1
|
Takahashi M, Konishi T, Yabe K, Takata M, Matsuura K. A Breeding System Derived From Asexual Queen Succession in Termite Colonies From Cold Climate Regions. Mol Ecol 2025; 34:e17724. [PMID: 40116473 DOI: 10.1111/mec.17724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
In social insects, geographic variation is often accompanied not only by physiological changes but also by changes in their social system. In the subterranean termite Reticulitermes speratus that exhibits a sophisticated social system, colonies in subtropical and temperate areas are founded by a pair of primary king and queen derived from sexually produced alates. Some years after colony establishment, many neotenic queens are produced parthenogenetically, which is known as asexual queen succession (AQS). This strategy boosts reproduction without inbreeding. Here we show that subarctic populations of R. speratus, where colonies founded by alates cannot be sustained due to the cold conditions, undergo inbreeding rather than AQS, with colonies headed by numerous neotenic reproductives. Genetic analysis found that most neotenic queens were produced sexually in the subarctic populations, rather than asexually. Rearing experiments using colonies consisting only of nymphs (reproductive-destined individuals) and workers revealed that more nymphs successfully established as neotenic reproductives in the subarctic populations than in temperate populations, and that a higher number of individuals were maintained in the subarctic populations. These results suggest that sexually produced nymphs in subarctic populations are highly predisposed to develop into neotenic reproductives, whereas in temperate populations, their developmental potential is predominantly directed towards becoming alates. This study demonstrates that R. speratus has adjusted to colder climatic zones by changing its sophisticated AQS reproductive system into a secondary strategy to maintain colonies, elucidating the flexible adaptation and acclimation of reproductive systems in social insects.
Collapse
Affiliation(s)
- Michihiko Takahashi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takao Konishi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kiyotaka Yabe
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mamoru Takata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
2
|
Belliard SA, Hurtado J, Matzkin LM, Revale S, Segura DF. Transcriptomic response of male Anastrepha fraterculus (Diptera: Tephritidae) to sexual stimulation by host plant volatiles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101495. [PMID: 40158292 DOI: 10.1016/j.cbd.2025.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Anastrepha fraterculus is a major pest of fruits in South America. Previous studies revealed that males exposed to volatiles from guava, a likely ancestral host, intensify courtship behavior and increase mating success. However, the molecular and physiological mechanisms underlying this effect remain unknown. Here, we explore the impact of exposure to guava essential oil volatiles on the gene expression profile of adult male heads through de novo transcriptome assembly and differential expression analysis. We found 678 differentially expressed genes (FDR < 0.05 and |FC| > 2), 308 of which were over-expressed in exposed males and 370 in non-exposed males. The exposure treatment affected the transcription of genes putatively involved in mucus-forming, lipid metabolism and neuropeptide processing. Our findings provide the first insights into the molecular mechanisms underlying sexual stimulation in A. fraterculus males triggered by host fruit volatiles.
Collapse
Affiliation(s)
- Silvina A Belliard
- Instituto de Genética "Ewald A. Favret", CICVyA, Instituto Nacional de Tecnología Agropecuaria-GV-Instituto de Agrobiotecnología y Biología Molecular (IABIMO-INTA-CONICET), Buenos Aires, Argentina
| | - Juan Hurtado
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, CABA, Argentina; Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | | | - Diego F Segura
- Instituto de Genética "Ewald A. Favret", CICVyA, Instituto Nacional de Tecnología Agropecuaria-GV-Instituto de Agrobiotecnología y Biología Molecular (IABIMO-INTA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Dhungana P, Wei X, Kang DS, Sim C. A Head-Specific Transcriptomic Study Reveals Key Regulatory Pathways for Winter Diapause in the Mosquito Culex pipiens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70032. [PMID: 39898769 DOI: 10.1002/arch.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
The primary vector of the West Nile virus, Culex pipiens, undergoes reproductive dormancy during the adverse winter season. While our current understanding has mainly focused on cellular signals and phenotypic shifts occurring at a global scale during diapause, information on tissue-specific transcriptomic changes remains limited. This knowledge gap is a major challenge in interpreting the regulatory mechanisms at the tissue level. To address this, the present work utilized RNA-seq technology to investigate the transcriptional changes in the head that house the brain and crucial endocrinal organs such as corpora allata. We obtained RNA samples from the heads of diapausing and nondiapausing female mosquitoes at two specific time intervals, ZT0 and ZT16, and then subjected them to sequencing. Our results revealed differences in differentially expressed genes between diapause and non-diapause at ZT0 and ZT16, highlighting the phenotypic and diel variations in gene expression. We also selected twelve genes associated with the diapause phenotype and examined the transcript abundance at six different time points over 24 h. qRT-PCR analysis showed similar up- and downregulation of transcripts between the diapause and nondiapause phenotypes thus validating the results of RNA-seq. In summary, our study identified new genes with phenotypic and diel differentiation in their expression, potentially linking photoperiod to seasonal reproductive dormancy in insects. The newly presented information will significantly advance our understanding of head-specific genes crucial for insect diapause.
Collapse
Affiliation(s)
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, Texas, USA
| | - David S Kang
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
4
|
Jia S, Li R, Li Y, Huang Y, Liu M, Zhou Y, Liang Y, Hao Z, Xu Y, Wang H. Evolutionary Novelty of Apolipoprotein D Facilitates Metabolic Plasticity in Lepidopteran Wings. Mol Biol Evol 2024; 41:msae252. [PMID: 39665685 PMCID: PMC11683417 DOI: 10.1093/molbev/msae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
Understanding metabolic plasticity of animal evolution is a fundamental challenge in evolutionary biology. Owing to the diversification of insect wing morphology and dynamic energy requirements, the molecular adaptation mechanisms underlying the metabolic pathways in wing evolution remain largely unknown. This study reveals the pivotal role of the duplicated Apolipoprotein D (ApoD) gene in lipid and energy homeostasis in the lepidopteran wing. ApoD underwent significant expansion in insects, with gene duplication and consistent retention observed in Lepidoptera. Notably, duplicated ApoD2 was highly expressed in lepidopteran wings and encoded a unique C-terminal tail, conferring distinct ligand-binding properties. Using Bombyx mori as a model organism, we integrated evolutionary analysis, multiomics, and in vivo functional experiments to elucidate the way duplicated ApoD2 mediates lipid trafficking and homeostasis via the AMP-activated protein kinase pathway in wings. Moreover, we revealed the specific expression and functional divergence of duplicated ApoD as a key mechanism regulating lipid homeostasis in the lepidopteran wing. These findings highlight an evolutionary scenario in which neofunctionalization conferred a novel role of ApoD in shaping adaptive lipid metabolic regulatory networks during wing phenotypic evolution. Overall, we provide in vivo evidence for the functional differentiation of duplicate genes in shaping adaptive metabolic regulatory networks during phenotypic evolution.
Collapse
Affiliation(s)
- Shunze Jia
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rongqiao Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minmin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanting Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Chen L, Guo LX, Yu XY, Huo SM, Hoffmann AA, Zhou JY, Sun JT, Hong XY. Decoding plant-induced transcriptomic variability and consistency in two related polyphagous mites differing in host ranges. Mol Ecol 2024:e17521. [PMID: 39206937 DOI: 10.1111/mec.17521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The diet breadth of generalist herbivores when compared to specialists tends to be associated with greater transcriptional plasticity. Here, we consider whether it may also contribute to variation in host range among two generalists with different levels of polyphagy. We examined two related polyphagous spider mites with different host ranges, Tetranychus urticae (1200 plants) and Tetranychus truncatus (90 plants). Data from multiple populations of both species domesticated on common beans and transferred to new plant hosts (cotton, cucumber, eggplant) were used to investigate transcriptional plasticity relative to population-based variation in gene expression. Compared to T. truncatus, T. urticae exhibited much higher transcriptional plasticity. Populations of this species also showed much more variable expression regulation in response to a plant host, particularly for genes related to detoxification, transport, and transcriptional factors. In response to the different plant hosts, both polyphagous species showed enriched processes of drug/xenobiotics metabolism, with T. urticae orchestrating a relatively broader array of biological pathways. Through co-expression network analysis, we identified gene modules associated with host plant response, revealing shared hub genes primarily involved in detoxification metabolism when both mites fed on the same plants. After silencing a shared hub CYP gene related to eggplant exposure, the performance of both species on the original bean host improved, but the fecundity of T. truncatus decreased when feeding on eggplant. The extensive transcriptomic variation shown by T. urticae might serve as a potential compensatory mechanism for a deficiency of hub genes in this species. This research points to nuanced differences in transcriptomic variability between generalist herbivores.
Collapse
Affiliation(s)
- Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Li-Xue Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin-Yue Yu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shi-Mei Huo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jia-Yi Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
7
|
Arango NK, Morgante F. Comparing statistical learning methods for complex trait prediction from gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596951. [PMID: 38895364 PMCID: PMC11185554 DOI: 10.1101/2024.06.01.596951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Accurate prediction of complex traits is an important task in quantitative genetics that has become increasingly relevant for personalized medicine. Genotypes have traditionally been used for trait prediction using a variety of methods such as mixed models, Bayesian methods, penalized regressions, dimension reductions, and machine learning methods. Recent studies have shown that gene expression levels can produce higher prediction accuracy than genotypes. However, only a few prediction methods were used in these studies. Thus, a comprehensive assessment of methods is needed to fully evaluate the potential of gene expression as a predictor of complex trait phenotypes. Here, we used data from the Drosophila Genetic Reference Panel (DGRP) to compare the ability of several existing statistical learning methods to predict starvation resistance from gene expression in the two sexes separately. The methods considered differ in assumptions about the distribution of gene effect sizes - ranging from models that assume that every gene affects the trait to more sparse models - and their ability to capture gene-gene interactions. We also used functional annotation (i.e., Gene Ontology (GO)) as an external source of biological information to inform prediction models. The results show that differences in prediction accuracy between methods exist, although they are generally not large. Methods performing variable selection gave higher accuracy in females while methods assuming a more polygenic architecture performed better in males. Incorporating GO annotations further improved prediction accuracy for a few GO terms of biological significance. Biological significance extended to the genes underlying highly predictive GO terms with different genes emerging between sexes. Notably, the Insulin-like Receptor (InR) was prevalent across methods and sexes. Our results confirmed the potential of transcriptomic prediction and highlighted the importance of selecting appropriate methods and strategies in order to achieve accurate predictions.
Collapse
Affiliation(s)
- Noah Klimkowski Arango
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Fabio Morgante
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| |
Collapse
|
8
|
Mora I, Puiggròs F, Serras F, Gil-Cardoso K, Escoté X. Emerging models for studying adipose tissue metabolism. Biochem Pharmacol 2024; 223:116123. [PMID: 38484851 DOI: 10.1016/j.bcp.2024.116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Understanding adipose metabolism is essential for addressing obesity and related health concerns. However, the ethical and scientific pressure to animal testing, aligning with the 3Rs, has triggered the implementation of diverse alternative models for analysing anomalies in adipose metabolism. In this review, we will address this issue from various perspectives. Traditional adipocyte cell cultures, whether animal or human-derived, offer a fundamental starting point. These systems have their merits but may not fully replicate in vivo complexity. Established cell lines are valuable for high-throughput screening but may lack the authenticity of primary-derived adipocytes, which closely mimic native tissue. To enhance model sophistication, spheroids have been introduced. These three-dimensional cultures better mimicking the in vivo microenvironment, enabling the study of intricate cell-cell interactions, gene expression, and metabolic pathways. Organ-on-a-chip (OoC) platforms take this further by integrating multiple cell types into microfluidic devices, simulating tissue-level functions. Adipose-OoC (AOoC) provides dynamic environments with applications spanning drug testing to personalized medicine and nutrition. Beyond in vitro models, genetically amenable organisms (Caenorhabditis elegans, Drosophila melanogaster, and zebrafish larvae) have become powerful tools for investigating fundamental molecular mechanisms that govern adipose tissue functions. Their genetic tractability allows for efficient manipulation and high-throughput studies. In conclusion, a diverse array of research models is crucial for deciphering adipose metabolism. By leveraging traditional adipocyte cell cultures, primary-derived cells, spheroids, AOoCs, and lower organism models, we bridge the gap between animal testing and a more ethical, scientifically robust, and human-relevant approach, advancing our understanding of adipose tissue metabolism and its impact on health.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain.
| |
Collapse
|
9
|
Lu JB, Ren PP, Li Q, He F, Xu ZT, Wang SN, Chen JP, Li JM, Zhang CX. The evolution and functional divergence of 10 Apolipoprotein D-like genes in Nilaparvata lugens. INSECT SCIENCE 2024; 31:91-105. [PMID: 37334667 DOI: 10.1111/1744-7917.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 06/20/2023]
Abstract
Apolipoprotein D (ApoD), a member of the lipocalin superfamily of proteins, is involved in lipid transport and stress resistance. Whereas only a single copy of the ApoD gene is found in humans and some other vertebrates, there are typically several ApoD-like genes in insects. To date, there have been relatively few studies that have examined the evolution and functional differentiation of ApoD-like genes in insects, particularly hemi-metabolous insects. In this study, we identified 10 ApoD-like genes (NlApoD1-10) with distinct spatiotemporal expression patterns in Nilaparvata lugens (BPH), which is an important pest of rice. NlApoD1-10 were found to be distributed on 3 chromosomes in a tandem array of NlApoD1/2, NlApoD3-5, and NlApoD7/8, and show sequence and gene structural divergence in the coding regions, indicating that multiple gene duplication events occurred during evolution. Phylogenetic analysis revealed that NlApoD1-10 can be clustered into 5 clades, with NlApoD3-5 and NlApoD7/8 potentially evolving exclusively in the Delphacidae family. Functional screening using an RNA interference approach revealed that only NlApoD2 was essential for BPH development and survival, whereas NlApoD4/5 are highly expressed in testes, and might play roles in reproduction. Moreover, stress response analysis revealed that NlApoD3-5/9, NlApoD3-5, and NlApoD9 were up-regulated after treatment with lipopolysaccharide, H2 O2 , and ultraviolet-C, respectively, indicating their potential roles in stress resistance.
Collapse
Affiliation(s)
- Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Qiao Li
- Technology Center of Wuhan Customs District, Hubei, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhong-Tian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Sai-Nan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Nunes RD, Drummond-Barbosa D. A high-sugar diet, but not obesity, reduces female fertility in Drosophila melanogaster. Development 2023; 150:dev201769. [PMID: 37795747 PMCID: PMC10617608 DOI: 10.1242/dev.201769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Obesity is linked to reduced fertility in various species, from Drosophila to humans. Considering that obesity is often induced by changes in diet or eating behavior, it remains unclear whether obesity, diet, or both reduce fertility. Here, we show that Drosophila females on a high-sugar diet become rapidly obese and less fertile as a result of increased death of early germline cysts and vitellogenic egg chambers (or follicles). They also have high glycogen, glucose and trehalose levels and develop insulin resistance in their fat bodies (but not ovaries). By contrast, females with adipocyte-specific knockdown of the anti-obesity genes brummer or adipose are obese but have normal fertility. Remarkably, females on a high-sugar diet supplemented with a separate source of water have mostly normal fertility and glucose levels, despite persistent obesity, high glycogen and trehalose levels, and fat body insulin resistance. These findings demonstrate that a high-sugar diet affects specific processes in oogenesis independently of insulin resistance, that high glucose levels correlate with reduced fertility on a high-sugar diet, and that obesity alone does not impair fertility.
Collapse
Affiliation(s)
- Rodrigo Dutra Nunes
- Department of Genetics, University of Wisconsin – Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Daniela Drummond-Barbosa
- Department of Genetics, University of Wisconsin – Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| |
Collapse
|
11
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Fyfe-Desmarais G, Desmarais F, Rassart É, Mounier C. Apolipoprotein D in Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051027. [PMID: 37237893 DOI: 10.3390/antiox12051027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Apolipoprotein D (ApoD) is lipocalin able to bind hydrophobic ligands. The APOD gene is upregulated in a number of pathologies, including Alzheimer's disease, Parkinson's disease, cancer, and hypothyroidism. Upregulation of ApoD is linked to decreased oxidative stress and inflammation in several models, including humans, mice, Drosophila melanogaster and plants. Studies suggest that the mechanism through which ApoD modulates oxidative stress and regulate inflammation is via its capacity to bind arachidonic acid (ARA). This polyunsaturated omega-6 fatty acid can be metabolised to generate large variety of pro-inflammatory mediators. ApoD serves as a sequester, blocking and/or altering arachidonic metabolism. In recent studies of diet-induced obesity, ApoD has been shown to modulate lipid mediators derived from ARA, but also from eicosapentaenoic acid and docosahexaenoic acid in an anti-inflammatory way. High levels of ApoD have also been linked to better metabolic health and inflammatory state in the round ligament of morbidly obese women. Since ApoD expression is upregulated in numerous diseases, it might serve as a therapeutic agent against pathologies aggravated by OS and inflammation such as many obesity comorbidities. This review will present the most recent findings underlying the central role of ApoD in the modulation of both OS and inflammation.
Collapse
Affiliation(s)
- Guillaume Fyfe-Desmarais
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Fréderik Desmarais
- Department of Medecine, Faculty of Medecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Éric Rassart
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Catherine Mounier
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
13
|
Zhou YY, Jin Y, Liu SQ, Xu SL, Huang YX, Xu YS, Shi LG, Wang HB. Genome-wide identification and comparative analysis of lipocalin families in Lepidoptera with an emphasis on Bombyx mori. INSECT SCIENCE 2023; 30:15-30. [PMID: 35343650 DOI: 10.1111/1744-7917.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Lipocalins exhibit functional diversity, including roles in retinol transport, invertebrate cryptic coloration, and stress response. However, genome-wide identification and characterization of lipocalin in the insect lineage have not been thoroughly explored. Here, we found that a lineage-specific expansion of the lipocalin genes in Lepidoptera occurred in large part due to tandem duplication events and several lipocalin genes involving insect coloration were expanded more via tandem duplication in butterflies. A comparative analysis of conserved motifs showed both conservation and divergence of lepidopteran lipocalin family protein structures during evolution. We observe dynamic changes in tissue expression preference of paralogs in Bombyx mori, suggesting differential contribution of paralogs to specific organ functions during evolution. Subcellular localization experiments revealed that lipocalins localize to the cytoplasm, nuclear membrane, or nucleus in BmN cells. Moreover, several lipocalin genes exhibited divergent responses to abiotic and biotic stresses, and 1 lipocalin gene was upregulated by 300 fold in B. mori. These results suggest that lipocalins act as signaling components in defense responses by mediating crosstalk between abiotic and biotic stress responses. This study deepens our understanding of the comprehensive characteristics of lipocalins in insects.
Collapse
Affiliation(s)
- Yan-Yan Zhou
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yue Jin
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuai-Qi Liu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shi-Liang Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Xin Huang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Song Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lian-Gen Shi
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Bing Wang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Corraliza-Gomez M, Bendito B, Sandonis-Camarero D, Mondejar-Duran J, Villa M, Poncela M, Valero J, Sanchez D, Ganfornina MD. Dual role of Apolipoprotein D as long-term instructive factor and acute signal conditioning microglial secretory and phagocytic responses. Front Cell Neurosci 2023; 17:1112930. [PMID: 36779011 PMCID: PMC9908747 DOI: 10.3389/fncel.2023.1112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Microglial cells are recognized as very dynamic brain cells, screening the environment and sensitive to signals from all other cell types in health and disease. Apolipoprotein D (ApoD), a lipid-binding protein of the Lipocalin family, is required for nervous system optimal function and proper development and maintenance of key neural structures. ApoD has a cell and state-dependent expression in the healthy nervous system, and increases its expression upon aging, damage or neurodegeneration. An extensive overlap exists between processes where ApoD is involved and those where microglia have an active role. However, no study has analyzed the role of ApoD in microglial responses. In this work, we test the hypothesis that ApoD, as an extracellular signal, participates in the intercellular crosstalk sensed by microglia and impacts their responses upon physiological aging or damaging conditions. We find that a significant proportion of ApoD-dependent aging transcriptome are microglia-specific genes, and show that lack of ApoD in vivo dysregulates microglial density in mouse hippocampus in an age-dependent manner. Murine BV2 and primary microglia do not express ApoD, but it can be internalized and targeted to lysosomes, where unlike other cell types it is transiently present. Cytokine secretion profiles and myelin phagocytosis reveal that ApoD has both long-term pre-conditioning effects on microglia as well as acute effects on these microglial immune functions, without significant modification of cell survival. ApoD-triggered cytokine signatures are stimuli (paraquat vs. Aβ oligomers) and sex-dependent. Acute exposure to ApoD induces microglia to switch from their resting state to a secretory and less phagocytic phenotype, while long-term absence of ApoD leads to attenuated cytokine induction and increased myelin uptake, supporting a role for ApoD as priming or immune training factor. This knowledge should help to advance our understanding of the complex responses of microglia during aging and neurodegeneration, where signals received along our lifespan are combined with damage-triggered acute signals, conditioning both beneficial roles and limitations of microglial functions.
Collapse
Affiliation(s)
- Miriam Corraliza-Gomez
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - Beatriz Bendito
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - David Sandonis-Camarero
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - Jorge Mondejar-Duran
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - Miguel Villa
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - Marta Poncela
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Diego Sanchez
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain,Diego Sanchez,
| | - Maria D. Ganfornina
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain,*Correspondence: Maria D. Ganfornina, ,
| |
Collapse
|
15
|
Drosophila transcription factor NF-Y suppresses transcription of the lipase 4 gene, a key gene for lipid storage. Exp Cell Res 2022; 420:113307. [PMID: 36028059 DOI: 10.1016/j.yexcr.2022.113307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
The CCAAT motif-binding factor NF-Y consists of three different subunits, NF-YA, NF-YB, and NF-YC. Although it is suggested that NF-Y activity is essential for normal tissue homeostasis, survival, and metabolic function, its precise role in lipid metabolism is not clarified yet. In Drosophila, eye disc specific knockdown of Drosophila NF-YA (dNF-YA) induced aberrant morphology of the compound eye, the rough eye phenotype in adults and mutation of the lipase 4 (lip4) gene suppressed the rough eye phenotype. RNA-seq analyses with dNF-YA knockdown third instar larvae identified the lip4 gene as one of the genes that are up-regulated by the dNF-YA knockdown. We identified three dNF-Y-binding consensuses in the 5'flanking region of the lip4 gene, and a chromatin immunoprecipitation assay with the specific anti-dNF-YA IgG demonstrated dNF-Y binding to this genomic region. The luciferase transient expression assay with cultured Drosophila S2 cells and the lip4 promoter-luciferase fusion genes with and without mutations in the dNF-Y-binding consensuses showed that each of the three dNF-Y consensus sequences negatively regulated lip4 gene promoter activity. Consistent with these results, qRT-PCR analysis with the dNF-YA knockdown third instar larvae revealed that endogenous lip4 mRNA levels were increased by the knockdown of dNF-YA in vivo. The specific knockdown of dNF-YA in the fat body with the collagen-GAL4 driver resulted in smaller oil droplets in the fat body cells. Collectively, these results suggest that dNF-Y is involved in lipid storage through its negative regulation of lip4 gene transcription.
Collapse
|
16
|
The Neuroprotective Lipocalin Apolipoprotein D Stably Interacts with Specific Subtypes of Detergent-Resistant Membrane Domains in a Basigin-Independent Manner. Mol Neurobiol 2022; 59:4015-4029. [PMID: 35460054 PMCID: PMC9167181 DOI: 10.1007/s12035-022-02829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
Accumulated evidence points to the lipocalin apolipoprotein D (ApoD), one of the few genes consistently upregulated upon brain ageing and neurodegeneration, as an endogenous controller of the redox state of cellular and extracellular lipid structures. This biochemical function has downstream consequences as apparently varied as control of glycocalyx and myelin compaction, cell viability upon oxidative stress or modulation of signalling pathways. In spite of this knowledge, it is still unclear if ApoD function requires canonical receptor-mediated transductions systems. This work aims to examine ApoD-cell membrane interaction and its dependence on a proposed ApoD receptor, Basigin. Whole and fractionated membrane preparations from the brain, primary astrocytes, glial and neuronal cell lines, reveal ApoD as a very specific component of particular subtypes of detergent-resistant microdomains (DRMs). ApoD interacts in vitro with neuronal membranes and is stably associated with astrocytic membranes. ApoD associates with DRMs with specific buoyancy properties that co-fractionate with plasma or late-endosome-lysosome markers. A mass spectrometry analysis reveals that these Triton X-114 DRMs contain both plasma membrane and endosomal-lysosomal compartment lipid raft proteins. ApoD-DRM association is maintained under metabolic and acute oxidative stress conditions. However, ApoD-membrane interaction, its internalization and its lipid-antioxidant function do not require the presence of Basigin. This work supports a stable association of ApoD with membranes, independent of Basigin, and provides the basis to fully understand ApoD antioxidant neuroprotective mechanism as a mechanism taking place in specific membrane subdomains.
Collapse
|
17
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
18
|
Nguyen HQ, Kim Y, Jang Y. De Novo Transcriptome Analysis Reveals Potential Thermal Adaptation Mechanisms in the Cicada Hyalessa fuscata. Animals (Basel) 2021; 11:ani11102785. [PMID: 34679807 PMCID: PMC8532856 DOI: 10.3390/ani11102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In metropolitan Seoul and its vicinity, cicadas of the species Hyalessa fuscata living in warmer areas could tolerate the heat better than those living in cooler areas, but genetic mechanisms involved in better heat tolerance remained unclear. In this study, we examined differences in gene expression of cicadas living in a warm urban area, a cool urban area and a suburban area in three experimental treatments: no heating, 10 min heating and heating until the cicadas lost their mobility. Cicadas from the warm urban area changed their gene expressions the most. Activated genes were mostly related to heat shock, energy metabolism, and detoxification. These results suggested that under heat stress, cicadas inhabiting warm areas could differentially express genes to increase their thermal tolerance. Abstract In metropolitan Seoul, populations of the cicada Hyalessa fuscata in hotter urban heat islands (“high UHIs”) exhibit higher thermal tolerance than those in cooler UHIs (“low UHIs”). We hypothesized that heat stress may activate the expression of genes that facilitate greater thermal tolerance in high-UHI cicadas than in those from cooler areas. Differences in the transcriptomes of adult female cicadas from high-UHI, low-UHI, and suburban areas were analyzed at the unheated level, after acute heat stress, and after heat torpor. No noticeable differences in unheated gene expression patterns were observed. After 10 min of acute heat stress, however, low-UHI and suburban cicadas expressed more heat shock protein genes than high-UHI counterparts. More specifically, remarkable changes in the gene expression of cicadas across areas were observed after heat torpor stimulus, as represented by a large number of up- and downregulated genes in the heat torpor groups compared with the 10 min acute heat stress and control groups. High-UHI cicadas expressed the most differentially expressed genes, followed by the low-UHI and suburban cicadas. There was a notable increase in the expression of heat shock, metabolism, and detoxification genes; meanwhile, immune-related, signal transduction, and protein turnover genes were downregulated in high-UHI cicadas versus the other cicada groups. These results suggested that under heat stress, cicadas inhabiting high-UHIs could rapidly express genes related to heat shock, energy metabolism, and detoxification to protect cells from stress-induced damage and to increase their thermal tolerance toward heat stress. The downregulation of apoptosis mechanisms in high-UHI cicadas suggested that there was less cellular damage, which likely contributed to their high tolerance of heat stress.
Collapse
Affiliation(s)
- Hoa Quynh Nguyen
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
- Institute of Chemistry, Vietnam Academy of Science and Technology, No. 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 10072, Vietnam
| | - Yuseob Kim
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
| | - Yikweon Jang
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
- Correspondence:
| |
Collapse
|
19
|
Adhikari K, Son JH, Rensink AH, Jaweria J, Bopp D, Beukeboom LW, Meisel RP. Temperature-dependent effects of house fly proto-Y chromosomes on gene expression could be responsible for fitness differences that maintain polygenic sex determination. Mol Ecol 2021; 30:5704-5720. [PMID: 34449942 DOI: 10.1111/mec.16148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/20/2021] [Indexed: 12/21/2022]
Abstract
Sex determination, the developmental process by which sexually dimorphic phenotypes are established, evolves fast. Evolutionary turnover in a sex determination pathway may occur via selection on alleles that are genetically linked to a new master sex determining locus on a newly formed proto-sex chromosome. Species with polygenic sex determination, in which master regulatory genes are found on multiple different proto-sex chromosomes, are informative models to study the evolution of sex determination and sex chromosomes. House flies are such a model system, with male determining loci possible on all six chromosomes and a female-determiner on one of the chromosomes as well. The two most common male-determining proto-Y chromosomes form latitudinal clines on multiple continents, suggesting that temperature variation is an important selection pressure responsible for maintaining polygenic sex determination in this species. Temperature-dependent fitness effects could be manifested through temperature-dependent gene expression differences across proto-Y chromosome genotypes. These gene expression differences may be the result of cis regulatory variants that affect the expression of genes on the proto-sex chromosomes, or trans effects of the proto-Y chromosomes on genes elswhere in the genome. We used RNA-seq to identify genes whose expression depends on proto-Y chromosome genotype and temperature in adult male house flies. We found no evidence for ecologically meaningful temperature-dependent expression differences of sex determining genes between male genotypes, but we were probably not sampling an appropriate developmental time-point to identify such effects. In contrast, we identified many other genes whose expression depends on the interaction between proto-Y chromosome genotype and temperature, including genes that encode proteins involved in reproduction, metabolism, lifespan, stress response, and immunity. Notably, genes with genotype-by-temperature interactions on expression were not enriched on the proto-sex chromosomes. Moreover, there was no evidence that temperature-dependent expression is driven by chromosome-wide cis-regulatory divergence between the proto-Y and proto-X alleles. Therefore, if temperature-dependent gene expression is responsible for differences in phenotypes and fitness of proto-Y genotypes across house fly populations, these effects are driven by a small number of temperature-dependent alleles on the proto-Y chromosomes that may have trans effects on the expression of genes on other chromosomes.
Collapse
Affiliation(s)
- Kiran Adhikari
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jae Hak Son
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Anna H Rensink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jaweria Jaweria
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
20
|
Pathak H, Varghese J. Edem1 activity in the fat body regulates insulin signalling and metabolic homeostasis in Drosophila. Life Sci Alliance 2021; 4:e202101079. [PMID: 34140347 PMCID: PMC8321676 DOI: 10.26508/lsa.202101079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
In Drosophila, nutrient status is sensed by the fat body, a functional homolog of mammalian liver and white adipocytes. The fat body conveys nutrient information to insulin-producing cells through humoral factors which regulate Drosophila insulin-like peptide levels and insulin signalling. Insulin signalling has pleiotropic functions, which include the management of growth and metabolic pathways. Here, we report that Edem1 (endoplasmic reticulum degradation-enhancing α-mannosidase-like protein 1), an endoplasmic reticulum-resident protein involved in protein quality control, acts in the fat body to regulate insulin signalling and thereby the metabolic status in Drosophila Edem1 limits the fat body-derived Drosophila tumor necrosis factor-α Eiger activity on insulin-producing cells and maintains systemic insulin signalling in fed conditions. During food deprivation, edem1 gene expression levels drop, which aids in the reduction of systemic insulin signalling crucial for survival. Overall, we demonstrate that Edem1 plays a vital role in helping the organism to endure a fluctuating nutrient environment by managing insulin signalling and metabolic homeostasis.
Collapse
Affiliation(s)
- Himani Pathak
- School of Biology, Indian Institute of Science Education and Research (IISER TVM) Thiruvananthapuram, Kerala, India
| | - Jishy Varghese
- School of Biology, Indian Institute of Science Education and Research (IISER TVM) Thiruvananthapuram, Kerala, India
| |
Collapse
|
21
|
Meschi E, Delanoue R. Adipokine and fat body in flies: Connecting organs. Mol Cell Endocrinol 2021; 533:111339. [PMID: 34082046 DOI: 10.1016/j.mce.2021.111339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Under conditions of nutritional and environmental stress, organismal homeostasis is preserved through inter-communication between multiple organs. To do so, higher organisms have developed a system of interorgan communication through which one tissue can affect the metabolism, activity or fate of remote organs, tissues or cells. In this review, we discuss the latest findings emphasizing Drosophila melanogaster as a powerful model organism to study these interactions and may constitute one of the best documented examples depicting the long-distance communication between organs. In flies, the adipose tissue appears to be one of the main organizing centers for the regulation of insect development and behavior: it senses nutritional and hormonal signals and in turn, orchestrates the release of appropriate adipokines. We discuss the nature and the role of recently uncovered adipokines, their regulations by external cues, their secretory routes and their modes of action to adjust developmental growth and timing accordingly. These findings have the potential for identification of candidate factors and signaling pathways that mediate conserved interorgan crosstalk.
Collapse
Affiliation(s)
- Eleonora Meschi
- Centre for Neural Circuit and Behaviour, University of Oxford, Mansfield road, OX3 1SR, Oxford, UK
| | - Renald Delanoue
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose Parc Valrose, 06108, Nice, France.
| |
Collapse
|
22
|
Chatterjee N, Perrimon N. What fuels the fly: Energy metabolism in Drosophila and its application to the study of obesity and diabetes. SCIENCE ADVANCES 2021; 7:7/24/eabg4336. [PMID: 34108216 PMCID: PMC8189582 DOI: 10.1126/sciadv.abg4336] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 05/16/2023]
Abstract
The organs and metabolic pathways involved in energy metabolism, and the process of ATP production from nutrients, are comparable between humans and Drosophila melanogaster This level of conservation, together with the power of Drosophila genetics, makes the fly a very useful model system to study energy homeostasis. Here, we discuss the major organs involved in energy metabolism in Drosophila and how they metabolize different dietary nutrients to generate adenosine triphosphate. Energy metabolism in these organs is controlled by cell-intrinsic, paracrine, and endocrine signals that are similar between Drosophila and mammals. We describe how these signaling pathways are regulated by several physiological and environmental cues to accommodate tissue-, age-, and environment-specific differences in energy demand. Last, we discuss several genetic and diet-induced fly models of obesity and diabetes that can be leveraged to better understand the molecular basis of these metabolic diseases and thereby promote the development of novel therapies.
Collapse
Affiliation(s)
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
23
|
Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell 2021; 56:1394-1407. [PMID: 33891896 DOI: 10.1016/j.devcel.2021.03.034] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Lipids play crucial roles in regulating aging and longevity. In the past few decades, a series of genetic pathways have been discovered to regulate lifespan in model organisms. Interestingly, many of these regulatory pathways are linked to lipid metabolism and lipid signaling. Lipid metabolic enzymes undergo significant changes during aging and are regulated by different longevity pathways. Lipids also actively modulate lifespan and health span as signaling molecules. In this review, we summarize recent insights into the roles of lipid metabolism and lipid signaling in aging and discuss lipid-related interventions in promoting longevity.
Collapse
Affiliation(s)
- Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathon Duffy
- Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Romão D, Muzzopappa M, Barrio L, Milán M. The Upd3 cytokine couples inflammation to maturation defects in Drosophila. Curr Biol 2021; 31:1780-1787.e6. [PMID: 33609452 DOI: 10.1016/j.cub.2021.01.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/05/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Developmental transitions, such as puberty or metamorphosis, are tightly controlled by steroid hormones and can be delayed by the appearance of growth abnormalities, developmental tumors, or inflammatory disorders such as inflammatory bowel disease or cystic fibrosis.1-4 Here, we used a highly inflammatory epithelial model of malignant transformation in Drosophila5,6 to unravel the role of Upd3-a cytokine with homology to interleukin-6-and the JAK/STAT signaling pathway in coupling inflammation to a delay in metamorphosis. We present evidence that Upd3 produced by malignant and nearby cell populations signals to the prothoracic gland-an endocrine tissue primarily dedicated to the production of the steroid hormone ecdysone-to activate JAK/STAT and bantam microRNA (miRNA) and to delay metamorphosis. Upd cytokines produced by the tumor site contribute to increasing the systemic levels of Upd3 by amplifying its expression levels in a cell-autonomous manner and by inducing Upd3 expression in neighboring tissues in a non-autonomous manner, culminating in a major systemic response to prevent larvae from initiating pupa transition. Our results identify a new regulatory network impacting on ecdysone biosynthesis and provide new insights into the potential role of inflammatory cytokines and the JAK/STAT signaling pathway in coupling inflammation to delays in puberty.
Collapse
Affiliation(s)
- Daniela Romão
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Mariana Muzzopappa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
25
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
26
|
Qiao JW, Fan YL, Wu BJ, Wang D, Liu TX. Involvement of apolipoprotein D in desiccation tolerance and adult fecundity of Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104160. [PMID: 33137328 DOI: 10.1016/j.jinsphys.2020.104160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Apolipoprotein D (ApoD) is a lipocalin superfamily member that plays important roles in the transport of small hydrophobic molecules, lipid metabolism, and stress resistance. Cuticular hydrocarbons are the principal components of the epicuticular lipid layer and play a critical role in water retention against environmental desiccation stress; however, the mechanism underlying the role of ApoD in insect desiccation tolerance has not yet been elucidated. Here, we report the molecular constitution, functional analysis, and phylogenetic relationship of the ApoD gene in Acyrthosiphon pisum (ApApoD). We found that ApApoD was transcribed throughout the life cycle of A. pisum, but was prominently expressed in the embryonic period and abdominal cuticle. In addition, we optimized the dose and silencing duration of RNAi, observing that RNAi against ApApoD significantly reduced the levels of both internal and cuticular hydrocarbons and adult fecundity. Moreover, cuticular hydrocarbon deficiency increased the sensitivity of aphids to desiccation stress and reduced their survival time, while desiccation stress significantly increased ApApoD expression. Together, it is confirmed that ApApoD participates in regulating cuticular hydrocarbon content of aphids under desiccation stress and is crucial for aphid reproduction. Therefore, the ApApoD gene of A. pisum may be a potential target for RNAi-based insect pest control due to its involvement in cuticular hydrocarbon accumulation and reproduction.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Bing-Jin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
27
|
Teixeira V, Maciel P, Costa V. Leading the way in the nervous system: Lipid Droplets as new players in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158820. [PMID: 33010453 DOI: 10.1016/j.bbalip.2020.158820] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) are ubiquitous fat storage organelles composed of a neutral lipid core, comprising triacylglycerols (TAG) and sterol esters (SEs), surrounded by a phospholipid monolayer membrane with several decorating proteins. Recently, LD biology has come to the foreground of research due to their importance for energy homeostasis and cellular stress response. As aberrant LD accumulation and lipid depletion are hallmarks of numerous diseases, addressing LD biogenesis and turnover provides a new framework for understanding disease-related mechanisms. Here we discuss the potential role of LDs in neurodegeneration, while making some predictions on how LD imbalance can contribute to pathophysiology in the brain.
Collapse
Affiliation(s)
- Vitor Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene 2020; 756:144874. [PMID: 32554047 DOI: 10.1016/j.gene.2020.144874] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
ApoD is a 25 to 30 kDa glycosylated protein, member of the lipocalin superfamily. As a transporter of several small hydrophobic molecules, its known biological functions are mostly associated to lipid metabolism and neuroprotection. ApoD is a multi-ligand, multi-function protein that is involved lipid trafficking, food intake, inflammation, antioxidative response and development and in different types of cancers. An important aspect of ApoD's role in lipid metabolism appears to involve the transport of arachidonic acid, and the modulation of eicosanoid production and delivery in metabolic tissues. ApoD expression in metabolic tissues has been associated positively and negatively with insulin sensitivity and glucose homeostasis in a tissue dependent manner. ApoD levels rise considerably in association with aging and neuropathologies such as Alzheimer's disease, stroke, meningoencephalitis, moto-neuron disease, multiple sclerosis, schizophrenia and Parkinson's disease. ApoD is also modulated in several animal models of nervous system injury/pathology.
Collapse
Affiliation(s)
- Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Frederik Desmarais
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada; Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Karl-F Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
29
|
Zhou Y, Li Y, Li X, Li R, Xu Y, Shi L, Wang H. Apolipoprotein D in Lepidoptera: Evolution and functional divergence. Biochem Biophys Res Commun 2020; 526:472-478. [PMID: 32234238 DOI: 10.1016/j.bbrc.2020.03.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 11/27/2022]
Abstract
Apolipoprotein D (ApoD) plays important roles in response to injury, cell differentiation, lifespan extension, and increasing stress resistance. However, the evolutionary mechanism of ApoD in insects remains largely unelucidated. We conducted a comprehensive study of the molecular evolution and functional divergence of ApoD in insects. A type I functional divergence analysis revealed significant differences among insect ApoD homologs, suggesting that they underwent functional divergence. We demonstrated that lepidopteran insects have three genes that are close homologs to ApoD and show divergences in sequence, expression pattern, and protein-protein interaction. Furthermore, positive selection was detected in lepidopteran ApoD2, and positively selected sites were located around the pocket and loop domains, which might result in conformational changes and affect binding properties. Moreover, we showed that the three ApoDs in Bombyx mori were significantly regulated by environmental stress. Thus, this work illustrates the dialectical relationship between genetic diversity and functional conservation of ApoD and highlights its unique functions in the stress response of Lepidoptera.
Collapse
Affiliation(s)
- Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaotong Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rongqiao Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Sudhakar SR, Pathak H, Rehman N, Fernandes J, Vishnu S, Varghese J. Insulin signalling elicits hunger-induced feeding in Drosophila. Dev Biol 2020; 459:87-99. [DOI: 10.1016/j.ydbio.2019.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
|
31
|
Li X, Liu J, Wang X. Exploring the multilevel hazards of thiamethoxam using Drosophila melanogaster. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121419. [PMID: 31630861 DOI: 10.1016/j.jhazmat.2019.121419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 05/21/2023]
Abstract
Thiamethoxam (THIA) is a widely used pesticide. However, its effects on the growth and development of insects remain unclear. Herein, the lethal concentration 50 (LC50) of THIA (3.13 μg/mL for adults, 20.25 μg/mL for third-instar larvae) were identified. THIA (1/3 LC50) prolonged the time required for growth and development, and decreased the fecundity, the rates of pupation and eclosion, and lifespan of Drosophila. The uniform architecture of the compound eyes was disturbed. It also triggered DNA damage, and reduced the viability of fat body cells and hemocytes. Moreover, RNA-sequencing showed that differentially expressed genes in response to THIA were mainly related to stratum corneum development, immune function. Genes involved in stratum corneum proteins (Lcp65Ag3, Cpr65Ax1), hemocyte proliferation (RyR), and immune responses (IM4) were significantly induced. Genes associated with lipid metabolism (sxe2), lifespan (Atg7 and NalZ), pupa development (IIp8, Blimp-1), female fertility (Ddc), male mating behavior (ple), neural retina development (Nnad), was significantly downregulated. These findings provide a basis for further research to fully assess the hazards of exposure to neonicotinoid pesticides.
Collapse
Affiliation(s)
- Xiaoqin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China
| | - Jinyue Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China.
| |
Collapse
|
32
|
ASK1 inhibition: a therapeutic strategy with multi-system benefits. J Mol Med (Berl) 2020; 98:335-348. [PMID: 32060587 PMCID: PMC7080683 DOI: 10.1007/s00109-020-01878-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
p38 mitogen-activated protein kinases (P38α and β) and c-Jun N-terminal kinases (JNK1, 2, and 3) are key mediators of the cellular stress response. However, prolonged P38 and JNK signalling is associated with damaging inflammatory responses, reactive oxygen species-induced cell death, and fibrosis in multiple tissues, such as the kidney, liver, central nervous system, and cardiopulmonary systems. These responses are associated with many human diseases, including arthritis, dementia, and multiple organ dysfunctions. Attempts to prevent P38- and JNK-mediated disease using small molecule inhibitors of P38 or JNK have generally been unsuccessful. However, apoptosis signal-regulating kinase 1 (ASK1), an upstream regulator of P38 and JNK, has emerged as an alternative drug target for limiting P38- and JNK-mediated disease. Within this review, we compile the evidence that ASK1 mediates damaging cellular responses via prolonged P38 or JNK activation. We discuss the potential benefits of ASK1 inhibition as a therapeutic and summarise the studies that have tested the effects of ASK1 inhibition in cell and animal disease models, in addition to human clinical trials for a variety of disorders.
Collapse
|
33
|
Corraliza-Gomez M, Sanchez D, Ganfornina MD. Lipid-Binding Proteins in Brain Health and Disease. Front Neurol 2019; 10:1152. [PMID: 31787919 PMCID: PMC6854030 DOI: 10.3389/fneur.2019.01152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
A proper lipid management is paramount for a healthy brain. Lipid homeostasis alterations are known to be causative or risk factors for many neurodegenerative diseases, or key elements in the recovery from nervous system injuries of different etiology. In addition to lipid biogenesis and catabolism, non-enzymatic lipid-binding proteins play an important role in brain function and maintenance through aging. Among these types of lipoproteins, apolipoprotein E has received much attention due to the relationship of particular alleles of its gene with the risk and progression of Alzheimer's disease. However, other lipid-binding proteins whose role in lipid homeostasis and control are less known need to be brought to the attention of both researchers and clinicians. The aim of this review is to cover the knowledge of lipid-managing proteins in the brain, with particular attention to new candidates to be relevant for brain function and health.
Collapse
Affiliation(s)
- Miriam Corraliza-Gomez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Diego Sanchez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Maria D Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
34
|
Lin YR, Parikh H, Park Y. Stress resistance and lifespan enhanced by downregulation of antimicrobial peptide genes in the Imd pathway. Aging (Albany NY) 2019; 10:622-631. [PMID: 29677000 PMCID: PMC5940113 DOI: 10.18632/aging.101417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Abstract
Biological behaviors and longevity of ectothermic animals are remarkably influenced by ambient temperature. Development at 18°C significantly enhances the stress resistance of adult flies with more accumulation of nutrients (especially fat) in the body than development at 25°C. Gene expression analysis between the flies developed at 18°C and 25°C revealed that the Immune deficiency (Imd) pathway, including the downstream antimicrobial peptides (AMPs), is downregulated in the flies developed at 18°C. When hypomorphic imd mutant flies with reduced AMP expressions were developed at 25°C, they showed induced stress resistance with higher fat content in the body similar to the wild-type flies developed at 18°C. However, severe hypomorphic imd mutants could not enhance stress resistance due to the downregulation of another downstream JNK pathway that expresses stress tolerance genes. Interestingly, the downregulation of AMP genes, itself, extended lifespan with increased stress resistance. Especially, fat body-specific downregulation of Imd AMP genes exhibited a longer lifespan with higher heat resistance. The fat body is known to function in metabolic homeostasis, stress tolerance, growth, and longevity in Drosophila. Here, we provide the first evidence that mild downregulation of the Imd pathway with AMP genes increases fat content, stress resistance, and lifespan in adult flies.
Collapse
Affiliation(s)
- Yuh-Ru Lin
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.,Present address: Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Hardik Parikh
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.,Present address: Institute of Ophthalmology and Visual Science, Rutgers, State University of New Jersey, Newark, NJ 07103, USA
| | - Yongkyu Park
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
35
|
Reproduction disrupts stem cell homeostasis in testes of aged male Drosophila via an induced microenvironment. PLoS Genet 2019; 15:e1008062. [PMID: 31295251 PMCID: PMC6622487 DOI: 10.1371/journal.pgen.1008062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/02/2019] [Indexed: 12/13/2022] Open
Abstract
Stem cells rely on instructive cues from their environment. Alterations in microenvironments might contribute to tissue dysfunction and disease pathogenesis. Germline stem cells (GSCs) and cyst stem cells (CySC) in Drosophila testes are normally maintained in the apical area by the testicular hub. In this study, we found that reproduction leads to accumulation of early differentiating daughters of CySCs and GSCs in the testes of aged male flies, due to hyperactivation of Jun-N-terminal kinase (JNK) signaling to maintain self-renewal gene expression in the differentiating cyst cells. JNK activity is normally required to maintain CySCs in the apical niche. A muscle sheath surrounds the Drosophila testis to maintain its long coiled structure. Importantly, reproduction triggers accumulation of the tumor necrosis factor (TNF) Eiger in the testis muscle to activate JNK signaling via the TNF receptor Grindelwald in the cyst cells. Reducing Eiger activity in the testis muscle sheath suppressed reproduction-induced differentiation defects, but had little effect on testis homeostasis of unmated males. Our results reveal that reproduction in males provokes a dramatic shift in the testicular microenvironment, which impairs tissue homeostasis and spermatogenesis in the testes. Proper differentiation of stem cell progeny is necessary for preservation of tissue homeostasis. In Drosophila testes, somatic cyst cells derived from the cyst stem cells (CySCs) control the differentiation of the neighboring germ cells. Disruption of CySC daughter cyst cell differentiation leads to failure in sperm production. Interestingly, we found that reproduction triggers hyperactivation of Jun-N-terminal kinase (JNK) signaling to sustain CySC self-renewal gene expression in differentiating cyst cells, leading to accumulation of immature cyst cell and germ cells at the expense of mature cells in the testes of aged males. Endogenous JNK signaling is also required for CySC maintenance. Moreover, we found that the JNK signaling is hyperactivated via reproduction-induced accumulation of tumor necrosis factor (TNF) in testicular smooth muscle that surrounds the testis to support its long coiled structure. The reproduction-induced phenotypes were only observed in the testes of aged and mated males, but not in testes form young mated males or aged unmated males, indicating that it is a combined effect of reproduction and aging. Our results reveal that reproduction impedes sperm production in aged males, and identify testicular muscle as an inducible signaling center for spermatogenesis in Drosophila.
Collapse
|
36
|
Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:31-42. [PMID: 30959109 DOI: 10.1016/j.ibmb.2019.04.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Mounting an immune response is an energy-consuming process. Activating immune functions requires the synthesis of many new molecules and the undertaking of numerous cellular tasks and it must happen rapidly. Therefore, immune cells undergo a metabolic switch, which enables the rapid production of ATP and new biomolecules. Such metabolism is very nutrient-demanding, especially of glucose and glutamine, and thus the immune response is associated with a systemic metabolic switch, redirecting nutrient flow towards immunity and away from storage and consumption by non-immune processes. The immune system during its activation becomes privileged in terms of using organismal resources and the activated immune cells usurp nutrients by producing signals which reduce the metabolism of non-immune tissues. The insect fat body plays a dual role in which it is both a metabolic organ, storing energy and providing energy to the rest of the organism, but also an organ important for humoral immunity. Therefore, the internal switch from anabolism to the production of antimicrobial peptides occurs in the fat body during infection. The mechanisms regulating metabolism during the immune response ensure adequate energy for an effective response (resistance) but they must be properly regulated because energy is not unlimited and the energy needs of the immune system thus interfere with the needs of other physiological traits. If not properly regulated, the immune response may in the end decrease fitness via decreasing disease tolerance.
Collapse
Affiliation(s)
- Tomas Dolezal
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Gabriela Krejcova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Pavla Nedbalova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Paul Strasser
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
37
|
Centrosome Loss Triggers a Transcriptional Program To Counter Apoptosis-Induced Oxidative Stress. Genetics 2019; 212:187-211. [PMID: 30867197 DOI: 10.1534/genetics.119.302051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Centrosomes play a critical role in mitotic spindle assembly through their role in microtubule nucleation and bipolar spindle assembly. Loss of centrosomes can impair the ability of some cells to properly conduct mitotic division, leading to chromosomal instability, cell stress, and aneuploidy. Multiple aspects of the cellular response to mitotic error associated with centrosome loss appear to involve activation of JNK signaling. To further characterize the transcriptional effects of centrosome loss, we compared gene expression profiles of wild-type and acentrosomal cells from Drosophila wing imaginal discs. We found elevation of expression of JNK target genes, which we verified at the protein level. Consistent with this, the upregulated gene set showed significant enrichment for the AP-1 consensus DNA-binding sequence. We also found significant elevation in expression of genes regulating redox balance. Based on those findings, we examined oxidative stress after centrosome loss, revealing that acentrosomal wing cells have significant increases in reactive oxygen species (ROS). We then performed a candidate genetic screen and found that one of the genes upregulated in acentrosomal cells, glucose-6-phosphate dehydrogenase, plays an important role in buffering acentrosomal cells against increased ROS and helps protect those cells from cell death. Our data and other recent studies have revealed a complex network of signaling pathways, transcriptional programs, and cellular processes that epithelial cells use to respond to stressors, like mitotic errors, to help limit cell damage and maintain normal tissue development.
Collapse
|
38
|
Yaguchi H, Suzuki R, Matsunami M, Shigenobu S, Maekawa K. Transcriptomic changes during caste development through social interactions in the termite Zootermopsis nevadensis. Ecol Evol 2019; 9:3446-3456. [PMID: 30962904 PMCID: PMC6434549 DOI: 10.1002/ece3.4976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
One of the most striking examples of phenotypic plasticity is the different phenotypes (i.e., castes) within a same nest of social insects. Castes usually derive from a single genotype initially by receiving social cues among individuals during development. Specific gene expression changes may be involved in caste differentiation, and thus, the regulatory mechanism of these changes should be clarified in order to understand social maintenance and evolution. The damp-wood termite Zootermopsis nevadensis is one of the most important model termite species, due to not only the availability of genomic, transcriptomic, and epigenomic information but also evidence that soldier- and worker-destined individuals can be identified in natural conditions. Given that the nutritional intakes via social interactions are crucial for caste differentiation in this species, there is a possibility that transcriptomic changes are influenced by the nutritional difference among these individuals. Here, whole body RNA-seq analysis of 3rd-instar larvae with biological replications and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted. We found the drastic expression differences during caste developments between soldier- and worker-destined individuals. The results indicated that there are several key signaling pathways responsible for caste formations, which are involved in developments and social interactions. Particularly, the nutritional sensitive signaling was upregulated in soldier-destined individuals, while some metabolic pathways were identified in worker-destined individuals. These bioinformatic data obtained should be utilized to examine the molecular mechanisms of caste determination in social insects.
Collapse
Affiliation(s)
- Hajime Yaguchi
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
- Tropical Biosphere Research CenterUniversity of the RyukyusNishiharaJapan
| | - Ryutaro Suzuki
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
| | | | - Shuji Shigenobu
- Functional Genomics FacilityNational Institute for Basic BiologyOkazakiJapan
| | - Kiyoto Maekawa
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
| |
Collapse
|
39
|
Comparative Proteome-Wide Analysis of Bone Marrow Microenvironment of β-Thalassemia/Hemoglobin E. Proteomes 2019; 7:proteomes7010008. [PMID: 30813444 PMCID: PMC6473223 DOI: 10.3390/proteomes7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
β-thalassemia/Hb E is a global health issue, which is characterized by a range of clinical symptoms from a mild and asymptomatic anemia to severe disorders that require transfusions from infancy. Pathological mechanisms of the disease involve the excess of unmatched alpha globin and iron overload, leading to ineffective erythropoiesis and ultimately to the premature death of erythroid precursors in bone marrow (BM) and peripheral organs. However, it is unclear as to how BM microenvironment factors contribute to the defective erythropoiesis in β-thalassemia/Hb E patients. Here, we employed mass spectrometry-based comparative proteomics to analyze BM plasma that was collected from six β-thalassemia/Hb E patients and four healthy donors. We identified that the differentially expressed proteins are enriched in secretory or exosome-associated proteins, many of which have putative functions in the oxidative stress response. Using Western blot assay, we confirmed that atypical lipoprotein, Apolipoprotein D (APOD), belonging to the Lipocalin transporter superfamily, was significantly decreased in BM plasma of the tested pediatric β-thalassemia/Hb E patients. Our results highlight that the disease condition of ineffective erythropoiesis and oxidative stress found in BM microenvironment of β-thalassemia/Hb E patients is associated with the impaired expression of APOD protein.
Collapse
|
40
|
Kopp Z, Park Y. Longer lifespan in the Rpd3 and Loco signaling results from the reduced catabolism in young age with noncoding RNA. Aging (Albany NY) 2019; 11:230-239. [PMID: 30620723 PMCID: PMC6339784 DOI: 10.18632/aging.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/22/2018] [Indexed: 11/25/2022]
Abstract
Downregulation of Rpd3 (histone deacetylase) or Loco (regulator of G-protein signaling protein) extends Drosophila lifespan with higher stress resistance. We found rpd3-downregulated long-lived flies genetically interact with loco-upregulated short-lived flies in stress resistance and lifespan. Gene expression profiles between those flies revealed that they regulate common target genes in metabolic enzymes and signaling pathways, showing an opposite expression pattern in their contrasting lifespans. Functional analyses of more significantly changed genes indicated that the activities of catabolic enzymes and uptake/storage proteins are reduced in long-lived flies with Rpd3 downregulation. This reduced catabolism exhibited from a young age is considered to be necessary for the resultant longer lifespan of the Rpd3- and Loco-downregulated old flies, which mimics the dietary restriction (DR) effect that extends lifespan in the several species. Inversely, those catabolic activities that break down carbohydrates, lipids, and peptides were high in the short lifespan of Loco-upregulated flies. Long noncoding gene, dntRL (CR45923), was also found as a putative target modulated by Rpd3 and Loco for the longevity. Interestingly, this dntRL could affect stress resistance and lifespan, suggesting that the dntRL lncRNA may be involved in the metabolic mechanism of Rpd3 and Loco signaling.
Collapse
Affiliation(s)
- Zachary Kopp
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Yongkyu Park
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
41
|
Hyun S. Body size regulation by maturation steroid hormones: a Drosophila perspective. Front Zool 2018; 15:44. [PMID: 30479644 PMCID: PMC6247710 DOI: 10.1186/s12983-018-0290-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022] Open
Abstract
The mechanism that determines the specific body size of an animal is a fundamental biological question that remains largely unanswered. This aspect is now beginning to be understood in insect models, particularly in Drosophila melanogaster, with studies highlighting the importance of nutrient-responsive growth signaling pathways involving insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) (IIS/TOR). These pathways operate in animals, from insects to mammals, adjusting the growth rate in response to the nutritional condition of the organism. Organismal growth is closely coupled with the process of developmental maturation mediated by maturation steroid hormones, which is influenced greatly by environmental and nutritional conditions. Recent Drosophila studies have been revealing the mechanisms responsible for this phenomenon. In this review, I summarize some important findings about the steroid hormone regulation of Drosophila body growth, calling attention to the influence of developmental nutritional conditions on animal size determination.
Collapse
Affiliation(s)
- Seogang Hyun
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
42
|
Trinh I, Gluscencova OB, Boulianne GL. An in vivo screen for neuronal genes involved in obesity identifies Diacylglycerol kinase as a regulator of insulin secretion. Mol Metab 2018; 19:13-23. [PMID: 30389349 PMCID: PMC6323187 DOI: 10.1016/j.molmet.2018.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Objective Obesity is a complex disorder involving many genetic and environmental factors that are required to maintain energy homeostasis. While studies in human populations have led to significant progress in the generation of an obesity gene map and broadened our understanding of the genetic basis of common obesity, there is still a large portion of heritability and etiology that remains unknown. Here, we have used the genetically tractable fruit fly, Drosophila melanogaster, to identify genes/pathways that function in the nervous system to regulate energy balance. Methods We performed an in vivo RNAi screen in Drosophila neurons and assayed for obese or lean phenotypes by measuring changes in levels of stored fats (in the form of triacylglycerides or TAG). Three rounds of screening were performed to verify the reproducibility and specificity of the adiposity phenotypes. Genes that produced >25% increase in TAG (206 in total) underwent a second round of screening to verify their effect on TAG levels by retesting the same RNAi line to validate the phenotype. All remaining hits were screened a third time by testing the TAG levels of additional RNAi lines against the genes of interest to rule out any off-target effects. Results We identified 24 genes including 20 genes that have not been previously associated with energy homeostasis. One identified hit, Diacylglycerol kinase (Dgk), has mammalian homologues that have been implicated in genome-wide association studies for metabolic defects. Downregulation of neuronal Dgk levels increases TAG and carbohydrate levels and these phenotypes can be recapitulated by reducing Dgk levels specifically within the insulin-producing cells that secrete Drosophila insulin-like peptides (dILPs). Conversely, overexpression of kinase-dead Dgk, but not wild-type, decreased circulating dILP2 and dILP5 levels resulting in lower insulin signalling activity. Despite having higher circulating dILP levels, Dgk RNAi flies have decreased pathway activity suggesting that they are insulin-resistant. Conclusion Altogether, we have identified several genes that act within the CNS to regulate energy homeostasis. One of these, Dgk, acts within the insulin-producing cells to regulate the secretion of dILPs and energy homeostasis in Drosophila. RNAi screen in neurons identifies 24 regulators of energy homeostasis. One of the hits, Dgk, affects lipid and carbohydrate homeostasis. Dgk acts within the IPCs to regulate dILP secretion and insulin signalling activity.
Collapse
Affiliation(s)
- Irene Trinh
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada; Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, M5G 0A6, Canada.
| | - Oxana B Gluscencova
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, M5G 0A6, Canada.
| | - Gabrielle L Boulianne
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada; Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, M5G 0A6, Canada.
| |
Collapse
|
43
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
44
|
Yaguchi H, Shigenobu S, Hayashi Y, Miyazaki S, Toga K, Masuoka Y, Maekawa K. A lipocalin protein, Neural Lazarillo, is key to social interactions that promote termite soldier differentiation. Proc Biol Sci 2018; 285:rspb.2018.0707. [PMID: 30051867 DOI: 10.1098/rspb.2018.0707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Social communication among castes is a crucial component of insect societies. However, the genes involved in soldier determination through the regulation of inter-individual interactions are largely unknown. In an incipient colony of the damp-wood termite Zootermopsis nevadensis, the first larva to develop into a third instar always differentiates into a soldier via frequent trophallactic feeding from the reproductives. Here, by performing RNA-seq analysis of third instar larvae, a homologue of Neural Lazarillo (named ZnNLaz1) was found to be the most differentially expressed gene in these soldier-destined larvae, compared with worker-destined larvae. This gene encodes a lipocalin protein related to the transport of small hydrophobic molecules. RNAi-induced knockdown of ZnNLaz1 significantly inhibited trophallactic interactions with the queen and decreased the soldier differentiation rates. This protein is localized in the gut, particularly in the internal wall, of soldier-destined larvae, suggesting that it is involved in the integration of social signals from the queen through frequent trophallactic behaviours. Based on molecular phylogenetic analysis, we suggest that a novel function of termite NLaz1 has contributed to social evolution from the cockroach ancestors of termites. These results indicated that a high larval NLaz1 expression is crucial for soldier determination through social communication in termites.
Collapse
Affiliation(s)
- Hajime Yaguchi
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | | | - Satoshi Miyazaki
- Department of Agri-Production Sciences, Tamagawa University, Machida, Japan
| | - Kouhei Toga
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Yudai Masuoka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.,Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kiyoto Maekawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
45
|
Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster. Genetics 2018; 207:1231-1253. [PMID: 29203701 DOI: 10.1534/genetics.117.199885] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 02/08/2023] Open
Abstract
Carbohydrate metabolism is essential for cellular energy balance as well as for the biosynthesis of new cellular building blocks. As animal nutrient intake displays temporal fluctuations and each cell type within the animal possesses specific metabolic needs, elaborate regulatory systems are needed to coordinate carbohydrate metabolism in time and space. Carbohydrate metabolism is regulated locally through gene regulatory networks and signaling pathways, which receive inputs from nutrient sensors as well as other pathways, such as developmental signals. Superimposed on cell-intrinsic control, hormonal signaling mediates intertissue information to maintain organismal homeostasis. Misregulation of carbohydrate metabolism is causative for many human diseases, such as diabetes and cancer. Recent work in Drosophila melanogaster has uncovered new regulators of carbohydrate metabolism and introduced novel physiological roles for previously known pathways. Moreover, genetically tractable Drosophila models to study carbohydrate metabolism-related human diseases have provided new insight into the mechanisms of pathogenesis. Due to the high degree of conservation of relevant regulatory pathways, as well as vast possibilities for the analysis of gene-nutrient interactions and tissue-specific gene function, Drosophila is emerging as an important model system for research on carbohydrate metabolism.
Collapse
|
46
|
Abstract
Accumulating epidemiological evidence indicates a strong clinical association between obesity and an increased risk of cancer. The global pandemic of obesity indicates a public health trend towards a substantial increase in cancer incidence and mortality. However, the mechanisms that link obesity to cancer remain incompletely understood. The fruit fly Drosophila melanogaster has been increasingly used to model an expanding spectrum of human diseases. Fly models provide a genetically simpler system that is ideal for use as a first step towards dissecting disease interactions. Recently, the combining of fly models of diet-induced obesity with models of cancer has provided a novel model system in which to study the biological mechanisms that underlie the connections between obesity and cancer. In this Review, I summarize recent advances, made using Drosophila, in our understanding of the interplay between diet, obesity, insulin resistance and cancer. I also discuss how the biological mechanisms and therapeutic targets that have been identified in fly studies could be utilized to develop preventative interventions and treatment strategies for obesity-associated cancers. Summary: This Review highlights a Drosophila model of diet-induced obesity and cancer, and how these two models are combined to study the interplay between obesity and cancer.
Collapse
Affiliation(s)
- Susumu Hirabayashi
- Metabolism and Cell Growth Group, MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
47
|
Kubrak OI, Lushchak OV, Zandawala M, Nässel DR. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila. Open Biol 2017; 6:rsob.160152. [PMID: 27810969 PMCID: PMC5133436 DOI: 10.1098/rsob.160152] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Stress triggers cellular and systemic reactions in organisms to restore homeostasis. For instance, metabolic stress, experienced during starvation, elicits a hormonal response that reallocates resources to enable food search and readjustment of physiology. Mammalian gonadotropin-releasing hormone (GnRH) and its insect orthologue, adipokinetic hormone (AKH), are known for their roles in modulating stress-related behaviour. Here we show that corazonin (Crz), a peptide homologous to AKH/GnRH, also alters stress physiology in Drosophila. The Crz receptor (CrzR) is expressed in salivary glands and adipocytes of the liver-like fat body, and CrzR knockdown targeted simultaneously to both these tissues increases the fly's resistance to starvation, desiccation and oxidative stress, reduces feeding, alters expression of transcripts of Drosophila insulin-like peptides (DILPs), and affects gene expression in the fat body. Furthermore, in starved flies, CrzR-knockdown increases circulating and stored carbohydrates. Thus, our findings indicate that elevated systemic Crz signalling during stress coordinates increased food intake and diminished energy stores to regain metabolic homeostasis. Our study suggests that an ancient stress-peptide in Urbilateria evolved to give rise to present-day GnRH, AKH and Crz signalling systems.
Collapse
Affiliation(s)
- Olga I Kubrak
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Oleh V Lushchak
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
48
|
Liu L, MacKenzie KR, Putluri N, Maletić-Savatić M, Bellen HJ. The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D. Cell Metab 2017; 26:719-737.e6. [PMID: 28965825 PMCID: PMC5677551 DOI: 10.1016/j.cmet.2017.08.024] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/21/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023]
Abstract
Elevated reactive oxygen species (ROS) induce the formation of lipids in neurons that are transferred to glia, where they form lipid droplets (LDs). We show that glial and neuronal monocarboxylate transporters (MCTs), fatty acid transport proteins (FATPs), and apolipoproteins are critical for glial LD formation. MCTs enable glia to secrete and neurons to absorb lactate, which is converted to pyruvate and acetyl-CoA in neurons. Lactate metabolites provide a substrate for synthesis of fatty acids, which are processed and transferred to glia by FATP and apolipoproteins. In the presence of high ROS, inhibiting lactate transfer or lowering FATP or apolipoprotein levels decreases glial LD accumulation in flies and in primary mouse glial-neuronal cultures. We show that human APOE can substitute for a fly glial apolipoprotein and that APOE4, an Alzheimer's disease susceptibility allele, is impaired in lipid transport and promotes neurodegeneration, providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Lucy Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin R MacKenzie
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology and Advanced Technology Cor, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletić-Savatić
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542:177-185. [PMID: 28179656 DOI: 10.1038/nature21363] [Citation(s) in RCA: 1520] [Impact Index Per Article: 190.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2017] [Indexed: 12/11/2022]
Abstract
Proper regulation and management of energy, substrate diversity and quantity, as well as macromolecular synthesis and breakdown processes, are fundamental to cellular and organismal survival and are paramount to health. Cellular and multicellular organization are defended by the immune response, a robust and critical system through which self is distinguished from non-self, pathogenic signals are recognized and eliminated, and tissue homeostasis is safeguarded. Many layers of evolutionarily conserved interactions occur between immune response and metabolism. Proper maintenance of this delicate balance is crucial for health and has important implications for many pathological states such as obesity, diabetes, and other chronic non-communicable diseases.
Collapse
|
50
|
Pascua-Maestro R, Diez-Hermano S, Lillo C, Ganfornina MD, Sanchez D. Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress. PLoS Genet 2017; 13:e1006603. [PMID: 28182653 PMCID: PMC5325589 DOI: 10.1371/journal.pgen.1006603] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/24/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Environmental insults such as oxidative stress can damage cell membranes. Lysosomes are particularly sensitive to membrane permeabilization since their function depends on intraluminal acidic pH and requires stable membrane-dependent proton gradients. Among the catalog of oxidative stress-responsive genes is the Lipocalin Apolipoprotein D (ApoD), an extracellular lipid binding protein endowed with antioxidant capacity. Within the nervous system, cell types in the defense frontline, such as astrocytes, secrete ApoD to help neurons cope with the challenge. The protecting role of ApoD is known from cellular to organism level, and many of its downstream effects, including optimization of autophagy upon neurodegeneration, have been described. However, we still cannot assign a cellular mechanism to ApoD gene that explains how this protection is accomplished. Here we perform a comprehensive analysis of ApoD intracellular traffic and demonstrate its role in lysosomal pH homeostasis upon paraquat-induced oxidative stress. By combining single-lysosome in vivo pH measurements with immunodetection, we demonstrate that ApoD is endocytosed and targeted to a subset of vulnerable lysosomes in a stress-dependent manner. ApoD is functionally stable in this acidic environment, and its presence is sufficient and necessary for lysosomes to recover from oxidation-induced alkalinization, both in astrocytes and neurons. This function is accomplished by preventing lysosomal membrane permeabilization. Two lysosomal-dependent biological processes, myelin phagocytosis by astrocytes and optimization of neurodegeneration-triggered autophagy in a Drosophila in vivo model, require ApoD-related Lipocalins. Our results uncover a previously unknown biological function of ApoD, member of the finely regulated and evolutionary conserved gene family of extracellular Lipocalins. They set a lipoprotein-mediated regulation of lysosomal membrane integrity as a new mechanism at the hub of many cellular functions, critical for the outcome of a wide variety of neurodegenerative diseases. These results open therapeutic opportunities by providing a route of entry and a repair mechanism for lysosomes in pathological situations. This work is the result of our search for the mechanism of action of Apolipoprotein D (ApoD), a neuroprotective lipid-binding protein that confers cell resistance to oxidative stress. ApoD is one of the few genes consistently over-expressed in the aging brain of all vertebrate species, and no nervous system disease has been found concurring without ApoD over-expression. All evidence supports ApoD as an endogenous mechanism of protection. We demonstrate here that this extracellular lipid binding protein is endocytosed and targeted in a finely controlled way to subsets of lysosomes in need of protection, those most sensitive to oxidative stress. ApoD reveals the existence of biologically relevant lysosomal heterogeneity that conditions the oxidation state of cells, their phagocytic or autophagic capacity, and the final output in neurodegenerative conditions. The stable presence of ApoD in lysosomes is sufficient and necessary for lysosomes to recover from oxidation-induced membrane permeabilization and loss of proton gradients. ApoD-mediated control of lysosomal membrane integrity represents a new cell-protection mechanism at the hub of many cellular functions, and is critical for the outcome of a wide variety of neurodegenerative diseases. Therapeutic opportunities open, by providing a route of entry and a repair mechanism for lysosomes in pathological situations.
Collapse
Affiliation(s)
- Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Sergio Diez-Hermano
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Concepción Lillo
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Maria D. Ganfornina
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
- * E-mail: (MDG); (DS)
| | - Diego Sanchez
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
- * E-mail: (MDG); (DS)
| |
Collapse
|