1
|
Zhang L, Wang J, Tang Z, Lin Z, Su R, Hu N, Tang Y, Ge G, Fan J, Tong MH, Xue Y, Zhou Y, Cheng H. The nuclear exosome co-factor MTR4 shapes the transcriptome for meiotic initiation. Nat Commun 2025; 16:2605. [PMID: 40097464 PMCID: PMC11914058 DOI: 10.1038/s41467-025-57898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Nuclear RNA decay has emerged as a mechanism for post-transcriptional gene regulation in cultured cells. However, whether this process occurs in animals and holds biological relevance remains largely unexplored. Here, we demonstrate that MTR4, the central cofactor of the nuclear RNA exosome, is essential for embryogenesis and spermatogenesis. Embryonic development of Mtr4 knockout mice arrests at 6.5 day. Germ cell-specific knockout of Mtr4 results in male infertility with a specific and severe defect in meiotic initiation. During the pre-meiotic stage, MTR4/exosome represses meiotic genes, which are typically shorter in size and possess fewer introns, through RNA degradation. Concurrently, it ensures the expression of mitotic genes generally exhibiting the opposite features. Consistent with these regulation rules, mature replication-dependent histone mRNAs and polyadenylated retrotransposon RNAs were identified as MTR4/exosome targets in germ cells. In addition, MTR4 regulates alternative splicing of many meiotic genes. Together, our work underscores the importance of nuclear RNA degradation in regulating germline transcriptome, ensuring the appropriate gene expression program for the transition from mitosis to meiosis during spermatogenesis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianshu Wang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhidong Tang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhen Lin
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Naijing Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Tang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Gaoxiang Ge
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Fan
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ming-Han Tong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China.
| | - Hong Cheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Lange H, Gagliardi D. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes. THE PLANT CELL 2022; 34:967-988. [PMID: 34954803 PMCID: PMC8894942 DOI: 10.1093/plcell/koab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 05/08/2023]
Abstract
RNA exosome complexes provide the main 3'-5'-exoribonuclease activities in eukaryotic cells and contribute to the maturation and degradation of virtually all types of RNA. RNA exosomes consist of a conserved core complex that associates with exoribonucleases and with multimeric cofactors that recruit the enzyme to its RNA targets. Despite an overall high level of structural and functional conservation, the enzymatic activities and compositions of exosome complexes and their cofactor modules differ among eukaryotes. This review highlights unique features of plant exosome complexes, such as the phosphorolytic activity of the core complex, and discusses the exosome cofactors that operate in plants and are dedicated to the maturation of ribosomal RNA, the elimination of spurious, misprocessed, and superfluous transcripts, or the removal of mRNAs cleaved by the RNA-induced silencing complex and other mRNAs prone to undergo silencing.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Author for correspondence:
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Taniue K, Tanu T, Shimoura Y, Mitsutomi S, Han H, Kakisaka R, Ono Y, Tamamura N, Takahashi K, Wada Y, Mizukami Y, Akimitsu N. RNA Exosome Component EXOSC4 Amplified in Multiple Cancer Types Is Required for the Cancer Cell Survival. Int J Mol Sci 2022; 23:496. [PMID: 35008922 PMCID: PMC8745236 DOI: 10.3390/ijms23010496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
The RNA exosome is a multi-subunit ribonuclease complex that is evolutionally conserved and the major cellular machinery for the surveillance, processing, degradation, and turnover of diverse RNAs essential for cell viability. Here we performed integrated genomic and clinicopathological analyses of 27 RNA exosome components across 32 tumor types using The Cancer Genome Atlas PanCancer Atlas Studies' datasets. We discovered that the EXOSC4 gene, which encodes a barrel component of the RNA exosome, was amplified across multiple cancer types. We further found that EXOSC4 alteration is associated with a poor prognosis of pancreatic cancer patients. Moreover, we demonstrated that EXOSC4 is required for the survival of pancreatic cancer cells. EXOSC4 also repressed BIK expression and destabilized SESN2 mRNA by promoting its degradation. Furthermore, knockdown of BIK and SESN2 could partially rescue pancreatic cells from the reduction in cell viability caused by EXOSC4 knockdown. Our study provides evidence for EXOSC4-mediated regulation of BIK and SESN2 mRNA in the survival of pancreatic tumor cells.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Tanzina Tanu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Shuhei Mitsutomi
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Han Han
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Rika Kakisaka
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 065-0033, Japan; (R.K.); (Y.O.)
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 065-0033, Japan; (R.K.); (Y.O.)
| | - Nobue Tamamura
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Kenji Takahashi
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Yusuke Mizukami
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| |
Collapse
|
5
|
Global view on the metabolism of RNA poly(A) tails in yeast Saccharomyces cerevisiae. Nat Commun 2021; 12:4951. [PMID: 34400637 PMCID: PMC8367983 DOI: 10.1038/s41467-021-25251-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
The polyadenosine tail (poly[A]-tail) is a universal modification of eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). In budding yeast, Pap1-synthesized mRNA poly(A) tails enhance export and translation, whereas Trf4/5-mediated polyadenylation of ncRNAs facilitates degradation by the exosome. Using direct RNA sequencing, we decipher the extent of poly(A) tail dynamics in yeast defective in all relevant exonucleases, deadenylases, and poly(A) polymerases. Predominantly ncRNA poly(A) tails are 20-60 adenosines long. Poly(A) tails of newly transcribed mRNAs are 50 adenosine long on average, with an upper limit of 200. Exonucleolysis by Trf5-assisted nuclear exosome and cytoplasmic deadenylases trim the tails to 40 adenosines on average. Surprisingly, PAN2/3 and CCR4-NOT deadenylase complexes have a large pool of non-overlapping substrates mainly defined by expression level. Finally, we demonstrate that mRNA poly(A) tail length strongly responds to growth conditions, such as heat and nutrient deprivation.
Collapse
|
6
|
The Dihydroquinolizinone Compound RG7834 Inhibits the Polyadenylase Function of PAPD5 and PAPD7 and Accelerates the Degradation of Matured Hepatitis B Virus Surface Protein mRNA. Antimicrob Agents Chemother 2020; 65:AAC.00640-20. [PMID: 33046485 DOI: 10.1128/aac.00640-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) mRNA metabolism is dependent upon host proteins PAPD5 and PAPD7 (PAPD5/7). PAPD5/7 are cellular, noncanonical, poly(A) polymerases (PAPs) whose main function is to oligoadenylate the 3' end of noncoding RNA (ncRNA) for exosome degradation. HBV seems to exploit these two ncRNA quality-control factors for viral mRNA stabilization, rather than degradation. RG7834 is a small-molecule compound that binds PAPD5/7 and inhibits HBV gene production in both tissue culture and animal study. We reported that RG7834 was able to destabilize multiple HBV mRNA species, ranging from the 3.5-kb pregenomic/precore mRNAs to the 2.4/2.1-kb hepatitis B virus surface protein (HBs) mRNAs, except for the smallest 0.7-kb X protein (HBx) mRNA. Compound-induced HBV mRNA destabilization was initiated by a shortening of the poly(A) tail, followed by an accelerated degradation process in both the nucleus and cytoplasm. In cells expressing HBV mRNA, both PAPD5/7 were found to be physically associated with the viral RNA, and the polyadenylating activities of PAPD5/7 were susceptible to RG7834 repression in a biochemical assay. Moreover, in PAPD5/7 double-knockout cells, viral transcripts with a regular length of the poly(A) sequence could be initially synthesized but became shortened in hours, suggesting that participation of PAPD5/7 in RNA 3' end processing, either during adenosine oligomerization or afterward, is crucial for RNA stabilization.
Collapse
|
7
|
Out or decay: fate determination of nuclear RNAs. Essays Biochem 2020; 64:895-905. [DOI: 10.1042/ebc20200005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Abstract
In eukaryotes, RNAs newly synthesized by RNA polymerase II (RNAPII) undergo several processing steps prior to transport to the cytoplasm. It has long been known that RNAs with defects in processing or export are removed in the nucleus. Recent studies revealed that RNAs without apparent defects are also subjected to nuclear degradation, indicating that nuclear RNA fate is determined in a more complex and dynamic way than previously thought. Nuclear RNA sorting directly determines the quality and quantity of RNA pools for future translation and thus is of significant importance. In this essay, we will summarize recent studies on this topic, mainly focusing on findings in mammalian system, and discuss about important remaining questions and possible biological relevance for nuclear RNA fate determination.
Collapse
|
8
|
|
9
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Delan-Forino C, Spanos C, Rappsilber J, Tollervey D. Substrate specificity of the TRAMP nuclear surveillance complexes. Nat Commun 2020; 11:3122. [PMID: 32561742 PMCID: PMC7305330 DOI: 10.1038/s41467-020-16965-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
During nuclear surveillance in yeast, the RNA exosome functions together with the TRAMP complexes. These include the DEAH-box RNA helicase Mtr4 together with an RNA-binding protein (Air1 or Air2) and a poly(A) polymerase (Trf4 or Trf5). To better determine how RNA substrates are targeted, we analyzed protein and RNA interactions for TRAMP components. Mass spectrometry identified three distinct TRAMP complexes formed in vivo. These complexes preferentially assemble on different classes of transcripts. Unexpectedly, on many substrates, including pre-rRNAs and pre-mRNAs, binding specificity is apparently conferred by Trf4 and Trf5. Clustering of mRNAs by TRAMP association shows co-enrichment for mRNAs with functionally related products, supporting the significance of surveillance in regulating gene expression. We compared binding sites of TRAMP components with multiple nuclear RNA binding proteins, revealing preferential colocalization of subsets of factors. TRF5 deletion reduces Mtr4 recruitment and increases RNA abundance for mRNAs specifically showing high Trf5 binding.
Collapse
Affiliation(s)
- Clémentine Delan-Forino
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - David Tollervey
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
11
|
Porrua O. Purification and In Vitro Analysis of the Exosome Cofactors Nrd1-Nab3 and Trf4-Air2. Methods Mol Biol 2020; 2062:277-289. [PMID: 31768982 DOI: 10.1007/978-1-4939-9822-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In many eukaryotic organisms from yeast to human, the exosome plays an important role in the control of pervasive transcription and in non-coding RNA (ncRNA) processing and quality control by trimming precursor RNAs and degrading aberrant transcripts. In Saccharomyces cerevisiae this function is enabled by the interaction of the exosome with several cofactors: the Nrd1-Nab3 heterodimer and the Trf4-Air2-Mtr4 (TRAMP4) complex. Nrd1 and Nab3 are RNA binding proteins that recognize specific motifs enriched in the target ncRNAs, whereas TRAMP4 adds polyA tails at the 3' end of transcripts and stimulates RNA degradation by the exosome. This chapter provides protocols for the purification of recombinant forms of these exosome cofactors and for the in vitro assessment of their activity.
Collapse
Affiliation(s)
- Odil Porrua
- Institut Jacques Monod-UMR7592, CNRS, Université de Paris, Paris, France.
| |
Collapse
|
12
|
Savic N, Shortill SP, Bilenky M, Dobbs JM, Dilworth D, Hirst M, Nelson CJ. Histone Chaperone Paralogs Have Redundant, Cooperative, and Divergent Functions in Yeast. Genetics 2019; 213:1301-1316. [PMID: 31604797 PMCID: PMC6893378 DOI: 10.1534/genetics.119.302235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Gene duplications increase organismal robustness by providing freedom for gene divergence or by increasing gene dosage. The yeast histone chaperones Fpr3 and Fpr4 are paralogs that can assemble nucleosomes in vitro; however, the genomic locations they target and their functional relationship is poorly understood. We refined the yeast synthetic genetic array approach to enable the functional dissection of gene paralogs. Applying this method to Fpr3 and Fpr4 uncovered redundant, cooperative, and divergent functions. While Fpr3 is uniquely involved in chromosome segregation, Fpr3 and Fpr4 cooperate to regulate genes involved in polyphosphate metabolism and ribosome biogenesis. We find that the TRAMP5 RNA exosome is critical for fitness in Δfpr3Δfpr4 yeast and leverage this information to identify an important role for Fpr4 at the 5' ends of protein coding genes. Additionally, Fpr4 and TRAMP5 negatively regulate RNAs from the nontranscribed spacers of ribosomal DNA. Yeast lacking Fpr3 and Fpr4 exhibit a genome instability phenotype at the ribosomal DNA, which implies that these histone chaperones regulate chromatin structure and DNA access at this location. Taken together. we provide genetic and transcriptomic evidence that Fpr3 and Fpr4 operate separately, cooperatively, and redundantly to regulate a variety of chromatin environments.
Collapse
Affiliation(s)
- Neda Savic
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - Shawn P Shortill
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - Misha Bilenky
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joseph M Dobbs
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - David Dilworth
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - Martin Hirst
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher J Nelson
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| |
Collapse
|
13
|
Wang J, Chen J, Wu G, Zhang H, Du X, Chen S, Zhang L, Wang K, Fan J, Gao S, Wu X, Zhang S, Kuai B, Zhao P, Chi B, Wang L, Li G, Wong CCL, Zhou Y, Li J, Yun C, Cheng H. NRDE2 negatively regulates exosome functions by inhibiting MTR4 recruitment and exosome interaction. Genes Dev 2019; 33:536-549. [PMID: 30842217 PMCID: PMC6499326 DOI: 10.1101/gad.322602.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/05/2019] [Indexed: 12/28/2022]
Abstract
The exosome functions in the degradation of diverse RNA species, yet how it is negatively regulated remains largely unknown. Here, we show that NRDE2 forms a 1:1 complex with MTR4, a nuclear exosome cofactor critical for exosome recruitment, via a conserved MTR4-interacting domain (MID). Unexpectedly, NRDE2 mainly localizes in nuclear speckles, where it inhibits MTR4 recruitment and RNA degradation, and thereby ensures efficient mRNA nuclear export. Structural and biochemical data revealed that NRDE2 interacts with MTR4's key residues, locks MTR4 in a closed conformation, and inhibits MTR4 interaction with the exosome as well as proteins important for MTR4 recruitment, such as the cap-binding complex (CBC) and ZFC3H1. Functionally, MID deletion results in the loss of self-renewal of mouse embryonic stem cells. Together, our data pinpoint NRDE2 as a nuclear exosome negative regulator that ensures mRNA stability and nuclear export.
Collapse
Affiliation(s)
- Jianshu Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiyun Chen
- Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guifen Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongling Zhang
- Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xian Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuaixin Gao
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing 100191, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shouxiang Zhang
- Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bin Kuai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Zhao
- Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Binkai Chi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Catherine C L Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinsong Li
- Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Caihong Yun
- Department of Biophysics, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
14
|
Schmid M, Jensen TH. The Nuclear RNA Exosome and Its Cofactors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:113-132. [PMID: 31811632 DOI: 10.1007/978-3-030-31434-7_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The RNA exosome is a highly conserved ribonuclease endowed with 3'-5' exonuclease and endonuclease activities. The multisubunit complex resides in both the nucleus and the cytoplasm, with varying compositions and activities between the two compartments. While the cytoplasmic exosome functions mostly in mRNA quality control pathways, the nuclear RNA exosome partakes in the 3'-end processing and complete decay of a wide variety of substrates, including virtually all types of noncoding (nc) RNAs. To handle these diverse tasks, the nuclear exosome engages with dedicated cofactors, some of which serve as activators by stimulating decay through oligoA addition and/or RNA helicase activities or, as adaptors, by recruiting RNA substrates through their RNA-binding capacities. Most nuclear exosome cofactors contain the essential RNA helicase Mtr4 (MTR4 in humans). However, apart from Mtr4, nuclear exosome cofactors have undergone significant evolutionary divergence. Here, we summarize biochemical and functional knowledge about the nuclear exosome and exemplify its cofactor variety by discussing the best understood model organisms-the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and human cells.
Collapse
Affiliation(s)
- Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
15
|
Conserved Pbp1/Ataxin-2 regulates retrotransposon activity and connects polyglutamine expansion-driven protein aggregation to lifespan-controlling rDNA repeats. Commun Biol 2018; 1:187. [PMID: 30417124 PMCID: PMC6218562 DOI: 10.1038/s42003-018-0187-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
Ribosomal DNA (rDNA) repeat instability and protein aggregation are thought to be two major and independent drivers of cellular aging. Pbp1, the yeast ortholog of human ATXN2, maintains rDNA repeat stability and lifespan via suppression of RNA-DNA hybrids. ATXN2 polyglutamine expansion drives neurodegeneration causing spinocerebellar ataxia type 2 and promoting amyotrophic lateral sclerosis. Here, molecular characterization of Pbp1 revealed that its knockout or subjection to disease-modeling polyQ expansion represses Ty1 (Transposons of Yeast) retrotransposons by respectively promoting Trf4-depedendent RNA turnover and Ty1 Gag protein aggregation. This aggregation, but not its impact on retrotransposition, compromises rDNA repeat stability and shortens lifespan by hyper-activating Trf4-dependent turnover of intergenic ncRNA within the repeats. We uncover a function for the conserved Pbp1/ATXN2 proteins in the promotion of retrotransposition, create and describe powerful yeast genetic models of ATXN2-linked neurodegenerative diseases, and connect the major aging mechanisms of rDNA instability and protein aggregation.
Collapse
|
16
|
Tudek A, Lloret-Llinares M, Jensen TH. The multitasking polyA tail: nuclear RNA maturation, degradation and export. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0169. [PMID: 30397105 DOI: 10.1098/rstb.2018.0169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
A polyA (pA) tail is an essential modification added to the 3' ends of a wide range of RNAs at different stages of their metabolism. Here, we describe the main sources of polyadenylation and outline their underlying biochemical interactions within the nuclei of budding yeast Saccharomyces cerevisiae, human cells and, when relevant, the fission yeast Schizosaccharomyces pombe Polyadenylation mediated by the S. cerevisiae Trf4/5 enzymes, and their human homologues PAPD5/7, typically leads to the 3'-end trimming or complete decay of non-coding RNAs. By contrast, the primary function of canonical pA polymerases (PAPs) is to produce stable and nuclear export-competent mRNAs. However, this dichotomy is becoming increasingly blurred, at least in S. pombe and human cells, where polyadenylation mediated by canonical PAPs may also result in transcript decay.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Agnieszka Tudek
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| | - Marta Lloret-Llinares
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, building 1130, 8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Long Noncoding RNAs in Yeast Cells and Differentiated Subpopulations of Yeast Colonies and Biofilms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4950591. [PMID: 29765496 PMCID: PMC5889882 DOI: 10.1155/2018/4950591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/07/2018] [Indexed: 02/02/2023]
Abstract
We summarize current knowledge regarding regulatory functions of long noncoding RNAs (lncRNAs) in yeast, with emphasis on lncRNAs identified recently in yeast colonies and biofilms. Potential regulatory functions of these lncRNAs in differentiated cells of domesticated colonies adapted to plentiful conditions versus yeast colony biofilms are discussed. We show that specific cell types differ in their complements of lncRNA, that this complement changes over time in differentiating upper cells, and that these lncRNAs target diverse functional categories of genes in different cell subpopulations and specific colony types.
Collapse
|
18
|
Abstract
Numerous surveillance pathways sculpt eukaryotic transcriptomes by degrading unneeded, defective, and potentially harmful noncoding RNAs (ncRNAs). Because aberrant and excess ncRNAs are largely degraded by exoribonucleases, a key characteristic of these RNAs is an accessible, protein-free 5' or 3' end. Most exoribonucleases function with cofactors that recognize ncRNAs with accessible 5' or 3' ends and/or increase the availability of these ends. Noncoding RNA surveillance pathways were first described in budding yeast, and there are now high-resolution structures of many components of the yeast pathways and significant mechanistic understanding as to how they function. Studies in human cells are revealing the ways in which these pathways both resemble and differ from their yeast counterparts, and are also uncovering numerous pathways that lack equivalents in budding yeast. In this review, we describe both the well-studied pathways uncovered in yeast and the new concepts that are emerging from studies in mammalian cells. We also discuss the ways in which surveillance pathways compete with chaperone proteins that transiently protect nascent ncRNA ends from exoribonucleases, with partner proteins that sequester these ends within RNPs, and with end modification pathways that protect the ends of some ncRNAs from nucleases.
Collapse
Affiliation(s)
- Cedric Belair
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| |
Collapse
|
19
|
Nousch M, Minasaki R, Eckmann CR. Polyadenylation is the key aspect of GLD-2 function in C. elegans. RNA (NEW YORK, N.Y.) 2017; 23:1180-1187. [PMID: 28490506 PMCID: PMC5513063 DOI: 10.1261/rna.061473.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
The role of many enzymes extends beyond their dedicated catalytic activity by fulfilling important cellular functions in a catalysis-independent fashion. In this aspect, little is known about 3'-end RNA-modifying enzymes that belong to the class of nucleotidyl transferases. Among these are noncanonical poly(A) polymerases, a group of evolutionarily conserved enzymes that are critical for gene expression regulation, by adding adenosines to the 3'-end of RNA targets. In this study, we investigate whether the functions of the cytoplasmic poly(A) polymerase (cytoPAP) GLD-2 in C. elegans germ cells exclusively depend on its catalytic activity. To this end, we analyzed a specific missense mutation affecting a conserved amino acid in the catalytic region of GLD-2 cytoPAP. Although this mutated protein is expressed to wild-type levels and incorporated into cytoPAP complexes, we found that it cannot elongate mRNA poly(A) tails efficiently or promote GLD-2 target mRNA abundance. Furthermore, germ cell defects in animals expressing this mutant protein strongly resemble those lacking the GLD-2 protein altogether, arguing that only the polyadenylation activity of GLD-2 is essential for gametogenesis. In summary, we propose that all known molecular and biological functions of GLD-2 depend on its enzymatic activity, demonstrating that polyadenylation is the key mechanism of GLD-2 functionality. Our findings highlight the enzymatic importance of noncanonical poly(A) polymerases and emphasize the pivotal role of poly(A) tail-centered cytoplasmic mRNA regulation in germ cell biology.
Collapse
Affiliation(s)
- Marco Nousch
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ryuji Minasaki
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian R Eckmann
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
20
|
Ustyantsev IG, Golubchikova JS, Borodulina OR, Kramerov DA. Canonical and noncanonical RNA polyadenylation. Mol Biol 2017. [DOI: 10.1134/s0026893317010186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Chikne V, Gupta SK, Doniger T, K SR, Cohen-Chalamish S, Waldman Ben-Asher H, Kolet L, Yahia NH, Unger R, Ullu E, Kolev NG, Tschudi C, Michaeli S. The Canonical Poly (A) Polymerase PAP1 Polyadenylates Non-Coding RNAs and Is Essential for snoRNA Biogenesis in Trypanosoma brucei. J Mol Biol 2017; 429:3301-3318. [PMID: 28456523 DOI: 10.1016/j.jmb.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
Abstract
The parasite Trypanosoma brucei is the causative agent of African sleeping sickness and is known for its unique RNA processing mechanisms that are common to all the kinetoplastidea including Leishmania and Trypanosoma cruzi. Trypanosomes possess two canonical RNA poly (A) polymerases (PAPs) termed PAP1 and PAP2. PAP1 is encoded by one of the only two genes harboring cis-spliced introns in this organism, and its function is currently unknown. In trypanosomes, all mRNAs, and non-coding RNAs such as small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs), undergo trans-splicing and polyadenylation. Here, we show that the function of PAP1, which is located in the nucleus, is to polyadenylate non-coding RNAs, which undergo trans-splicing and polyadenylation. Major substrates of PAP1 are the snoRNAs and lncRNAs. Under the silencing of either PAP1 or PAP2, the level of snoRNAs is reduced. The dual polyadenylation of snoRNA intermediates is carried out by both PAP2 and PAP1 and requires the factors essential for the polyadenylation of mRNAs. The dual polyadenylation of the precursor snoRNAs by PAPs may function to recruit the machinery essential for snoRNA processing.
Collapse
Affiliation(s)
- Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shanmugha Rajan K
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Liat Kolet
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nasreen Hag Yahia
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elisabetta Ullu
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Nikolay G Kolev
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Christian Tschudi
- Department of Internal Medicine, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA; Cell Biology, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
22
|
Meola N, Jensen TH. Targeting the nuclear RNA exosome: Poly(A) binding proteins enter the stage. RNA Biol 2017; 14:820-826. [PMID: 28421898 DOI: 10.1080/15476286.2017.1312227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Centrally positioned in nuclear RNA metabolism, the exosome deals with virtually all transcript types. This 3'-5' exo- and endo-nucleolytic degradation machine is guided to its RNA targets by adaptor proteins that enable substrate recognition. Recently, the discovery of the 'Poly(A) tail exosome targeting (PAXT)' connection as an exosome adaptor to human nuclear polyadenylated transcripts has relighted the interest of poly(A) binding proteins (PABPs) in both RNA productive and destructive processes.
Collapse
Affiliation(s)
- Nicola Meola
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| | - Torben Heick Jensen
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| |
Collapse
|
23
|
Attacked from All Sides: RNA Decay in Antiviral Defense. Viruses 2017; 9:v9010002. [PMID: 28054965 PMCID: PMC5294971 DOI: 10.3390/v9010002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022] Open
Abstract
The innate immune system has evolved a number of sensors that recognize viral RNA (vRNA) to restrict infection, yet the full spectrum of host-encoded RNA binding proteins that target these foreign RNAs is still unknown. The RNA decay machinery, which uses exonucleases to degrade aberrant RNAs largely from the 5′ or 3′ end, is increasingly recognized as playing an important role in antiviral defense. The 5′ degradation pathway can directly target viral messenger RNA (mRNA) for degradation, as well as indirectly attenuate replication by limiting specific pools of endogenous RNAs. The 3′ degradation machinery (RNA exosome) is emerging as a downstream effector of a diverse array of vRNA sensors. This review discusses our current understanding of the roles of the RNA decay machinery in controlling viral infection.
Collapse
|
24
|
Reimão-Pinto MM, Manzenreither RA, Burkard TR, Sledz P, Jinek M, Mechtler K, Ameres SL. Molecular basis for cytoplasmic RNA surveillance by uridylation-triggered decay in Drosophila. EMBO J 2016; 35:2417-2434. [PMID: 27729457 DOI: 10.15252/embj.201695164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023] Open
Abstract
The posttranscriptional addition of nucleotides to the 3' end of RNA regulates the maturation, function, and stability of RNA species in all domains of life. Here, we show that in flies, 3' terminal RNA uridylation triggers the processive, 3'-to-5' exoribonucleolytic decay via the RNase II/R enzyme CG16940, a homolog of the human Perlman syndrome exoribonuclease Dis3l2. Together with the TUTase Tailor, dmDis3l2 forms the cytoplasmic, terminal RNA uridylation-mediated processing (TRUMP) complex that functionally cooperates in the degradation of structured RNA RNA immunoprecipitation and high-throughput sequencing reveals a variety of TRUMP complex substrates, including abundant non-coding RNA, such as 5S rRNA, tRNA, snRNA, snoRNA, and the essential RNase MRP Based on genetic and biochemical evidence, we propose a key function of the TRUMP complex in the cytoplasmic quality control of RNA polymerase III transcripts. Together with high-throughput biochemical characterization of dmDis3l2 and bacterial RNase R, our results imply a conserved molecular function of RNase II/R enzymes as "readers" of destabilizing posttranscriptional marks-uridylation in eukaryotes and adenylation in prokaryotes-that play important roles in RNA surveillance.
Collapse
Affiliation(s)
| | | | - Thomas R Burkard
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Pawel Sledz
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Karl Mechtler
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Stefan L Ameres
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna, Austria
| |
Collapse
|
25
|
Sudo H, Nozaki A, Uno H, Ishida YI, Nagahama M. Interaction properties of human TRAMP-like proteins and their role in pre-rRNA 5′ETS turnover. FEBS Lett 2016; 590:2963-72. [DOI: 10.1002/1873-3468.12314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/30/2016] [Accepted: 07/10/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Haruka Sudo
- Laboratory of Molecular and Cellular Biochemistry; Meiji Pharmaceutical University; Kiyose Tokyo Japan
| | - Aya Nozaki
- Laboratory of Molecular and Cellular Biochemistry; Meiji Pharmaceutical University; Kiyose Tokyo Japan
| | - Hideaki Uno
- Laboratory of Molecular and Cellular Biochemistry; Meiji Pharmaceutical University; Kiyose Tokyo Japan
| | - Yo-ichi Ishida
- Laboratory of Molecular and Cellular Biochemistry; Meiji Pharmaceutical University; Kiyose Tokyo Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry; Meiji Pharmaceutical University; Kiyose Tokyo Japan
| |
Collapse
|
26
|
Harnisch C, Cuzic-Feltens S, Dohm JC, Götze M, Himmelbauer H, Wahle E. Oligoadenylation of 3' decay intermediates promotes cytoplasmic mRNA degradation in Drosophila cells. RNA (NEW YORK, N.Y.) 2016; 22:428-42. [PMID: 26786835 PMCID: PMC4748820 DOI: 10.1261/rna.053942.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 05/20/2023]
Abstract
Post-transcriptional 3' end addition of nucleotides is important in a variety of RNA decay pathways. We have examined the 3' end addition of nucleotides during the decay of the Hsp70 mRNA and a corresponding reporter RNA in Drosophila S2 cells by conventional sequencing of cDNAs obtained after mRNA circularization and by deep sequencing of dedicated libraries enriched for 3' decay intermediates along the length of the mRNA. Approximately 5%-10% of 3' decay intermediates carried nonencoded oligo(A) tails with a mean length of 2-3 nucleotides. RNAi experiments showed that the oligoadenylated RNA fragments were intermediates of exosomal decay and the noncanonical poly(A) polymerase Trf4-1 was mainly responsible for A addition. A hot spot of A addition corresponded to an intermediate of 3' decay that accumulated upon inhibition of decapping, and knockdown of Trf4-1 increased the abundance of this intermediate, suggesting that oligoadenylation facilitates 3' decay. Oligoadenylated 3' decay intermediates were found in the cytoplasmic fraction in association with ribosomes, and fluorescence microscopy revealed a cytoplasmic localization of Trf4-1. Thus, oligoadenylation enhances exosomal mRNA degradation in the cytoplasm.
Collapse
Affiliation(s)
- Christiane Harnisch
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Simona Cuzic-Feltens
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Juliane C Dohm
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Michael Götze
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Heinz Himmelbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
27
|
Qin D, Huang L, Wlodaver A, Andrade J, Staley JP. Sequencing of lariat termini in S. cerevisiae reveals 5' splice sites, branch points, and novel splicing events. RNA (NEW YORK, N.Y.) 2016; 22:237-53. [PMID: 26647463 PMCID: PMC4712674 DOI: 10.1261/rna.052829.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/04/2015] [Indexed: 05/23/2023]
Abstract
Pre-mRNA splicing is a central step in the shaping of the eukaryotic transcriptome and in the regulation of gene expression. Yet, due to a focus on fully processed mRNA, common approaches for defining pre-mRNA splicing genome-wide are suboptimal-especially with respect to defining the branch point sequence, a key cis-element that initiates the chemistry of splicing. Here, we report a complementary intron-centered approach designed to more efficiently, simply, and directly define splicing events genome-wide. Specifically, we developed a method distinguished by deep sequencing of lariat intron termini (LIT-seq). In a test of LIT-seq using the budding yeast Saccharomyces cerevisiae, we not only successfully captured the majority of annotated, expressed splicing events but also uncovered 45 novel splicing events, establishing the sensitivity of LIT-seq. Moreover, our libraries were highly enriched with reads that reported on splice sites; by a simple and direct inspection of sequencing reads, we empirically defined both 5' splice sites and branch sites, as well as their consensus sequences, with nucleotide resolution. Additionally, our study revealed that the 3' termini of lariat introns are subject to nontemplated addition of adenosines, characteristic of signals sensed by 3' to 5' RNA turnover machinery. Collectively, this work defines a novel, genome-wide approach for analyzing splicing with unprecedented depth, specificity, and resolution.
Collapse
Affiliation(s)
- Daoming Qin
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Lei Huang
- Center for Research Informatics, University of Chicago, Chicago, Illinois 60637, USA
| | - Alissa Wlodaver
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
28
|
Hackmann A, Wu H, Schneider UM, Meyer K, Jung K, Krebber H. Quality control of spliced mRNAs requires the shuttling SR proteins Gbp2 and Hrb1. Nat Commun 2015; 5:3123. [PMID: 24452287 DOI: 10.1038/ncomms4123] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/16/2013] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic cells have to prevent the export of unspliced pre-mRNAs until intron removal is completed to avoid the expression of aberrant and potentially harmful proteins. Only mature mRNAs associate with the export receptor Mex67/TAP and enter the cytoplasm. Here we show that the two shuttling serine/arginine (SR)-proteins Gbp2 and Hrb1 are key surveillance factors for the selective export of spliced mRNAs in yeast. Their absence leads to the significant leakage of unspliced pre-mRNAs into the cytoplasm. They bind to pre-mRNAs and the spliceosome during splicing, where they are necessary for the surveillance of splicing and the stable binding of the TRAMP complex to spliceosome-bound transcripts. Faulty transcripts are marked for their degradation at the nuclear exosome. On correct mRNAs the SR proteins recruit Mex67 upon completion of splicing to allow a quality controlled nuclear export. Altogether, these data identify a role for shuttling SR proteins in mRNA surveillance and nuclear mRNA quality control.
Collapse
Affiliation(s)
- Alexandra Hackmann
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany
| | - Haijia Wu
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany
| | - Ulla-Maria Schneider
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany
| | - Katja Meyer
- 1] Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany [2] Institut für Genomforschung und Systembiologie, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Klaus Jung
- Institut für Medizinische Statistik, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Bresson SM, Hunter OV, Hunter AC, Conrad NK. Canonical Poly(A) Polymerase Activity Promotes the Decay of a Wide Variety of Mammalian Nuclear RNAs. PLoS Genet 2015; 11:e1005610. [PMID: 26484760 PMCID: PMC4618350 DOI: 10.1371/journal.pgen.1005610] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/27/2015] [Indexed: 11/30/2022] Open
Abstract
The human nuclear poly(A)-binding protein PABPN1 has been implicated in the decay of nuclear noncoding RNAs (ncRNAs). In addition, PABPN1 promotes hyperadenylation by stimulating poly(A)-polymerases (PAPα/γ), but this activity has not previously been linked to the decay of endogenous transcripts. Moreover, the mechanisms underlying target specificity have remained elusive. Here, we inactivated PAP-dependent hyperadenylation in cells by two independent mechanisms and used an RNA-seq approach to identify endogenous targets. We observed the upregulation of various ncRNAs, including snoRNA host genes, primary miRNA transcripts, and promoter upstream antisense RNAs, confirming that hyperadenylation is broadly required for the degradation of PABPN1-targets. In addition, we found that mRNAs with retained introns are susceptible to PABPN1 and PAPα/γ-mediated decay (PPD). Transcripts are targeted for degradation due to inefficient export, which is a consequence of reduced intron number or incomplete splicing. Additional investigation showed that a genetically-encoded poly(A) tail is sufficient to drive decay, suggesting that degradation occurs independently of the canonical cleavage and polyadenylation reaction. Surprisingly, treatment with transcription inhibitors uncouples polyadenylation from decay, leading to runaway hyperadenylation of nuclear decay targets. We conclude that PPD is an important mammalian nuclear RNA decay pathway for the removal of poorly spliced and nuclear-retained transcripts. Cells control gene expression by balancing the rates of RNA synthesis and decay. While the mechanisms of transcription regulation are extensively studied, the parameters that control nuclear RNA stability remain largely unknown. Previously, we and others reported that poly(A) tails may stimulate RNA decay in mammalian nuclei. This function is mediated by the concerted actions of the nuclear poly(A) binding protein PABPN1, poly(A) polymerase (PAP), and the nuclear exosome complex, a pathway we have named PABPN1 and PAP-mediated RNA decay (PPD). Because nearly all mRNAs possess a poly(A) tail, it remains unclear how PPD targets specific transcripts. Here, we inactivated PPD by two distinct mechanisms and examined global gene expression. We identified a number of potential target genes, including snoRNA host genes, promoter antisense RNAs, and mRNAs. Interestingly, target transcripts tend to be incompletely spliced or possess fewer introns than non-target transcripts, suggesting that efficient splicing allows normal mRNAs to escape decay. We suggest that PPD plays an important role in gene expression by limiting the accumulation of inefficiently processed RNAs. In addition, our results highlight the complex relationship between (pre-)mRNA splicing and nuclear RNA decay.
Collapse
Affiliation(s)
- Stefan M. Bresson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Olga V. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Allyson C. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nicholas K. Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kwapisz M, Ruault M, van Dijk E, Gourvennec S, Descrimes M, Taddei A, Morillon A. Expression of Subtelomeric lncRNAs Links Telomeres Dynamics to RNA Decay in S. cerevisiae. Noncoding RNA 2015; 1:94-126. [PMID: 29861418 PMCID: PMC5932542 DOI: 10.3390/ncrna1020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to regulate gene expression, chromatin domains and chromosome stability in eukaryotic cells. Recent observations have reported the existence of telomeric repeats containing long ncRNAs – TERRA in mammalian and yeast cells. However, their functions remain poorly characterized. Here, we report the existence in S. cerevisiae of several lncRNAs within Y′ subtelomeric regions. We have called them subTERRA. These belong to Cryptic Unstable Transcripts (CUTs) and Xrn1p-sensitive Unstable Transcripts (XUTs) family. subTERRA transcription, carried out mainly by RNAPII, is initiated within the subtelomeric Y’ element and occurs in both directions, towards telomeres as well as centromeres. We show that subTERRA are distinct from TERRA and are mainly degraded by the general cytoplasmic and nuclear 5′- and 3′- RNA decay pathways in a transcription-dependent manner. subTERRA accumulates preferentially during the G1/S transition and in C-terminal rap1 mutant but independently of Rap1p function in silencing. The accumulation of subTERRA in RNA decay mutants coincides with telomere misregulation: shortening of telomeres, loss of telomeric clustering in mitotic cells and changes in silencing of subtelomeric regions. Our data suggest that subtelomeric RNAs expression links telomere maintenance to RNA degradation pathways.
Collapse
Affiliation(s)
- Marta Kwapisz
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
- Authors to whom correspondence should be addressed; E-Mails: (M.K.); (A.M.); Tel.: +33-561-335-824 (M.K.); +33-(0)-156-246-515 (A.M.); Fax: +33-524-335-886 (M.K.); +33-(0)-156-246-674 (A.M.)
| | - Myriam Ruault
- Nuclear Dynamics, Institut Curie, PSL Research University, CNRS UMR3664, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mails: (M.R.); (A.T.)
| | - Erwin van Dijk
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
| | - Stephanie Gourvennec
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
| | - Marc Descrimes
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
| | - Angela Taddei
- Nuclear Dynamics, Institut Curie, PSL Research University, CNRS UMR3664, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mails: (M.R.); (A.T.)
| | - Antonin Morillon
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
- Authors to whom correspondence should be addressed; E-Mails: (M.K.); (A.M.); Tel.: +33-561-335-824 (M.K.); +33-(0)-156-246-515 (A.M.); Fax: +33-524-335-886 (M.K.); +33-(0)-156-246-674 (A.M.)
| |
Collapse
|
31
|
Losh JS, King AK, Bakelar J, Taylor L, Loomis J, Rosenzweig JA, Johnson SJ, van Hoof A. Interaction between the RNA-dependent ATPase and poly(A) polymerase subunits of the TRAMP complex is mediated by short peptides and important for snoRNA processing. Nucleic Acids Res 2015; 43:1848-58. [PMID: 25589546 PMCID: PMC4330371 DOI: 10.1093/nar/gkv005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The RNA exosome is one of the main 3′ to 5′ exoribonucleases in eukaryotic cells. Although it is responsible for degradation or processing of a wide variety of substrate RNAs, it is very specific and distinguishes between substrate and non-substrate RNAs as well as between substrates that need to be 3′ processed and those that need to be completely degraded. This specificity does not appear to be determined by the exosome itself but rather by about a dozen other proteins. Four of these exosome cofactors have enzymatic activity, namely, the nuclear RNA-dependent ATPase Mtr4, its cytoplasmic paralog Ski2 and the nuclear non-canonical poly(A) polymerases, Trf4 and Trf5. Mtr4 and either Trf4 or Trf5 assemble into a TRAMP complex. However, how these enzymes assemble into a TRAMP complex and the functional consequences of TRAMP complex assembly remain unknown. Here, we identify an important interaction site between Mtr4 and Trf5, and show that disrupting the Mtr4/Trf interaction disrupts specific TRAMP and exosome functions, including snoRNA processing.
Collapse
Affiliation(s)
- Jillian S. Losh
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Alejandra Klauer King
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jeremy Bakelar
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322–0300, USA
| | - Lacy Taylor
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322–0300, USA
| | - John Loomis
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Jason A. Rosenzweig
- Department of Biology and Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Sean J. Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322–0300, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
- To whom correspondence should be addressed. Tel: +1 713 500 5234;
| |
Collapse
|
32
|
Pan K, Lee JTH, Huang Z, Wong CM. Coupling and coordination in gene expression processes with pre-mRNA splicing. Int J Mol Sci 2015; 16:5682-96. [PMID: 25768347 PMCID: PMC4394499 DOI: 10.3390/ijms16035682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022] Open
Abstract
RNA processing is a tightly regulated and highly complex pathway which includes transcription, splicing, editing, transportation, translation and degradation. It has been well-documented that splicing of RNA polymerase II medicated nascent transcripts occurs co-transcriptionally and is functionally coupled to other RNA processing. Recently, increasing experimental evidence indicated that pre-mRNA splicing influences RNA degradation and vice versa. In this review, we summarized the recent findings demonstrating the coupling of these two processes. In addition, we highlighted the importance of splicing in the production of intronic miRNA and circular RNAs, and hence the discovery of the novel mechanisms in the regulation of gene expression.
Collapse
|
33
|
The nuclear exosome is active and important during budding yeast meiosis. PLoS One 2014; 9:e107648. [PMID: 25210768 PMCID: PMC4161446 DOI: 10.1371/journal.pone.0107648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
Nuclear RNA degradation pathways are highly conserved across eukaryotes and play important roles in RNA quality control. Key substrates for exosomal degradation include aberrant functional RNAs and cryptic unstable transcripts (CUTs). It has recently been reported that the nuclear exosome is inactivated during meiosis in budding yeast through degradation of the subunit Rrp6, leading to the stabilisation of a subset of meiotic unannotated transcripts (MUTs) of unknown function. We have analysed the activity of the nuclear exosome during meiosis by deletion of TRF4, which encodes a key component of the exosome targeting complex TRAMP. We find that TRAMP mutants produce high levels of CUTs during meiosis that are undetectable in wild-type cells, showing that the nuclear exosome remains functional for CUT degradation, and we further report that the meiotic exosome complex contains Rrp6. Indeed Rrp6 over-expression is insufficient to suppress MUT transcripts, showing that the reduced amount of Rrp6 in meiotic cells does not directly cause MUT accumulation. Lack of TRAMP activity stabilises ∼ 1600 CUTs in meiotic cells, which occupy 40% of the binding capacity of the nuclear cap binding complex (CBC). CBC mutants display defects in the formation of meiotic double strand breaks (DSBs), and we see similar defects in TRAMP mutants, suggesting that a key function of the nuclear exosome is to prevent saturation of the CBC complex by CUTs. Together, our results show that the nuclear exosome remains active in meiosis and has an important role in facilitating meiotic recombination.
Collapse
|
34
|
Leung E, Schneider C, Yan F, Mohi-El-Din H, Kudla G, Tuck A, Wlotzka W, Doronina VA, Bartley R, Watkins NJ, Tollervey D, Brown JD. Integrity of SRP RNA is ensured by La and the nuclear RNA quality control machinery. Nucleic Acids Res 2014; 42:10698-710. [PMID: 25159613 PMCID: PMC4176351 DOI: 10.1093/nar/gku761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The RNA component of signal recognition particle (SRP) is transcribed by RNA polymerase III, and most steps in SRP biogenesis occur in the nucleolus. Here, we examine processing and quality control of the yeast SRP RNA (scR1). In common with other pol III transcripts, scR1 terminates in a U-tract, and mature scR1 retains a U4–5 sequence at its 3′ end. In cells lacking the exonuclease Rex1, scR1 terminates in a longer U5–6 tail that presumably represents the primary transcript. The 3′ U-tract of scR1 is protected from aberrant processing by the La homologue, Lhp1 and overexpressed Lhp1 apparently competes with both the RNA surveillance system and SRP assembly factors. Unexpectedly, the TRAMP and exosome nuclear RNA surveillance complexes are also implicated in protecting the 3′ end of scR1, which accumulates in the nucleolus of cells lacking the activities of these complexes. Misassembled scR1 has a primary degradation pathway in which Rrp6 acts early, followed by TRAMP-stimulated exonuclease degradation by the exosome. We conclude that the RNA surveillance machinery has key roles in both SRP biogenesis and quality control of the RNA, potentially facilitating the decision between these alternative fates.
Collapse
Affiliation(s)
- Eileen Leung
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Fu Yan
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hatem Mohi-El-Din
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Grzegorz Kudla
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Alex Tuck
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Wiebke Wlotzka
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Victoria A Doronina
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ralph Bartley
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas J Watkins
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jeremy D Brown
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
35
|
Lange H, Zuber H, Sement FM, Chicher J, Kuhn L, Hammann P, Brunaud V, Bérard C, Bouteiller N, Balzergue S, Aubourg S, Martin-Magniette ML, Vaucheret H, Gagliardi D. The RNA helicases AtMTR4 and HEN2 target specific subsets of nuclear transcripts for degradation by the nuclear exosome in Arabidopsis thaliana. PLoS Genet 2014; 10:e1004564. [PMID: 25144737 PMCID: PMC4140647 DOI: 10.1371/journal.pgen.1004564] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 06/28/2014] [Indexed: 11/19/2022] Open
Abstract
The RNA exosome is the major 3'-5' RNA degradation machine of eukaryotic cells and participates in processing, surveillance and turnover of both nuclear and cytoplasmic RNA. In both yeast and human, all nuclear functions of the exosome require the RNA helicase MTR4. We show that the Arabidopsis core exosome can associate with two related RNA helicases, AtMTR4 and HEN2. Reciprocal co-immunoprecipitation shows that each of the RNA helicases co-purifies with the exosome core complex and with distinct sets of specific proteins. While AtMTR4 is a predominantly nucleolar protein, HEN2 is located in the nucleoplasm and appears to be excluded from nucleoli. We have previously shown that the major role of AtMTR4 is the degradation of rRNA precursors and rRNA maturation by-products. Here, we demonstrate that HEN2 is involved in the degradation of a large number of polyadenylated nuclear exosome substrates such as snoRNA and miRNA precursors, incompletely spliced mRNAs, and spurious transcripts produced from pseudogenes and intergenic regions. Only a weak accumulation of these exosome substrate targets is observed in mtr4 mutants, suggesting that MTR4 can contribute, but plays rather a minor role for the degradation of non-ribosomal RNAs and cryptic transcripts in Arabidopsis. Consistently, transgene post-transcriptional gene silencing (PTGS) is marginally affected in mtr4 mutants, but increased in hen2 mutants, suggesting that it is mostly the nucleoplasmic exosome that degrades aberrant transgene RNAs to limit their entry in the PTGS pathway. Interestingly, HEN2 is conserved throughout green algae, mosses and land plants but absent from metazoans and other eukaryotic lineages. Our data indicate that, in contrast to human and yeast, plants have two functionally specialized RNA helicases that assist the exosome in the degradation of specific nucleolar and nucleoplasmic RNA populations, respectively.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| | - François M. Sement
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Platforme Protéomique Strasbourg-Esplanade, Centre National de la Recherche Scientifique, FRC 1589, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Platforme Protéomique Strasbourg-Esplanade, Centre National de la Recherche Scientifique, FRC 1589, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Platforme Protéomique Strasbourg-Esplanade, Centre National de la Recherche Scientifique, FRC 1589, Université de Strasbourg, Strasbourg, France
| | - Véronique Brunaud
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
| | | | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Sandrine Balzergue
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
| | - Sébastien Aubourg
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
| | - Marie-Laure Martin-Magniette
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
- UMR AgroParisTech-INRA MIA 518, Paris, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
36
|
Molecular basis for coordinating transcription termination with noncoding RNA degradation. Mol Cell 2014; 55:467-81. [PMID: 25066235 PMCID: PMC4186968 DOI: 10.1016/j.molcel.2014.05.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 05/29/2014] [Indexed: 12/27/2022]
Abstract
The Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts. The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates NNS target RNAs and favors their degradation. NNS-dependent termination and degradation are coupled, but the mechanism underlying this coupling remains enigmatic. Here we provide structural and functional evidence demonstrating that the same domain of Nrd1p interacts with RNA polymerase II and Trf4p in a mutually exclusive manner, thus defining two alternative forms of the NNS complex, one involved in termination and the other in degradation. We show that the Nrd1-Trf4 interaction is required for optimal exosome activity in vivo and for the stimulation of polyadenylation of NNS targets by TRAMP in vitro. We propose that transcription termination and RNA degradation are coordinated by switching between two alternative partners of the NNS complex. The Nrd1 CTD interaction domain (CID) recognizes a CTD mimic in Trf4 The CID interacts with RNAPII and Trf4 in a mutually exclusive manner Architecture of the interactions between the NNS complex, the exosome, and TRAMP The interaction of Nrd1 with Trf4 stimulates the polyadenylation activity of TRAMP
Collapse
|
37
|
Sun M, Schwalb B, Pirkl N, Maier KC, Schenk A, Failmezger H, Tresch A, Cramer P. Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels. Mol Cell 2013; 52:52-62. [PMID: 24119399 DOI: 10.1016/j.molcel.2013.09.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/30/2013] [Accepted: 09/06/2013] [Indexed: 02/08/2023]
Abstract
The rates of mRNA synthesis and degradation determine cellular mRNA levels and can be monitored by comparative dynamic transcriptome analysis (cDTA) that uses nonperturbing metabolic RNA labeling. Here we present cDTA data for 46 yeast strains lacking genes involved in mRNA degradation and metabolism. In these strains, changes in mRNA degradation rates are generally compensated by changes in mRNA synthesis rates, resulting in a buffering of mRNA levels. We show that buffering of mRNA levels requires the RNA exonuclease Xrn1. The buffering is rapidly established when mRNA synthesis is impaired, but is delayed when mRNA degradation is impaired, apparently due to Xrn1-dependent transcription repressor induction. Cluster analysis of the data defines the general mRNA degradation machinery, reveals different substrate preferences for the two mRNA deadenylase complexes Ccr4-Not and Pan2-Pan3, and unveils an interwoven cellular mRNA surveillance network.
Collapse
Affiliation(s)
- Mai Sun
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 2013; 194:43-67. [PMID: 23633143 DOI: 10.1534/genetics.112.147470] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3' mature sequence and, for tRNA(His), addition of a 5' G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.
Collapse
|
39
|
Kong KYE, Tang HMV, Pan K, Huang Z, Lee THJ, Hinnebusch AG, Jin DY, Wong CM. Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing. Nucleic Acids Res 2013; 42:643-60. [PMID: 24097436 PMCID: PMC3874199 DOI: 10.1093/nar/gkt888] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most unwanted RNA transcripts in the nucleus of eukaryotic cells, such as splicing-defective pre-mRNAs and spliced-out introns, are rapidly degraded by the nuclear exosome. In budding yeast, a number of these unwanted RNA transcripts, including spliced-out introns, are first recognized by the nuclear exosome cofactor Trf4/5p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex before subsequent nuclear-exosome-mediated degradation. However, it remains unclear when spliced-out introns are recognized by TRAMP, and whether TRAMP may have any potential roles in pre-mRNA splicing. Here, we demonstrated that TRAMP is cotranscriptionally recruited to nascent RNA transcripts, with particular enrichment at intronic sequences. Deletion of TRAMP components led to further accumulation of unspliced pre-mRNAs even in a yeast strain defective in nuclear exosome activity, suggesting a novel stimulatory role of TRAMP in splicing. We also uncovered new genetic and physical interactions between TRAMP and several splicing factors, and further showed that TRAMP is required for optimal recruitment of the splicing factor Msl5p. Our study provided the first evidence that TRAMP facilitates pre-mRNA splicing, and we interpreted this as a fail-safe mechanism to ensure the cotranscriptional recruitment of TRAMP before or during splicing to prepare for the subsequent targeting of spliced-out introns to rapid degradation by the nuclear exosome.
Collapse
Affiliation(s)
- Ka-Yiu Edwin Kong
- Department of Biochemistry, Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong and Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Stuparevic I, Mosrin-Huaman C, Hervouet-Coste N, Remenaric M, Rahmouni AR. Cotranscriptional recruitment of RNA exosome cofactors Rrp47p and Mpp6p and two distinct Trf-Air-Mtr4 polyadenylation (TRAMP) complexes assists the exonuclease Rrp6p in the targeting and degradation of an aberrant messenger ribonucleoprotein particle (mRNP) in yeast. J Biol Chem 2013; 288:31816-29. [PMID: 24047896 DOI: 10.1074/jbc.m113.491290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The cotranscriptional mRNA processing and packaging reactions that lead to the formation of export-competent messenger ribonucleoprotein particles (mRNPs) are under the surveillance of quality control steps. Aberrant mRNPs resulting from faulty events are retained in the nucleus with ensuing elimination of their mRNA component. The molecular mechanisms by which the surveillance system recognizes defective mRNPs and stimulates their destruction by the RNA degradation machinery are still not completely elucidated. Using an experimental approach in which mRNP formation in yeast is disturbed by the action of the bacterial Rho helicase, we have shown previously that the targeting of Rho-induced aberrant mRNPs is mediated by Rrp6p, which is recruited cotranscriptionally in association with Nrd1p following Rho action. Here we investigated the specific involvement in this quality control process of different cofactors associated with the nuclear RNA degradation machinery. We show that, in addition to the main hydrolytic action of the exonuclease Rrp6p, the cofactors Rrp47p, Mpp6p as well as the Trf-Air-Mtr4 polyadenylation (TRAMP) components Trf4p, Trf5p, and Air2p contribute significantly by stimulating the degradation process upon their cotranscriptional recruitment. Trf4p and Trf5p are apparently recruited in two distinct TRAMP complexes that both contain Air2p as component. Surprisingly, Rrp47p appears to play an important role in mutual protein stabilization with Rrp6p, which highlights a close association between the two partners. Together, our results provide an integrated view of how different cofactors of the RNA degradation machinery cooperate to target and eliminate aberrant mRNPs.
Collapse
Affiliation(s)
- Igor Stuparevic
- From the Centre de Biophysique Moléculaire, Unité Propre de Recherche (UPR) 4301 du CNRS, rue Charles Sadron, 45071 Orléans, France
| | | | | | | | | |
Collapse
|
41
|
Wichtowska D, Turowski TW, Boguta M. An interplay between transcription, processing, and degradation determines tRNA levels in yeast. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:709-22. [PMID: 24039171 DOI: 10.1002/wrna.1190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/06/2022]
Abstract
tRNA biogenesis in yeast involves the synthesis of the initial transcript by RNA polymerase III followed by processing and controlled degradation in both the nucleus and the cytoplasm. A vast landscape of regulatory elements controlling tRNA stability in yeast has emerged from recent studies. Diverse pathways of tRNA maturation generate multiple stable and unstable intermediates. A significant impact on tRNA stability is exerted by a variety of nucleotide modifications. Pre-tRNAs are targets of exosome-dependent surveillance in the nucleus. Some tRNAs that are hypomodified or bear specific destabilizing mutations are directed to the rapid tRNA decay pathway leading to 5'→3' exonucleolytic degradation by Rat1 and Xrn1. tRNA molecules are selectively marked for degradation by a double CCA at their 3' ends. In addition, under different stress conditions, tRNA half-molecules can be generated by independent endonucleolytic cleavage events. Recent studies reveal unexpected relationships between the subsequent steps of tRNA biosynthesis and the mechanisms controlling its quality and turnover.
Collapse
Affiliation(s)
- Dominika Wichtowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
42
|
Schneider C, Tollervey D. Threading the barrel of the RNA exosome. Trends Biochem Sci 2013; 38:485-93. [PMID: 23910895 PMCID: PMC3838930 DOI: 10.1016/j.tibs.2013.06.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022]
Abstract
A wide range of in vivo targets for the exosome complex has been established. RNA polymerase III transcripts have emerged as major substrates. The human nucleus has spatially localized forms of the exosome, with matching cofactors. Structural analyses reveal a highly conserved RNA path through the eukaryotic exosome.
In eukaryotes, the exosome complex degrades RNA backbones and plays key roles in RNA processing and surveillance. It was predicted that RNA substrates are threaded through a central channel. This pathway is conserved between eukaryotic and archaeal complexes, even though nuclease activity was lost from the nine-subunit eukaryotic core (EXO-9) and transferred to associated proteins. The exosome cooperates with nuclear and cytoplasmic cofactors, including RNA helicases Mtr4 and Ski2, respectively. Structures of an RNA-bound exosome and both helicases revealed how substrates are channeled through EXO-9 to the associated nuclease Rrp44. Recent high-throughput analyses provided fresh insights relating exosome structure to its diverse in vivo functions. They also revealed surprisingly high degradation rates for newly synthesized RNAs, particularly RNA polymerase III transcripts.
Collapse
Affiliation(s)
- Claudia Schneider
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
43
|
Hesselberth JR. Lives that introns lead after splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:677-91. [DOI: 10.1002/wrna.1187] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Jay R. Hesselberth
- Department of Biochemistry and Molecular Genetics; University of Colorado Anschutz Medical School; Aurora CO USA
| |
Collapse
|
44
|
|
45
|
Gavaldá S, Gallardo M, Luna R, Aguilera A. R-loop mediated transcription-associated recombination in trf4Δ mutants reveals new links between RNA surveillance and genome integrity. PLoS One 2013; 8:e65541. [PMID: 23762389 PMCID: PMC3676323 DOI: 10.1371/journal.pone.0065541] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/25/2013] [Indexed: 01/13/2023] Open
Abstract
To get further insight into the factors involved in the maintenance of genome integrity we performed a screening of Saccharomyces cerevisiae deletion strains inducing hyperrecombination. We have identified trf4, a gene encoding a non-canonical polyA-polymerase involved in RNA surveillance, as a factor that prevents recombination between DNA repeats. We show that trf4Δ confers a transcription-associated recombination phenotype that is mediated by the nascent mRNA. In addition, trf4Δ also leads to an increase in the mutation frequency. Both genetic instability phenotypes can be suppressed by overexpression of RNase H and are exacerbated by overexpression of the human cytidine deaminase AID. These results suggest that in the absence of Trf4 R-loops accumulate co-transcriptionally increasing the recombination and mutation frequencies. Altogether our data indicate that Trf4 is necessary for both mRNA surveillance and maintenance of genome integrity, serving as a link between RNA and DNA metabolism in S. cerevisiae.
Collapse
Affiliation(s)
- Sandra Gavaldá
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | | | - Rosa Luna
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|
46
|
Emerging roles for ribonucleoprotein modification and remodeling in controlling RNA fate. Trends Cell Biol 2013; 23:504-10. [PMID: 23756094 DOI: 10.1016/j.tcb.2013.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/26/2022]
Abstract
In the cell, mRNAs and non-coding RNAs exist in association with proteins to form ribonucleoprotein (RNP) complexes. Regulation of RNP stability and function is achieved by alterations to the RNP through poorly understood mechanisms into which recent studies have now begun to provide insight. This emerging body of work points to chemical modification of RNPs at the RNA or protein level and ATP-dependent RNP remodeling by RNA helicases/RNA-dependent ATPases as central events that dictate RNA fate. Some RNP modifications serve as tags for recruitment of regulatory proteins, with RNP modifiers and recruited proteins analogous to the writers and readers of chromatin modification, respectively. This review highlights examples in which RNP modification and ATP-dependent remodeling play key roles in the control of eukaryotic RNA fate, suggesting that we are only at the beginning of uncovering the multitude of ways in which RNP modification and remodeling impact RNA regulation.
Collapse
|
47
|
Zhuang Y, Zhang H, Lin S. Polyadenylation of 18S rRNA in algae(1). JOURNAL OF PHYCOLOGY 2013; 49:570-579. [PMID: 27007045 DOI: 10.1111/jpy.12068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/23/2012] [Indexed: 06/05/2023]
Abstract
Polyadenylation is best known for occurring to mRNA of eukaryotes transcribed by RNA polymerase II to stabilize mRNA molecules and promote their translation. rRNAs transcribed by RNA polymerase I or III are typically believed not to be polyadenylated. However, there is increasing evidence that polyadenylation occurs to nucleus-encoded rRNAs as part of the RNA degradation pathway. To examine whether the same polyadenylation-assisted degradation pathway occurs in algae, we surveyed representative species of algae including diatoms, chlorophytes, dinoflagellates and pelagophytes using oligo (dT)-primed reversed transcription PCR (RT-PCR). In all the algal species examined, truncated 18S rRNA or its precursor molecules with homo- or hetero-polymeric poly(A) tails were detected. Mining existing algal expressed sequence tag (EST) data revealed polyadenylated truncated 18S rRNA in four additional phyla of algae. rRNA polyadenylation occurred at various internal positions along the 18S rRNA and its precursor sequences. Moreover, putative homologs of noncanonical poly(A) polymerase (ncPAP) Trf4p, which is responsible for polyadenylating nuclear-encoded RNA and targeting it for degradation, were detected from the genomes and transcriptomes of five phyla of algae. Our results suggest that polyadenylation-assisted RNA degradation mechanism widely exists in algae, particularly for the nucleus-encoded rRNA and its precursors.
Collapse
Affiliation(s)
- Yunyun Zhuang
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
- Marine Biodiversity and Global Change Research Center and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
- Marine Biodiversity and Global Change Research Center and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
48
|
Porrua O, Libri D. RNA quality control in the nucleus: the Angels' share of RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:604-11. [PMID: 23474120 DOI: 10.1016/j.bbagrm.2013.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/03/2023]
Abstract
Biological processes are not exempt from errors and RNA production is not an exception to this rule. Errors can arise stochastically or be genetically fixed and systematically appear in the biochemical or cellular phenotype. In any case, quality control mechanisms are essential to minimize the potentially toxic effects of faulty RNA production or processing. Although many RNA molecules express their functional potential in the cytoplasm, as messengers, adaptors or operators of gene expression pathways, a large share of quality control occurs in the nucleus. This is likely because the early timing of occurrence and the subcellular partition make the control more efficient, at least as long as the defects can be detected ahead of the cytoplasmic phase of the RNA life cycle. One crucial point in discussing RNA quality control resides in its definition. A stringent take would imply the existence of specific mechanisms to recognize the error and the consequent repair or elimination of the faulty molecule. One example in the RNA field could be the recognition of a premature stop codon by the nonsense-mediated decay pathway, discussed elsewhere in this issue. A more relaxed view posits that the thermodynamic or kinetic aftermath of a mistake (e.g. a blockage or a delay in processing) by itself constitutes the recognition event, which triggers downstream quality control. Because whether inappropriate molecules are specifically recognized remains unclear in many cases, we will adopt the more relaxed definition of RNA quality control. RNA repair remains episodic and the degradative elimination of crippled molecules appears to be the rule. Therefore we will briefly describe the actors of RNA degradation in the nucleus. Detailed analyses of the mechanism of action of these enzymes can be found in several excellent and recent reviews, including in this issue. Finally, we will restrict our analysis to the yeast model, which is used in the majority of RNA quality control studies, but examples exist in the literature indicating that many of the principles of RNA quality control described in yeast also apply to other eukaryotes. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Odil Porrua
- Centre de Génétique Moléculaire, CNRS, 91190 Gif sur Yvette, France
| | | |
Collapse
|
49
|
Schmidt K, Butler JS. Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:217-31. [PMID: 23417976 DOI: 10.1002/wrna.1155] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The advent of high-throughput sequencing technologies has revealed that pervasive transcription generates RNAs from nearly all regions of eukaryotic genomes. Normally, these transcripts undergo rapid degradation by a nuclear RNA surveillance system primarily featuring the RNA exosome. This multimeric protein complex plays a critical role in the efficient turnover and processing of a vast array of RNAs in the nucleus. Despite its initial discovery over a decade ago, important questions remain concerning the mechanisms that recruit and activate the nuclear exosome. Specificity and modulation of exosome activity requires additional protein cofactors, including the conserved TRAMP polyadenylation complex. Recent studies suggest that helicase and RNA-binding subunits of TRAMP direct RNA substrates for polyadenylation, which enhances their degradation by Dis3/Rrp44 and Rrp6, the two exosome-associated ribonucleases. These findings indicate that the exosome and TRAMP have evolved highly flexible functions that allow recognition of a wide range of RNA substrates. This flexibility provides the nuclear RNA surveillance system with the ability to regulate the levels of a broad range of coding and noncoding RNAs, which results in profound effects on gene expression, cellular development, gene silencing, and heterochromatin formation. This review summarizes recent findings on the nuclear RNA surveillance complexes, and speculates upon possible mechanisms for TRAMP-mediated substrate recognition and exosome activation.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
50
|
Scott DD, Norbury CJ. RNA decay via 3' uridylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:654-65. [PMID: 23385389 DOI: 10.1016/j.bbagrm.2013.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
The post-transcriptional addition of non-templated nucleotides to the 3' ends of RNA molecules can have a profound impact on their stability and biological function. Evidence accumulated over the past few decades has identified roles for polyadenylation in RNA stabilisation, degradation and, in the case of eukaryotic mRNAs, translational competence. By contrast, the biological significance of RNA 3' modification by uridylation has only recently started to become apparent. The evolutionary origin of eukaryotic RNA terminal uridyltransferases can be traced to an ancestral poly(A) polymerase. Here we review what is currently known about the biological roles of these enzymes, the ways in which their activity is regulated and the consequences of this covalent modification for the target RNA molecule, with a focus on those instances where uridylation has been found to contribute to RNA degradation. Roles for uridylation have been identified in the turnover of mRNAs, pre-microRNAs, piwi-interacting RNAs and the products of microRNA-directed mRNA cleavage; many mature microRNAs are also modified by uridylation, though the consequences in this case are currently less well understood. In the case of piwi-interacting RNAs, modification of the 3'-terminal nucleotide by the HEN1 methyltransferase blocks uridylation and so stabilises the small RNA. The extent to which other uridylation-dependent mechanisms of RNA decay are similarly regulated awaits further investigation. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Daniel D Scott
- University of Oxford, Sir William Dunn School of Pathology, Oxford, UK.
| | | |
Collapse
|