1
|
Delgado S, Armijo Á, Bravo V, Orellana O, Salazar JC, Katz A. Impact of the chemical modification of tRNAs anticodon loop on the variability and evolution of codon usage in proteobacteria. Front Microbiol 2024; 15:1412318. [PMID: 39161601 PMCID: PMC11332805 DOI: 10.3389/fmicb.2024.1412318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 08/21/2024] Open
Abstract
Despite the highly conserved nature of the genetic code, the frequency of usage of each codon can vary significantly. The evolution of codon usage is shaped by two main evolutionary forces: mutational bias and selection pressures. These pressures can be driven by environmental factors, but also by the need for efficient translation, which depends heavily on the concentration of transfer RNAs (tRNAs) within the cell. The data presented here supports the proposal that tRNA modifications play a key role in shaping the overall preference of codon usage in proteobacteria. Interestingly, some codons, such as CGA and AGG (encoding arginine), exhibit a surprisingly low level of variation in their frequency of usage, even across genomes with differing GC content. These findings suggest that the evolution of GC content in proteobacterial genomes might be primarily driven by changes in the usage of a specific subset of codons, whose usage is itself influenced by tRNA modifications.
Collapse
Affiliation(s)
| | - Álvaro Armijo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Verónica Bravo
- Programa Centro de Investigacion Biomédica y Aplicada, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Johnston IG. The Nitroplast and Its Relatives Support a Universal Model of Features Predicting Gene Retention in Endosymbiont and Organelle Genomes. Genome Biol Evol 2024; 16:evae132. [PMID: 38900924 PMCID: PMC11221429 DOI: 10.1093/gbe/evae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
Endosymbiotic relationships have shaped eukaryotic life. As endosymbionts coevolve with their host, toward full integration as organelles, their genomes tend to shrink, with genes being completely lost or transferred to the host nucleus. Modern endosymbionts and organelles show diverse patterns of gene retention, and why some genes and not others are retained in these genomes is not fully understood. Recent bioinformatic study has explored hypothesized influences on these evolutionary processes, finding that hydrophobicity and amino acid chemistry predict patterns of gene retention, both in organelles across eukaryotes and in less mature endosymbiotic relationships. The exciting ongoing elucidation of endosymbiotic relationships affords an independent set of instances to test this theory. Here, we compare the properties of retained genes in the nitroplast, recently reported to be an integrated organelle, two related cyanobacterial endosymbionts that form "spheroid bodies" in their host cells, and a range of other endosymbionts, with free-living relatives of each. We find that in each case, the symbiont's genome encodes proteins with higher hydrophobicity and lower amino pKa than their free-living relative, supporting the data-derived model predicting the retention propensity of genes across endosymbiont and organelle genomes.
Collapse
Affiliation(s)
- Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Chen XR, Cui YZ, Li BZ, Yuan YJ. Genome engineering on size reduction and complexity simplification: A review. J Adv Res 2024; 60:159-171. [PMID: 37442424 PMCID: PMC11156615 DOI: 10.1016/j.jare.2023.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Genome simplification is an important topic in the field of life sciences that has attracted attention from its conception to the present day. It can help uncover the essential components of the genome and, in turn, shed light on the underlying operating principles of complex biological systems. This has made it a central focus of both basic and applied research in the life sciences. With the recent advancements in related technologies and our increasing knowledge of the genome, now is an opportune time to delve into this topic. AIM OF REVIEW Our review investigates the progress of genome simplification from two perspectives: genome size reduction and complexity simplification. In addition, we provide insights into the future development trends of genome simplification. KEY SCIENTIFIC CONCEPTS OF REVIEW Reducing genome size requires eliminating non-essential elements as much as possible. This process has been facilitated by advances in genome manipulation and synthesis techniques. However, we still need a better and clearer understanding of living systems to reduce genome complexity. As there is a lack of quantitative and clearly defined standards for this task, we have opted to approach the topic from various perspectives and present our findings accordingly.
Collapse
Affiliation(s)
- Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
McCutcheon JP, Garber AI, Spencer N, Warren JM. How do bacterial endosymbionts work with so few genes? PLoS Biol 2024; 22:e3002577. [PMID: 38626194 PMCID: PMC11020763 DOI: 10.1371/journal.pbio.3002577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.
Collapse
Affiliation(s)
- John P. McCutcheon
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Arkadiy I. Garber
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Noah Spencer
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Jessica M. Warren
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
5
|
Zhang W, Wang J, Huang Z, He X, Wei C. Symbionts in Hodgkinia-free cicadas and their implications for co-evolution between endosymbionts and host insects. Appl Environ Microbiol 2023; 89:e0137323. [PMID: 38047686 PMCID: PMC10734483 DOI: 10.1128/aem.01373-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/21/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Obligate symbionts in sap-sucking hemipterans are harbored in either the same or different organs, which provide a unique perspective for uncovering complicated insect-microbe symbiosis. Here, we investigated the distribution of symbionts in adults of 10 Hodgkinia-free cicada species of 2 tribes (Sonatini and Polyneurini) and the co-phylogeny between 65 cicada species and related symbionts (Sulcia and YLSs). We revealed that YLSs commonly colonize the bacteriome sheath besides the fat bodies in these two tribes, which is different with that in most other Hodgkinia-free cicadas. Co-phylogeny analyses between cicadas and symbionts suggest that genetic variation of Sulcia occurred in Sonatini and some other cicada lineages and more independent replacement events in the loss of Hodgkinia/acquisition of YLS in Cicadidae. Our results provide new information on the complex relationships between auchenorrhynchans and related symbionts.
Collapse
Affiliation(s)
- Wenzhe Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiali Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhi Huang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaohua He
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Manzano-Marín A, Kvist S, Oceguera-Figueroa A. Evolution of an Alternative Genetic Code in the Providencia Symbiont of the Hematophagous Leech Haementeria acuecueyetzin. Genome Biol Evol 2023; 15:evad164. [PMID: 37690114 PMCID: PMC10540940 DOI: 10.1093/gbe/evad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Strict blood-feeding animals are confronted with a strong B-vitamin deficiency. Blood-feeding leeches from the Glossiphoniidae family, similarly to hematophagous insects, have evolved specialized organs called bacteriomes to harbor symbiotic bacteria. Leeches of the Haementeria genus have two pairs of globular bacteriomes attached to the esophagus which house intracellular "Candidatus Providencia siddallii" bacteria. Previous work analyzing a draft genome of the Providencia symbiont of the Mexican leech Haementeria officinalis showed that, in this species, the bacteria hold a reduced genome capable of synthesizing B vitamins. In this work, we aimed to expand our knowledge on the diversity and evolution of Providencia symbionts of Haementeria. For this purpose, we sequenced the symbiont genomes of three selected leech species. We found that all genomes are highly syntenic and have kept a stable genetic repertoire, mirroring ancient insect endosymbionts. Additionally, we found B-vitamin pathways to be conserved among these symbionts, pointing to a conserved symbiotic role. Lastly and most notably, we found that the symbiont of H. acuecueyetzin has evolved an alternative genetic code, affecting a portion of its proteome and showing evidence of a lineage-specific and likely intermediate stage of genetic code reassignment.
Collapse
Affiliation(s)
- Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sebastian Kvist
- Department of Natural History, Royal Ontario Museum, Toronto, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Present address: Swedish Museum of Natural History, Stockholm, Sweden
| | - Alejandro Oceguera-Figueroa
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autonoma de México, Ciudad de México, México
| |
Collapse
|
7
|
Cornwallis CK, van 't Padje A, Ellers J, Klein M, Jackson R, Kiers ET, West SA, Henry LM. Symbioses shape feeding niches and diversification across insects. Nat Ecol Evol 2023; 7:1022-1044. [PMID: 37202501 PMCID: PMC10333129 DOI: 10.1038/s41559-023-02058-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/20/2023]
Abstract
For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood. Across diets, the only limiting nutrient consistently associated with the evolution of obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular species proliferation. In other niches, such as strict blood feeding, diversification has been severely constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but the consequences for insect diversification depend on the feeding niche that is invaded.
Collapse
Affiliation(s)
| | - Anouk van 't Padje
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Malin Klein
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
8
|
Wang YH, Luan YX, Luo JY, Men Y, Engel MS, Damgaard J, Khila A, Chen PP, Figueiredo Moreira FF, Rafael JA, Xie Q. 300 Million years of coral treaders (Insecta: Heteroptera: Hermatobatidae) back to the ocean in the phylogenetic context of Arthropoda. Proc Biol Sci 2023; 290:20230855. [PMID: 37357866 PMCID: PMC10291715 DOI: 10.1098/rspb.2023.0855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Among hundreds of insect families, Hermatobatidae (commonly known as coral treaders) is one of the most unique. They are small, wingless predaceous bugs in the suborder Heteroptera. Adults are almost black in colour, measuring about 5 mm in body length and 3 mm in width. Thirteen species are known from tropical coral reefs or rocky shores, but their origin and evolutionary adaptation to their unusual marine habitat were unexplored. We report here the genome and metagenome of Hermatobates lingyangjiaoensis, hitherto known only from its type locality in the South China Sea. We further reconstructed the evolutionary history and origin of these marine bugs in the broader context of Arthropoda. The dated phylogeny indicates that Hexapoda diverged from their marine sister groups approximately 498 Ma and that Hermatobatidae originated 192 Ma, indicating that they returned to an oceanic life some 300 Myr after their ancestors became terrestrial. Their origin is consistent with the recovery of tropical reef ecosystems after the end-Triassic mass extinction, which might have provided new and open niches for them to occupy and thrive. Our analyses also revealed that both the genome changes and the symbiotic bacteria might have contributed to adaptations necessary for life in the sea.
Collapse
Affiliation(s)
- Yan-hui Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, Guangdong, China
| | - Yun-xia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, 55 West of Zhongshan Avenue, Guangzhou 510631, China
| | - Jiu-yang Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, Guangdong, China
| | - Yu Men
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, Guangdong, China
| | - Michael S. Engel
- Division of Entomology, Natural History Museum, and Department of Ecology and Evolutionary Biology, University of Kansa, 1501 Crestline Drive – Suite 140, Lawrence, KS 66045, USA
| | - Jakob Damgaard
- Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ping-ping Chen
- Netherlands Centre of Biodiversity Naturalis, 2300 RA, Leiden, The Netherlands
| | | | - José A. Rafael
- Instituto Nacional de Pesquisas da Amazônia, INPA, Caixa Postal 478, 69011-970 Manaus, Amazonas, Brazil
| | - Qiang Xie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, Guangdong, China
| |
Collapse
|
9
|
Spencer N, Łukasik P, Meyer M, Veloso C, McCutcheon JP. No Transcriptional Compensation for Extreme Gene Dosage Imbalance in Fragmented Bacterial Endosymbionts of Cicadas. Genome Biol Evol 2023; 15:evad100. [PMID: 37267326 PMCID: PMC10287537 DOI: 10.1093/gbe/evad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria that form long-term intracellular associations with host cells lose many genes, a process that often results in tiny, gene-dense, and stable genomes. Paradoxically, the some of the same evolutionary processes that drive genome reduction and simplification may also cause genome expansion and complexification. A bacterial endosymbiont of cicadas, Hodgkinia cicadicola, exemplifies this paradox. In many cicada species, a single Hodgkinia lineage with a tiny, gene-dense genome has split into several interdependent cell and genome lineages. Each new Hodgkinia lineage encodes a unique subset of the ancestral unsplit genome in a complementary way, such that the collective gene contents of all lineages match the total found in the ancestral single genome. This splitting creates genetically distinct Hodgkinia cells that must function together to carry out basic cellular processes. It also creates a gene dosage problem where some genes are encoded by only a small fraction of cells while others are much more abundant. Here, by sequencing DNA and RNA of Hodgkinia from different cicada species with different amounts of splitting-along with its structurally stable, unsplit partner endosymbiont Sulcia muelleri-we show that Hodgkinia does not transcriptionally compensate to rescue the wildly unbalanced gene and genome ratios that result from lineage splitting. We also find that Hodgkinia has a reduced capacity for basic transcriptional control independent of the splitting process. Our findings reveal another layer of degeneration further pushing the limits of canonical molecular and cell biology in Hodgkinia and may partially explain its propensity to go extinct through symbiont replacement.
Collapse
Affiliation(s)
- Noah Spencer
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
10
|
Nencioni A, Pastorelli R, Bigiotti G, Cucu MA, Sacchetti P. Diversity of the Bacterial Community Associated with Hindgut, Malpighian Tubules, and Foam of Nymphs of Two Spittlebug Species (Hemiptera: Aphrophoridae). Microorganisms 2023; 11:microorganisms11020466. [PMID: 36838431 PMCID: PMC9967529 DOI: 10.3390/microorganisms11020466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spittlebugs are xylem-sap feeding insects that can exploit a nutrient-poor diet, thanks to mutualistic endosymbionts residing in various organs of their body. Although obligate symbioses in some spittlebug species have been quite well studied, little is known about their facultative endosymbionts, especially those inhabiting the gut. Recently, the role played by spittlebugs as vectors of the phytopathogenetic bacterium Xylella fastidiosa aroused attention to this insect group, boosting investigations aimed at developing effective yet sustainable control strategies. Since spittlebug nymphs are currently the main target of applied control, the composition of gut bacterial community of the juveniles of Philaenus spumarius and Lepyronia coleoptrata was investigated using molecular techniques. Moreover, bacteria associated with their froth, sampled from different host plants, were studied. Results revealed that Sodalis and Rickettsia bacteria are the predominant taxa in the gut of P. spumarius and L. coleoptrata nymphs, respectively, while Rhodococcus was found in both species. Our investigations also highlighted the presence of recurring bacteria in the froth. Furthermore, the foam hosted several bacterial species depending on the host plant, the insect species, or on soil contaminant. Overall, first findings showed that nymphs harbor a large and diverse bacterial community in their gut and froth, providing new accounts to the knowledge on facultative symbionts of spittlebugs.
Collapse
Affiliation(s)
- Anita Nencioni
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Roberta Pastorelli
- Research Center for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-AA), Via di Lanciola 12/A, 50125 Florence, Italy
| | - Gaia Bigiotti
- Research Center for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-AA), Via di Lanciola 12/A, 50125 Florence, Italy
| | - Maria Alexandra Cucu
- Research Center for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-AA), Via di Lanciola 12/A, 50125 Florence, Italy
| | - Patrizia Sacchetti
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
- Correspondence: ; Tel.: +39-055-2755554
| |
Collapse
|
11
|
Pawlak K, Błażej P, Mackiewicz D, Mackiewicz P. The Influence of the Selection at the Amino Acid Level on Synonymous Codon Usage from the Viewpoint of Alternative Genetic Codes. Int J Mol Sci 2023; 24:ijms24021185. [PMID: 36674703 PMCID: PMC9866869 DOI: 10.3390/ijms24021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Synonymous codon usage can be influenced by mutations and/or selection, e.g., for speed of protein translation and correct folding. However, this codon bias can also be affected by a general selection at the amino acid level due to differences in the acceptance of the loss and generation of these codons. To assess the importance of this effect, we constructed a mutation-selection model model, in which we generated almost 90,000 stationary nucleotide distributions produced by mutational processes and applied a selection based on differences in physicochemical properties of amino acids. Under these conditions, we calculated the usage of fourfold degenerated (4FD) codons and compared it with the usage characteristic of the pure mutations. We considered both the standard genetic code (SGC) and alternative genetic codes (AGCs). The analyses showed that a majority of AGCs produced a greater 4FD codon bias than the SGC. The mutations producing more thymine or adenine than guanine and cytosine increased the differences in usage. On the other hand, the mutational pressures generating a lot of cytosine or guanine with a low content of adenine and thymine decreased this bias because the nucleotide content of most 4FD codons stayed in the compositional equilibrium with these pressures. The comparison of the theoretical results with those for real protein coding sequences showed that the influence of selection at the amino acid level on the synonymous codon usage cannot be neglected. The analyses indicate that the effect of amino acid selection cannot be disregarded and that it can interfere with other selection factors influencing codon usage, especially in AT-rich genomes, in which AGCs are usually used.
Collapse
|
12
|
Barceló-Antemate D, Fontove-Herrera F, Santos W, Merino E. The effect of the genomic GC content bias of prokaryotic organisms on the secondary structures of their proteins. PLoS One 2023; 18:e0285201. [PMID: 37141209 PMCID: PMC10159118 DOI: 10.1371/journal.pone.0285201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
One of the main characteristics of prokaryotic genomes is the ratio in which guanine-cytosine bases are used in their DNA sequences. This is known as the genomic GC content and varies widely, from values below 20% to values greater than 74%. It has been demonstrated that the genomic GC content varies in accordance with the phylogenetic distribution of organisms and influences the amino acid composition of their corresponding proteomes. This bias is particularly important for amino acids that are coded by GC content-rich codons such as alanine, glycine, and proline, as well as amino acids that are coded by AT-rich codons, such as lysine, asparagine, and isoleucine. In our study, we extend these results by considering the effect of the genomic GC content on the secondary structure of proteins. On a set of 192 representative prokaryotic genomes and proteome sequences, we identified through a bioinformatic study that the composition of the secondary structures of the proteomes varies in relation to the genomic GC content; random coils increase as the genomic GC content increases, while alpha-helices and beta-sheets present an inverse relationship. In addition, we found that the tendency of an amino acid to form part of a secondary structure of proteins is not ubiquitous, as previously expected, but varies according to the genomic GC content. Finally, we discovered that for some specific groups of orthologous proteins, the GC content of genes biases the composition of secondary structures of the proteins for which they code.
Collapse
Affiliation(s)
- Diana Barceló-Antemate
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, México
| | | | - Walter Santos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
13
|
Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids. Sci Rep 2022; 12:20559. [PMID: 36446872 PMCID: PMC9709078 DOI: 10.1038/s41598-022-24723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Host-microbe interactions are intimately linked to eukaryotic evolution, particularly in sap-sucking insects that often rely on obligate microbial symbionts for nutrient provisioning. Cicadas (Cicadidae: Auchenorrhyncha) specialize on xylem fluid and derive many essential amino acids and vitamins from intracellular bacteria or fungi (Hodgkinia, Sulcia, and Ophiocordyceps) that are propagated via transmission from mothers to offspring. Despite the beneficial role of these non-gut symbionts in nutrient provisioning, the role of beneficial microbiota within the gut remains unclear. Here, we investigate the relative abundance and impact of host phylogeny and ecology on gut microbial diversity in cicadas using 16S ribosomal RNA gene amplicon sequencing data from 197 wild-collected cicadas and new mitochondrial genomes across 38 New Zealand cicada species, including natural hybrids between one pair of two species. We find low abundance and a lack of phylogenetic structure and hybrid effects but a significant role of elevation in explaining variation in gut microbiota.
Collapse
|
14
|
Evolutionary inference across eukaryotes identifies universal features shaping organelle gene retention. Cell Syst 2022; 13:874-884.e5. [PMID: 36115336 DOI: 10.1016/j.cels.2022.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Mitochondria and plastids power complex life. Why some genes and not others are retained in their organelle DNA (oDNA) genomes remains a debated question. Here, we attempt to identify the properties of genes and associated underlying mechanisms that determine oDNA retention. We harness over 15k oDNA sequences and over 300 whole genome sequences across eukaryotes with tools from structural biology, bioinformatics, machine learning, and Bayesian model selection. Previously hypothesized features, including the hydrophobicity of a protein product, and less well-known features, including binding energy centrality within a protein complex, predict oDNA retention across eukaryotes, with additional influences of nucleic acid and amino acid biochemistry. Notably, the same features predict retention in both organelles, and retention models learned from one organelle type quantitatively predict retention in the other, supporting the universality of these features-which also distinguish gene profiles in more recent, independent endosymbiotic relationships. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
|
15
|
Peters SL, Borges AL, Giannone RJ, Morowitz MJ, Banfield JF, Hettich RL. Experimental validation that human microbiome phages use alternative genetic coding. Nat Commun 2022; 13:5710. [PMID: 36175428 PMCID: PMC9523058 DOI: 10.1038/s41467-022-32979-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
Previous bioinformatic analyses of metagenomic data have indicated that bacteriophages can use genetic codes different from those of their host bacteria. In particular, reassignment of stop codon TAG to glutamine (a variation known as 'genetic code 15') has been predicted. Here, we use LC-MS/MS-based metaproteomics of human fecal samples to provide experimental evidence of the use of genetic code 15 in two crAss-like phages. Furthermore, the proteomic data from several phage structural proteins supports the reassignment of the TAG stop codon to glutamine late in the phage infection cycle. Thus, our work experimentally validates the expression of genetic code 15 in human microbiome phages.
Collapse
Affiliation(s)
- Samantha L Peters
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | | | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
16
|
Vasquez YM, Bennett GM. A complex interplay of evolutionary forces continues to shape ancient co-occurring symbiont genomes. iScience 2022; 25:104786. [PMID: 35982793 PMCID: PMC9379567 DOI: 10.1016/j.isci.2022.104786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Many insects depend on ancient associations with intracellular bacteria for essential nutrition. The genomes of these bacteria are often highly reduced. Although drift is a major driver of symbiont evolution, other evolutionary forces continue to influence them. To understand how ongoing molecular evolution and gene loss shape symbiont genomes, we sequenced two of the most ancient symbionts known, Sulcia and Nasuia, from 20 Hawaiian Nesophrosyne leafhoppers. We leveraged the parallel divergence of Nesophrosyne lineages throughout Hawaii as a natural experimental framework. Sulcia and Nasuia experience ongoing-but divergent-gene loss, often in a convergent fashion. Although some genes are under relaxed selection, purifying and positive selection are also important drivers of genome evolution, particularly in maintaining certain nutritional and cellular functions. Our results further demonstrate that symbionts experience dramatically different evolutionary environments, as evidenced by the finding that Sulcia and Nasuia have one of the slowest and fastest rates of molecular evolution known.
Collapse
Affiliation(s)
- Yumary M. Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M. Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
17
|
Owen CL, Marshall DC, Wade EJ, Meister R, Goemans G, Kunte K, Moulds M, Hill K, Villet M, Pham TH, Kortyna M, Lemmon EM, Lemmon AR, Simon C. Detecting and removing sample contamination in phylogenomic data: an example and its implications for Cicadidae phylogeny (Insecta: Hemiptera). Syst Biol 2022; 71:1504-1523. [PMID: 35708660 DOI: 10.1093/sysbio/syac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Contamination of a genetic sample with DNA from one or more non-target species is a continuing concern of molecular phylogenetic studies, both Sanger sequencing studies and Next-Generation Sequencing (NGS) studies. We developed an automated pipeline for identifying and excluding likely cross-contaminated loci based on detection of bimodal distributions of patristic distances across gene trees. When the contamination occurs between samples within a dataset, comparisons between a contaminated sample and its contaminant taxon will yield bimodal distributions with one peak close to zero patristic distance. This new method does not rely on a priori knowledge of taxon relatedness nor does it determine the causes(s) of the contamination. Exclusion of putatively contaminated loci from a dataset generated for the insect family Cicadidae showed that these sequences were affecting some topological patterns and branch supports, although the effects were sometimes subtle, with some contamination-influenced relationships exhibiting strong bootstrap support. Long tip branches and outlier values for one anchored phylogenomic pipeline statistic (AvgNHomologs) were correlated with the presence of contamination. While the AHE markers used here, which target hemipteroid taxa, proved effective in resolving deep and shallow level Cicadidae relationships in aggregate, individual markers contained inadequate phylogenetic signal, in part probably due to short length. The cleaned dataset, consisting of 429 loci, from 90 genera representing 44 of 56 current Cicadidae tribes, supported three of the four sampled Cicadidae subfamilies in concatenated-matrix maximum likelihood (ML) and multispecies coalescent-based species tree analyses, with the fourth subfamily weakly supported in the ML trees. No well-supported patterns from previous family-level Sanger sequencing studies of Cicadidae phylogeny were contradicted. One taxon (Aragualna plenalinea) did not fall with its current subfamily in the genetic tree, and this genus and its tribe Aragualnini is reclassified to Tibicininae following morphological re-examination. Only subtle differences were observed in trees after removal of loci for which divergent base frequencies were detected. Greater success may be achieved by increased taxon sampling and developing a probe set targeting a more recent common ancestor and longer loci. Searches for contamination are an essential step in phylogenomic analyses of all kinds and our pipeline is an effective solution.
Collapse
Affiliation(s)
- Christopher L Owen
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - David C Marshall
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Elizabeth J Wade
- Dept. of Natural Science and Mathematics, Curry College, Milton, MA 02186, USA
| | - Russ Meister
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Geert Goemans
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Max Moulds
- Australian Museum Research Institute, 1 William Street, Sydney N.S.W, Australia. 2010
| | - Kathy Hill
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - M Villet
- Dept. of Biology, Rhodes University, Grahamstown 6140, South Africa
| | - Thai-Hong Pham
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hue, Vietnam.,Vietnam National Museum of Nature and Graduate School of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Michelle Kortyna
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University 400 Dirac Science Library, Tallahassee, FL 32306, USA
| | - Chris Simon
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
18
|
Modern on-site tool for monitoring contamination of halal meat with products from five non-halal animals using multiplex polymerase chain reaction coupled with DNA strip. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Simon C, Cooley JR, Karban R, Sota T. Advances in the Evolution and Ecology of 13- and 17-Year Periodical Cicadas. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:457-482. [PMID: 34623904 DOI: 10.1146/annurev-ento-072121-061108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apart from model organisms, 13- and 17-year periodical cicadas (Hemiptera: Cicadidae: Magicicada) are among the most studied insects in evolution and ecology. They are attractive subjects because they predictably emerge in large numbers; have a complex biogeography shaped by both spatial and temporal isolation; and include three largely sympatric, parallel species groups that are, in a sense, evolutionary replicates. Magicicada are also relatively easy to capture and manipulate, and their spectacular, synchronized mass emergences facilitate outreach and citizen science opportunities. Since the last major review, studies of Magicicada have revealed insights into reproductive character displacement and the nature of species boundaries, provided additional examples of allochronic speciation, found evidence for repeated and parallel (but noncontemporaneous) evolution of 13- and 17-year life cycles, quantified the amount and direction of gene flow through time, revealed phylogeographic patterning resulting from paleoclimate change, examined the timing of juvenile development, and created hypotheses for the evolution of life-cycle control and the future effects of climate changeon Magicicada life cycles. New ecological studies have supported and questioned the role of prime numbers in Magicicada ecology and evolution, found bidirectional shifts in population size over generations, quantified the contribution of Magicicada to nutrient flow in forest ecosystems, and examined behavioral and biochemical interactions between Magicicada and their fungal parasites and bacterial endosymbionts.
Collapse
Affiliation(s)
- Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
| | - John R Cooley
- Department of Ecology and Evolutionary Biology, University of Connecticut, Hartford, Connecticut 06103, USA;
| | - Richard Karban
- Department of Entomology and Nematology, University of California, Davis, California 95616, USA;
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan;
| |
Collapse
|
20
|
Wang D, Huang Z, Billen J, Zhang G, He H, Wei C. Complex co-evolutionary relationships between cicadas and their symbionts. Environ Microbiol 2021; 24:195-211. [PMID: 34927333 DOI: 10.1111/1462-2920.15829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Previous evidence suggests that cicadas lacking Hodgkinia may harbour the yeast-like fungal symbionts (YLS). Here, we reinforce an earlier conclusion that the pathogenic ancestor of YLS independently infected different cicada lineages instead of the common ancestor of Cicadidae. Five independent replacement events in the loss of Hodgkinia/acquisition of YLS and seven other replacement events of YLS (from an Ophiocordyceps fungus to another Ophiocordyceps fungus) are hypothesised to have occurred within the sampled cicada taxa. The divergence time of YLS lineages was later than that of corresponding cicada lineages. The rapid shift of diversification rates of YLS and related cicada-parasitizing Ophiocordyceps began at approximately 32.94 Ma, and the diversification rate reached the highest value at approximately 24.82 Ma, which corresponds to the cooling climate changes at the Eocene-Oligocene boundary and the Oligocene-Miocene transition respectively. Combined with related acquisition/replacement events of YLS occurred during the cooling-climate periods, we hypothesise that the cooling-climate changes impacted the interactions between cicadas and related Ophiocordyceps, which coupled with the unusual life cycle and the differentiation of cicadas may finally led to the diversification of YLS in Cicadidae. Our results contribute to a better understanding of the evolutionary transition of YLS from entomopathogenic fungi in insects.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Johan Billen
- Zoological Institute, University of Leuven, Naamsestraat 59, Leuven, B-3000, Belgium
| | - Guoyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
21
|
Shulgina Y, Eddy SR. A computational screen for alternative genetic codes in over 250,000 genomes. eLife 2021; 10:71402. [PMID: 34751130 PMCID: PMC8629427 DOI: 10.7554/elife.71402] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The genetic code has been proposed to be a ‘frozen accident,’ but the discovery of alternative genetic codes over the past four decades has shown that it can evolve to some degree. Since most examples were found anecdotally, it is difficult to draw general conclusions about the evolutionary trajectories of codon reassignment and why some codons are affected more frequently. To fill in the diversity of genetic codes, we developed Codetta, a computational method to predict the amino acid decoding of each codon from nucleotide sequence data. We surveyed the genetic code usage of over 250,000 bacterial and archaeal genome sequences in GenBank and discovered five new reassignments of arginine codons (AGG, CGA, and CGG), representing the first sense codon changes in bacteria. In a clade of uncultivated Bacilli, the reassignment of AGG to become the dominant methionine codon likely evolved by a change in the amino acid charging of an arginine tRNA. The reassignments of CGA and/or CGG were found in genomes with low GC content, an evolutionary force that likely helped drive these codons to low frequency and enable their reassignment. All life forms rely on a ‘code’ to translate their genetic information into proteins. This code relies on limited permutations of three nucleotides – the building blocks that form DNA and other types of genetic information. Each ‘triplet’ of nucleotides – or codon – encodes a specific amino acid, the basic component of proteins. Reading the sequence of codons in the right order will let the cell know which amino acid to assemble next on a growing protein. For instance, the codon CGG – formed of the nucleotides guanine (G) and cytosine (C) – codes for the amino acid arginine. From bacteria to humans, most life forms rely on the same genetic code. Yet certain organisms have evolved to use slightly different codes, where one or several codons have an altered meaning. To better understand how alternative genetic codes have evolved, Shulgina and Eddy set out to find more organisms featuring these altered codons, creating a new software called Codetta that can analyze the genome of a microorganism and predict the genetic code it uses. Codetta was then used to sift through the genetic information of 250,000 microorganisms. This was made possible by the sequencing, in recent years, of the genomes of hundreds of thousands of bacteria and other microorganisms – including many never studied before. These analyses revealed five groups of bacteria with alternative genetic codes, all of which had changes in the codons that code for arginine. Amongst these, four had genomes with a low proportion of guanine and cytosine nucleotides. This may have made some guanine and cytosine-rich arginine codons very rare in these organisms and, therefore, easier to be reassigned to encode another amino acid. The work by Shulgina and Eddy demonstrates that Codetta is a new, useful tool that scientists can use to understand how genetic codes evolve. In addition, it can also help to ensure the accuracy of widely used protein databases, which assume which genetic code organisms use to predict protein sequences from their genomes.
Collapse
Affiliation(s)
| | - Sean R Eddy
- Molecular & Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
22
|
Perlmutter JI, Meyers JE, Bordenstein SR. A single synonymous nucleotide change impacts the male-killing phenotype of prophage WO gene wmk. eLife 2021; 10:67686. [PMID: 34677126 PMCID: PMC8555981 DOI: 10.7554/elife.67686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Wolbachia are the most widespread bacterial endosymbionts in animals. Within arthropods, these maternally transmitted bacteria can selfishly hijack host reproductive processes to increase the relative fitness of their transmitting females. One such form of reproductive parasitism called male killing, or the selective killing of infected males, is recapitulated to degrees by transgenic expression of the prophage WO-mediated killing (wmk) gene. Here, we characterize the genotype-phenotype landscape of wmk-induced male killing in D. melanogaster using transgenic expression. While phylogenetically distant wmk homologs induce no sex-ratio bias, closely-related homologs exhibit complex phenotypes spanning no death, male death, or death of all hosts. We demonstrate that alternative start codons, synonymous codons, and notably a single synonymous nucleotide in wmk can ablate killing. These findings reveal previously unrecognized features of transgenic wmk-induced killing and establish new hypotheses for the impacts of post-transcriptional processes in male killing variation. We conclude that synonymous sequence changes are not necessarily silent in nested endosymbiotic interactions with life-or-death consequences.
Collapse
Affiliation(s)
- Jessamyn I Perlmutter
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Department of Molecular Biosciences, University of Kansas, Lawrence, United States.,Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, United States
| | - Jane E Meyers
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, United States
| |
Collapse
|
23
|
Wang D, Huang Z, Billen J, Zhang G, He H, Wei C. Structural diversity of symbionts and related cellular mechanisms underlying vertical symbiont transmission in cicadas. Environ Microbiol 2021; 23:6603-6621. [PMID: 34390615 DOI: 10.1111/1462-2920.15711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022]
Abstract
Many insects depend on symbiont(s) for survival. This is particularly the case for sap-feeding hemipteran insects. In this study, we revealed that symbionts harbored in cicadas are diverse and complex, and the yeast-like fungal symbionts (YLS) are present in most cicada species but Hodgkinia is absent. During vertical transmission, Sulcia became swollen with the outer membrane drastically changed, while Hodgkinia became shrunken and changed from irregular to roughly spherical. Sulcia and/or Hodgkinia were exocytosed from the bacteriocytes to the intercellular space of bacteriomes, where they gathered together and were extruded to hemolymph. YLS and associated facultative symbiont(s) in the fat bodies were released to the hemolymph based on bacteriocyte disintegration. The obligate symbiont(s) were endocytosed and exocytosed successively by the epithelial cells of the terminal oocyte, while associated facultative symbiont(s), and possibly also YLS, may take a 'free ride' on the transmission of obligate symbiont(s) to gain entry into the oocyte. Then, the intermixed symbionts formed a characteristic 'symbiont ball' in the oocyte. Our results suggest that YLS in cicadas represent a new example of a relatively early stage of symbiogenesis in insects, and contribute to a better understanding of the diversity and transmission mechanisms of symbionts in insects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Johan Billen
- Zoological Institute, University of Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Guoyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
24
|
Malinova I, Zupok A, Massouh A, Schöttler MA, Meyer EH, Yaneva-Roder L, Szymanski W, Rößner M, Ruf S, Bock R, Greiner S. Correction of frameshift mutations in the atpB gene by translational recoding in chloroplasts of Oenothera and tobacco. THE PLANT CELL 2021; 33:1682-1705. [PMID: 33561268 PMCID: PMC8254509 DOI: 10.1093/plcell/koab050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/02/2021] [Indexed: 05/10/2023]
Abstract
Translational recoding, also known as ribosomal frameshifting, is a process that causes ribosome slippage along the messenger RNA, thereby changing the amino acid sequence of the synthesized protein. Whether the chloroplast employs recoding is unknown. I-iota, a plastome mutant of Oenothera (evening primrose), carries a single adenine insertion in an oligoA stretch [11A] of the atpB coding region (encoding the β-subunit of the ATP synthase). The mutation is expected to cause synthesis of a truncated, nonfunctional protein. We report that a full-length AtpB protein is detectable in I-iota leaves, suggesting operation of a recoding mechanism. To characterize the phenomenon, we generated transplastomic tobacco lines in which the atpB reading frame was altered by insertions or deletions in the oligoA motif. We observed that insertion of two adenines was more efficiently corrected than insertion of a single adenine, or deletion of one or two adenines. We further show that homopolymeric composition of the oligoA stretch is essential for recoding, as an additional replacement of AAA lysine codon by AAG resulted in an albino phenotype. Our work provides evidence for the operation of translational recoding in chloroplasts. Recoding enables correction of frameshift mutations and can restore photoautotrophic growth in the presence of a mutation that otherwise would be lethal.
Collapse
Affiliation(s)
- Irina Malinova
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Arkadiusz Zupok
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Amid Massouh
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Etienne H Meyer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Liliya Yaneva-Roder
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Witold Szymanski
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Margit Rößner
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stephan Greiner
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
25
|
Williams TJ, Allen MA, Ivanova N, Huntemann M, Haque S, Hancock AM, Brazendale S, Cavicchioli R. Genome Analysis of a Verrucomicrobial Endosymbiont With a Tiny Genome Discovered in an Antarctic Lake. Front Microbiol 2021; 12:674758. [PMID: 34140946 PMCID: PMC8204192 DOI: 10.3389/fmicb.2021.674758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 01/25/2023] Open
Abstract
Organic Lake in Antarctica is a marine-derived, cold (−13∘C), stratified (oxic-anoxic), hypersaline (>200 gl–1) system with unusual chemistry (very high levels of dimethylsulfide) that supports the growth of phylogenetically and metabolically diverse microorganisms. Symbionts are not well characterized in Antarctica. However, unicellular eukaryotes are often present in Antarctic lakes and theoretically could harbor endosymbionts. Here, we describe Candidatus Organicella extenuata, a member of the Verrucomicrobia with a highly reduced genome, recovered as a metagenome-assembled genome with genetic code 4 (UGA-to-Trp recoding) from Organic Lake. It is closely related to Candidatus Pinguicocccus supinus (163,218 bp, 205 genes), a newly described cytoplasmic endosymbiont of the freshwater ciliate Euplotes vanleeuwenhoeki (Serra et al., 2020). At 158,228 bp (encoding 194 genes), the genome of Ca. Organicella extenuata is among the smallest known bacterial genomes and similar to the genome of Ca. Pinguicoccus supinus (163,218 bp, 205 genes). Ca. Organicella extenuata retains a capacity for replication, transcription, translation, and protein-folding while lacking any capacity for the biosynthesis of amino acids or vitamins. Notably, the endosymbiont retains a capacity for fatty acid synthesis (type II) and iron–sulfur (Fe-S) cluster assembly. Metagenomic analysis of 150 new metagenomes from Organic Lake and more than 70 other Antarctic aquatic locations revealed a strong correlation in abundance between Ca. Organicella extenuata and a novel ciliate of the genus Euplotes. Like Ca. Pinguicoccus supinus, we infer that Ca. Organicella extenuata is an endosymbiont of Euplotes and hypothesize that both Ca. Organicella extenuata and Ca. Pinguicocccus supinus provide fatty acids and Fe-S clusters to their Euplotes host as the foundation of a mutualistic symbiosis. The discovery of Ca. Organicella extenuata as possessing genetic code 4 illustrates that in addition to identifying endosymbionts by sequencing known symbiotic communities and searching metagenome data using reference endosymbiont genomes, the potential exists to identify novel endosymbionts by searching for unusual coding parameters.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Natalia Ivanova
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Marcel Huntemann
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Sabrina Haque
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Alickovic L, Johnson KP, Boyd BM. The reduced genome of a heritable symbiont from an ectoparasitic feather feeding louse. BMC Ecol Evol 2021; 21:108. [PMID: 34078265 PMCID: PMC8173840 DOI: 10.1186/s12862-021-01840-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Feather feeding lice are abundant and diverse ectoparasites that complete their entire life cycle on an avian host. The principal or sole source of nutrition for these lice is feathers. Feathers appear to lack four amino acids that the lice would require to complete development and reproduce. Several insect groups have acquired heritable and intracellular bacteria that can synthesize metabolites absent in an insect’s diet, allowing insects to feed exclusively on nutrient-poor resources. Multiple species of feather feeding lice have been shown to harbor heritable and intracellular bacteria. We expected that these bacteria augment the louse’s diet with amino acids and facilitated the evolution of these diverse and specialized parasites. Heritable symbionts of insects often have small genomes that contain a minimal set of genes needed to maintain essential cell functions and synthesize metabolites absent in the host insect’s diet. Therefore, we expected the genome of a bacterial endosymbiont in feather lice would be small, but encode pathways for biosynthesis of amino acids. Results We sequenced the genome of a bacterial symbiont from a feather feeding louse (Columbicola wolffhuegeli) that parasitizes the Pied Imperial Pigeon (Ducula bicolor) and used its genome to predict metabolism of amino acids based on the presence or absence of genes. We found that this bacterial symbiont has a small genome, similar to the genomes of heritable symbionts described in other insect groups. However, we failed to identify many of the genes that we expected would support metabolism of amino acids in the symbiont genome. We also evaluated other gene pathways and features of the highly reduced genome of this symbiotic bacterium. Conclusions Based on the data collected in this study, it does not appear that this bacterial symbiont can synthesize amino acids needed to complement the diet of a feather feeding louse. Our results raise additional questions about the biology of feather chewing lice and the roles of symbiotic bacteria in evolution of diverse avian parasites.
Collapse
Affiliation(s)
- Leila Alickovic
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 1000 W. Cary St., Suite 111, Richmond, VA, 23284-2030, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Bret M Boyd
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 1000 W. Cary St., Suite 111, Richmond, VA, 23284-2030, USA.
| |
Collapse
|
27
|
Ceriotti LF, Roulet ME, Sanchez-Puerta MV. Plastomes in the holoparasitic family Balanophoraceae: Extremely high AT content, severe gene content reduction, and two independent genetic code changes. Mol Phylogenet Evol 2021; 162:107208. [PMID: 34029719 DOI: 10.1016/j.ympev.2021.107208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
The transition to a heterotrophic lifestyle in angiosperms is characterized by convergent evolutionary changes. Plastid genome remodeling includes dramatic functional and physical reductions with the highest degrees observed in fully heterotrophic plants. Genes related to photosynthesis are generally absent or pseudogenized, while a few genes related to other metabolic processes that take place within the plastid are almost invariably maintained. The family Balanophoraceae consists of root holoparasites that present reduced plastid genomes with an extraordinarily elevated AT content and the single genetic code change ever documented in land plant plastomes (the stop codon TAG now codes for tryptophan). Here, we studied the plastomes of Lophophytum leandri and Ombrophytum subterraneum (Balanophoraceae) that showed the remarkable absence of the gene trnE, a highly biased nucleotide composition, and an independent genetic code change (the standard stop codon TGA codes for tryptophan). This is the second genetic code change identified in land plant plastomes. Analysis of the transcriptome of Lophophytum indicated that the entire C5 pathway typical of plants is conserved despite the lack of trnE in its plastome. A hypothetical model of plastome evolution in the Balanophoraceae is presented.
Collapse
Affiliation(s)
- Luis Federico Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina.
| |
Collapse
|
28
|
Doña J, Virrueta Herrera S, Nyman T, Kunnasranta M, Johnson KP. Patterns of Microbiome Variation Among Infrapopulations of Permanent Bloodsucking Parasites. Front Microbiol 2021; 12:642543. [PMID: 33935998 PMCID: PMC8085356 DOI: 10.3389/fmicb.2021.642543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
While interspecific variation in microbiome composition can often be readily explained by factors such as host species identity, there is still limited knowledge of how microbiomes vary at scales lower than the species level (e.g., between individuals or populations). Here, we evaluated variation in microbiome composition of individual parasites among infrapopulations (i.e., populations of parasites of the same species living on a single host individual). To address this question, we used genome-resolved and shotgun metagenomic data of 17 infrapopulations (balanced design) of the permanent, bloodsucking seal louse Echinophthirius horridus sampled from individual Saimaa ringed seals Pusa hispida saimensis. Both genome-resolved and read-based metagenomic classification approaches consistently show that parasite infrapopulation identity is a significant factor that explains both qualitative and quantitative patterns of microbiome variation at the intraspecific level. This study contributes to the general understanding of the factors driving patterns of intraspecific variation in microbiome composition, especially of bloodsucking parasites, and has implications for understanding how well-known processes occurring at higher taxonomic levels, such as phylosymbiosis, might arise in these systems.
Collapse
Affiliation(s)
- Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Departamento de Biología Animal, Universidad de Granada, Granada, Spain
| | - Stephany Virrueta Herrera
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| | - Mervi Kunnasranta
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.,Natural Resources Institute Finland, Joensuu, Finland
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
29
|
Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont. Proc Natl Acad Sci U S A 2021; 118:2023047118. [PMID: 33883280 PMCID: PMC8092579 DOI: 10.1073/pnas.2023047118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome reduction is commonly observed in bacteria of several phyla engaging in obligate nutritional symbioses with insects. In Actinobacteria, however, little is known about the process of genome evolution, despite their importance as prolific producers of antibiotics and their increasingly recognized role as defensive partners of insects and other organisms. Here, we show that “Streptomyces philanthi,” a defensive symbiont of digger wasps, has a G+C-enriched genome in the early stages of erosion, with inactivating mutations in a large proportion of genes, causing dependency on its hosts for certain nutrients, which was validated in axenic symbiont cultures. Additionally, overexpressed catabolic and biosynthetic pathways of the bacteria inside the host indicate host–symbiont metabolic integration for streamlining and control of antibiotic production. Genome erosion is a frequently observed result of relaxed selection in insect nutritional symbionts, but it has rarely been studied in defensive mutualisms. Solitary beewolf wasps harbor an actinobacterial symbiont of the genus Streptomyces that provides protection to the developing offspring against pathogenic microorganisms. Here, we characterized the genomic architecture and functional gene content of this culturable symbiont using genomics, transcriptomics, and proteomics in combination with in vitro assays. Despite retaining a large linear chromosome (7.3 Mb), the wasp symbiont accumulated frameshift mutations in more than a third of its protein-coding genes, indicative of incipient genome erosion. Although many of the frameshifted genes were still expressed, the encoded proteins were not detected, indicating post-transcriptional regulation. Most pseudogenization events affected accessory genes, regulators, and transporters, but “Streptomyces philanthi” also experienced mutations in central metabolic pathways, resulting in auxotrophies for biotin, proline, and arginine that were confirmed experimentally in axenic culture. In contrast to the strong A+T bias in the genomes of most obligate symbionts, we observed a significant G+C enrichment in regions likely experiencing reduced selection. Differential expression analyses revealed that—compared to in vitro symbiont cultures—“S. philanthi” in beewolf antennae showed overexpression of genes for antibiotic biosynthesis, the uptake of host-provided nutrients and the metabolism of building blocks required for antibiotic production. Our results show unusual traits in the early stage of genome erosion in a defensive symbiont and suggest tight integration of host–symbiont metabolic pathways that effectively grants the host control over the antimicrobial activity of its bacterial partner.
Collapse
|
30
|
Castillo AI, Almeida RPP. Evidence of gene nucleotide composition favoring replication and growth in a fastidious plant pathogen. G3-GENES GENOMES GENETICS 2021; 11:6170658. [PMID: 33715000 PMCID: PMC8495750 DOI: 10.1093/g3journal/jkab076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022]
Abstract
Nucleotide composition (GC content) varies across bacteria species, genome regions, and specific genes. In Xylella fastidiosa, a vector-borne fastidious plant pathogen infecting multiple crops, GC content ranges between ∼51-52%; however, these values were gathered using limited genomic data. We evaluated GC content variations across X. fastidiosa subspecies fastidiosa (N = 194), subsp. pauca (N = 107), and subsp. multiplex (N = 39). Genomes were classified based on plant host and geographic origin; individual genes within each genome were classified based on gene function, strand, length, ortholog group, Core vs. Accessory, and Recombinant vs. Non-recombinant. GC content was calculated for each gene within each evaluated genome. The effects of genome and gene level variables were evaluated with a mixed effect ANOVA, and the marginal-GC content was calculated for each gene. Also, the correlation between gene-specific GC content vs. natural selection (dN/dS) and recombination/mutation (r/m) was estimated. Our analyses show that intra-genomic changes in nucleotide composition in X. fastidiosa are small and influenced by multiple variables. Higher AT-richness is observed in genes involved in replication and translation, and genes in the leading strand. In addition, we observed a negative correlation between high-AT and dN/dS in subsp. pauca. The relationship between recombination and GC content varied between core and accessory genes. We hypothesize that distinct evolutionary forces and energetic constraints both drive and limit these small variations in nucleotide composition.
Collapse
Affiliation(s)
- Andreina I Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
31
|
Wang D, Liu Y, Su Y, Wei C. Bacterial Communities in Bacteriomes, Ovaries and Testes of three Geographical Populations of a Sap-Feeding Insect, Platypleura kaempferi (Hemiptera: Cicadidae). Curr Microbiol 2021; 78:1778-1791. [PMID: 33704532 DOI: 10.1007/s00284-021-02435-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
Mutualistic associations between symbiotic bacteria and their insect hosts are widespread. The bacterial diversity and community composition within hosts may play an important role in shaping insect biology, ecology, and evolution. Here, we focused on the bacterial communities in bacteriomes, ovaries and testes of three representative populations of the cicada Platypleura kaempferi (Fabricius) using high-throughput 16S rRNA amplicon sequencing approach combined with light microscopy and confocal imaging approach. The obligate symbiont Sulcia was detected in all the examined samples, which showed a relatively high abundance in most bacteriomes and ovaries. The unclassified OTUs formerly identified as an unclassified Rhizobiales bacterium was demonstrated to be the co-obligate symbiont Hodgkinia, which showed 100% infection rate in all the examined samples and had an especially high abundance in most bacteriomes and ovaries. Hodgkinia and Sulcia occupy the central and peripheral bacteriocytes of each bacteriome unit, respectively. Cluster analysis revealed that the bacterial communities in bacteriomes, ovaries and testes of Zhouzhi and Ningshan populations separated strongly from each other. Significant difference was also detected between the Yangling and Ningshan populations, but no significant difference was detected between the Yangling and Zhouzhi populations. This may be related to the difference of host plants and genetic differentiation of these populations. Our findings show that the bacterial communities can be influenced by the population differentiation of the host cicadas and/or the host plants of cicadas, which improve our understanding of the associations between the bacterial community and population differentiation of sap-feeding insects.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunxiang Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Su
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
32
|
Li B, Du Z, Tian L, Zhang L, Huang Z, Wei S, Song F, Cai W, Yu Y, Yang H, Li H. Chromosome-level genome assembly of the aphid parasitoid Aphidius gifuensis using Oxford Nanopore sequencing and Hi-C technology. Mol Ecol Resour 2021; 21:941-954. [PMID: 33314728 PMCID: PMC7986076 DOI: 10.1111/1755-0998.13308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Aphidius gifuensis is a parasitoid wasp that has been commercially bred and released in large scale as a biocontrol agent for the management of aphid pests. As a highly efficient endoparasitoid, it is also an important model for exploring mechanisms of parasitism. Currently, artificially bred populations of this wasp are facing rapid decline with undetermined cause, and mechanisms underlying its parasitoid strategy remain poorly understood. Exploring the mechanism behind its population decline and the host–parasitoid relationship is impeded partly due to the lack of a comprehensive genome data for this species. In this study, we constructed a high‐quality reference genome of A. gifuensis using Oxford Nanopore sequencing and Hi‐C (proximity ligation chromatin conformation capture) technology. The final genomic assembly was 156.9 Mb, with a contig N50 length of 3.93 Mb, the longest contig length of 10.4 Mb and 28.89% repetitive sequences. 99.8% of genome sequences were anchored onto six linkage groups. A total of 11,535 genes were predicted, of which 90.53% were functionally annotated. Benchmarking Universal Single‐Copy Orthologs (BUSCO) analysis showed the completeness of assembled genome is 98.3%. We found significantly expanded gene families involved in metabolic processes, transmembrane transport, cell signal communication and oxidoreductase activity, in particular ATP‐binding cassette (ABC) transporter, Cytochrome P450 and venom proteins. The olfactory receptors (ORs) showed significant contraction, which may be associated with the decrease in host recognition. Our study provides a solid foundation for future studies on the molecular mechanisms of population decline as well as host–parasitoid relationship for parasitoid wasps.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenyong Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | | | | | - Shujun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yanbi Yu
- Yunnan Tobacco Company of China National Tobacco Corporation, Kunming, China
| | | | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Waneka G, Vasquez YM, Bennett GM, Sloan DB. Mutational Pressure Drives Differential Genome Conservation in Two Bacterial Endosymbionts of Sap-Feeding Insects. Genome Biol Evol 2020; 13:6020258. [PMID: 33275136 PMCID: PMC7952229 DOI: 10.1093/gbe/evaa254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Compared with free-living bacteria, endosymbionts of sap-feeding insects have tiny and rapidly evolving genomes. Increased genetic drift, high mutation rates, and relaxed selection associated with host control of key cellular functions all likely contribute to genome decay. Phylogenetic comparisons have revealed massive variation in endosymbiont evolutionary rate, but such methods make it difficult to partition the effects of mutation versus selection. For example, the ancestor of Auchenorrhynchan insects contained two obligate endosymbionts, Sulcia and a betaproteobacterium (BetaSymb; called Nasuia in leafhoppers) that exhibit divergent rates of sequence evolution and different propensities for loss and replacement in the ensuing ∼300 Ma. Here, we use the auchenorrhynchan leafhopper Macrosteles sp. nr. severini, which retains both of the ancestral endosymbionts, to test the hypothesis that differences in evolutionary rate are driven by differential mutagenesis. We used a high-fidelity technique known as duplex sequencing to measure and compare low-frequency variants in each endosymbiont. Our direct detection of de novode novo mutations reveals that the rapidly evolving endosymbiont (Nasuia) has a much higher frequency of single-nucleotide variants than the more stable endosymbiont (Sulcia) and a mutation spectrum that is potentially even more AT-biased than implied by the 83.1% AT content of its genome. We show that indels are common in both endosymbionts but differ substantially in length and distribution around repetitive regions. Our results suggest that differences in long-term rates of sequence evolution in Sulcia versus BetaSymb, and perhaps the contrasting degrees of stability of their relationships with the host, are driven by differences in mutagenesis.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
34
|
Serra V, Gammuto L, Nitla V, Castelli M, Lanzoni O, Sassera D, Bandi C, Sandeep BV, Verni F, Modeo L, Petroni G. Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont "Candidatus Pinguicoccus supinus" sp. nov. Sci Rep 2020; 10:20311. [PMID: 33219271 PMCID: PMC7679464 DOI: 10.1038/s41598-020-76348-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/30/2020] [Indexed: 01/30/2023] Open
Abstract
Taxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very first description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as "holobionts". We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont "Candidatus Pinguicoccus supinus" gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Leandro Gammuto
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Venkatamahesh Nitla
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Michele Castelli
- Department of Biosciences, Romeo and Enrica Invernizzi Pediatric Research Center, University of Milan, Milan, Italy
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia University, Pavia, Italy
| | - Olivia Lanzoni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia University, Pavia, Italy
| | - Claudio Bandi
- Department of Biosciences, Romeo and Enrica Invernizzi Pediatric Research Center, University of Milan, Milan, Italy
| | | | - Franco Verni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Letizia Modeo
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy.
- CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy.
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, India.
| | - Giulio Petroni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy.
- CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy.
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, India.
| |
Collapse
|
35
|
Rogalski E, Ehrmann MA, Vogel RF. Intraspecies diversity and genome-phenotype-associations in Fructilactobacillus sanfranciscensis. Microbiol Res 2020; 243:126625. [PMID: 33129664 DOI: 10.1016/j.micres.2020.126625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 02/04/2023]
Abstract
In this study the intraspecies diversity of Fructilactobacillus (F.) sanfranciscensis (formerly Lactobacillus sanfranciscensis) was characterized by comparative genomics supported by physiological data. Twenty-four strains of F. sanfranciscensis were analyzed and sorted into six different genomic clusters. The core genome comprised only 43,14 % of the pan genome, i.e. 0.87 Mbp of 2.04 Mbp. The main annotated genomic differences reside in maltose, fructose and sucrose as well as nucleotide metabolism, use of electron acceptors, and exopolysacchride formation. Furthermore, all strains are well equipped to cope with oxidative stress via NADH oxidase and a distinct thiol metabolism. Only ten of 24 genomes contain two maltose phosphorylase genes (mapA and mapB). In F. sanfranciscensis TMW 1.897 only mapA was found. All strains except those from genomic cluster 2 contained the mannitol dehydrogenase and should therefore be able to use fructose as external electron acceptor. Moreover, six strains were able to grow on fructose as sole carbon source, as they contained a functional fructokinase gene. No growth was observed on pentoses, i.e. xylose, arabinose or ribose, as sole carbon source. This can be referred to the absence of ribose pyranase rbsD in all genomes, and absence of or mutations in numerous other genes, which are essential for arabinose and xylose metabolism. Seven strains were able to produce exopolysaccharides (EPS) from sucrose. In addition, the strains containing levS were able to grow on sucrose as sole carbon source. Strains of one cluster exhibit auxotrophies for purine nucleotides. The physiological and genomic analyses suggest that the biodiversity of F. sanfranciscensis is larger than anticipated. Consequently, "original" habitats and lifestyles of F. sanfranciscensis may vary but can generally be referred to an adaptation to sugary (maltose/sucrose/fructose-rich) and aerobic environments as found in plants and insects. It can dominate sourdoughs as a result of reductive evolution and cooperation with fructose-delivering, acetate-tolerant yeasts.
Collapse
Affiliation(s)
- Esther Rogalski
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.
| |
Collapse
|
36
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
37
|
Hall RJ, Thorpe S, Thomas GH, Wood AJ. Simulating the evolutionary trajectories of metabolic pathways for insect symbionts in the genus Sodalis. Microb Genom 2020; 6:mgen000378. [PMID: 32543366 PMCID: PMC7478623 DOI: 10.1099/mgen.0.000378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/27/2020] [Indexed: 01/13/2023] Open
Abstract
Insect-bacterial symbioses are ubiquitous, but there is still much to uncover about how these relationships establish, persist and evolve. The tsetse endosymbiont Sodalis glossinidius displays intriguing metabolic adaptations to its microenvironment, but the process by which this relationship evolved remains to be elucidated. The recent chance discovery of the free-living species of the genus Sodalis, Sodalis praecaptivus, provides a serendipitous starting point from which to investigate the evolution of this symbiosis. Here, we present a flux balance model for S. praecaptivus and empirically verify its predictions. Metabolic modelling is used in combination with a multi-objective evolutionary algorithm to explore the trajectories that S. glossinidius may have undertaken from this starting point after becoming internalized. The order in which key genes are lost is shown to influence the evolved populations, providing possible targets for future in vitro genetic manipulation. This method provides a detailed perspective on possible evolutionary trajectories for S. glossinidius in this fundamental process of evolutionary and ecological change.
Collapse
Affiliation(s)
- Rebecca J. Hall
- Department of Biology, University of York, York, YO10 5NG, UK
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2TQ, UK
| | - Stephen Thorpe
- Department of Biology, University of York, York, YO10 5NG, UK
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, York, YO10 5NG, UK
| | - A. Jamie Wood
- Department of Biology, University of York, York, YO10 5NG, UK
- Department of Mathematics, University of York, York, YO10 5DD, UK
| |
Collapse
|
38
|
Abstract
Host-beneficial endosymbioses, which are formed when a microorganism takes up residence inside another cell and provides a fitness advantage to the host, have had a dramatic influence on the evolution of life. These intimate relationships have yielded the mitochondrion and the plastid (chloroplast) - the ancient organelles that in part define eukaryotic life - along with many more recent associations involving a wide variety of hosts and microbial partners. These relationships are often envisioned as stable associations that appear cooperative and persist for extremely long periods of time. But recent evidence suggests that this stable state is often born from turbulent and conflicting origins, and that the apparent stability of many beneficial endosymbiotic relationships - although certainly real in many cases - is not an inevitable outcome of these associations. Here we review how stable endosymbioses form, how they are maintained, and how they sometimes break down and are reborn. We focus on relationships formed by insects and their resident microorganisms because these symbioses have been the focus of significant empirical work over the last two decades. We review these relationships over five life stages: origin, birth, middle age, old age, and death.
Collapse
|
39
|
Anani H, Zgheib R, Hasni I, Raoult D, Fournier PE. Interest of bacterial pangenome analyses in clinical microbiology. Microb Pathog 2020; 149:104275. [PMID: 32562810 DOI: 10.1016/j.micpath.2020.104275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Thanks to the progress and decreasing costs in genome sequencing technologies, more than 250,000 bacterial genomes are currently available in public databases, covering most, if not all, of the major human-associated phylogenetic groups of these microorganisms, pathogenic or not. In addition, for many of them, sequences from several strains of a given species are available, thus enabling to evaluate their genetic diversity and study their evolution. In addition, the significant cost reduction of bacterial whole genome sequencing as well as the rapid increase in the number of available bacterial genomes have prompted the development of pangenomic software tools. The study of bacterial pangenome has many applications in clinical microbiology. It can unveil the pathogenic potential and ability of bacteria to resist antimicrobials as well identify specific sequences and predict antigenic epitopes that allow molecular or serologic assays and vaccines to be designed. Bacterial pangenome constitutes a powerful method for understanding the history of human bacteria and relating these findings to diagnosis in clinical microbiology laboratories in order to optimize patient management.
Collapse
Affiliation(s)
- Hussein Anani
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Rita Zgheib
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Issam Hasni
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.
| |
Collapse
|
40
|
Dennis AB, Ballesteros GI, Robin S, Schrader L, Bast J, Berghöfer J, Beukeboom LW, Belghazi M, Bretaudeau A, Buellesbach J, Cash E, Colinet D, Dumas Z, Errbii M, Falabella P, Gatti JL, Geuverink E, Gibson JD, Hertaeg C, Hartmann S, Jacquin-Joly E, Lammers M, Lavandero BI, Lindenbaum I, Massardier-Galata L, Meslin C, Montagné N, Pak N, Poirié M, Salvia R, Smith CR, Tagu D, Tares S, Vogel H, Schwander T, Simon JC, Figueroa CC, Vorburger C, Legeai F, Gadau J. Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics 2020; 21:376. [PMID: 32471448 PMCID: PMC7257214 DOI: 10.1186/s12864-020-6764-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.
Collapse
Affiliation(s)
- Alice B Dennis
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland.
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| | - Gabriel I Ballesteros
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Stéphanie Robin
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Jens Bast
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
- Institute of Zoology, Universität zu Köln, 50674, Köln, Germany
| | - Jan Berghöfer
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Maya Belghazi
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, PINT, PFNT, Marseille, France
| | - Anthony Bretaudeau
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Elizabeth Cash
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Zoé Dumas
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Corinne Hertaeg
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Department of Environmental Systems Sciences, D-USYS, ETH Zürich, Zürich, Switzerland
| | - Stefanie Hartmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Mark Lammers
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Blas I Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ina Lindenbaum
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nina Pak
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Chris R Smith
- Department of Biology, Earlham College, Richmond, IN, 47374, USA
| | - Denis Tagu
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
| | - Sophie Tares
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tanja Schwander
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | | | - Christian C Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Fabrice Legeai
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany.
| |
Collapse
|
41
|
Figueiredo ART, Kramer J. Cooperation and Conflict Within the Microbiota and Their Effects On Animal Hosts. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
42
|
Syntrophic splitting of central carbon metabolism in host cells bearing functionally different symbiotic bacteria. ISME JOURNAL 2020; 14:1982-1993. [PMID: 32350409 DOI: 10.1038/s41396-020-0661-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
Insects feeding on the nutrient-poor diet of xylem plant sap generally bear two microbial symbionts that are localized to different organs (bacteriomes) and provide complementary sets of essential amino acids (EAAs). Here, we investigate the metabolic basis for the apparent paradox that xylem-feeding insects are under intense selection for metabolic efficiency but incur the cost of maintaining two symbionts for functions mediated by one symbiont in other associations. Using stable isotope analysis of central carbon metabolism and metabolic modeling, we provide evidence that the bacteriomes of the spittlebug Clastoptera proteus display high rates of aerobic glycolysis, with syntrophic splitting of glucose oxidation. Specifically, our data suggest that one bacteriome (containing the bacterium Sulcia, which synthesizes seven EAAs) predominantly processes glucose glycolytically, producing pyruvate and lactate, and the exported pyruvate and lactate is assimilated by the second bacteriome (containing the bacterium Zinderia, which synthesizes three energetically costly EAAs) and channeled through the TCA cycle for energy generation by oxidative phosphorylation. We, furthermore, calculate that this metabolic arrangement supports the high ATP demand in Zinderia bacteriomes for Zinderia-mediated synthesis of energy-intensive EAAs. We predict that metabolite cross-feeding among host cells may be widespread in animal-microbe symbioses utilizing low-nutrient diets.
Collapse
|
43
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
44
|
Ankrah NYD, Wilkes RA, Zhang FQ, Aristilde L, Douglas AE. The Metabolome of Associations between Xylem-Feeding Insects and their Bacterial Symbionts. J Chem Ecol 2019; 46:735-744. [DOI: 10.1007/s10886-019-01136-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
|
45
|
Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, Belda-Ferre P, Al-Ghalith GA, Kopylova E, McDonald D, Kosciolek T, Yin JB, Huang S, Salam N, Jiao JY, Wu Z, Xu ZZ, Cantrell K, Yang Y, Sayyari E, Rabiee M, Morton JT, Podell S, Knights D, Li WJ, Huttenhower C, Segata N, Smarr L, Mirarab S, Knight R. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat Commun 2019; 10:5477. [PMID: 31792218 PMCID: PMC6889312 DOI: 10.1038/s41467-019-13443-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/06/2019] [Indexed: 11/10/2022] Open
Abstract
Rapid growth of genome data provides opportunities for updating microbial evolutionary relationships, but this is challenged by the discordant evolution of individual genes. Here we build a reference phylogeny of 10,575 evenly-sampled bacterial and archaeal genomes, based on a comprehensive set of 381 markers, using multiple strategies. Our trees indicate remarkably closer evolutionary proximity between Archaea and Bacteria than previous estimates that were limited to fewer "core" genes, such as the ribosomal proteins. The robustness of the results was tested with respect to several variables, including taxon and site sampling, amino acid substitution heterogeneity and saturation, non-vertical evolution, and the impact of exclusion of candidate phyla radiation (CPR) taxa. Our results provide an updated view of domain-level relationships.
Collapse
Affiliation(s)
- Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Uyen Mai
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Wayne Pfeiffer
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
| | - Stefan Janssen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Algorithmic Bioinformatics, Department of Biology and Chemistry, Justus Liebig University Gießen, Giessen, Germany
| | | | - Jon G Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Gabriel A Al-Ghalith
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Evguenia Kopylova
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - John B Yin
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Mathematics, University of California San Diego, La Jolla, CA, USA
| | - Shi Huang
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zijun Wu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Zhenjiang Z Xu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Kalen Cantrell
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Yimeng Yang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Erfan Sayyari
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Maryam Rabiee
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - James T Morton
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Sheila Podell
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Larry Smarr
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, CA, USA
| | - Siavash Mirarab
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
46
|
Wang D, Wei C. Bacterial communities in digestive and excretory organs of cicadas. Arch Microbiol 2019; 202:539-553. [PMID: 31720723 DOI: 10.1007/s00203-019-01763-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/31/2019] [Indexed: 01/29/2023]
Abstract
Bacteriocyte-associated symbionts are essential for the health of many sap-sucking insects, such as cicadas, leafhoppers and treehoppers, etc., but little is known about the bacterial community in the gut and other related organs in these insects. We characterized the bacterial communities in the salivary glands, alimentary canal and the Malpighian tubules of two populations of the cicada Subpsaltria yangi occurring in different habitats and feeding on different hosts. A high degree of similarity of core microbiota was revealed between the two populations, both with the top three bacteria belonging to Meiothermus, Candidatus Sulcia and Halomonas. The bacterial communities in various organs clustered moderately by populations possibly reflect adaptive changes in the microbiota of related S. yangi populations, which provide a better understanding of the speciation and adaptive mechanism of this species to different diets and habitats. When compared with two phylogenetically distant cicada species, Hyalessa maculaticollis and Meimuna mongolica, the core microbiota in S. yangi was significantly different to that of these species. In addition, our results confirm that Ca. Sulcia distributes in the digestive and excretory organs besides the bacteriomes and gonads, which provide potential important information onto the trophic functions of this obligate endosymbiont to the host insects.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
47
|
Sieber CMK, Paul BG, Castelle CJ, Hu P, Tringe SG, Valentine DL, Andersen GL, Banfield JF. Unusual Metabolism and Hypervariation in the Genome of a Gracilibacterium (BD1-5) from an Oil-Degrading Community. mBio 2019; 10:e02128-19. [PMID: 31719174 PMCID: PMC6851277 DOI: 10.1128/mbio.02128-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/08/2019] [Indexed: 11/20/2022] Open
Abstract
The candidate phyla radiation (CPR) comprises a large monophyletic group of bacterial lineages known almost exclusively based on genomes obtained using cultivation-independent methods. Within the CPR, Gracilibacteria (BD1-5) are particularly poorly understood due to undersampling and the inherent fragmented nature of available genomes. Here, we report the first closed, curated genome of a gracilibacterium from an enrichment experiment inoculated from the Gulf of Mexico and designed to investigate hydrocarbon degradation. The gracilibacterium rose in abundance after the community switched to dominance by Colwellia Notably, we predict that this gracilibacterium completely lacks glycolysis, the pentose phosphate and Entner-Doudoroff pathways. It appears to acquire pyruvate, acetyl coenzyme A (acetyl-CoA), and oxaloacetate via degradation of externally derived citrate, malate, and amino acids and may use compound interconversion and oxidoreductases to generate and recycle reductive power. The initial genome assembly was fragmented in an unusual gene that is hypervariable within a repeat region. Such extreme local variation is rare but characteristic of genes that confer traits under pressure to diversify within a population. Notably, the four major repeated 9-mer nucleotide sequences all generate a proline-threonine-aspartic acid (PTD) repeat. The genome of an abundant Colwellia psychrerythraea population has a large extracellular protein that also contains the repeated PTD motif. Although we do not know the host for the BD1-5 cell, the high relative abundance of the C. psychrerythraea population and the shared surface protein repeat may indicate an association between these bacteria.IMPORTANCE CPR bacteria are generally predicted to be symbionts due to their extensive biosynthetic deficits. Although monophyletic, they are not monolithic in terms of their lifestyles. The organism described here appears to have evolved an unusual metabolic platform not reliant on glucose or pentose sugars. Its biology appears to be centered around bacterial host-derived compounds and/or cell detritus. Amino acids likely provide building blocks for nucleic acids, peptidoglycan, and protein synthesis. We resolved an unusual repeat region that would be invisible without genome curation. The nucleotide sequence is apparently under strong diversifying selection, but the amino acid sequence is under stabilizing selection. The amino acid repeat also occurs in a surface protein of a coexisting bacterium, suggesting colocation and possibly interdependence.
Collapse
Affiliation(s)
- Christian M K Sieber
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Blair G Paul
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
| | - Ping Hu
- Ecology Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biology, St. Mary's College of California, Moraga, California, USA
| | - Susannah G Tringe
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - David L Valentine
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Gary L Andersen
- Ecology Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| |
Collapse
|
48
|
Simon C, Gordon ERL, Moulds MS, Cole JA, Haji D, Lemmon AR, Lemmon EM, Kortyna M, Nazario K, Wade EJ, Meister RC, Goemans G, Chiswell SM, Pessacq P, Veloso C, McCutcheon JP, Łukasik P. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ‘relict’ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.
Collapse
Affiliation(s)
- Chris Simon
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Eric R L Gordon
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - M S Moulds
- Australian Museum Research Institute, Sydney, NSW, Australia
| | - Jeffrey A Cole
- Natural Sciences Division, Pasadena City College, Pasadena, CA, USA
| | - Diler Haji
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | | - Michelle Kortyna
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Katherine Nazario
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Elizabeth J Wade
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Department of Natural Sciences and Mathematics, Curry College, Milton, MA, USA
| | - Russell C Meister
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Geert Goemans
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Pablo Pessacq
- Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas, Esquel, Chubut, Argentina
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
49
|
Gophna U. The unbearable ease of expression-how avoidance of spurious transcription can shape G+C content in bacterial genomes. FEMS Microbiol Lett 2019; 365:5181332. [PMID: 30423131 DOI: 10.1093/femsle/fny267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/11/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Uri Gophna
- Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Levanon Street, Tel Aviv 69000, Israel
| |
Collapse
|
50
|
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083. [PMID: 31608019 PMCID: PMC6767994 DOI: 10.3389/fmicb.2019.02083] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Although considerable progress has been made in recent years regarding the classification of bacteria assigned to the phylum Bacteroidetes, there remains a need to further clarify taxonomic relationships within a diverse assemblage that includes organisms of clinical, piscicultural, and ecological importance. Bacteroidetes classification has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees and a limited number of phenotypic features. Here, draft genome sequences of a greatly enlarged collection of genomes of more than 1,000 Bacteroidetes and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa proposed long ago such as Bacteroides, Cytophaga, and Flavobacterium but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which can be considered valuable taxonomic markers. We detected many incongruities when comparing the results of the present study with existing classifications, which appear to be caused by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. The few significant incongruities found between 16S rRNA gene and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences and the impediment in using ordinary bootstrapping in phylogenomic studies, particularly when combined with too narrow gene selections. While a significant degree of phylogenetic conservation was detected in all phenotypic characters investigated, the overall fit to the tree varied considerably, which is one of the probable causes of misclassifications in the past, much like the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|