether any heterochromatic histone marks are present on the Xi in naïve B cells, and whether Xist RNA is required for their deposition and retention following stimulation. We find that the Xi in naïve B cells is depleted for H2AK119Ub and H3K9me3 but enriched for DNA methylation and H3K27me3, which maintain an Xist RNA-dependent epigenetic memory of XCI. Upon stimulation, Xist-independent H3K27me3 and Xist-dependent H2AK119Ub modifications accumulate across the Xi with temporal and spatial specificity. Our findings reveal the importance of Xist RNA, H3K27me3, and H2AK119Ub marks for the epigenetic integrity of X-linked genes across the Xi following female B cell stimulation.
Collapse
|
11
|
Zhou W, Reizel Y. On correlative and causal links of replicative epimutations. Trends Genet 2025; 41:60-75. [PMID: 39289103 DOI: 10.1016/j.tig.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yitzhak Reizel
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
12
|
Hölzenspies JJ, Sengupta D, Bickmore WA, Brickman JM, Illingworth RS. PRC2 promotes canalisation during endodermal differentiation. PLoS Genet 2025; 21:e1011584. [PMID: 39883738 PMCID: PMC11813121 DOI: 10.1371/journal.pgen.1011584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/11/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models. Embryonic stem cells have provided key insights into the molecular function of polycomb proteins, but it is impossible to fully appreciate the role of these epigenetic factors in development, or how development is perturbed due to their deficiency, in the steady-state. To address this, we have employed a tractable embryonic stem cell differentiation system to model primitive streak formation and early gastrulation. Using this approach, we find that loss of the repressive polycomb mark H3K27me3 is delayed relative to transcriptional activation, indicating a subordinate rather than instructive role in gene repression. Despite this, chemical inhibition of polycomb enhanced endodermal differentiation efficiency, but did so at the cost of lineage fidelity. These findings highlight the importance of the polycomb system in stabilising the developmental transcriptional response and, in so doing, in shoring up cellular specification.
Collapse
Affiliation(s)
- Jurriaan Jochem Hölzenspies
- Novo Nordisk Foundation Center for Stem Cell Medicine—reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy Anne Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine—reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Scott Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Mortillo M, Kennedy EG, Hermetz KM, Burt AA, Marsit CJ. Epigenetic landscape of 5-hydroxymethylcytosine and associations with gene expression in placenta. Epigenetics 2024; 19:2326869. [PMID: 38507502 PMCID: PMC10956631 DOI: 10.1080/15592294.2024.2326869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
5-hydroxymethylcystosine (5hmC), is an intermediate product in the DNA demethylation pathway, but may act as a functional epigenetic modification. We have conducted the largest study of site-specific 5hmC in placenta to date using parallel bisulphite and oxidative bisulphite modification with array-based assessment. Incorporating parallel RNA-sequencing data allowed us to assess associations between 5hmC and gene expression, using expression quantitative trait hydroxymethylation (eQTHM) analysis. We identified ~ 47,000 loci with consistently elevated (systematic) 5hmC proportions. Systematic 5hmC was significantly depleted (p < 0.0001) at CpG islands (CGI), and enriched (p < 0.0001) in 'open sea' regions (CpG >4 kb from CGI). 5hmC was most and least abundant at CpGs in enhancers and active transcription start sites (TSS), respectively (p < 0.05). We identified 499 significant (empirical-p <0.05) eQTHMs within 1 MB of the assayed gene. At most (75.4%) eQTHMs, the proportion of 5hmC was positively correlated with transcript abundance. eQTHMs were significantly enriched among enhancer CpGs and depleted among CpGs in active TSS (p < 0.05 for both). Finally, we identified 107 differentially hydroxymethylated regions (DHMRs, p < 0.05) across 100 genes. Our study provides insight into placental distribution of 5hmC, and sheds light on the functional capacity of this epigenetic modification in placenta.
Collapse
Affiliation(s)
- Michael Mortillo
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elizabeth G. Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen M. Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber A. Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Hong Y, Dai R, Li X, Xu H, Wei C. Polycomb protein RYBP facilitates super-enhancer activity. Mol Med 2024; 30:236. [PMID: 39604829 PMCID: PMC11603947 DOI: 10.1186/s10020-024-01006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Polycomb proteins are conventionally known as global repressors in cell fate determination. However, recent observations have shown their involvement in transcriptional activation, the mechanisms of which need further investigation. METHODS Herein, multiple data from ChIP-seq, RNA-seq and HiChIP before or after RYBP depletion in embryonic stem cell (ESC), epidermal progenitor (EPC) and mesodermal cell (MEC) were analyzed. RESULTS We found that Polycomb protein RYBP occupies super-enhancer (SE) in ESCs, where core Polycomb group (PcG) components such as RING1B and EZH2 are minimally enriched. Depletion of RYBP results in impaired deposition of H3K27ac, decreased expression of SE-associated genes, and reducing the transcription of enhancer RNA at SE regions (seRNA). Regarding the mechanism of seRNA transcription, the Trithorax group (TrxG) component WDR5 co-localizes with RYBP at SEs, and is required for seRNA expression. RYBP depletion reduces WDR5 deposition at SE regions. In addition, TrxG-associated H3K4me3 tends to be enriched at SEs with high levels of seRNA transcription, and RYBP deficiency impairs the deposition of H3K4me3 at SEs. Structurally, RYBP is involved in both intra- and inter-SE interactions. Finally, RYBP generally localizes at SEs in both in vitro cell lines and in vivo tissue-derived cells, dysfunction of RYBP is associated with various cancers and developmental diseases. CONCLUSION RYBP cooperates with TrxG component to regulate SE activity. Dysfunction of RYBP relates to various diseases. The findings provide new insights into the transcriptionally active function of Polycomb protein in cell fate determination.
Collapse
Affiliation(s)
- Yu Hong
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ranran Dai
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinlan Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - He Xu
- Center of Translational Medicine, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chao Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Purzner J, Brown AS, Purzner T, Ellis L, Broski S, Litzenburger U, Andrews K, Sharma A, Wang X, Taylor MD, Cho YJ, Fuller MT, Scott MP. Ezh2 Delays Activation of Differentiation Genes During Normal Cerebellar Granule Neuron Development and in Medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624171. [PMID: 39605517 PMCID: PMC11601632 DOI: 10.1101/2024.11.21.624171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumour in children. The Sonic Hedgehog (SHH)-medulloblastoma subtype arises from the cerebellar granule neuron lineage. Terminally differentiated neurons are incapable of undergoing further cell division, so an effective treatment for this tumour could be to force neuronal differentiation. Differentiation therapy provides a potential alternative for patients with medulloblastoma who harbor mutations that impair cell death pathways (TP53), which is associated a with high mortality. To this end, our goal was to explore epigenetic regulation of cerebellar granule neuron differentiation in medulloblastoma cells. Key regulators were discovered using chromatin immunoprecipitation with high-throughput sequencing. DNA-bound protein and chromatin protein modifications were investigated across all genes. We discovered that Ezh2-mediated tri-methylation of the H3 histone (H3K27me3), occurred on more than half of the 787 genes whose transcription normally increases as granule neurons terminally differentiate. Conditional knockout of Ezh2 led to early initiation of differentiation in granule neuron precursors (GNPs), but only after cell cycle exit had occurred. Similarly, in MB cells, neuronal differentiation could be induced by preventing H3K27me3 modifications using an Ezh2 inhibitor (UNC1999), but only when UNC1999 was combined with forced cell cycle exit driven by a CDK4/6 inhibitor (Palbociclib). Ezh2 emerges as a powerful restraint upon post-mitotic differentiation during normal GNP development and combination of Ezh2 inhibition with cell cycle exit leads to MB cell differentiation.
Collapse
Affiliation(s)
- James Purzner
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Alexander S. Brown
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- EditCo Bio, Redwood City, CA
| | - Teresa Purzner
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Lauren Ellis
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA
| | - Sara Broski
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Nura Bio, South San Francisco, CA
| | - Ulrike Litzenburger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Therapeutic Oncology Research Lab Head, Nuvisan Pharma, Berlin, Germany
| | | | | | - Xin Wang
- Clinician-Scientist Training Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON
| | - Michael D. Taylor
- Pediatric Brain Tumor Research Program, Texas Children’s Hospital, Houston, TX
| | - Yoon-Jae Cho
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon USA
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Matthew P. Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
16
|
Hanafiah A, Geng Z, Liu T, Tai YT, Cai W, Wang Q, Christensen N, Liu Y, Yue F, Gao Z. PRC1 and CTCF-Mediated Transition from Poised to Active Chromatin Loops Drives Bivalent Gene Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623456. [PMID: 39605346 PMCID: PMC11601310 DOI: 10.1101/2024.11.13.623456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Polycomb Repressive Complex 1 (PRC1) and CCCTC-binding factor (CTCF) are critical regulators of 3D chromatin architecture that influence cellular transcriptional programs. Spatial chromatin structures comprise conserved compartments, topologically associating domains (TADs), and dynamic, cell-type-specific chromatin loops. Although the role of CTCF in chromatin organization is well-known, the involvement of PRC1 is less understood. In this study, we identified an unexpected, essential role for the canonical Pcgf2-containing PRC1 complex (cPRC1.2), a known transcriptional repressor, in activating bivalent genes during differentiation. Our Hi-C analysis revealed that cPRC1.2 forms chromatin loops at bivalent promoters, rendering them silent yet poised for activation. Using mouse embryonic stem cells (ESCs) with CRISPR/Cas9-mediated gene editing, we found that the loss of Pcgf2, though not affecting the global level of H2AK119ub1, disrupts these cPRC1.2 loops in ESCs and impairs the transcriptional induction of crucial target genes necessary for neuronal differentiation. Furthermore, we identified CTCF enrichment at cPRC1.2 loop anchors and at Polycomb group (PcG) bodies, nuclear foci with concentrated PRC1 and its tethered chromatin domains, suggesting that PRC1 and CTCF cooperatively shape chromatin loop structures. Through virtual 4C and other genomic analyses, we discovered that establishing neuronal progenitor cell (NPC) identity involves a switch from cPRC1.2-mediated chromatin loops to CTCF-mediated active loops, enabling the expression of critical lineage-specific factors. This study uncovers a novel mechanism by which pre-formed PRC1 and CTCF loops at lineage-specific genes maintain a poised state for subsequent gene activation, advancing our understanding of the role of chromatin architecture in controlling cell fate transitions.
Collapse
Affiliation(s)
- Aflah Hanafiah
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Yen Teng Tai
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Neil Christensen
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA 17033
| | - Yan Liu
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| |
Collapse
|
17
|
Trouth A, Veronezi GMB, Ramachandran S. The impact of cell states on heterochromatin dynamics. Biochem J 2024; 481:1519-1533. [PMID: 39422321 DOI: 10.1042/bcj20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Establishing, maintaining, and removing histone post-translational modifications associated with heterochromatin is critical for shaping genomic structure and function as a cell navigates different stages of development, activity, and disease. Dynamic regulation of the repressive chromatin landscape has been documented in several key cell states - germline cells, activated immune cells, actively replicating, and quiescent cells - with notable variations in underlying mechanisms. Here, we discuss the role of cell states of these diverse contexts in directing and maintaining observed chromatin landscapes. These investigations reveal heterochromatin architectures that are highly responsive to the functional context of a cell's existence and, in turn, their contribution to the cell's stable identity.
Collapse
Affiliation(s)
- Abby Trouth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| |
Collapse
|
18
|
Mehta K, Daghsni M, Raeisossadati R, Xu Z, Davis E, Naidich A, Wang B, Tao S, Pi S, Chen W, Kostka D, Liu S, Gross JM, Kuwajima T, Aldiri I. A cis-regulatory module underlies retinal ganglion cell genesis and axonogenesis. Cell Rep 2024; 43:114291. [PMID: 38823017 PMCID: PMC11238474 DOI: 10.1016/j.celrep.2024.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with optic nerve atrophy and blindness. Here, we functionally interrogate the significance of the Atoh7 regulatory landscape to retinogenesis in mice. Deletion of the Atoh7 enhancer structure leads to RGC deficiency, optic nerve hypoplasia, and retinal blood vascular abnormalities, phenocopying inactivation of Atoh7. Further, loss of the Atoh7 remote enhancer impacts ipsilaterally projecting RGCs and disrupts proper axonal projections to the visual thalamus. Deletion of the Atoh7 remote enhancer is also associated with the dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3. Our data provide insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and highlight a key role of Atoh7 in the transcriptional control of axon guidance molecules.
Collapse
Affiliation(s)
- Kamakshi Mehta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marwa Daghsni
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Reza Raeisossadati
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhongli Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Emily Davis
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Abigail Naidich
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shiyue Tao
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dennis Kostka
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Issam Aldiri
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Shi TH, Sugishita H, Gotoh Y. Crosstalk within and beyond the Polycomb repressive system. J Cell Biol 2024; 223:e202311021. [PMID: 38506728 PMCID: PMC10955045 DOI: 10.1083/jcb.202311021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
The development of multicellular organisms depends on spatiotemporally controlled differentiation of numerous cell types and their maintenance. To generate such diversity based on the invariant genetic information stored in DNA, epigenetic mechanisms, which are heritable changes in gene function that do not involve alterations to the underlying DNA sequence, are required to establish and maintain unique gene expression programs. Polycomb repressive complexes represent a paradigm of epigenetic regulation of developmentally regulated genes, and the roles of these complexes as well as the epigenetic marks they deposit, namely H3K27me3 and H2AK119ub, have been extensively studied. However, an emerging theme from recent studies is that not only the autonomous functions of the Polycomb repressive system, but also crosstalks of Polycomb with other epigenetic modifications, are important for gene regulation. In this review, we summarize how these crosstalk mechanisms have improved our understanding of Polycomb biology and how such knowledge could help with the design of cancer treatments that target the dysregulated epigenome.
Collapse
Affiliation(s)
- Tianyi Hideyuki Shi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sugishita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Cheng Y, Song Z, Fang X, Tang Z. Polycomb repressive complex 2 and its core component EZH2: potential targeted therapeutic strategies for head and neck squamous cell carcinoma. Clin Epigenetics 2024; 16:54. [PMID: 38600608 PMCID: PMC11007890 DOI: 10.1186/s13148-024-01666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The polycomb group (PcG) comprises a set of proteins that exert epigenetic regulatory effects and play crucial roles in diverse biological processes, ranging from pluripotency and development to carcinogenesis. Among these proteins, enhancer of zeste homolog 2 (EZH2) stands out as a catalytic component of polycomb repressive complex 2 (PRC2), which plays a role in regulating the expression of homologous (Hox) genes and initial stages of x chromosome inactivation. In numerous human cancers, including head and neck squamous cell carcinoma (HNSCC), EZH2 is frequently overexpressed or activated and has been identified as a negative prognostic factor. Notably, EZH2 emerges as a significant gene involved in regulating the STAT3/HOTAIR axis, influencing HNSCC proliferation, differentiation, and promoting metastasis by modulating related oncogenes in oral cancer. Currently, various small molecule compounds have been developed as inhibitors specifically targeting EZH2 and have gained approval for treating refractory tumors. In this review, we delve into the epigenetic regulation mediated by EZH2/PRC2 in HNSCC, with a specific focus on exploring the potential roles and mechanisms of EZH2, its crucial contribution to targeted drug therapy, and its association with cancer markers and epithelial-mesenchymal transition. Furthermore, we aim to unravel its potential as a therapeutic strategy for oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Cheng
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China
| | - Zhengzheng Song
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China
| | - Xiaodan Fang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
21
|
Camellato BR, Brosh R, Ashe HJ, Maurano MT, Boeke JD. Synthetic reversed sequences reveal default genomic states. Nature 2024; 628:373-380. [PMID: 38448583 PMCID: PMC11006607 DOI: 10.1038/s41586-024-07128-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Pervasive transcriptional activity is observed across diverse species. The genomes of extant organisms have undergone billions of years of evolution, making it unclear whether these genomic activities represent effects of selection or 'noise'1-4. Characterizing default genome states could help understand whether pervasive transcriptional activity has biological meaning. Here we addressed this question by introducing a synthetic 101-kb locus into the genomes of Saccharomyces cerevisiae and Mus musculus and characterizing genomic activity. The locus was designed by reversing but not complementing human HPRT1, including its flanking regions, thus retaining basic features of the natural sequence but ablating evolved coding or regulatory information. We observed widespread activity of both reversed and native HPRT1 loci in yeast, despite the lack of evolved yeast promoters. By contrast, the reversed locus displayed no activity at all in mouse embryonic stem cells, and instead exhibited repressive chromatin signatures. The repressive signature was alleviated in a locus variant lacking CpG dinucleotides; nevertheless, this variant was also transcriptionally inactive. These results show that synthetic genomic sequences that lack coding information are active in yeast, but inactive in mouse embryonic stem cells, consistent with a major difference in 'default genomic states' between these two divergent eukaryotic cell types, with implications for understanding pervasive transcription, horizontal transfer of genetic information and the birth of new genes.
Collapse
Affiliation(s)
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Hannah J Ashe
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, NY, USA.
| |
Collapse
|
22
|
Ito S, Umehara T, Koseki H. Polycomb-mediated histone modifications and gene regulation. Biochem Soc Trans 2024; 52:151-161. [PMID: 38288743 DOI: 10.1042/bst20230336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are transcriptional repressor complexes that play a fundamental role in epigenomic regulation and the cell-fate decision; these complexes are widely conserved in multicellular organisms. PRC1 is an E3 ubiquitin (ub) ligase that generates histone H2A ubiquitinated at lysine (K) 119 (H2AK119ub1), whereas PRC2 is a histone methyltransferase that specifically catalyzes tri-methylation of histone H3K27 (H3K27me3). Genome-wide analyses have confirmed that these two key epigenetic marks highly overlap across the genome and contribute to gene repression. We are now beginning to understand the molecular mechanisms that enable PRC1 and PRC2 to identify their target sites in the genome and communicate through feedback mechanisms to create Polycomb chromatin domains. Recently, it has become apparent that PRC1-induced H2AK119ub1 not only serves as a docking site for PRC2 but also affects the dynamics of the H3 tail, both of which enhance PRC2 activity, suggesting that trans-tail communication between H2A and H3 facilitates the formation of the Polycomb chromatin domain. In this review, we discuss the emerging principles that define how PRC1 and PRC2 establish the Polycomb chromatin domain and regulate gene expression in mammals.
Collapse
Affiliation(s)
- Shinsuke Ito
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Umehara
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
23
|
Lee BK, Salamah J, Cheeran E, Adu-Gyamfi EA. Dynamic and distinct histone modifications facilitate human trophoblast lineage differentiation. Sci Rep 2024; 14:4505. [PMID: 38402275 PMCID: PMC10894295 DOI: 10.1038/s41598-024-55189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
The placenta serves as an essential organ for fetal growth throughout pregnancy. Histone modification is a crucial regulatory mechanism involved in numerous biological processes and development. Nevertheless, there remains a significant gap in our understanding regarding the epigenetic regulations that influence trophoblast lineage differentiation, a fundamental aspect of placental development. Here, through comprehensive mapping of H3K4me3, H3K27me3, H3K9me3, and H3K27ac loci during the differentiation of trophoblast stem cells (TSCs) into syncytiotrophoblasts (STs) and extravillous trophoblasts (EVTs), we reveal dynamic reconfiguration in H3K4me3 and H3K27ac patterns that establish an epigenetic landscape conducive to proper trophoblast lineage differentiation. We observe that broad H3K4me3 domains are associated with trophoblast lineage-specific gene expression. Unlike embryonic stem cells, TSCs lack robust bivalent domains. Notably, the repression of ST- and EVT-active genes in TSCs is primarily attributed to the weak H3K4me3 signal rather than bivalent domains. We also unveil the inactivation of TSC enhancers precedes the activation of ST enhancers during ST formation. Our results provide a comprehensive global map of diverse histone modifications, elucidating the dynamic histone modifications during trophoblast lineage differentiation.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA.
| | - Joudi Salamah
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Elisha Cheeran
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| |
Collapse
|
24
|
Alghamdi AA, Alattal YZ. Alterations in Histone Methylation States Increased Profusion of Lethal(2)-Essential-for-Life-Like (l(2)elf), Trithorax and Polycomb Genes in Apis mellifera under Heat Stress. INSECTS 2024; 15:33. [PMID: 38249039 PMCID: PMC10816215 DOI: 10.3390/insects15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Histone post-translational modifications (PTMs) represent a key mechanism in the thermal adaptation of the honeybee Apis mellifera. In this study, a chromatin immunoprecipitation assay and qPCR were employed to explore the changes in the methylation states of H3K4m2, H3K4m3, H3K27m2 and H3K27m3 associated with l2efl (ID: 72474, 724405, 724488), histone methyltransferases (HMTs) ((trx) and PR-set7) and Polycomb (Pc) and (Su(z)12) genes in A. m. jemenitica (tolerant subspecies) and A. m. carnica (susceptible subspecies) in response to heat treatment (42 °C for 1 h). The results revealed significant enrichment fold changes in the methylation/demethylation of most H3K4 and H3K27 marks at all targeted genes. These changes increased the profusion of l2efl (ID: 72474, 724405, 724488), histone methyltransferases (HMTs) (trx) and Polycomb (Pc) and Su(z)12 and decreased the profusion of HMT (PR-set7) in both honeybee subspecies. The changes in the methylation enrichment folds of histone methyltransferases (HMTs) ((trx), PR-set) and Polycomb (Pc), Su(z)12 genes demonstrate the well-harmonized coordination of epigenetic gene regulation in response to heat treatment. Compared to the control, the changes in the methylation enrichment folds of H3K4m3 at Polycomb Su(z)12 were about 30× and 100× higher in treated A. m. jemenitica and A.m. carnica, respectively. Similarly, changes in the methylation/demethylation enrichment folds of HMT (trx) and Polycomb (Pc) and Su(z)12 were 2-3× higher in A. m. carnica than in A. m. jemenitica after treatment (42 °C). It is evident that post-translational chromatin modification in both honeybee subspecies can diminish heat stress impact by (I) increasing the transcriptional provision of l2efl associated with survival and (II) increasing the silencing of genes associated with general cellular activities.
Collapse
Affiliation(s)
| | - Yehya Z. Alattal
- Department of Plant Protection, Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
25
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
26
|
Liu J, Fan H, Liang X, Chen Y. Polycomb repressor complex: Its function in human cancer and therapeutic target strategy. Biomed Pharmacother 2023; 169:115897. [PMID: 37981459 DOI: 10.1016/j.biopha.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The Polycomb Repressor Complex (PRC) plays a pivotal role in gene regulation during development and disease, with dysregulation contributing significantly to various human cancers. The intricate interplay between PRC and cellular signaling pathways sheds light on cancer complexity. PRC presents promising therapeutic opportunities, with inhibitors undergoing rigorous evaluation in preclinical and clinical studies. In this review, we emphasize the critical role of PRC complex in gene regulation, particularly PcG proteins mediated chromatin compaction through phase separation. We also highlight the pathological implications of PRC complex dysregulation in various tumors, elucidating underlying mechanisms driving cancer progression. The burgeoning field of therapeutic strategies targeting PRC complexes, notably EZH2 inhibitors, has advanced significantly. However, we explore the need for combination therapies to enhance PRC targeted treatments efficacy, providing a glimpse into the future of cancer therapeutics.
Collapse
Affiliation(s)
- Jingrong Liu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
27
|
Kim SJ, Kiser PK, Asfaha S, DeKoter RP, Dick FA. EZH2 inhibition stimulates repetitive element expression and viral mimicry in resting splenic B cells. EMBO J 2023; 42:e114462. [PMID: 37934086 PMCID: PMC10711652 DOI: 10.15252/embj.2023114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Mammalian cells repress expression of repetitive genomic sequences by forming heterochromatin. However, the consequences of ectopic repeat expression remain unclear. Here we demonstrate that inhibitors of EZH2, the catalytic subunit of the Polycomb repressive complex 2 (PRC2), stimulate repeat misexpression and cell death in resting splenic B cells. B cells are uniquely sensitive to these agents because they exhibit high levels of histone H3 lysine 27 trimethylation (H3K27me3) and correspondingly low DNA methylation at repeat elements. We generated a pattern recognition receptor loss-of-function mouse model, called RIC, with mutations in Rigi (encoding for RIG-I), Ifih1 (MDA5), and Cgas. In both wildtype and RIC mutant B cells, EZH2 inhibition caused loss of H3K27me3 at repetitive elements and upregulated their expression. However, NF-κB-dependent expression of inflammatory chemokines and subsequent cell death was suppressed by the RIC mutations. We further show that inhibition of EZH2 in cancer cells requires the same pattern recognition receptors to activate an interferon response. Together, the results reveal chemokine expression induced by EZH2 inhibitors in B cells as a novel inflammatory response to genomic repeat expression. Given the overlap of genes induced by EZH2 inhibitors and Epstein-Barr virus infection, this response can be described as a form of viral mimicry.
Collapse
Affiliation(s)
- Seung J Kim
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of BiochemistryWestern UniversityLondonONCanada
| | - Patti K Kiser
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Samuel Asfaha
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
- Department of MedicineWestern UniversityLondonONCanada
| | - Rodney P DeKoter
- Department of Microbiology & ImmunologyWestern UniversityLondonONCanada
| | - Frederick A Dick
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| |
Collapse
|
28
|
Zhang Y, Tedja R, Millman M, Wong T, Fox A, Chehade H, Gershater M, Adzibolosu N, Gogoi R, Anderson M, Rutherford T, Zhang Z, Chopp M, Mor G, Alvero AB. Adipose-derived exosomal miR-421 targets CBX7 and promotes metastatic potential in ovarian cancer cells. J Ovarian Res 2023; 16:233. [PMID: 38037081 PMCID: PMC10688490 DOI: 10.1186/s13048-023-01312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. RESULTS Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. CONCLUSION In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Zhang
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA.
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Michael Millman
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
| | - Terrence Wong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Meyer Gershater
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Zhenggang Zhang
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
| | - Michael Chopp
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Ayesha B Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA.
| |
Collapse
|
29
|
Martin BJE, Ablondi EF, Goglia C, Mimoso CA, Espinel-Cabrera PR, Adelman K. Global identification of SWI/SNF targets reveals compensation by EP400. Cell 2023; 186:5290-5307.e26. [PMID: 37922899 PMCID: PMC11307202 DOI: 10.1016/j.cell.2023.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.
Collapse
Affiliation(s)
- Benjamin J E Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Eileen F Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christine Goglia
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piero R Espinel-Cabrera
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
30
|
Tam PLF, Leung D. The Molecular Impacts of Retrotransposons in Development and Diseases. Int J Mol Sci 2023; 24:16418. [PMID: 38003607 PMCID: PMC10671454 DOI: 10.3390/ijms242216418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Retrotransposons are invasive genetic elements that constitute substantial portions of mammalian genomes. They have the potential to influence nearby gene expression through their cis-regulatory sequences, reverse transcription machinery, and the ability to mold higher-order chromatin structures. Due to their multifaceted functions, it is crucial for host fitness to maintain strict regulation of these parasitic sequences to ensure proper growth and development. This review explores how subsets of retrotransposons have undergone evolutionary exaptation to enhance the complexity of mammalian genomes. It also highlights the significance of regulating these elements, drawing on recent studies conducted in human and murine systems.
Collapse
Affiliation(s)
- Phoebe Lut Fei Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
31
|
Zhang Y, Tedja R, Millman M, Wong T, Fox A, Chehade H, Gershater M, Adzibolosu N, Gogoi R, Anderson M, Rutherford T, Zhang Z, Chopp M, Mor G, Alvero AB. Adipose-derived exosomal miR-421 targets CBX7 and promotes metastatic potential in ovarian cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566022. [PMID: 37986971 PMCID: PMC10659572 DOI: 10.1101/2023.11.07.566022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. Results Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. Conclusion In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Zhang
- Neurology, Henry Ford Health, Detroit, MI
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | - Terrence Wong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Meyer Gershater
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | | | - Michael Chopp
- Neurology, Henry Ford Health, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
32
|
Magrin C, Bellafante M, Sola M, Piovesana E, Bolis M, Cascione L, Napoli S, Rinaldi A, Papin S, Paganetti P. Tau protein modulates an epigenetic mechanism of cellular senescence in human SH-SY5Y neuroblastoma cells. Front Cell Dev Biol 2023; 11:1232963. [PMID: 37842084 PMCID: PMC10569482 DOI: 10.3389/fcell.2023.1232963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Progressive Tau deposition in neurofibrillary tangles and neuropil threads is the hallmark of tauopathies, a disorder group that includes Alzheimer's disease. Since Tau is a microtubule-associated protein, a prevalent concept to explain the pathogenesis of tauopathies is that abnormal Tau modification contributes to dissociation from microtubules, assembly into multimeric β-sheets, proteotoxicity, neuronal dysfunction and cell loss. Tau also localizes in the cell nucleus and evidence supports an emerging function of Tau in DNA stability and epigenetic modulation. Methods: To better characterize the possible role of Tau in regulation of chromatin compaction and subsequent gene expression, we performed a bioinformatics analysis of transcriptome data obtained from Tau-depleted human neuroblastoma cells. Results: Among the transcripts deregulated in a Tau-dependent manner, we found an enrichment of target genes for the polycomb repressive complex 2. We further describe decreased cellular amounts of the core components of the polycomb repressive complex 2 and lower histone 3 trimethylation in Tau deficient cells. Among the de-repressed polycomb repressive complex 2 target gene products, IGFBP3 protein was found to be linked to increased senescence induction in Tau-deficient cells. Discussion: Our findings propose a mechanism for Tau-dependent epigenetic modulation of cell senescence, a key event in pathologic aging.
Collapse
Affiliation(s)
- Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Martina Bellafante
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Ester Piovesana
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Marco Bolis
- Functional Cancer Genomics Laboratory, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Luciano Cascione
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
33
|
Jia Q, Zhang X, Liu Q, Li J, Wang W, Ma X, Zhu B, Li S, Gong S, Tian J, Yuan M, Zhao Y, Zhou DX. A DNA adenine demethylase impairs PRC2-mediated repression of genes marked by a specific chromatin signature. Genome Biol 2023; 24:198. [PMID: 37649077 PMCID: PMC10469495 DOI: 10.1186/s13059-023-03042-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The Fe (II)- and α-ketoglutarate-dependent AlkB family dioxygenases are implicated in nucleotide demethylation. AlkB homolog1 (ALKBH1) is shown to demethylate DNA adenine methylation (6mA) preferentially from single-stranded or unpaired DNA, while its demethylase activity and function in the chromatin context are unclear. RESULTS Here, we find that loss-of-function of the rice ALKBH1 gene leads to increased 6mA in the R-loop regions of the genome but has a limited effect on the overall 6mA level. However, in the context of mixed tissues, rather than on individual loci, the ALKBH1 mutation or overexpression mainly affects the expression of genes with a specific combination of chromatin modifications in the body region marked with H3K4me3 and H3K27me3 but depleted of DNA CG methylation. In the similar context of mixed tissues, further analysis reveals that the ALKBH1 protein preferentially binds to genes marked by the chromatin signature and has a function to maintain a high H3K4me3/H3K27me3 ratio by impairing the binding of Polycomb repressive complex 2 (PRC2) to the targets, which is required for both the basal and stress-induced expression of the genes. CONCLUSION Our findings unravel a function of ALKBH1 to control the balance between the antagonistic histone methylations for gene activity and provide insight into the regulatory mechanism of PRC2-mediated H3K27me3 deposition within the gene body region.
Collapse
Affiliation(s)
- Qingxiao Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shicheng Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
34
|
Bhuvanadas S, Devi A. JARID2 and EZH2, The Eminent Epigenetic Drivers In Human Cancer. Gene 2023:147584. [PMID: 37353042 DOI: 10.1016/j.gene.2023.147584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Cancer has become a prominent cause of death, accounting for approximately 10 million death worldwide as per the World Health Organization reports 2020. Epigenetics deal with the alterations of heritable phenotypes, except for DNA alterations. Currently, we are trying to comprehend the role of utmost significant epigenetic genes involved in the burgeoning of human cancer. A sundry of studies reported the Enhancer of Zeste Homologue2 (EZH2) as a prime catalytic subunit of Polycomb Repressive Complex2, which is involved in several pivotal activities, including embryogenesis. In addition, EZH2 has detrimental effects leading to the onset and metastasis of several cancers. Jumonji AT Rich Interacting Domain2 (JARID2), an undebated crucial nuclear factor, has strong coordination with the PRC2 family. In this review, we discuss various epigenetic entities, primarily focusing on the possible role and mechanism of EZH2 and the significant contribution of JARID2 in human cancers.
Collapse
Affiliation(s)
- Sreeshma Bhuvanadas
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India - 603203
| | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India - 603203.
| |
Collapse
|
35
|
de Mello DC, Saito KC, Cristovão MM, Kimura ET, Fuziwara CS. Modulation of EZH2 Activity Induces an Antitumoral Effect and Cell Redifferentiation in Anaplastic Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24097872. [PMID: 37175580 PMCID: PMC10178714 DOI: 10.3390/ijms24097872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare and lethal form of thyroid cancer that requires urgent investigation of new molecular targets involved in its aggressive biology. In this context, the overactivation of Polycomb Repressive Complex 2/EZH2, which induces chromatin compaction, is frequently observed in aggressive solid tumors, making the EZH2 methyltransferase a potential target for treatment. However, the deregulation of chromatin accessibility is yet not fully investigated in thyroid cancer. In this study, EZH2 expression was modulated by CRISPR/Cas9-mediated gene editing and pharmacologically inhibited with EZH2 inhibitor EPZ6438 alone or in combination with the MAPK inhibitor U0126. The results showed that CRISPR/Cas9-induced EZH2 gene editing reduced cell growth, migration and invasion in vitro and resulted in a 90% reduction in tumor growth when EZH2-edited cells were injected into an immunocompromised mouse model. Immunohistochemistry analysis of the tumors revealed reduced tumor cell proliferation and less recruitment of cancer-associated fibroblasts in the EZH2-edited tumors compared to the control tumors. Moreover, EZH2 inhibition induced thyroid-differentiation genes' expression and mesenchymal-to-epithelial transition (MET) in ATC cells. Thus, this study shows that targeting EZH2 could be a promising neoadjuvant treatment for ATC, as it promotes antitumoral effects in vitro and in vivo and induces cell differentiation.
Collapse
Affiliation(s)
- Diego Claro de Mello
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Kelly Cristina Saito
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Marcella Maringolo Cristovão
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
36
|
Perovanovic J, Wu Y, Abewe H, Shen Z, Hughes EP, Gertz J, Chandrasekharan MB, Tantin D. Oct1 cooperates with the Smad family of transcription factors to promote mesodermal lineage specification. Sci Signal 2023; 16:eadd5750. [PMID: 37071732 PMCID: PMC10360295 DOI: 10.1126/scisignal.add5750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/14/2023] [Indexed: 04/20/2023]
Abstract
The transition between pluripotent and tissue-specific states is a key aspect of development. Understanding the pathways driving these transitions will facilitate the engineering of properly differentiated cells for experimental and therapeutic uses. Here, we showed that during mesoderm differentiation, the transcription factor Oct1 activated developmental lineage-appropriate genes that were silent in pluripotent cells. Using mouse embryonic stem cells (ESCs) with an inducible knockout of Oct1, we showed that Oct1 deficiency resulted in poor induction of mesoderm-specific genes, leading to impaired mesodermal and terminal muscle differentiation. Oct1-deficient cells exhibited poor temporal coordination of the induction of lineage-specific genes and showed inappropriate developmental lineage branching, resulting in poorly differentiated cell states retaining epithelial characteristics. In ESCs, Oct1 localized with the pluripotency factor Oct4 at mesoderm-associated genes and remained bound to those loci during differentiation after the dissociation of Oct4. Binding events for Oct1 overlapped with those for the histone lysine demethylase Utx, and an interaction between Oct1 and Utx suggested that these two proteins cooperate to activate gene expression. The specificity of the ubiquitous Oct1 for the induction of mesodermal genes could be partially explained by the frequent coexistence of Smad and Oct binding sites at mesoderm-specific genes and the cooperative stimulation of mesodermal gene transcription by Oct1 and Smad3. Together, these results identify Oct1 as a key mediator of mesoderm lineage-specific gene induction.
Collapse
Affiliation(s)
- Jelena Perovanovic
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yifan Wu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Hosiana Abewe
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Erik P. Hughes
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mahesh B. Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
37
|
Ruan Y, Wang J, Yu M, Wang F, Wang J, Xu Y, Liu L, Cheng Y, Yang R, Zhang C, Yang Y, Wang J, Wu W, Huang Y, Tian Y, Chen G, Zhang J, Jian R. A multi-omics integrative analysis based on CRISPR screens re-defines the pluripotency regulatory network in ESCs. Commun Biol 2023; 6:410. [PMID: 37059858 PMCID: PMC10104827 DOI: 10.1038/s42003-023-04700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/13/2023] [Indexed: 04/16/2023] Open
Abstract
A comprehensive and precise definition of the pluripotency gene regulatory network (PGRN) is crucial for clarifying the regulatory mechanisms in embryonic stem cells (ESCs). Here, after a CRISPR/Cas9-based functional genomics screen and integrative analysis with other functional genomes, transcriptomes, proteomes and epigenome data, an expanded pluripotency-associated gene set is obtained, and a new PGRN with nine sub-classes is constructed. By integrating the DNA binding, epigenetic modification, chromatin conformation, and RNA expression profiles, the PGRN is resolved to six functionally independent transcriptional modules (CORE, MYC, PAF, PRC, PCGF and TBX). Spatiotemporal transcriptomics reveal activated CORE/MYC/PAF module activity and repressed PRC/PCGF/TBX module activity in both mouse ESCs (mESCs) and pluripotent cells of early embryos. Moreover, this module activity pattern is found to be shared by human ESCs (hESCs) and cancers. Thus, our results provide novel insights into elucidating the molecular basis of ESC pluripotency.
Collapse
Affiliation(s)
- Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Joint Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Fengsheng Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yixiao Xu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Ran Yang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Chen Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - JiaLi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Guangxing Chen
- Department of Joint Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
38
|
Komata Y, Kanai A, Maeda T, Inaba T, Yokoyama A. MOZ/ENL complex is a recruiting factor of leukemic AF10 fusion proteins. Nat Commun 2023; 14:1979. [PMID: 37031220 PMCID: PMC10082848 DOI: 10.1038/s41467-023-37712-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/22/2023] [Indexed: 04/10/2023] Open
Abstract
Changes in the transcriptional machinery cause aberrant self-renewal of non-stem hematopoietic progenitors. AF10 fusions, such as CALM-AF10, are generated via chromosomal translocations, causing malignant leukemia. In this study, we demonstrate that AF10 fusion proteins cause aberrant self-renewal via ENL, which binds to MOZ/MORF lysine acetyltransferases (KATs). The interaction of ENL with MOZ, via its YEATS domain, is critical for CALM-AF10-mediated leukemic transformation. The MOZ/ENL complex recruits DOT1L/AF10 fusion complexes and maintains their chromatin retention via KAT activity. Therefore, inhibitors of MOZ/MORF KATs directly suppress the functions of AF10 fusion proteins, thereby exhibiting strong antitumor effects on AF10 translocation-induced leukemia. Combinatorial inhibition of MOZ/MORF and DOT1L cooperatively induces differentiation of CALM-AF10-leukemia cells. These results reveal roles for the MOZ/ENL complex as an essential recruiting factor of the AF10 fusion/DOT1L complex, providing a rationale for using MOZ/MORF KAT inhibitors in AF10 translocation-induced leukemia.
Collapse
Affiliation(s)
- Yosuke Komata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan
| | - Akinori Kanai
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, 812-8582, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan.
| |
Collapse
|
39
|
Fukushima HS, Takeda H, Nakamura R. Incomplete erasure of histone marks during epigenetic reprogramming in medaka early development. Genome Res 2023; 33:572-586. [PMID: 37117034 PMCID: PMC10234297 DOI: 10.1101/gr.277577.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 04/30/2023]
Abstract
Epigenetic modifications undergo drastic erasure and reestablishment after fertilization. This reprogramming is required for proper embryonic development and cell differentiation. In mammals, some histone modifications are not completely reprogrammed and play critical roles in later development. In contrast, in nonmammalian vertebrates, most histone modifications are thought to be more intensively erased and reestablished by the stage of zygotic genome activation (ZGA). However, histone modifications that escape reprogramming in nonmammalian vertebrates and their potential functional roles remain unknown. Here, we quantitatively and comprehensively analyzed histone modification dynamics during epigenetic reprogramming in Japanese killifish, medaka (Oryzias latipes) embryos. Our data revealed that H3K27ac, H3K27me3, and H3K9me3 escape complete reprogramming, whereas H3K4 methylation is completely erased during cleavage stage. Furthermore, we experimentally showed the functional roles of such retained modifications at early stages: (i) H3K27ac premarks promoters during the cleavage stage, and inhibition of histone acetyltransferases disrupts proper patterning of H3K4 and H3K27 methylation at CpG-dense promoters, but does not affect chromatin accessibility after ZGA; (ii) H3K9me3 is globally erased but specifically retained at telomeric regions, which is required for maintenance of genomic stability during the cleavage stage. These results expand the understanding of diversity and conservation of reprogramming in vertebrates, and unveil previously uncharacterized functions of histone modifications retained during epigenetic reprogramming.
Collapse
Affiliation(s)
- Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Weigert R, Hetzel S, Bailly N, Haggerty C, Ilik IA, Yung PYK, Navarro C, Bolondi A, Kumar AS, Anania C, Brändl B, Meierhofer D, Lupiáñez DG, Müller FJ, Aktas T, Elsässer SJ, Kretzmer H, Smith ZD, Meissner A. Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nat Cell Biol 2023; 25:579-591. [PMID: 37024684 PMCID: PMC10104784 DOI: 10.1038/s41556-023-01114-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
DNA and Histone 3 Lysine 27 methylation typically function as repressive modifications and operate within distinct genomic compartments. In mammals, the majority of the genome is kept in a DNA methylated state, whereas the Polycomb repressive complexes regulate the unmethylated CpG-rich promoters of developmental genes. In contrast to this general framework, the extra-embryonic lineages display non-canonical, globally intermediate DNA methylation levels, including disruption of local Polycomb domains. Here, to better understand this unusual landscape's molecular properties, we genetically and chemically perturbed major epigenetic pathways in mouse trophoblast stem cells. We find that the extra-embryonic epigenome reflects ongoing and dynamic de novo methyltransferase recruitment, which is continuously antagonized by Polycomb to maintain intermediate, locally disordered methylation. Despite its disorganized molecular appearance, our data point to a highly controlled equilibrium between counteracting repressors within extra-embryonic cells, one that can seemingly persist indefinitely without bistable features typically seen for embryonic forms of epigenetic regulation.
Collapse
Affiliation(s)
- Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nina Bailly
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Chuck Haggerty
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ibrahim A Ilik
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Yuk Kwong Yung
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Navarro
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chiara Anania
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - David Meierhofer
- Mass Spectrometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - Tugce Aktas
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, US.
| |
Collapse
|
41
|
Liu C, Yu P, Ren Z, Yao F, Wang L, Hu G, Li P, Zhao Q. Rif1 Regulates Self-Renewal and Impedes Mesendodermal Differentiation of Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10525-1. [PMID: 36971904 PMCID: PMC10366267 DOI: 10.1007/s12015-023-10525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Background
RAP1 interacting factor 1 (Rif1) is highly expressed in mice embryos and mouse embryonic stem cells (mESCs). It plays critical roles in telomere length homeostasis, DNA damage, DNA replication timing and ERV silencing. However, whether Rif1 regulates early differentiation of mESC is still unclear.
Methods
In this study, we generated a Rif1 conditional knockout mouse embryonic stem (ES) cell line based on Cre-loxP system. Western blot, flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), RNA high-throughput sequencing (RNA-Seq), chromatin immunoprecipitation followed high-throughput sequencing (ChIP-Seq), chromatin immunoprecipitation quantitative PCR (ChIP-qPCR), immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment.
Results
Rif1 plays important roles in self-renewal and pluripotency of mESCs and loss of Rif1 promotes mESC differentiation toward the mesendodermal germ layers. We further show that Rif1 interacts with histone H3K27 methyltransferase EZH2, a subunit of PRC2, and regulates the expression of developmental genes by directly binding to their promoters. Rif1 deficiency reduces the occupancy of EZH2 and H3K27me3 on mesendodermal gene promoters and activates ERK1/2 activities.
Conclusion
Rif1 is a key factor in regulating the pluripotency, self-renewal, and lineage specification of mESCs. Our research provides new insights into the key roles of Rif1 in connecting epigenetic regulations and signaling pathways for cell fate determination and lineage specification of mESCs.
Graphical abstract
Collapse
|
42
|
H2A Ubiquitination Alters H3-tail Dynamics on Linker-DNA to Enhance H3K27 Methylation. J Mol Biol 2023; 435:167936. [PMID: 36610636 DOI: 10.1016/j.jmb.2022.167936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Polycomb repressive complex 1 (PRC1) and PRC2 are responsible for epigenetic gene regulation. PRC1 ubiquitinates histone H2A (H2Aub), which subsequently promotes PRC2 to introduce the H3 lysine 27 tri-methyl (H3K27me3) repressive chromatin mark. Although this mechanism provides a link between the two key transcriptional repressors, PRC1 and PRC2, it is unknown how histone-tail dynamics contribute to this process. Here, we have examined the effect of H2A ubiquitination and linker-DNA on H3-tail dynamics and H3K27 methylation by PRC2. In naïve nucleosomes, the H3-tail dynamically contacts linker DNA in addition to core DNA, and the linker-DNA is as important for H3K27 methylation as H2A ubiquitination. H2A ubiquitination alters contacts between the H3-tail and DNA to improve the methyltransferase activity of the PRC2-AEBP2-JARID2 complex. Collectively, our data support a model in which H2A ubiquitination by PRC1 synergizes with linker-DNA to hold H3 histone tails poised for their methylation by PRC2-AEBP2-JARID2.
Collapse
|
43
|
Kondo S, Okabe A, Nakagawa T, Matsusaka K, Fukuyo M, Rahmutulla B, Dochi H, Mizokami H, Kitagawa Y, Kurokawa T, Mima M, Endo K, Sugimoto H, Wakisaka N, Misawa K, Yoshizaki T, Kaneda A. Repression of DERL3 via DNA methylation by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166598. [PMID: 36372158 DOI: 10.1016/j.bbadis.2022.166598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/05/2022] [Accepted: 10/22/2022] [Indexed: 11/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is Epstein-Barr virus (EBV)-associated invasive malignancy. Increasing evidence indicates that epigenetic abnormalities, including DNA methylation, play important roles in the development of NPC. In particular, the EBV principal oncogene, latent membrane protein 1 (LMP1), is considered a key factor in inducing aberrant DNA methylation of several tumour suppressor genes in NPC, although the mechanism remains unclear. Herein, we comprehensively analysed the methylome data of Infinium BeadArray from 51 NPC and 52 normal nasopharyngeal tissues to identify LMP1-inducible methylation genes. Using hierarchical clustering analysis, we classified NPC into the high-methylation, low-methylation, and normal-like subgroups. We defined high-methylation genes as those that were methylated in the high-methylation subgroup only and common methylation genes as those that were methylated in both high- and low-methylation subgroups. Subsequently, we identified 715 LMP1-inducible methylation genes by observing the methylome data of the nasopharyngeal epithelial cell line with or without LMP1 expression. Because high-methylation genes were enriched with LMP1-inducible methylation genes, we extracted 95 high-methylation genes that overlapped with the LMP1-inducible methylation genes. Among them, we identified DERL3 as the most significantly methylated gene affected by LMP1 expression. DERL3 knockdown in cell lines resulted in significantly increased cell proliferation, migration, and invasion. Lower DERL3 expression was more frequently detected in the advanced T-stage NPC than in early T-stage NPC. These results indicate that DERL3 repression by DNA methylation contributes to NPC tumour progression.
Collapse
Affiliation(s)
- Satoru Kondo
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Takuya Nakagawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-2856, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Pathology, Chiba University Hospital, Chiba, Chiba 260-2856, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Genome Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Hirotomo Dochi
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Harue Mizokami
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Yuki Kitagawa
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Tomoya Kurokawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-2856, Japan
| | - Masato Mima
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuhira Endo
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hisashi Sugimoto
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Naohiro Wakisaka
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomokazu Yoshizaki
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan.
| |
Collapse
|
44
|
Wang J, Yang B, Zhang X, Liu S, Pan X, Ma C, Ma S, Yu D, Wu W. Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review). Int J Oncol 2023; 62:36. [PMID: 36734270 PMCID: PMC9937689 DOI: 10.3892/ijo.2023.5484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Chromobox (CBX) proteins are important epigenetic regulatory proteins and are widely involved in biological processes, such as embryonic development, the maintenance of stem cell characteristics and the regulation of cell proliferation and apoptosis. Disorder and dysfunction of CBXs in cancer usually lead to the blockade or ectoptic activation of developmental pathways, promoting the occurrence, development and progression of cancer. In the present review, the characteristics and functions of CBXs were first introduced. Subsequently, the expression of CBXs in cancers and the relationship between CBXs and clinical characteristics (mainly cancer grade, stage, metastasis and relapse) and prognosis were discussed. Finally, it was described how CBXs regulate cell proliferation and self‑renewal, apoptosis and the acquisition of malignant phenotypes, such as invasion, migration and chemoresistance, through mechanisms involving epigenetic modification, nuclear translocation, noncoding RNA interactions, transcriptional regulation, posttranslational modifications, protein‑protein interactions, signal transduction and metabolic reprogramming. The study also focused on cancer therapies targeting CBXs. The present review provides new insight and a comprehensive basis for follow‑up research on CBXs and cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiuhang Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuhan Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoqiang Pan
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Changkai Ma
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shiqiang Ma
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dehai Yu
- Department of Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Professor Dehai Yu, Public Research Platform, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| | - Wei Wu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Correspondence to: Professor Wei Wu, Department of Neurovascular Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
45
|
EZH2: An Accomplice of Gastric Cancer. Cancers (Basel) 2023; 15:cancers15020425. [PMID: 36672374 PMCID: PMC9856299 DOI: 10.3390/cancers15020425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer deaths worldwide. Understanding the factors influencing the therapeutic effects in gastric cancer patients and the molecular mechanism behind gastric cancer is still facing challenges. In addition to genetic alterations and environmental factors, it has been demonstrated that epigenetic mechanisms can also induce the occurrence and progression of gastric cancer. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressor complex 2 (PRC2), which trimethylates histone 3 at Lys-27 and regulates the expression of downstream target genes through epigenetic mechanisms. It has been found that EZH2 is overexpressed in the stomach, which promotes the progression of gastric cancer through multiple pathways. In addition, targeted inhibition of EZH2 expression can effectively delay the progression of gastric cancer and improve its resistance to chemotherapeutic agents. Given the many effects of EZH2 in gastric cancer, there are no studies to comprehensively describe this mechanism. Therefore, in this review, we first introduce EZH2 and clarify the mechanisms of abnormal expression of EZH2 in cancer. Secondly, we summarize the role of EZH2 in gastric cancer, which includes the association of the EZH2 gene with genetic susceptibility to GC, the correlation of the EZH2 gene with gastric carcinogenesis and invasive metastasis, the resistance to chemotherapeutic drugs of gastric cancer mediated by EZH2 and the high expression of EZH2 leading to poor prognosis of gastric cancer patients. Finally, we also clarify some of the current statuses of drug development regarding targeted inhibition of EZH2/PRC2 activity.
Collapse
|
46
|
Furlan G, Huyghe A, Combémorel N, Lavial F. Molecular versatility during pluripotency progression. Nat Commun 2023; 14:68. [PMID: 36604434 PMCID: PMC9814743 DOI: 10.1038/s41467-022-35775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
A challenge during development is to ensure lineage segregation while preserving plasticity. Using pluripotency progression as a paradigm, we review how developmental transitions are coordinated by redeployments, rather than global resettings, of cellular components. We highlight how changes in response to extrinsic cues (FGF, WNT, Activin/Nodal, Netrin-1), context- and stoichiometry-dependent action of transcription factors (Oct4, Nanog) and reconfigurations of epigenetic regulators (enhancers, promoters, TrxG, PRC) may confer robustness to naïve to primed pluripotency transition. We propose the notion of Molecular Versatility to regroup mechanisms by which molecules are repurposed to exert different, sometimes opposite, functions in close stem cell configurations.
Collapse
Affiliation(s)
- Giacomo Furlan
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Aurélia Huyghe
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Noémie Combémorel
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Fabrice Lavial
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France.
| |
Collapse
|
47
|
Masui O, Corbel C, Nagao K, Endo TA, Kezuka F, Diabangouaya P, Nakayama M, Kumon M, Koseki Y, Obuse C, Koseki H, Heard E. Polycomb repressive complexes 1 and 2 are each essential for maintenance of X inactivation in extra-embryonic lineages. Nat Cell Biol 2023; 25:134-144. [PMID: 36635505 PMCID: PMC7616894 DOI: 10.1038/s41556-022-01047-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/08/2022] [Indexed: 01/14/2023]
Abstract
In female mammals, one of the two X chromosomes becomes inactivated during development by X-chromosome inactivation (XCI). Although Polycomb repressive complex (PRC) 1 and PRC2 have both been implicated in gene silencing, their exact roles in XCI during in vivo development have remained elusive. To this end, we have studied mouse embryos lacking either PRC1 or PRC2. Here we demonstrate that the loss of either PRC has a substantial impact on maintenance of gene silencing on the inactive X chromosome (Xi) in extra-embryonic tissues, with overlapping yet different genes affected, indicating potentially independent roles of the two complexes. Importantly, a lack of PRC1 does not affect PRC2/H3K27me3 accumulation and a lack of PRC2 does not impact PRC1/H2AK119ub1 accumulation on the Xi. Thus PRC1 and PRC2 contribute independently to the maintenance of XCI in early post-implantation extra-embryonic lineages, revealing that both Polycomb complexes can be directly involved and differently deployed in XCI.
Collapse
Affiliation(s)
- Osamu Masui
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Catherine Corbel
- Unité de Génétique et Biologie du Développement, Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, France
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Fuyuko Kezuka
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Patricia Diabangouaya
- Unité de Génétique et Biologie du Développement, Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, France
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Mami Kumon
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Edith Heard
- Unité de Génétique et Biologie du Développement, Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, France.
- Collège de France, Paris, France.
- European Molecular Biology Laboratory (EMBL), Directors' research unit, Heidelberg, Germany.
| |
Collapse
|
48
|
Gan L, Li Q, Nie W, Zhang Y, Jiang H, Tan C, Zhang L, Zhang J, Li Q, Hou P, Yuan Y, Sun X, Liu D, Sheng W, Liu T, Xu M, Guo W. PROX1-mediated epigenetic silencing of SIRT3 contributes to proliferation and glucose metabolism in colorectal cancer. Int J Biol Sci 2023; 19:50-65. [PMID: 36594098 PMCID: PMC9760442 DOI: 10.7150/ijbs.73530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Prospero-related homeobox 1 (PROX1) is a homeobox transcription factor known to promote malignant transformation and stemness in human colorectal cancer (CRC). However, the biological function of PROX1 in metabolic rearrangement in CRC remains unclear. Here, we aimed to uncover the relationship between the expression profile and role of PROX1 and CRC cell glucose metabolism and to elucidate the underlying molecular mechanism. PROX1 expression was significantly upregulated in human CRC tissues and positively associated with the maximum standardized uptake value (SUVmax), a measure of tissue 18-fluoro-2-deoxy-D-glucose uptake and an indicator of glycolysis and tumor cell activity, in patients with CRC. Knockdown of PROX1 suppressed CRC cell proliferation and glucose metabolism in vitro and in vivo. Mechanistically, through a physical interaction, PROX1 recruited EZH2 to the SIRT3 promoter and inhibited SIRT3 promoter activity. Moreover, PROX1 or EZH2 knockdown decreased cell glycolysis by targeting SIRT3. Clinically, high PROX1 expression combined with low SIRT3 expression predicted poor prognosis in patients with CRC. Thus, our study suggests that the PROX1-EZH2 complex positively regulates cell proliferation and glucose metabolism by engaging SIRT3 in CRC, which may serve as a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Lu Gan
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qingguo Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Wei Nie
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yi Zhang
- Department of Gastroenterology & Clinical Nutrition, The 452nd Hospital of PLA, Chengdu 610000, Sichuan, China
| | - Hesheng Jiang
- Department of Surgery, United Health Services Southern California Medical Education Consortium, Temecula Valley Hospital, Temecula, CA 92592, USA
| | - Cong Tan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Long Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jieyun Zhang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pengcong Hou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yitao Yuan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dongmei Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weiqi Sheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Midie Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Weijian Guo
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
49
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
50
|
Abstract
DNA methylation is a highly conserved epigenetic modification that plays essential roles in mammalian gene regulation, genome stability and development. Despite being primarily considered a stable and heritable epigenetic silencing mechanism at heterochromatic and repetitive regions, whole genome methylome analysis reveals that DNA methylation can be highly cell-type specific and dynamic within proximal and distal gene regulatory elements during early embryonic development, stem cell differentiation and reprogramming, and tissue maturation. In this Review, we focus on the mechanisms and functions of regulated DNA methylation and demethylation, highlighting how these dynamics, together with crosstalk between DNA methylation and histone modifications at distinct regulatory regions, contribute to mammalian development and tissue maturation. We also discuss how recent technological advances in single-cell and long-read methylome sequencing, along with targeted epigenome-editing, are enabling unprecedented high-resolution and mechanistic dissection of DNA methylome dynamics.
Collapse
Affiliation(s)
- Alex Wei
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|