1
|
Feng B, Li Y, Xu B, Liu H, Steenwyk JL, David KT, Tian X, Gonçalves C, Opulente DA, LaBella AL, Harrison MC, Wolters JF, Shao S, Chen Z, Fisher KJ, Groenewald M, Hittinger CT, Shen XX, Li S, Rokas A, Zhou X, Li Y. Unique trajectory of gene family evolution from genomic analysis of nearly all known species in an ancient yeast lineage. Mol Syst Biol 2025:10.1038/s44320-025-00118-0. [PMID: 40425814 DOI: 10.1038/s44320-025-00118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/11/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Gene gains and losses are a major driver of genome evolution; their precise characterization can provide insights into the origin and diversification of major lineages. Here, we examined gene family evolution of 1154 genomes from nearly all known species in the medically and technologically important yeast subphylum Saccharomycotina. We found that yeast gene family evolution differs from that of plants, animals, and filamentous ascomycetes, and is characterized by smaller overall gene numbers yet larger gene family sizes for a given gene number. Faster-evolving lineages (FELs) in yeasts experienced significantly higher rates of gene losses-commensurate with a narrowing of metabolic niche breadth-but higher speciation rates than their slower-evolving sister lineages (SELs). Gene families most often lost are those involved in mRNA splicing, carbohydrate metabolism, and cell division and are likely associated with intron loss, metabolic breadth, and non-canonical cell cycle processes. Our results highlight the significant role of gene family contractions in the evolution of yeast metabolism, genome function, and speciation, and suggest that gene family evolutionary trajectories have differed markedly across major eukaryotic lineages.
Collapse
Affiliation(s)
- Bo Feng
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yonglin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Biyang Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kyle T David
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, 37235, USA
| | - Xiaolin Tian
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, 37235, USA
- Associate Laboratory i4HB-Institute for Health and Bioeconomy and UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tenologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Biology Department, Villanova University, Villanova, PA, 19085, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, 28233, USA
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, 28233, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, 37235, USA
| | - John F Wolters
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Shengyuan Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Zhaohao Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Kaitlin J Fisher
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, 13126, USA
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Xia S, Chen J, Arsala D, Emerson JJ, Long M. Functional innovation through new genes as a general evolutionary process. Nat Genet 2025; 57:295-309. [PMID: 39875578 DOI: 10.1038/s41588-024-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 01/30/2025]
Abstract
In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants. New genes have important roles in phenotypic and functional evolution across diverse biological processes and structures, with detectable fitness effects of sexual conflict genes that can shape species divergence. Such knowledge of new genes can be of translational value in agriculture and medicine.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Wang F, Li M, Liu Z, Li W, He Q, Xing L, Xiao Y, Wang M, Wang Y, Du C, Zhang H, Zhou Y, Du H. The mixed auto-/allooctoploid genome of Japanese knotweed (Reynoutria japonica) provides insights into its polyploid origin and invasiveness. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70005. [PMID: 39993002 DOI: 10.1111/tpj.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 02/26/2025]
Abstract
Reynoutria japonica Houtt. (Polygonaceae), a traditional Chinese medicine, is one of the top 100 most destructive invasive species worldwide due to its aggressive growth and strong adaptability. Here, we report an 8.04 Gb chromosome-scale assembly of R. japonica with 88 chromosomes across eight homologous sets. Through a combined phylogenetic and genomic analysis, we demonstrate that R. japonica is a mixed auto-/allooctoploid (AAAABBBB). Subgenome A (SubA) exhibited a close phylogenetic relationship with the related species Fallopia multiflora. We also unveiled the origin and evolutionary history of octoploid R. japonica based on resequencing data from Reynoutria species with different ploidy. Comparative genomics analysis revealed the genetic basis of R. japonica's invasivity and adaptability. The auxin response factor (ARF) gene family was significantly expanded in R. japonica, and these genes were highly expressed in rhizomes. We also investigated the collaboration and differentiation of the duplicated genes resulting from auto- and allo-polyploidization at the genomic variation, gene family evolution, and gene expression levels in R. japonica. Transcriptomic analysis of stem internodes and apices at different developmental stages revealed that the octuplication and significant expansion of the SAUR19 and SAUR63 subfamilies due to tandem replication in SubA, and the high expression of these genes in stems, likely contribute to the rapid growth of R. japonica. Our study provides important clues into adaptive evolution and polyploidy dominant traits in invasive plants, and will also provide important guidance for the breeding of polyploid crops.
Collapse
Affiliation(s)
- Fanhong Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
- College of life sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Minghao Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Ze Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Wei Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Qiang He
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Longsheng Xing
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Yao Xiao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Meijia Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Cailian Du
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Hongyu Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Yue Zhou
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Huilong Du
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
4
|
Micic N, Holmelund Rønager A, Sørensen M, Bjarnholt N. Overlooked and misunderstood: can glutathione conjugates be clues to understanding plant glutathione transferases? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230365. [PMID: 39343017 PMCID: PMC11449216 DOI: 10.1098/rstb.2023.0365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
Plant glutathione transferases (GSTs) constitute a large and diverse family of enzymes that are involved in plant stress response, metabolism and defence, yet their physiological functions remain largely elusive. Consistent with the traditional view on GSTs across organisms as detoxification enzymes, in vitro most plant GSTs catalyse glutathionylation, conjugation of the tripeptide glutathione (GSH; γ-Glu-Cys-Gly) onto reactive molecules. However, when it comes to elucidating GST functions, it remains a key challenge that the endogenous plant glutathione conjugates (GS-conjugates) that would result from such glutathionylation reactions are rarely reported. Furthermore, GSTs often display high substrate promiscuity, and their proposed substrates are prone to spontaneous chemical reactions with GSH; hence, single-gene knockouts rarely provide clear chemotypes or phenotypes. In a few cases, GS-conjugates are demonstrated to be biosynthetic intermediates that are rapidly further metabolized towards a pathway end product, explaining their low abundance and rare detection. In this review, we summarize the current knowledge of plant GST functions and how and possibly why evolution has resulted in a broad and extensive expansion of the plant GST family. Finally, we demonstrate that endogenous GS-conjugates are more prevalent in plants than assumed and suggest they are overlooked as clues towards the identification of plant GST functions. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Nikola Micic
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| | - Asta Holmelund Rønager
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| | - Mette Sørensen
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
- Novo Nordisk Pharmatech A/S , Køge 4600, Denmark
| | - Nanna Bjarnholt
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| |
Collapse
|
5
|
Ezoe A, Todaka D, Utsumi Y, Takahashi S, Kawaura K, Seki M. Decrease in purifying selection pressures on wheat homoeologous genes: tetraploidization versus hexaploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1190-1205. [PMID: 39428689 DOI: 10.1111/tpj.17047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
A series of polyploidizations in higher-order polyploids is the main event affecting gene content in a genome. Each polyploidization event can lead to massive functional divergence because of the subsequent decrease in selection pressure on duplicated genes; however, the causal relationship between multiple rounds of polyploidization and the functional divergence of duplicated genes is poorly understood. We focused on the Triticum-Aegilops complex lineage and compared selection pressure before and after tetraploidization and hexaploidization events. Although both events led to decreased selection pressure on homoeologous gene pairs (compared with diploids and tetraploids), the initial tetraploidization had a greater impact on selection pressure on homoeologous gene pairs than did subsequent hexaploidization. Consistent with this, selection pressure on expression patterns for the initial event relaxed more than those for the subsequent event. Surprisingly, the decreased selection pressure on these homoeologous genes was independent of the existence of in-paralogs within the same subgenome. Wheat homoeologous pairs had different evolutionary consequences compared with orthologs related to other mechanisms (ancient allopolyploidization, ancient autopolyploidization, and small-scale duplication). Furthermore, tetraploidization and hexaploidization also seemed to have different evolutionary consequences. This suggests that homoeologous genes retain unique functions, including functions that are unlikely to be preserved in genes generated by the other duplication mechanisms. We found that their unique functions differed between tetraploidization and hexaploidization (e.g., reproductive and chromosome segregation processes). These findings imply that the substantial number of gene pairs resulting from multiple allopolyploidization events, especially initial tetraploidization, may have been a unique source of functional divergence.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
6
|
Shi T, Gao Z, Chen J, Van de Peer Y. Dosage sensitivity shapes balanced expression and gene longevity of homoeologs after whole-genome duplications in angiosperms. THE PLANT CELL 2024; 36:4323-4337. [PMID: 39121058 PMCID: PMC7616505 DOI: 10.1093/plcell/koae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Following whole-genome duplication (WGD), duplicate gene pairs (homoeologs) can evolve varying degrees of expression divergence. However, the determinants influencing these relative expression level differences (RFPKM) between homoeologs remain elusive. In this study, we analyzed the RFPKM between homoeologs in 3 angiosperms, Nymphaea colorata, Nelumbo nucifera, and Acorus tatarinowii, all having undergone a single WGD since the origin of angiosperms. Our results show significant positive correlations in RFPKM of homoeologs among tissues within the same species, and among orthologs across these 3 species, indicating convergent expression balance/bias between homoeologous gene copies following independent WGDs. We linked RFPKM between homoeologs to gene attributes associated with dosage-balance constraints, such as protein-protein interactions, lethal-phenotype scores in Arabidopsis (Arabidopsis thaliana) orthologs, domain numbers, and expression breadth. Notably, homoeologs with lower RFPKM often had more interactions and higher lethal-phenotype scores, indicating selective pressures favoring balanced expression. Also, homoeologs with lower RFPKM were more likely to be retained after WGDs in angiosperms. Within Nelumbo, greater RFPKM between homoeologs correlated with increased cis- and trans-regulatory differentiation between species, highlighting the ongoing escalation of gene expression divergence. We further found that expression degeneration in 1 copy of homoeologs is inclined toward nonfunctionalization. Our research highlights the importance of balanced expression, shaped by dosage-balance constraints, in the evolutionary retention of homoeologs in plants.
Collapse
Affiliation(s)
- Tao Shi
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Zhiyan Gao
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0028Pretoria, South-Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095Nanjing, China
| |
Collapse
|
7
|
Ko DK, Brandizzi F. Dynamics of ER stress-induced gene regulation in plants. Nat Rev Genet 2024; 25:513-525. [PMID: 38499769 PMCID: PMC11186725 DOI: 10.1038/s41576-024-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Endoplasmic reticulum (ER) stress is a potentially lethal condition that is induced by the abnormal accumulation of unfolded or misfolded secretory proteins in the ER. In eukaryotes, ER stress is managed by the unfolded protein response (UPR) through a tightly regulated, yet highly dynamic, reprogramming of gene transcription. Although the core principles of the UPR are similar across eukaryotes, unique features of the plant UPR reflect the adaptability of plants to their ever-changing environments and the need to balance the demands of growth and development with the response to environmental stressors. The past decades have seen notable progress in understanding the mechanisms underlying ER stress sensing and signalling transduction pathways, implicating the UPR in the effects of physiological and induced ER stress on plant growth and crop yield. Facilitated by sequencing technologies and advances in genetic and genomic resources, recent efforts have driven the discovery of transcriptional regulators and elucidated the mechanisms that mediate the dynamic and precise gene regulation in response to ER stress at the systems level.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Ye S, Huang Y, Ma T, Ma X, Li R, Shen J, Wen J. BnaABF3 and BnaMYB44 regulate the transcription of zeaxanthin epoxidase genes in carotenoid and abscisic acid biosynthesis. PLANT PHYSIOLOGY 2024; 195:2372-2388. [PMID: 38620011 DOI: 10.1093/plphys/kiae184] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/25/2024] [Indexed: 04/17/2024]
Abstract
Zeaxanthin epoxidase (ZEP) is a key enzyme that catalyzes the conversion of zeaxanthin to violaxanthin in the carotenoid and abscisic acid (ABA) biosynthesis pathways. The rapeseed (Brassica napus) genome has 4 ZEP (BnaZEP) copies that are suspected to have undergone subfunctionalization, yet the 4 genes' underlying regulatory mechanisms remain unknown. Here, we genetically confirmed the functional divergence of the gene pairs BnaA09.ZEP/BnaC09.ZEP and BnaA07.ZEP/BnaC07.ZEP, which encode enzymes with tissue-specific roles in carotenoid and ABA biosynthesis in flowers and leaves, respectively. Molecular and transgenic experiments demonstrated that each BnaZEP pair is transcriptionally regulated via ABA-responsive element-binding factor 3 s (BnaABF3s) and BnaMYB44s as common and specific regulators, respectively. BnaABF3s directly bound to the promoters of all 4 BnaZEPs and activated their transcription, with overexpression of individual BnaABF3s inducing BnaZEP expression and ABA accumulation under drought stress. Conversely, loss of BnaABF3s function resulted in lower expression of several genes functioning in carotenoid and ABA metabolism and compromised drought tolerance. BnaMYB44s specifically targeted and repressed the expression of BnaA09.ZEP/BnaC09.ZEP but not BnaA07.ZEP/BnaC07.ZEP. Overexpression of BnaA07.MYB44 resulted in increased carotenoid content and an altered carotenoid profile in petals. Additionally, RNA-seq analysis indicated that BnaMYB44s functions as a repressor in phenylpropanoid and flavonoid biosynthesis. These findings provide clear evidence for the subfunctionalization of duplicated genes and contribute to our understanding of the complex regulatory network involved in carotenoid and ABA biosynthesis in B. napus.
Collapse
Affiliation(s)
- Shenhua Ye
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yingying Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowei Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Rihui Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Fang C, Hamilton JP, Vaillancourt B, Wang YW, Wood JC, Deans NC, Scroggs T, Carlton L, Mailloux K, Douches DS, Nadakuduti SS, Jiang J, Buell CR. Cold stress induces differential gene expression of retained homeologs in Camelina sativa cv Suneson. FRONTIERS IN PLANT SCIENCE 2023; 14:1271625. [PMID: 38034564 PMCID: PMC10687638 DOI: 10.3389/fpls.2023.1271625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Camelina sativa (L.) Crantz, a member of the Brassicaceae, has potential as a biofuel feedstock which is attributable to the production of fatty acids in its seeds, its fast growth cycle, and low input requirements. While a genome assembly is available for camelina, it was generated from short sequence reads and is thus highly fragmented in nature. Using long read sequences, we generated a chromosome-scale, highly contiguous genome assembly (644,491,969 bp) for the spring biotype cultivar 'Suneson' with an N50 contig length of 12,031,512 bp and a scaffold N50 length of 32,184,682 bp. Annotation of protein-coding genes revealed 91,877 genes that encode 133,355 gene models. We identified a total of 4,467 genes that were significantly up-regulated under cold stress which were enriched in gene ontology terms associated with "response to cold" and "response to abiotic stress". Coexpression analyses revealed multiple coexpression modules that were enriched in genes differentially expressed following cold stress that had putative functions involved in stress adaptation, specifically within the plastid. With access to a highly contiguous genome assembly, comparative analyses with Arabidopsis thaliana revealed 23,625 A. thaliana genes syntenic with 45,453 Suneson genes. Of these, 24,960 Suneson genes were syntenic to 8,320 A. thaliana genes reflecting a 3 camelina homeolog to 1 Arabidopsis gene relationship and retention of all three homeologs. Some of the retained triplicated homeologs showed conserved gene expression patterns under control and cold-stressed conditions whereas other triplicated homeologs displayed diverged expression patterns revealing sub- and neo-functionalization of the homeologs at the transcription level. Access to the chromosome-scale assembly of Suneson will enable both basic and applied research efforts in the improvement of camelina as a sustainable biofuel feedstock.
Collapse
Affiliation(s)
- Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - John P. Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brieanne Vaillancourt
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Yi-Wen Wang
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Joshua C. Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Natalie C. Deans
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Taylor Scroggs
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Lemor Carlton
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Kathrine Mailloux
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - David S. Douches
- Department of Plant, Soil & Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Satya Swathi Nadakuduti
- Department of Environmental Horticulture, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Fang C, Yang M, Tang Y, Zhang L, Zhao H, Ni H, Chen Q, Meng F, Jiang J. Dynamics of cis-regulatory sequences and transcriptional divergence of duplicated genes in soybean. Proc Natl Acad Sci U S A 2023; 120:e2303836120. [PMID: 37871213 PMCID: PMC10622917 DOI: 10.1073/pnas.2303836120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation of cis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.
Collapse
Affiliation(s)
- Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Mingyu Yang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Yuecheng Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Ling Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun130033, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Hejia Ni
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin150030, China
| | - Fanli Meng
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin150081, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
- Department of Horticulture, Michigan State University, East Lansing, MI48824
- Michigan State University AgBioResearch, East Lansing, MI48824
| |
Collapse
|
11
|
Song H, Cao Y, Zhao L, Zhang J, Li S. Review: WRKY transcription factors: Understanding the functional divergence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111770. [PMID: 37321304 DOI: 10.1016/j.plantsci.2023.111770] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
WRKY transcription factors (TFs) play crucial roles in the growth and development of plants and their response to environmental changes. WRKY TFs have been detected in sequenced plant genomes. The functions and regulatory networks of many WRKY TFs, especially from Arabidopsis thaliana (AtWRKY TFs), have been revealed, and the origin of WRKY TFs in plants is clear. Nonetheless, the relationship between WRKY TFs function and classification is unclear. Furthermore, the functional divergence of homologous WRKY TFs in plants is unclear. In this review, WRKY TFs were explored based on WRKY-related literature published from 1994 to 2022. WRKY TFs were identified in 234 species at the genome and transcriptome levels. The biological functions of ∼ 71 % of AtWRKY TFs were uncovered. Although functional divergence occurred in homologous WRKY TFs, different WRKY TF groups had no preferential function.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Longgang Zhao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; High-efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Qingdao 266109, China
| | | | - Shuai Li
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
12
|
Wang W, Liu W, Wang B. Identification of CDK gene family and functional analysis of CqCDK15 under drought and salt stress in quinoa. BMC Genomics 2023; 24:461. [PMID: 37592203 PMCID: PMC10433607 DOI: 10.1186/s12864-023-09570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
as one of the oldest cultivated crops in the world, quinoa has been widely valued for its rich nutritional value and green health. In this study, 22 CDK genes (CqCDK01-CqCDK22) were identified from quinoa genome using bioinformatics method. The number of amino acids was 173-811, the molecular weight was 19,554.89 Da-91,375.70 Da, and the isoelectric point was 4.57-9.77. The phylogenetic tree divided 21 CqCDK genes into six subfamilies, the gene structure showed that 12 (54.5%) CqCDK genes (CqCDK03, CqCDK04, CqCDK05, CqCDK06, CqCDK07, CqCDK11, CqCDK14, CqCDK16, CqCDK18, CqCDK19, CqCDK20 and CqCDK21) had UTR regions at 5' and 3' ends. Each CDK protein had different motifs (3-9 motifs), but the genes with the same motifs were located in the same branch. Promoter analysis revealed 41 cis-regulatory elements related to plant hormones, abiotic stresses, tissue-specific expression and photoresponse. The results of real-time fluorescence quantitative analysis showed that the expression level of some CDK genes was higher under drought and salt stress, which indicated that CDK genes could help plants to resist adverse environmental effects. Subcellular localization showed that CqCDK15 gene was localized to the nucleus and cytoplasm, and transgenic plants overexpressing CqCDK15 gene showed higher drought and salt tolerance compared to the controls. Therefore, CDK genes are closely related to quinoa stress resistance. In this study, the main functions of quinoa CDK gene family and its expression level in different tissues and organs were analyzed in detail, which provided some theoretical support for quinoa stress-resistant breeding. Meanwhile, this study has important implications for further understanding the function of the CDK gene family in quinoa and our understanding of the CDK family in vascular plant.
Collapse
Affiliation(s)
- Wangtian Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of life science and technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Baoqiang Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of life science and technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
13
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
14
|
Vinodh Kumar PN, Mallikarjuna MG, Jha SK, Mahato A, Lal SK, K R Y, Lohithaswa HC, Chinnusamy V. Unravelling structural, functional, evolutionary and genetic basis of SWEET transporters regulating abiotic stress tolerance in maize. Int J Biol Macromol 2023; 229:539-560. [PMID: 36603713 DOI: 10.1016/j.ijbiomac.2022.12.326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) are the novel sugar transporters widely distributed among living systems. SWEETs play a crucial role in various bio-physiological processes, viz., plant developmental, nectar secretion, pollen development, and regulation of biotic and abiotic stresses, in addition to their prime sugar-transporting activity. Thus, in-depth structural, evolutionary, and functional characterization of maize SWEET transporters was performed for their utility in maize improvement. The mining of SWEET genes in the latest maize genome release (v.5) showed an uneven distribution of 20 ZmSWEETs. The comprehensive structural analyses and docking of ZmSWEETs with four sugars, viz., fructose, galactose, glucose, and sucrose, revealed frequent amino acid residues forming hydrogen (asparagine, valine, serine) and hydrophobic (tryptophan, glycine, and phenylalanine) interactions. Evolutionary analyses of SWEETs showed a mixed lineage with 50-100 % commonality of ortho-groups and -sequences evolved under strong purifying selection (Ka/Ks < 0.5). The duplication analysis showed non-functionalization (ZmSWEET18 in B73) and neo- and sub-functionalization (ZmSWEET3, ZmSWEET6, ZmSWEET9, ZmSWEET19, and ZmSWEET20) events in maize. Functional analyses of ZmSWEET genes through co-expression, in silico expression and qRT-PCR assays showed the relevance of ZmSWEETs expression in regulating drought, heat, and waterlogging stress tolerances in maize. The first ever ZmSWEET-regulatory network revealed 286 direct (ZmSWEET-TF: 140 ZmSWEET-miRNA: 146) and 1226 indirect (TF-TF: 597; TF-miRNA: 629) edges. The present investigation has given new insights into the complex transcriptional and post-transcriptional regulation and the regulatory and functional relevance of ZmSWEETs in assigning stress tolerance in maize.
Collapse
Affiliation(s)
- P N Vinodh Kumar
- Division of Genetics, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India; ICAR - Indian Agricultural Research Institute, Jharkhand, India
| | | | - Shailendra Kumar Jha
- Division of Genetics, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anima Mahato
- ICAR - Indian Agricultural Research Institute, Jharkhand, India
| | - Shambhu Krishan Lal
- School of Genetic Engineering, ICAR - Indian Institute of Agricultural Biotechnology, Ranchi 834003, India
| | - Yathish K R
- Winter Nursery Centre, ICAR-Indian Institute of Maize Research, Hyderabad, India
| | | | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
15
|
Li Z, Zhu M, Huang J, Jiang S, Xu S, Zhang Z, He W, Huang W. Genome-Wide Comprehensive Analysis of the Nitrogen Metabolism Toolbox Reveals Its Evolution and Abiotic Stress Responsiveness in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 24:ijms24010288. [PMID: 36613735 PMCID: PMC9820731 DOI: 10.3390/ijms24010288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Nitrogen metabolism (NM) plays an essential role in response to abiotic stresses for plants. Enzyme activities have been extensively studied for nitrogen metabolism-associated pathways, but the knowledge of nitrogen metabolism-associated genes involved in stress response is still limited, especially for rice. In this study, we performed the genome-wide characterization of the genes putatively involved in nitrogen metabolism. A total of 1110 potential genes were obtained to be involved in nitrogen metabolism from eight species (Arabidopsis thaliana (L.) Heynh., Glycine max (L.) Merr., Brassica napus L., Triticum aestivum L., Sorghum bicolor L., Zea mays L., Oryza sativa L. and Amborella trichopoda Baill.), especially 104 genes in rice. The comparative phylogenetic analysis of the superfamily revealed the complicated divergence of different NM genes. The expression analysis among different tissues in rice indicates the NM genes showed diverse functions in the pathway of nitrogen absorption and assimilation. Distinct expression patterns of NM genes were observed in rice under drought stress, heat stress, and salt stress, indicating that the NM genes play a curial role in response to abiotic stress. Most NM genes showed a down-regulated pattern under heat stress, while complicated expression patterns were observed for different genes under salt stress and drought stress. The function of four representative NM genes (OsGS2, OsGLU, OsGDH2, and OsAMT1;1) was further validated by using qRT-PCR analysis to confirm their responses to these abiotic stresses. Based on the predicted transcription factor binding sites (TFBSs), we built a co-expression regulatory network containing transcription factors (TFs) and NM genes, of which the constructed ERF and Dof genes may act as the core genes to respond to abiotic stresses. This study provides novel sights to the interaction between nitrogen metabolism and the response to abiotic stresses.
Collapse
Affiliation(s)
- Zhihui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mingqiang Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinqiu Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuang Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhihong Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (W.H.); (W.H.); Tel.: +86-137-2030-6240 (W.H.); +86-189-0711-8608 (W.H.)
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (W.H.); (W.H.); Tel.: +86-137-2030-6240 (W.H.); +86-189-0711-8608 (W.H.)
| |
Collapse
|
16
|
Noble JA, Bielski NV, Liu MCJ, DeFalco TA, Stegmann M, Nelson ADL, McNamara K, Sullivan B, Dinh KK, Khuu N, Hancock S, Shiu SH, Zipfel C, Cheung AY, Beilstein MA, Palanivelu R. Evolutionary analysis of the LORELEI gene family in plants reveals regulatory subfunctionalization. PLANT PHYSIOLOGY 2022; 190:2539-2556. [PMID: 36156105 PMCID: PMC9706458 DOI: 10.1093/plphys/kiac444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
A signaling complex comprising members of the LORELEI (LRE)-LIKE GPI-anchored protein (LLG) and Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) families perceive RAPID ALKALINIZATION FACTOR (RALF) peptides and regulate growth, reproduction, immunity, and stress responses in Arabidopsis (Arabidopsis thaliana). Genes encoding these proteins are members of multigene families in most angiosperms and could generate thousands of signaling complex variants. However, the links between expansion of these gene families and the functional diversification of this critical signaling complex as well as the evolutionary factors underlying the maintenance of gene duplicates remain unknown. Here, we investigated LLG gene family evolution by sampling land plant genomes and explored the function and expression of angiosperm LLGs. We found that LLG diversity within major land plant lineages is primarily due to lineage-specific duplication events, and that these duplications occurred both early in the history of these lineages and more recently. Our complementation and expression analyses showed that expression divergence (i.e. regulatory subfunctionalization), rather than functional divergence, explains the retention of LLG paralogs. Interestingly, all but one monocot and all eudicot species examined had an LLG copy with preferential expression in male reproductive tissues, while the other duplicate copies showed highest levels of expression in female or vegetative tissues. The single LLG copy in Amborella trichopoda is expressed vastly higher in male compared to in female reproductive or vegetative tissues. We propose that expression divergence plays an important role in retention of LLG duplicates in angiosperms.
Collapse
Affiliation(s)
- Jennifer A Noble
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Nicholas V Bielski
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Ming-Che James Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Stegmann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Kara McNamara
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Brooke Sullivan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Khanhlinh K Dinh
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Nicholas Khuu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Sarah Hancock
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
17
|
Hu X, Hao J, Pan L, Xu T, Ren L, Chen Y, Tang M, Liao L, Wang Z. Genome-wide analysis of tandem duplicated genes and their expression under salt stress in seashore paspalum. FRONTIERS IN PLANT SCIENCE 2022; 13:971999. [PMID: 36247543 PMCID: PMC9562133 DOI: 10.3389/fpls.2022.971999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Seashore paspalum (Paspalum vaginatum) is a halophytic, warm-season grass which is closely related to various grain crops. Gene duplication plays an important role in plant evolution, conferring significant plant adaptation at the genomic level. Here, we identified 2,542 tandem duplicated genes (TDGs) in the P. vaginatum genome and estimated the divergence time of pairs of TDGs based on synonymous substitution rates (Ks). Expression of P. vaginatum TDGs resulted in enrichment in many GO terms and KEGG pathways when compared to four other closely-related species. The GO terms included: "ion transmembrane transporter activity," "anion transmembrane transporter activity" and "cation transmembrane transport," and KEGG pathways included "ABC transport." RNA-seq analysis of TDGs showed tissue-specific expression under salt stress, and we speculated that P. vaginatum leaves became adapted to salt stress in the earlier whole-genome duplication (WGD; ~83.3 million years ago; Ma), whereas the entire P. vaginatum plant acquired a large number of TDGs related to salt stress in the second WGD (~23.3 Ma). These results can be used as a reference resource to accelerate salt-resistance research in other grasses and crops.
Collapse
Affiliation(s)
- Xu Hu
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Jiangshan Hao
- College of Tropical Crops, Hainan University, Haikou, China
- School of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Ling Pan
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Tao Xu
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Longzhou Ren
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Li Liao
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhiyong Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
18
|
Song H, Guo Z, Zhang X, Sui J. De novo genes in Arachis hypogaea cv. Tifrunner: systematic identification, molecular evolution, and potential contributions to cultivated peanut. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1081-1095. [PMID: 35748398 DOI: 10.1111/tpj.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
De novo genes are derived from non-coding sequences, and they can play essential roles in organisms. Cultivated peanut (Arachis hypogaea) is a major oil and protein crop derived from a cross between Arachis duranensis and Arachis ipaensis. However, few de novo genes have been documented in Arachis. Here, we identified 381 de novo genes in A. hypogaea cv. Tifrunner based on comparison with five closely related Arachis species. There are distinct differences in gene expression patterns and gene structures between conserved and de novo genes. The identified de novo genes originated from ancestral sequence regions associated with metabolic and biosynthetic processes, and they were subsequently integrated into existing regulatory networks. De novo paralogs and homoeologs were identified in A. hypogaea cv. Tifrunner. De novo paralogs and homoeologs with conserved expression have mismatching cis-acting elements under normal growth conditions. De novo genes potentially have pluripotent functions in responses to biotic stresses as well as in growth and development based on quantitative trait locus data. This work provides a foundation for future research examining gene birth processes and gene function in Arachis and related taxa.
Collapse
Affiliation(s)
- Hui Song
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xiaojun Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
19
|
Yu E, Wang W, Yamaji N, Fukuoka S, Che J, Ueno D, Ando T, Deng F, Hori K, Yano M, Shen RF, Ma JF. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain. NATURE FOOD 2022; 3:597-607. [PMID: 37118598 DOI: 10.1038/s43016-022-00569-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/11/2022] [Indexed: 04/30/2023]
Abstract
Global contamination of soils with toxic cadmium (Cd) is a serious health threat. Here we found that a tandem duplication of a gene encoding a manganese/Cd transporter, OsNramp5, was responsible for low-Cd accumulation in Pokkali, an old rice cultivar. This duplication doubled the expression of OsNramp5 gene but did not alter its spatial expression pattern and cellular localization. Higher expression of OsNramp5 increased uptake of Cd and Mn into the root cells but decreased Cd release to the xylem. Introgression of this allele into Koshihikari, an elite rice cultivar, through backcrossing significantly reduced Cd accumulation in the grain when cultivated in soil heavily contaminated with Cd but did not affect both grain yield and eating quality. This study not only reveals the molecular mechanism underlying low-Cd accumulation but also provides a useful target for breeding rice cultivars with low-Cd accumulation.
Collapse
Affiliation(s)
- En Yu
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Wenguang Wang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Shuichi Fukuoka
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Jing Che
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Daisei Ueno
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Tsuyu Ando
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Fenglin Deng
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Kiyosumi Hori
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Masahiro Yano
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| |
Collapse
|
20
|
Zhang H, Zhang X, Zhao J, Sun L, Wang H, Zhu Y, Xiao J, Wang X. Genome-Wide Identification of GDSL-Type Esterase/Lipase Gene Family in Dasypyrum villosum L. Reveals That DvGELP53 Is Related to BSMV Infection. Int J Mol Sci 2021; 22:ijms222212317. [PMID: 34830200 PMCID: PMC8624868 DOI: 10.3390/ijms222212317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
GDSL-type esterase/lipase proteins (GELPs) characterized by a conserved GDSL motif at their N-terminus belong to the lipid hydrolysis enzyme superfamily. In plants, GELPs play an important role in plant growth, development and stress response. The studies of the identification and characterization of the GELP gene family in Triticeae have not been reported. In this study, 193 DvGELPs were identified in Dasypyrum villosum and classified into 11 groups (clade A–K) by means of phylogenetic analysis. Most DvGELPs contain only one GDSL domain, only four DvGELPs contain other domains besides the GDSL domain. Gene structure analysis indicated 35.2% DvGELP genes have four introns and five exons. In the promoter regions of the identified DvGELPs, we detected 4502 putative cis-elements, which were associated with plant hormones, plant growth, environmental stress and light responsiveness. Expression profiling revealed 36, 44 and 17 DvGELPs were highly expressed in the spike, the root and the grain, respectively. Further investigation of a root-specific expressing GELP, DvGELP53, indicated it was induced by a variety of biotic and abiotic stresses. The knockdown of DvGELP53 inhibited long-distance movement of BSMV in the tissue of D. villosum. This research provides a genome-wide glimpse of the D. villosum GELP genes and hints at the participation of DvGELP53 in the interaction between virus and plants.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to The Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.Z.); (Y.Z.)
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Jia Zhao
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China;
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to The Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.Z.); (Y.Z.)
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
- Correspondence: ; Tel.: +86-25-84395308
| |
Collapse
|
21
|
Adhikari P, Mideros SX, Jamann TM. Differential Regulation of Maize and Sorghum Orthologs in Response to the Fungal Pathogen Exserohilum turcicum. FRONTIERS IN PLANT SCIENCE 2021; 12:675208. [PMID: 34113371 PMCID: PMC8185347 DOI: 10.3389/fpls.2021.675208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
Pathogens that infect more than one host offer an opportunity to study how resistance mechanisms have evolved across different species. Exserohilum turcicum infects both maize and sorghum and the isolates are host-specific, offering a unique system to examine both compatible and incompatible interactions. We conducted transcriptional analysis of maize and sorghum in response to maize-specific and sorghum-specific E. turcicum isolates and identified functionally related co-expressed modules. Maize had a more robust transcriptional response than sorghum. E. turcicum responsive genes were enriched in core orthologs in both crops, but only up to 16% of core orthologs showed conserved expression patterns. Most changes in gene expression for the core orthologs, including hub genes, were lineage specific, suggesting a role for regulatory divergent evolution. We identified several defense-related shared differentially expressed (DE) orthologs with conserved expression patterns between the two crops, suggesting a role for parallel evolution of those genes in both crops. Many of the differentially expressed genes (DEGs) during the incompatible interaction were related to quantitative disease resistance (QDR). This work offers insights into how different hosts with relatively recent divergence interact with a common pathogen. Our results are important for developing resistance to this critical pathogen and understanding the evolution of host-pathogen interactions.
Collapse
|
22
|
Zheng Y, Wang LB, Sun SF, Liu SY, Liu MJ, Lin J. Phylogenetic and ion-response analyses reveal a relationship between gene expansion and functional divergence in the Ca 2+/cation antiporter family in Angiosperms. PLANT MOLECULAR BIOLOGY 2021; 105:303-320. [PMID: 33123851 DOI: 10.1007/s11103-020-01088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/21/2020] [Indexed: 05/28/2023]
Abstract
Plant CaCA superfamily genes with higher tendency to retain after WGD are more gene expression and function differentiated in ion-response. Plants and animals face different environmental stresses but share conserved Ca2+ signaling pathways, such as Ca2+/Cation transport. The Ca2+/cation antiporters superfamily (CaCAs) is an ancient and widespread family of ion-coupled cation transporters found in all kingdoms of life. We analyzed the molecular evolution progress of the family through comparative genomics and phylogenetics of CaCAs genes from plants and animals, grouping these genes into several families and clades, and identified multiple gene duplication retention events, particularly in the CAX (H+/cation exchanger), CCX (cation/Ca2+ exchanger), and NCL (Na+/Ca2+ exchanger-like) families. The tendency of duplication retention differs between families and gene clades. The gene duplication events were probably the result of whole-genome duplication (WGD) in plants and might have led to functional divergence. Tissue and ion-response expression analyses revealed that CaCAs genes with more highly differentiated expression patterns are more likely to be retained as duplicates than those with more conserved expression profiles. Phenotype of Arabidopsis thaliana mutants showed that loss of genes with a greater tendency to be retained after duplication resulted in more severe growth deficiency. CaCAs genes in salt-tolerant species tended to inherit the expression characteristics of their most recent common ancestral genes, with conservative ion-response expression. This study indicates a possible evolutionary scheme for cation transport and illustrates distinct fates and a mechanism for the evolution of gene duplicates. The increased copy numbers of genes and divergences in expression might have contributed to the divergent functions of CaCAs protein, allowing plants to cope with environmental stresses and adapt to a larger number of ecological niches.
Collapse
Affiliation(s)
- Ye Zheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Lin-Bo Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Shu-Feng Sun
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Shi-Ying Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Ming-Jia Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Juan Lin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
23
|
Genes, pathways and networks responding to drought stress in oil palm roots. Sci Rep 2020; 10:21303. [PMID: 33277563 PMCID: PMC7719161 DOI: 10.1038/s41598-020-78297-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022] Open
Abstract
Oil palm is the most productive oilseed crop and its oil yield is seriously affected by frequent drought stress. However, little is known about the molecular responses of oil palm to drought stress. We studied the root transcriptomic responses of oil palm seedlings under 14-day drought stress. We identified 1293 differentially expressed genes (DEGs), involved in several molecular processes, including cell wall biogenesis and functions, phenylpropanoid biosynthesis and metabolisms, ion transport and homeostasis and cellular ketone metabolic process, as well as small molecule biosynthetic process. DEGs were significantly enriched into two categories: hormone regulation and metabolism, as well as ABC transporters. In addition, three protein–protein interaction networks: ion transport, reactive nitrogen species metabolic process and nitrate assimilation, were identified to be involved in drought stress responses. Finally, 96 differentially expressed transcription factors were detected to be associated with drought stress responses, which were classified into 28 families. These results provide not only novel insights into drought stress responses, but also valuable genomic resources to improve drought tolerance of oil palm by both genetic modification and selective breeding.
Collapse
|
24
|
Tang F, Xiao Z, Sun F, Shen S, Chen S, Chen R, Zhu M, Zhang Q, Du H, Lu K, Li J, Qu C. Genome-wide identification and comparative analysis of diacylglycerol kinase (DGK) gene family and their expression profiling in Brassica napus under abiotic stress. BMC PLANT BIOLOGY 2020; 20:473. [PMID: 33059598 PMCID: PMC7559766 DOI: 10.1186/s12870-020-02691-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Diacylglycerol kinases (DGKs) are signaling enzymes that play pivotal roles in response to abiotic and biotic stresses by phosphorylating diacylglycerol (DAG) to form phosphatidic acid (PA). However, no comprehensive analysis of the DGK gene family had previously been reported in B. napus and its diploid progenitors (B. rapa and B. oleracea). RESULTS In present study, we identified 21, 10, and 11 DGK genes from B. napus, B. rapa, and B. oleracea, respectively, which all contained conserved catalytic domain and were further divided into three clusters. Molecular evolutionary analysis showed that speciation and whole-genome triplication (WGT) was critical for the divergence of duplicated DGK genes. RNA-seq transcriptome data revealed that, with the exception of BnaDGK4 and BnaDGK6, BnaDGK genes have divergent expression patterns in most tissues. Furthermore, some DGK genes were upregulated or downregulated in response to hormone treatment and metal ion (arsenic and cadmium) stress. Quantitative real-time PCR analysis revealed that different BnaDGK genes contribute to seed oil content. CONCLUSIONS Together, our results indicate that DGK genes have diverse roles in plant growth and development, hormone response, and metal ion stress, and in determining seed oil content, and lay a foundation for further elucidating the roles of DGKs in Brassica species.
Collapse
Affiliation(s)
- Fang Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongchun Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fujun Sun
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Si Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Rui Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Meichen Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qianwei Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hai Du
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
25
|
Jiménez-Morales E, Aguilar-Hernández V, Aguilar-Henonin L, Guzmán P. Molecular basis for neofunctionalization of duplicated E3 ubiquitin ligases underlying adaptation to drought tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:474-492. [PMID: 33164265 DOI: 10.1111/tpj.14938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Multigene families in plants expanded from ancestral genes via gene duplication mechanisms constitute a significant fraction of the coding genome. Although most duplicated genes are lost over time, many are retained in the genome. Clusters of tandemly arrayed genes are commonly found in the plant genome where they can promote expansion of gene families. In the present study, promoter fusion to the GUS reporter gene was used to examine the promoter architecture of duplicated E3 ligase genes that are part of group C in the Arabidopsis thaliana ATL family. Acquisition of gene expression by AtATL78, possibly generated from defective AtATL81 expression, is described. AtATL78 expression was purportedly enhanced by insertion of a TATA box within the core promoter region after a short tandem duplication that occurred during evolution of Brassicaceae lineages. This gene is associated with an adaptation to drought tolerance of A. thaliana. These findings also suggest duplicated genes could serve as a reservoir of tacit genetic information, and expression of these duplicated genes is activated upon acquisition of core promoter sequences. Remarkably, drought transcriptome profiling in response to rehydration suggests that ATL78-dependent gene expression predominantly affects genes with root-specific activities.
Collapse
Affiliation(s)
- Estela Jiménez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| |
Collapse
|
26
|
Transcriptional Rewiring, Adaptation, and the Role of Gene Duplication in the Metabolism of Ethanol of Saccharomyces cerevisiae. mSystems 2020; 5:5/4/e00416-20. [PMID: 32788405 PMCID: PMC7426151 DOI: 10.1128/msystems.00416-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ethanol is the main by-product of yeast sugar fermentation that affects microbial growth parameters, being considered a dual molecule, a nutrient and a stressor. Previous works demonstrated that the budding yeast arose after an ancient hybridization process resulted in a tier of duplicated genes within its genome, many of them with implications in this ethanol "produce-accumulate-consume" strategy. The evolutionary link between ethanol production, consumption, and tolerance versus ploidy and stability of the hybrids is an ongoing debatable issue. The implication of ancestral duplicates in this metabolic rewiring, and how these duplicates differ transcriptionally, remains unsolved. Here, we study the transcriptomic adaptive signatures to ethanol as a nonfermentative carbon source to sustain clonal yeast growth by experimental evolution, emphasizing the role of duplicated genes in the adaptive process. As expected, ethanol was able to sustain growth but at a lower rate than glucose. Our results demonstrate that in asexual populations a complete transcriptomic rewiring was produced, strikingly by downregulation of duplicated genes, mainly whole-genome duplicates, whereas small-scale duplicates exhibited significant transcriptional divergence between copies. Overall, this study contributes to the understanding of evolution after gene duplication, linking transcriptional divergence with duplicates' fate in a multigene trait as ethanol tolerance.IMPORTANCE Gene duplication events have been related with increasing biological complexity through the tree of life, but also with illnesses, including cancer. Early evolutionary theories indicated that duplicated genes could explore alternative functions due to relaxation of selective constraints in one of the copies, as the other remains as ancestral-function backup. In unicellular eukaryotes like yeasts, it has been demonstrated that the fate and persistence of duplicates depend on duplication mechanism (whole-genome or small-scale events), shaping their actual genomes. Although it has been shown that small-scale duplicates tend to innovate and whole-genome duplicates specialize in ancestral functions, the implication of duplicates' transcriptional plasticity and transcriptional divergence on environmental and metabolic responses remains largely obscure. Here, by experimental adaptive evolution, we show that Saccharomyces cerevisiae is able to respond to metabolic stress (ethanol as nonfermentative carbon source) due to the persistence of duplicated genes. These duplicates respond by transcriptional rewiring, depending on their transcriptional background. Our results shed light on the mechanisms that determine the role of duplicates, and on their evolvability.
Collapse
|
27
|
A genome-wide survey of copy number variations reveals an asymmetric evolution of duplicated genes in rice. BMC Biol 2020; 18:73. [PMID: 32591023 PMCID: PMC7318451 DOI: 10.1186/s12915-020-00798-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 11/21/2022] Open
Abstract
Background Copy number variations (CNVs) are an important type of structural variations in the genome that usually affect gene expression levels by gene dosage effect. Understanding CNVs as part of genome evolution may provide insights into the genetic basis of important agricultural traits and contribute to the crop breeding in the future. While available methods to detect CNVs utilizing next-generation sequencing technology have helped shed light on prevalence and effects of CNVs, the complexity of crop genomes poses a major challenge and requires development of additional tools. Results Here, we generated genomic and transcriptomic data of 93 rice (Oryza sativa L.) accessions and developed a comprehensive pipeline to call CNVs in this large-scale dataset. We analyzed the correlation between CNVs and gene expression levels and found that approximately 13% of the identified genes showed a significant correlation between their expression levels and copy numbers. Further analysis showed that about 36% of duplicate pairs were involved in pseudogenetic events while only 5% of them showed functional differentiation. Moreover, the offspring copy mainly contributed to the expression levels and seemed more likely to become a pseudogene, whereas the parent copy tended to maintain the function of ancestral gene. Conclusion We provide a high-accuracy CNV dataset that will contribute to functional genomics studies and molecular breeding in rice. We also showed that gene dosage effect of CNVs in rice is not exponential or linear. Our work demonstrates that the evolution of duplicated genes is asymmetric in both expression levels and gene fates, shedding a new insight into the evolution of duplicated genes.
Collapse
|
28
|
Defoort J, Van de Peer Y, Carretero-Paulet L. The Evolution of Gene Duplicates in Angiosperms and the Impact of Protein-Protein Interactions and the Mechanism of Duplication. Genome Biol Evol 2020; 11:2292-2305. [PMID: 31364708 PMCID: PMC6735927 DOI: 10.1093/gbe/evz156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 01/17/2023] Open
Abstract
Gene duplicates, generated through either whole genome duplication (WGD) or small-scale duplication (SSD), are prominent in angiosperms and are believed to play an important role in adaptation and in generating evolutionary novelty. Previous studies reported contrasting evolutionary and functional dynamics of duplicate genes depending on the mechanism of origin, a behavior that is hypothesized to stem from constraints to maintain the relative dosage balance between the genes concerned and their interaction context. However, the mechanisms ultimately influencing loss and retention of gene duplicates over evolutionary time are not yet fully elucidated. Here, by using a robust classification of gene duplicates in Arabidopsis thaliana, Solanum lycopersicum, and Zea mays, large RNAseq expression compendia and an extensive protein-protein interaction (PPI) network from Arabidopsis, we investigated the impact of PPIs on the differential evolutionary and functional fate of WGD and SSD duplicates. In all three species, retained WGD duplicates show stronger constraints to diverge at the sequence and expression level than SSD ones, a pattern that is also observed for shared PPI partners between Arabidopsis duplicates. PPIs are preferentially distributed among WGD duplicates and specific functional categories. Furthermore, duplicates with PPIs tend to be under stronger constraints to evolve than their counterparts without PPIs regardless of their mechanism of origin. Our results support dosage balance constraint as a specific property of genes involved in biological interactions, including physical PPIs, and suggest that additional factors may be differently influencing the evolution of genes following duplication, depending on the species, time, and mechanism of origin.
Collapse
Affiliation(s)
- Jonas Defoort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Lorenzo Carretero-Paulet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| |
Collapse
|
29
|
Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation. Int J Mol Sci 2019; 20:ijms20123101. [PMID: 31242611 PMCID: PMC6627786 DOI: 10.3390/ijms20123101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022] Open
Abstract
Abiotic stress is one of the major threats to plant crop yield and productivity. When plants are exposed to stress, production of reactive oxygen species (ROS) increases, which could lead to extensive cellular damage and hence crop loss. During evolution, plants have acquired antioxidant defense systems which can not only detoxify ROS but also adjust ROS levels required for proper cell signaling. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) are crucial enzymes involved in ROS detoxification. In this study, 40 putative APX, 28 GPX, 16 CAT, and 41 SOD genes were identified from genomes of the resurrection species Boea hygrometrica, Selaginella lepidophylla, Xerophyta viscosa, and Oropetium thomaeum, and the mesophile Selaginellamoellendorffii. Phylogenetic analyses classified the APX, GPX, and SOD proteins into five clades each, and CAT proteins into three clades. Using co-expression network analysis, various regulatory modules were discovered, mainly involving glutathione, that likely work together to maintain ROS homeostasis upon desiccation stress in resurrection species. These regulatory modules also support the existence of species-specific ROS detoxification systems. The results suggest molecular pathways that regulate ROS in resurrection species and the role of APX, GPX, CAT and SOD genes in resurrection species during stress.
Collapse
|
30
|
Wei L, Zhu Y, Liu R, Zhang A, Zhu M, Xu W, Lin A, Lu K, Li J. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus. Sci Rep 2019; 9:9196. [PMID: 31235772 PMCID: PMC6591421 DOI: 10.1038/s41598-019-45744-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/14/2019] [Indexed: 11/09/2022] Open
Abstract
Glutathione transferases (GSTs) are multifunctional enzymes that play important roles in plant development and responses to biotic and abiotic stress. However, a systematic analysis of GST family members in Brassica napus has not yet been reported. In this study, we identified 179 full-length GST genes in B. napus, 44.2% of which are clustered on various chromosomes. In addition, we identified 141 duplicated GST gene pairs in B. napus. Molecular evolutionary analysis showed that speciation and whole-genome triplication played important roles in the divergence of the B. napus GST duplicated genes. Transcriptome analysis of 21 tissues at different developmental stages showed that 47.6% of duplicated GST gene pairs have divergent expression patterns, perhaps due to structural divergence. We constructed a GST gene coexpression network with genes encoding various transcription factors (NAC, MYB, WRKY and bZIP) and identified six modules, including genes expressed during late seed development (after 40 days; BnGSTU19, BnGSTU20 and BnGSTZ1) and in the seed coat (BnGSTF6 and BnGSTF12), stamen and anther (BnGSTF8), root and stem (BnGSTU21), leaves and funiculus, as well as during the late stage of pericarp development (after 40 days; BnGSTU12 and BnGSTF2) and in the radicle during seed germination (BnGSTF14, BnGSTU1, BnGSTU28, and BnGSTZ1). These findings lay the foundation for elucidating the roles of GSTs in B. napus.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Yan Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ruiying Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Meicheng Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wen Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ai Lin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
31
|
Song H, Sun J, Yang G. Old and young duplicate genes reveal different responses to environmental changes in Arachis duranensis. Mol Genet Genomics 2019; 294:1199-1209. [PMID: 31076861 DOI: 10.1007/s00438-019-01574-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 11/24/2022]
Abstract
Old and young duplicate genes have been reported in some organisms. However, little is known about the properties of old and young duplicate genes in Arachis. Here, we have identified old and young duplicate genes in Arachis duranensis, and analyzed the evolution, gene complexity, gene expression pattern, and functional divergence between old and young duplicate genes. Our results showed different evolutionary, gene complexity and gene expression patterns, as well as differing correlations between old and young duplicate genes. Gene ontology results showed that old duplicate genes play a crucial role in lipid and amino acid biosynthesis and the oxidation-reduction process and that young duplicate genes are preferentially involved in photosynthesis and response to biotic stimulus. Transcriptome data sets revealed that most old and young duplicate genes had asymmetric function, and only a few duplicate genes exhibited symmetric function under drought and nematode stress. We found that old duplicate genes are preferentially involved in lipid and amino acid metabolism and response to abiotic stress, while young duplicate genes are likely to participate in photosynthesis and response to biotic stress. This work provides a better understanding of the evolution and functional divergence of old and young duplicate genes in A. duranensis.
Collapse
Affiliation(s)
- Hui Song
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, Qingdao, China.
| | - Juan Sun
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
32
|
Wang S, Chen Y. Fine-Tuning the Expression of Duplicate Genes by Translational Regulation in Arabidopsis and Maize. FRONTIERS IN PLANT SCIENCE 2019; 10:534. [PMID: 31156655 PMCID: PMC6530396 DOI: 10.3389/fpls.2019.00534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/05/2019] [Indexed: 06/01/2023]
Abstract
Plant genomes are extensively shaped by various types of gene duplication. However, in this active area of investigation, the vast majority of studies focus on the sequence and transcription of duplicate genes, leaving open the question of how translational regulation impacts the expression and evolution of duplicate genes. We explored this issue by analyzing the ribo- and mRNA-seq data sets across six tissue types and stress conditions in Arabidopsis thaliana and maize (Zea mays). We dissected the relative contributions of transcriptional and translational regulation to the divergence in the abundance of ribosome footprint (RF) for different types of duplicate genes. We found that the divergence in RF abundance was largely programmed at the transcription level and that translational regulation plays more of a modulatory role. Intriguingly, translational regulation is characterized by its strong directionality, with the divergence in translational efficiency (TE) globally counteracting the divergence in mRNA abundance, indicating partial buffering of the transcriptional divergence between paralogs by translational regulation. Divergence in TE was associated with several sequence features. The faster-evolving copy in a duplicate pair was more likely to show lower RF abundance, which possibly results from relaxed purifying selection compared with its paralog. A considerable proportion of duplicates displayed differential TE across tissue types and stress conditions, most of which were enriched in photosynthesis, energy production, and translation-related processes. Additionally, we constructed a database TDPDG-DB (http://www.plantdupribo.tk), providing an online platform for data exploration. Overall, our study illustrates the roles of translational regulation in fine-tuning duplicate gene expression in plants.
Collapse
Affiliation(s)
- Sishuo Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Department of Botany, Faculty of Science, The University of British Columbia, Vancouver, BC, Canada
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
33
|
Panchy NL, Azodi CB, Winship EF, O'Malley RC, Shiu SH. Expression and regulatory asymmetry of retained Arabidopsis thaliana transcription factor genes derived from whole genome duplication. BMC Evol Biol 2019; 19:77. [PMID: 30866803 PMCID: PMC6416927 DOI: 10.1186/s12862-019-1398-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Transcription factors (TFs) play a key role in regulating plant development and response to environmental stimuli. While most genes revert to single copy after whole genome duplication (WGD) event, transcription factors are retained at a significantly higher rate. Little is known about how TF duplicates have diverged in their expression and regulation, the answer to which may contribute to a better understanding of the elevated retention rate among TFs. Results Here we assessed what features may explain differences in the retention of TF duplicates and other genes using Arabidopsis thaliana as a model. We integrated 34 expression, sequence, and conservation features to build a linear model for predicting the extent of duplicate retention following WGD events among TFs and 19 groups of genes with other functions. We found that TFs was the least well predicted, demonstrating the features of TFs are substantially deviated from duplicate genes in other function groups. Consistent with this, the evolution of TF expression patterns and cis-regulatory cites favors the partitioning of ancestral states among the resulting duplicates: one “ancestral” TF duplicate retains most ancestral expression and cis-regulatory sites, while the “non-ancestral” duplicate is enriched for novel regulatory sites. By modeling the retention of ancestral expression and cis-regulatory states in duplicate pairs using a system of differential equations, we found that TF duplicate pairs in a partitioned state are preferentially maintained. Conclusions These TF duplicates with asymmetrically partitioned ancestral states are likely maintained because one copy retains ancestral functions while the other, at least in some cases, acquires novel cis-regulatory sites that may be important for novel, adaptive traits. Electronic supplementary material The online version of this article (10.1186/s12862-019-1398-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas L Panchy
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA.,Present address: NIMBioS, University of Tennessee, Claxton Bldg. 1122 Volunteer Blvd., Suite 106, Knoxville, TN, 37996-3410, USA
| | - Christina B Azodi
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Eamon F Winship
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Present address: MYcroarray, 5692 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | | | - Shin-Han Shiu
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,Plant Biology Laboratories, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824-1312, USA.
| |
Collapse
|
34
|
Wang L, Ma H, Lin J. Angiosperm-Wide and Family-Level Analyses of AP2/ ERF Genes Reveal Differential Retention and Sequence Divergence After Whole-Genome Duplication. FRONTIERS IN PLANT SCIENCE 2019; 10:196. [PMID: 30863419 PMCID: PMC6399210 DOI: 10.3389/fpls.2019.00196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/05/2019] [Indexed: 05/21/2023]
Abstract
Plants are immobile and often face stressful environmental conditions, prompting the evolution of genes regulating environmental responses. Such evolution is achieved largely through gene duplication and subsequent divergence. One of the most important gene families involved in regulating plant environmental responses and development is the AP2/ERF superfamily; however, the evolutionary history of these genes is unclear across angiosperms and in major angiosperm families adapted to various ecological niches. Specifically, the impact on gene copy number of whole-genome duplication events occurring around the time of the origins of several plant families is unknown. Here, we present the first angiosperm-wide comparative study of AP2/ERF genes, identifying 75 Angiosperm OrthoGroups (AOGs), each derived from an ancestral angiosperm gene copy. Among these AOGs, 21 retain duplicates with increased copy number in many angiosperm lineages, while the remaining 54 AOGs tend to maintain low copy number. Further analyses of multiple species in the Brassicaceae family indicated that family-specific duplicates experienced differential selective pressures in coding regions, with some paralogs showing signs of positive selection. Further, cis regulatory elements also exhibit extensive divergence between duplicates in Arabidopsis. Moreover, comparison of expression levels suggested that AP2/ERF genes with frequently retained duplicates are enriched for broad expression patterns, offering increased opportunities for functional diversification via changes in expression patterns, and providing a mechanism for repeated duplicate retention in some AOGs. Our results represent the most comprehensive evolutionary history of the AP2/ERF gene family, and support the hypothesis that AP2/ERF genes with broader expression patterns are more likely to be retained as duplicates than those with narrower expression profiles, which could lead to a higher chance of duplicate gene subfunctionalization. The greater tendency of some AOGs to retain duplicates, allowing expression and functional divergence, may facilitate the evolution of complex signaling networks in response to new environmental conditions.
Collapse
Affiliation(s)
- Linbo Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Juan Lin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Vaattovaara A, Brandt B, Rajaraman S, Safronov O, Veidenberg A, Luklová M, Kangasjärvi J, Löytynoja A, Hothorn M, Salojärvi J, Wrzaczek M. Mechanistic insights into the evolution of DUF26-containing proteins in land plants. Commun Biol 2019; 2:56. [PMID: 30775457 PMCID: PMC6368629 DOI: 10.1038/s42003-019-0306-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Large protein families are a prominent feature of plant genomes and their size variation is a key element for adaptation. However, gene and genome duplications pose difficulties for functional characterization and translational research. Here we infer the evolutionary history of the DOMAIN OF UNKNOWN FUNCTION (DUF) 26-containing proteins. The DUF26 emerged in secreted proteins. Domain duplications and rearrangements led to the appearance of CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES (CRKs) and PLASMODESMATA-LOCALIZED PROTEINS (PDLPs). The DUF26 is land plant-specific but structural analyses of PDLP ectodomains revealed strong similarity to fungal lectins and thus may constitute a group of plant carbohydrate-binding proteins. CRKs expanded through tandem duplications and preferential retention of duplicates following whole genome duplications, whereas PDLPs evolved according to the dosage balance hypothesis. We propose that new gene families mainly expand through small-scale duplications, while fractionation and genetic drift after whole genome multiplications drive families towards dosage balance.
Collapse
Affiliation(s)
- Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Sitaram Rajaraman
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Omid Safronov
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Andres Veidenberg
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5 (POB56), FI-00014 Helsinki, Finland
| | - Markéta Luklová
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
- Present Address: Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC—Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5 (POB56), FI-00014 Helsinki, Finland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| |
Collapse
|
36
|
Artur MAS, Zhao T, Ligterink W, Schranz E, Hilhorst HWM. Dissecting the Genomic Diversification of Late Embryogenesis Abundant (LEA) Protein Gene Families in Plants. Genome Biol Evol 2019; 11:459-471. [PMID: 30407531 PMCID: PMC6379091 DOI: 10.1093/gbe/evy248] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 01/29/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins include eight multigene families that are expressed in response to water loss during seed maturation and in vegetative tissues of desiccation tolerant species. To elucidate LEA proteins evolution and diversification, we performed a comprehensive synteny and phylogenetic analyses of the eight gene families across 60 complete plant genomes. Our integrated comparative genomic approach revealed that synteny conservation and diversification contributed to LEA family expansion and functional diversification in plants. We provide examples that: 1) the genomic diversification of the Dehydrin family contributed to differential evolution of amino acid sequences, protein biochemical properties, and gene expression patterns, and led to the appearance of a novel functional motif in angiosperms; 2) ancient genomic diversification contributed to the evolution of distinct intrinsically disordered regions of LEA_1 proteins; 3) recurrent tandem-duplications contributed to the large expansion of LEA_2; and 4) dynamic synteny diversification played a role on the evolution of LEA_4 and its function on plant desiccation tolerance. Taken together, these results show that multiple evolutionary mechanisms have not only led to genomic diversification but also to structural and functional plasticity among LEA proteins which have jointly contributed to the adaptation of plants to water-limiting environments.
Collapse
Affiliation(s)
- Mariana Aline Silva Artur
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Eric Schranz
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
37
|
Song H, Sun J, Yang G. Comparative analysis of selection mode reveals different evolutionary rate and expression pattern in Arachis duranensis and Arachis ipaënsis duplicated genes. PLANT MOLECULAR BIOLOGY 2018; 98:349-361. [PMID: 30298428 DOI: 10.1007/s11103-018-0784-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Our results reveal that Ks is a determining factor affecting selective pressure and different evolution and expression patterns are detected between PSGs and NSGs in wild Arachis duplicates. Selective pressure, including purifying (negative) and positive selection, can be detected in organisms. However, studies on comparative evolutionary rates, gene expression patterns and gene features between negatively selected genes (NSGs) and positively selected genes (PSGs) are lagging in paralogs of plants. Arachis duranensis and Arachis ipaënsis are ancestors of the cultivated peanut, an important oil and protein crop. Here, we carried out a series of systematic analyses, comparing NSG and PSG in paralogs, using genome sequences and transcriptome datasets in A. duranensis and A. ipaënsis. We found that synonymous substitution rate (Ks) is a determining factor affecting selective pressure in A. duranensis and A. ipaënsis duplicated genes. Lower expression level, lower gene expression breadth, higher codon bias and shorter polypeptide length were found in PSGs and not in NSGs. The correlation analyses showed that gene expression breadth was positively correlated with polypeptide length and GC content at the first codon site (GC1) in PSGs and NSGs, respectively. There was a negative correlation between expression level and polypeptide length in PSGs. In NSGs, the Ks was positively correlated with expression level, gene expression breadth, GC1, and GC content at the third codon site (GC3), but selective pressure was negatively correlated with expression level, gene expression breadth, polypeptide length, GC1, and GC3 content. The function of most duplicated gene pairs was divergent under drought and nematode stress. Taken together, our results show that different evolution and expression patterns occur between PSGs and NSGs in paralogs of two wild Arachis species.
Collapse
Affiliation(s)
- Hui Song
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, China.
| | - Juan Sun
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, China.
| |
Collapse
|
38
|
Magwanga RO, Lu P, Kirungu JN, Cai X, Zhou Z, Wang X, Diouf L, Xu Y, Hou Y, Hu Y, Dong Q, Wang K, Liu F. Whole Genome Analysis of Cyclin Dependent Kinase ( CDK) Gene Family in Cotton and Functional Evaluation of the Role of CDKF4 Gene in Drought and Salt Stress Tolerance in Plants. Int J Mol Sci 2018; 19:ijms19092625. [PMID: 30189594 PMCID: PMC6164816 DOI: 10.3390/ijms19092625] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Cotton (Gossypium spp.) is the number one crop cultivated for fiber production and the cornerstone of the textile industry. Drought and salt stress are the major abiotic stresses, which can have a huge economic impact on cotton production; this has been aggravated with continued climate change, and compounded by pollution. Various survival strategies evolved by plants include the induction of various stress responsive genes, such as cyclin dependent kinases (CDKs). In this study, we performed a whole-genome identification and analysis of the CDK gene family in cotton. We identified 31, 12, and 15 CDK genes in G. hirsutum, G. arboreum, and G. raimondii respectively, and they were classified into 6 groups. CDK genes were distributed in 15, 10, and 9 linkage groups of AD, D, and A genomes, respectively. Evolutionary analysis revealed that segmental types of gene duplication were the primary force underlying CDK genes expansion. RNA sequence and RT-qPCR validation revealed that Gh_D12G2017 (CDKF4) was strongly induced by drought and salt stresses. The transient expression of Gh_D12G2017-GFP fusion protein in the protoplast showed that Gh_D12G2017 was localized in the nucleus. The transgenic Arabidopsis lines exhibited higher concentration levels of the antioxidant enzymes measured, including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) concentrations under drought and salt stress conditions with very low levels of oxidants. Moreover, cell membrane stability (CMS), excised leaf water loss (ELWL), saturated leaf weight (SLW), and chlorophyll content measurements showed that the transgenic Arabidopsis lines were highly tolerant to either of the stress factors compared to their wild types. Moreover, the expression of the stress-related genes was also significantly up-regulated in Gh_D12G2017(CDKF4) transgenic Arabidopsis plants under drought and salt conditions. We infer that CDKF-4s and CDKG-2s might be the primary regulators of salt and drought responses in cotton.
Collapse
Affiliation(s)
- Richard Odongo Magwanga
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
- School of Biological and Physical sciences (SBPS), Main campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), P.O Box 210-40601, Bondo, Kenya.
| | - Pu Lu
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Joy Nyangasi Kirungu
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Xiaoyan Cai
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Zhongli Zhou
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Xingxing Wang
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Latyr Diouf
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Yanchao Xu
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Yuqing Hou
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Yangguang Hu
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Qi Dong
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Kunbo Wang
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Fang Liu
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| |
Collapse
|
39
|
Ma Q, Liu X, Franks RG, Xiang QYJ. Alterations of CorTFL1 and CorAP1 expression correlate with major evolutionary shifts of inflorescence architecture in Cornus (Cornaceae) - a proposed model for variation of closed inflorescence forms. THE NEW PHYTOLOGIST 2017; 216:519-535. [PMID: 27662246 DOI: 10.1111/nph.14197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
TFL1-, AP1- and LFY-like genes are known to be key regulators of inflorescence development. However, it remains to be tested whether the evolutionary modifications of inflorescence morphology result from shifts in their expression patterns. We compared the spatiotemporal expression patterns of CorTFL1, CorAP1 and CorLFY in six closely related Cornus species that display four types of closed inflorescence morphology using quantitative real-time polymerase chain reaction (qRT-PCR) and RNA in situ hybridization. Character mapping on the phylogeny was conducted to identify evolutionary changes and to assess the correlation between changes in gene expression and inflorescence morphology. Results demonstrated variation of gene expression patterns among species and a strong correlation between CorTFL1 expression and the branch index of the inflorescence type. Evolutionary changes in CorTFL1 and CorAP1 expression co-occurred on the phylogeny with the morphological changes underpinning inflorescence divergence. The study found a clear correlation between the expression patterns of CorTFL1 and CorAP1 and the inflorescence architecture in a natural system displaying closed inflorescences. The results suggest a role for the alteration in CorTFL1 and CorAP1 expression during the evolutionary modification of inflorescences in Cornus. We propose that a TFL1-like and AP1-like gene-based model may explain variation of closed inflorescences in Cornus and other lineages.
Collapse
Affiliation(s)
- Qing Ma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
- Key laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiang Liu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| |
Collapse
|
40
|
Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y, Lu H, Ma M, Liu L, Zhou J, Nan C, Qin Y, Wang J, Cui L, Liu H, Liang C, Qiao Z. The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. MOLECULAR PLANT 2017; 10:1224-1237. [PMID: 28866080 DOI: 10.1016/j.molp.2017.08.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 05/20/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat's ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat.
Collapse
Affiliation(s)
- Lijun Zhang
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Xiuxiu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanhuai Han
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China; College of Agronomy, Shanxi Agricultural University, Taiyuan 030801, China
| | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingchuan Ma
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Longlong Liu
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Jianping Zhou
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Chenghu Nan
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Yongjun Qin
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Lin Cui
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China.
| | - Huimin Liu
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China.
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhijun Qiao
- Institute of Crop Germplasm Resources Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China.
| |
Collapse
|
41
|
Li L, Briskine R, Schaefer R, Schnable PS, Myers CL, Flagel LE, Springer NM, Muehlbauer GJ. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias. BMC Genomics 2016; 17:875. [PMID: 27814670 PMCID: PMC5097351 DOI: 10.1186/s12864-016-3194-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/22/2016] [Indexed: 01/08/2023] Open
Abstract
Background Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. Results To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks – maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Conclusions Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types, duplication ages and co-expression consequences. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3194-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Li
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA.,National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Roman Briskine
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Robert Schaefer
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lex E Flagel
- Monsanto Company, Chesterfield, MO, 63017, USA.,Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA. .,Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
42
|
Wang J, Tao F, Marowsky NC, Fan C. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes. PLANT PHYSIOLOGY 2016. [PMID: 27485883 DOI: 10.1104/pp.l6.01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Feng Tao
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Nicholas C Marowsky
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
43
|
Wang J, Tao F, Marowsky NC, Fan C. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes. PLANT PHYSIOLOGY 2016; 172:427-40. [PMID: 27485883 PMCID: PMC5074645 DOI: 10.1104/pp.16.01177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 05/02/2023]
Abstract
Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Feng Tao
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Nicholas C Marowsky
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
44
|
Panchy N, Lehti-Shiu M, Shiu SH. Evolution of Gene Duplication in Plants. PLANT PHYSIOLOGY 2016; 171:2294-316. [PMID: 27288366 PMCID: PMC4972278 DOI: 10.1104/pp.16.00523] [Citation(s) in RCA: 902] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.
Collapse
Affiliation(s)
- Nicholas Panchy
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Melissa Lehti-Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
45
|
Salse J. Deciphering the evolutionary interplay between subgenomes following polyploidy: A paleogenomics approach in grasses. AMERICAN JOURNAL OF BOTANY 2016; 103:1167-1174. [PMID: 27425631 DOI: 10.3732/ajb.1500459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/01/2016] [Indexed: 06/06/2023]
Abstract
How did plant species emerge from their most recent common ancestors (MRCAs) 250 million years ago? Modern plant genomes help to address such key questions in unveiling precise species genealogies. The field of paleogenomics is undergoing a paradigm shift for investigating species evolution from the study of ancestral genomes from extinct species to deciphering the evolutionary forces (in terms of duplication, fusion, fission, deletion, and translocation) that drove present-day plant diversity (in terms of chromosome/gene number and genome size). In this review, inferred ancestral karyotype genomes are shown to be powerful tools to (1) unravel the past history of extant species by recovering the variations of ancestral genomic compartments and (2) accelerate translational research by facilitating the transfer of genomic information from model systems to species of agronomic interest.
Collapse
Affiliation(s)
- Jérôme Salse
- INRA/UBP UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Laboratory of Paleogenomics & Evolution, 5 chemin de Beaulieu 63100 Clermont Ferrand, France
| |
Collapse
|
46
|
Hoffmann RD, Palmgren M. Purifying selection acts on coding and non-coding sequences of paralogous genes in Arabidopsis thaliana. BMC Genomics 2016; 17:456. [PMID: 27296049 PMCID: PMC4906602 DOI: 10.1186/s12864-016-2803-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/27/2016] [Indexed: 01/13/2023] Open
Abstract
Background Whole-genome duplications in the ancestors of many diverse species provided the genetic material for evolutionary novelty. Several models explain the retention of paralogous genes. However, how these models are reflected in the evolution of coding and non-coding sequences of paralogous genes is unknown. Results Here, we analyzed the coding and non-coding sequences of paralogous genes in Arabidopsis thaliana and compared these sequences with those of orthologous genes in Arabidopsis lyrata. Paralogs with lower expression than their duplicate had more nonsynonymous substitutions, were more likely to fractionate, and exhibited less similar expression patterns with their orthologs in the other species. Also, lower-expressed genes had greater tissue specificity. Orthologous conserved non-coding sequences in the promoters, introns, and 3′ untranslated regions were less abundant at lower-expressed genes compared to their higher-expressed paralogs. A gene ontology (GO) term enrichment analysis showed that paralogs with similar expression levels were enriched in GO terms related to ribosomes, whereas paralogs with different expression levels were enriched in terms associated with stress responses. Conclusions Loss of conserved non-coding sequences in one gene of a paralogous gene pair correlates with reduced expression levels that are more tissue specific. Together with increased mutation rates in the coding sequences, this suggests that similar forces of purifying selection act on coding and non-coding sequences. We propose that coding and non-coding sequences evolve concurrently following gene duplication. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2803-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert D Hoffmann
- Center for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - Michael Palmgren
- Center for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
47
|
Barah P, B N MN, Jayavelu ND, Sowdhamini R, Shameer K, Bones AM. Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Res 2015; 44:3147-64. [PMID: 26681689 PMCID: PMC4838348 DOI: 10.1093/nar/gkv1463] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/28/2015] [Indexed: 11/25/2022] Open
Abstract
Differentially evolved responses to various stress conditions in plants are controlled by complex regulatory circuits of transcriptional activators, and repressors, such as transcription factors (TFs). To understand the general and condition-specific activities of the TFs and their regulatory relationships with the target genes (TGs), we have used a homogeneous stress gene expression dataset generated on ten natural ecotypes of the model plant Arabidopsis thaliana, during five single and six combined stress conditions. Knowledge-based profiles of binding sites for 25 stress-responsive TF families (187 TFs) were generated and tested for their enrichment in the regulatory regions of the associated TGs. Condition-dependent regulatory sub-networks have shed light on the differential utilization of the underlying network topology, by stress-specific regulators and multifunctional regulators. The multifunctional regulators maintain the core stress response processes while the transient regulators confer the specificity to certain conditions. Clustering patterns of transcription factor binding sites (TFBS) have reflected the combinatorial nature of transcriptional regulation, and suggested the putative role of the homotypic clusters of TFBS towards maintaining transcriptional robustness against cis-regulatory mutations to facilitate the preservation of stress response processes. The Gene Ontology enrichment analysis of the TGs reflected sequential regulation of stress response mechanisms in plants.
Collapse
Affiliation(s)
- Pankaj Barah
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Mahantesha Naika B N
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Naresh Doni Jayavelu
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Khader Shameer
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
48
|
Peng C, Uygun S, Shiu SH, Last RL. The Impact of the Branched-Chain Ketoacid Dehydrogenase Complex on Amino Acid Homeostasis in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:1807-20. [PMID: 25986129 PMCID: PMC4634046 DOI: 10.1104/pp.15.00461] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/15/2015] [Indexed: 05/05/2023]
Abstract
The branched-chain amino acids (BCAAs) Leu, Ile, and Val are among nine essential amino acids that must be obtained from the diet of humans and other animals, and can be nutritionally limiting in plant foods. Despite genetic evidence of its importance in regulating seed amino acid levels, the full BCAA catabolic network is not completely understood in plants, and limited information is available regarding its regulation. In this study, transcript coexpression analyses revealed positive correlations among BCAA catabolism genes in stress, development, diurnal/circadian, and light data sets. A core subset of BCAA catabolism genes, including those encoding putative branched-chain ketoacid dehydrogenase subunits, is highly expressed during the night in plants on a diel cycle and in prolonged darkness. Mutants defective in these subunits accumulate higher levels of BCAAs in mature seeds, providing genetic evidence for their function in BCAA catabolism. In addition, prolonged dark treatment caused the mutants to undergo senescence early and overaccumulate leaf BCAAs. These results extend the previous evidence that BCAAs can be catabolized and serve as respiratory substrates at multiple steps. Moreover, comparison of amino acid profiles between mature seeds and dark-treated leaves revealed differences in amino acid accumulation when BCAA catabolism is perturbed. Together, these results demonstrate the consequences of blocking BCAA catabolism during both normal growth conditions and under energy-limited conditions.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Plant Biology (C.P., S.-H.S., R.L.L.), Department of Energy Plant Research Laboratory (C.P., S.U.), Genetics Program (S.U., S.-H.S.), and Department of Biochemistry and Molecular Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824
| | - Sahra Uygun
- Department of Plant Biology (C.P., S.-H.S., R.L.L.), Department of Energy Plant Research Laboratory (C.P., S.U.), Genetics Program (S.U., S.-H.S.), and Department of Biochemistry and Molecular Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Department of Plant Biology (C.P., S.-H.S., R.L.L.), Department of Energy Plant Research Laboratory (C.P., S.U.), Genetics Program (S.U., S.-H.S.), and Department of Biochemistry and Molecular Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824
| | - Robert L Last
- Department of Plant Biology (C.P., S.-H.S., R.L.L.), Department of Energy Plant Research Laboratory (C.P., S.U.), Genetics Program (S.U., S.-H.S.), and Department of Biochemistry and Molecular Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
49
|
Yasumura Y, Pierik R, Kelly S, Sakuta M, Voesenek LACJ, Harberd NP. An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling. PLANT PHYSIOLOGY 2015; 169:283-98. [PMID: 26243614 PMCID: PMC4577374 DOI: 10.1104/pp.15.00233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/23/2015] [Indexed: 05/20/2023]
Abstract
Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Physcomitrella patens (representative of early divergent land plants), with those of more recently diverged lycophyte and angiosperm species (including Arabidopsis [Arabidopsis thaliana]) and identify a monophyletic CTR1 family. The fully sequenced P. patens genome encodes only a single member of this family (PpCTR1L). Next, we compare the functions of PpCTR1L with that of related angiosperm proteins. We show that, like angiosperm CTR1 proteins (e.g. AtCTR1 of Arabidopsis), PpCTR1L modulates downstream ethylene signaling via direct interaction with ethylene receptors. These functions, therefore, likely predate the divergence of the bryophytes from the land-plant lineage. However, we also show that PpCTR1L unexpectedly has dual functions and additionally modulates abscisic acid (ABA) signaling. In contrast, while AtCTR1 lacks detectable ABA signaling functions, Arabidopsis has during evolution acquired another homolog that is functionally distinct from AtCTR1. In conclusion, the roles of CTR1-related proteins appear to have functionally diversified during land-plant evolution, and angiosperm CTR1-related proteins appear to have lost an ancestral ABA signaling function. Our study provides new insights into how molecular events such as gene duplication and functional differentiation may have contributed to the adaptive evolution of regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Yuki Yasumura
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| | - Ronald Pierik
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| | - Masaaki Sakuta
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| | - Laurentius A C J Voesenek
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| |
Collapse
|
50
|
Lehti-Shiu MD, Uygun S, Moghe GD, Panchy N, Fang L, Hufnagel DE, Jasicki HL, Feig M, Shiu SH. Molecular Evidence for Functional Divergence and Decay of a Transcription Factor Derived from Whole-Genome Duplication in Arabidopsis thaliana. PLANT PHYSIOLOGY 2015; 168:1717-34. [PMID: 26103993 PMCID: PMC4528766 DOI: 10.1104/pp.15.00689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/03/2015] [Indexed: 05/23/2023]
Abstract
Functional divergence between duplicate transcription factors (TFs) has been linked to critical events in the evolution of land plants and can result from changes in patterns of expression, binding site divergence, and/or interactions with other proteins. Although plant TFs tend to be retained post polyploidization, many are lost within tens to hundreds of million years. Thus, it can be hypothesized that some TFs in plant genomes are in the process of becoming pseudogenes. Here, we use a pair of salt tolerance-conferring transcription factors, DWARF AND DELAYED FLOWERING1 (DDF1) and DDF2, that duplicated through paleopolyploidy 50 to 65 million years ago, as examples to illustrate potential mechanisms leading to duplicate retention and loss. We found that the expression patterns of Arabidopsis thaliana (At)DDF1 and AtDDF2 have diverged in a highly asymmetric manner, and AtDDF2 has lost most inferred ancestral stress responses. Consistent with promoter disablement, the AtDDF2 promoter has fewer predicted cis-elements and a methylated repetitive element. Through comparisons of AtDDF1, AtDDF2, and their Arabidopsis lyrata orthologs, we identified significant differences in binding affinities and binding site preference. In particular, an AtDDF2-specific substitution within the DNA-binding domain significantly reduces binding affinity. Cross-species analyses indicate that both AtDDF1 and AtDDF2 are under selective constraint, but among A. thaliana accessions, AtDDF2 has a higher level of nonsynonymous nucleotide diversity compared with AtDDF1. This may be the result of selection in different environments or may point toward the possibility of ongoing functional decay despite retention for millions of years after gene duplication.
Collapse
Affiliation(s)
- Melissa D Lehti-Shiu
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Sahra Uygun
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Gaurav D Moghe
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Nicholas Panchy
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Liang Fang
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - David E Hufnagel
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Hannah L Jasicki
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Michael Feig
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Shin-Han Shiu
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| |
Collapse
|