1
|
Arnqvist G, Rowe L. Ecology, the pace-of-life, epistatic selection and the maintenance of genetic variation in life-history genes. Mol Ecol 2023; 32:4713-4724. [PMID: 37386734 DOI: 10.1111/mec.17062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Evolutionary genetics has long struggled with understanding how functional genes under selection remain polymorphic in natural populations. Taking as a starting point that natural selection is ultimately a manifestation of ecological processes, we spotlight an underemphasized and potentially ubiquitous ecological effect that may have fundamental effects on the maintenance of genetic variation. Negative frequency dependency is a well-established emergent property of density dependence in ecology, because the relative profitability of different modes of exploiting or utilizing limiting resources tends to be inversely proportional to their frequency in a population. We suggest that this may often generate negative frequency-dependent selection (NFDS) on major effect loci that affect rate-dependent physiological processes, such as metabolic rate, that are phenotypically manifested as polymorphism in pace-of-life syndromes. When such a locus under NFDS shows stable intermediate frequency polymorphism, this should generate epistatic selection potentially involving large numbers of loci with more minor effects on life-history (LH) traits. When alternative alleles at such loci show sign epistasis with a major effect locus, this associative NFDS will promote the maintenance of polygenic variation in LH genes. We provide examples of the kind of major effect loci that could be involved and suggest empirical avenues that may better inform us on the importance and reach of this process.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Swedish Collegium of Advanced Study, Uppsala, Sweden
| |
Collapse
|
2
|
Gallot A, Desouhant E, Lhuillier V, Lepetit D, El Filali A, Mouton L, Vieira-Heddi C, Amat I. The for gene as one of the drivers of foraging variations in a parasitic wasp. Mol Ecol 2022; 32:1760-1776. [PMID: 36571434 DOI: 10.1111/mec.16834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Foraging behaviours encompass strategies to locate resources and to exploit them. In many taxa, these behaviours are driven by a major gene called for, but the mechanisms of gene regulation vary between species. In the parasitoid wasp Venturia canescens, sexual and asexual populations coexist in sympatry but differ in life-history traits, physiology and behaviours, which could impact their foraging strategies. Here, we explored the molecular bases underpinning divergence in behaviours by testing two mutually nonexclusive hypotheses: first, the divergence in the for gene correlates with differences in foraging strategies, and second, the latter rely on a divergence in whole-genome expression. Using comparative genomics, we showed that the for gene was conserved across insects considering both sequence and gene model complexity. Polymorphism analysis did not support the occurrence of two allelic variants diverging across the two populations, yet the asexual population exhibited less polymorphism than the sexual population. Sexual and asexual transcriptomes split sharply, with 10.9% differentially expressed genes, but these were not enriched in behaviour-related genes. We showed that the for gene was more highly expressed in asexual female heads than in sexual heads and that those differences correlate with divergence in foraging behaviours in our experiment given that asexuals explored the environment more and exploited more host patches. Overall, these results suggested that fine tuning of for gene expression between populations may have led to distinct foraging behaviours. We hypothesized that reproductive polymorphism and coexistence in sympatry of sexual and asexual populations specialized to different ecological niches via divergent optima on phenotypic traits could imply adaptation through different expression patterns of the for gene and at many other loci throughout the genome.
Collapse
Affiliation(s)
- Aurore Gallot
- LBBE - Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon1, Villeurbanne, France
| | - Emmanuel Desouhant
- LBBE - Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon1, Villeurbanne, France
| | - Vincent Lhuillier
- LBBE - Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon1, Villeurbanne, France
| | - David Lepetit
- LBBE - Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon1, Villeurbanne, France
| | - Adil El Filali
- LBBE - Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon1, Villeurbanne, France
| | - Laurence Mouton
- LBBE - Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon1, Villeurbanne, France
| | - Cristina Vieira-Heddi
- LBBE - Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon1, Villeurbanne, France
| | - Isabelle Amat
- LBBE - Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon1, Villeurbanne, France
| |
Collapse
|
3
|
Abstract
The question of the heritability of behavior has been of long fascination to scientists and the broader public. It is now widely accepted that most behavioral variation has a genetic component, although the degree of genetic influence differs widely across behaviors. Starting with Mendel's remarkable discovery of "inheritance factors," it has become increasingly clear that specific genetic variants that influence behavior can be identified. This goal is not without its challenges: Unlike pea morphology, most natural behavioral variation has a complex genetic architecture. However, we can now apply powerful genome-wide approaches to connect variation in DNA to variation in behavior as well as analyses of behaviorally related variation in brain gene expression, which together have provided insights into both the genetic mechanisms underlying behavior and the dynamic relationship between genes and behavior, respectively, in a wide range of species and for a diversity of behaviors. Here, we focus on two systems to illustrate both of these approaches: the genetic basis of burrowing in deer mice and transcriptomic analyses of division of labor in honey bees. Finally, we discuss the troubled relationship between the field of behavioral genetics and eugenics, which reminds us that we must be cautious about how we discuss and contextualize the connections between genes and behavior, especially in humans.
Collapse
Affiliation(s)
- Hopi E. Hoekstra
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
- HHMI, Harvard University, Cambridge, MA 02138
| | - Gene E. Robinson
- Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
4
|
Awde DN, Skandalis A, Richards MH. Foraging gene expression patterns in queens, workers, and males in a eusocial insect. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reproductive division of labour is based on biased expression of complementary parental behaviours, brood production (egg-laying) by queens and brood care (in particular, brood-provisioning) by workers. In many social insect species, queens provision brood when establishing colonies at the beginning of a breeding season and reproductive division of labour begins with the emergence of workers. In many social insect species, the expression of foraging (for) mRNA is associated with the intensity of foraging behaviour and therefore brood-provisioning. However, only two studies have compared queen and worker for expression levels and neither accounted for transcript splice variation. In this study, we compare the expression level of the for-α transcript variant across four life stages of the queen caste, two behavioural groups of workers, and males of a eusocial sweat bee Lasioglossum laevissimum (Smith, 1853). Foundresses collected prior to the onset of the foraging season and males had the highest for-α expression levels. All active (post-hibernatory) queens and workers had similar for-α expression levels independent of behaviour. These results suggest that the for gene in L. laevissimum acts as a primer before foraging activity and that caste-specific expression patterns correlate with the timing of foraging activity in queens and workers.
Collapse
Affiliation(s)
- David N. Awde
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Adonis Skandalis
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Miriam H. Richards
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
5
|
Glastad KM, Ju L, Berger SL. Tramtrack acts during late pupal development to direct ant caste identity. PLoS Genet 2021; 17:e1009801. [PMID: 34550980 PMCID: PMC8489709 DOI: 10.1371/journal.pgen.1009801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/04/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
A key question in the rising field of neuroepigenetics is how behavioral plasticity is established and maintained in the developing CNS of multicellular organisms. Behavior is controlled through systemic changes in hormonal signaling, cell-specific regulation of gene expression, and changes in neuronal connections in the nervous system, however the link between these pathways is unclear. In the ant Camponotus floridanus, the epigenetic corepressor CoREST is a central player in experimentally-induced reprogramming of caste-specific behavior, from soldier (Major worker) to forager (Minor worker). Here, we show this pathway is engaged naturally on a large genomic scale during late pupal development targeting multiple genes differentially expressed between castes, and central to this mechanism is the protein tramtrack (ttk), a DNA binding partner of CoREST. Caste-specific differences in DNA binding of ttk co-binding with CoREST correlate with caste-biased gene expression both in the late pupal stage and immediately after eclosion. However, we find a unique set of exclusive Minor-bound genes that show ttk pre-binding in the late pupal stage preceding CoREST binding, followed by caste-specific gene repression on the first day of eclosion. In addition, we show that ttk binding correlates with neurogenic Notch signaling, and that specific ttk binding between castes is enriched for regulatory sites associated with hormonal function. Overall our findings elucidate a pathway of transcription factor binding leading to a repressive epigenetic axis that lies at the crux of development and hormonal signaling to define worker caste identity in C. floridanus.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| | - Linyang Ju
- Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| |
Collapse
|
6
|
Oepen AS, Catalano JL, Azanchi R, Kaun KR. The foraging gene affects alcohol sensitivity, metabolism and memory in Drosophila. J Neurogenet 2021; 35:236-248. [PMID: 34092172 PMCID: PMC9215342 DOI: 10.1080/01677063.2021.1931178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The genetic basis of alcohol use disorder (AUD) is complex. Understanding how natural genetic variation contributes to alcohol phenotypes can help us identify and understand the genetic basis of AUD. Recently, a single nucleotide polymorphism in the human foraging (for) gene ortholog, Protein Kinase cGMP-Dependent 1 (PRKG1), was found to be associated with stress-induced risk for alcohol abuse. However, the mechanistic role that PRKG1 plays in AUD is not well understood. We use natural variation in the Drosophila for gene to describe how variation of cGMP-dependent protein kinase (PKG) activity modifies ethanol-induced phenotypes. We found that variation in for affects ethanol-induced increases in locomotion and memory of the appetitive properties of ethanol intoxication. Further, these differences may stem from the ability to metabolize ethanol. Together, this data suggests that natural variation in PKG modulates cue reactivity for alcohol, and thus could influence alcohol cravings by differentially modulating metabolic and behavioral sensitivities to alcohol.
Collapse
Affiliation(s)
- Anne S. Oepen
- Department of Neuroscience, Brown University, Providence,
RI, USA
- Masters Program in Developmental, Neuronal and Behavioral
Biology, Georg-August-University, Göttingen, Germany
| | - Jamie L. Catalano
- Department of Neuroscience, Brown University, Providence,
RI, USA
- Molecular Pharmacology and Physiology Graduate Program,
Brown University, Providence, RI, USA
| | - Reza Azanchi
- Department of Neuroscience, Brown University, Providence,
RI, USA
| | - Karla R. Kaun
- Department of Neuroscience, Brown University, Providence,
RI, USA
| |
Collapse
|
7
|
Allen AM, B Sokolowski M. Expression of the foraging gene in adult Drosophila melanogaster. J Neurogenet 2021; 35:192-212. [PMID: 34382904 PMCID: PMC8846931 DOI: 10.1080/01677063.2021.1941946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The foraging gene in Drosophila melanogaster, which encodes a cGMP-dependent protein kinase, is a highly conserved, complex gene with multiple pleiotropic behavioral and physiological functions in both the larval and adult fly. Adult foraging expression is less well characterized than in the larva. We characterized foraging expression in the brain, gastric system, and reproductive systems using a T2A-Gal4 gene-trap allele. In the brain, foraging expression appears to be restricted to multiple sub-types of glia. This glial-specific cellular localization of foraging was supported by single-cell transcriptomic atlases of the adult brain. foraging is extensively expressed in most cell types in the gastric and reproductive systems. We then mapped multiple cis-regulatory elements responsible for parts of the observed expression patterns by a nested cloned promoter-Gal4 analysis. The mapped cis-regulatory elements were consistently modular when comparing the larval and adult expression patterns. These new data using the T2A-Gal4 gene-trap and cloned foraging promoter fusion GAL4's are discussed with respect to previous work using an anti-FOR antibody, which we show here to be non-specific. Future studies of foraging's function will consider roles for glial subtypes and peripheral tissues (gastric and reproductive systems) in foraging's pleiotropic behavioral and physiological effects.
Collapse
Affiliation(s)
- Aaron M Allen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Marla B Sokolowski
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| |
Collapse
|
8
|
Vesterberg A, Rizkalla R, Fitzpatrick MJ. Environmental influences on for-mediated oviposition decisions in Drosophila melanogaster. J Neurogenet 2021; 35:262-273. [PMID: 34259125 DOI: 10.1080/01677063.2021.1950713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Deciding whether or not to lay an egg on a given substrate is an important task undertaken by females of many arthropods. It involves perceiving the environment (e.g. quality of the substrate, temperature, and humidity), formulating a decision, and then conducting the appropriate behaviours to oviposit. This oviposition site selection (OSS) provides a useful system for studying simple decision-making. OSS in fruit flies, Drosophila melanogaster, is influenced by both genetic and environmental variation. Naturally occurring allelic variation in the foraging gene (for) is known to affect OSS. Given a choice of high- and low-nutrient oviposition substrates, groups of rovers (forR) are known to lay significantly more of their eggs on low-nutrient sites than sitters (fors) and sitter mutants (fors2). Here we ask three questions: (1) Is the role of for in OSS affected by the availability of alternate oviposition sites? (2) Is the role of for in OSS sensitive to the density of ovipositing females? and (3) Does the gustatory sensation of yeast play a role in for-mediated variation in OSS? We find a role of choice and female density in rover/sitter differences in OSS, as well as a role of for in response to glycerol, an indicator of yeast. The role of for in OSS decision-making is complex and multi-faceted and should prove fertile ground for further research into the factors affecting decision-making behaviours.
Collapse
Affiliation(s)
- Anders Vesterberg
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Rudy Rizkalla
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Mark J Fitzpatrick
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Cell and Systems Biology, University of Toronto, Toronto, Canada.,Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
The Foraging Gene, a New Environmental Adaptation Player Involved in Xenobiotic Detoxification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147508. [PMID: 34299961 PMCID: PMC8305630 DOI: 10.3390/ijerph18147508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Foraging is vital for animals, especially for food. In Drosophila melanogaster, this behavior is controlled by the foraging gene (for) which encodes a cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). In wild populations of Drosophila, rover individuals that exhibit long foraging trails and sitter individuals that exhibit short ones coexist and are characterized by high and low levels of PKG activity, respectively. We, therefore, postulated that rover flies are more exposed to environmental stresses, including xenobiotics contamination, than sitter flies. We then tested whether these flies differed in their ability to cope with xenobiotics by exposing them to insecticides from different chemical families. We performed toxicological tests and measured the activity and expression levels of different classes of detoxification enzymes. We have shown that a link exists between the for gene and certain cytochrome P450-dependent activities and that the expression of the insecticide-metabolizing cytochrome P450 Cyp6a2 is controlled by the for gene. An unsuspected regulatory pathway of P450s expression involving the for gene in Drosophila is revealed and we demonstrate its involvement in adaptation to chemicals in the environment. This work can serve as a basis for reconsidering adaptation to xenobiotics in light of the behavior of species, including humans.
Collapse
|
10
|
Lebo DPV, Chirn A, Taylor JD, Levan A, Doerre Torres V, Agreda E, Serizier SB, Lord AK, Jenkins VK, McCall K. An RNAi screen of the kinome in epithelial follicle cells of the Drosophila melanogaster ovary reveals genes required for proper germline death and clearance. G3-GENES GENOMES GENETICS 2021; 11:6080751. [PMID: 33693600 PMCID: PMC8022946 DOI: 10.1093/g3journal/jkaa066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions. Here, we use the Drosophila melanogaster ovary to identify novel genes required for clearance by nonprofessional phagocytes. In the Drosophila ovary, germline cells can die at multiple time points. As death proceeds, the epithelial follicle cells act as phagocytes to facilitate the clearance of these cells. We performed an unbiased kinase screen to identify novel proteins and pathways involved in cell clearance during two death events. Of 224 genes examined, 18 demonstrated severe phenotypes during developmental death and clearance while 12 demonstrated severe phenotypes during starvation-induced cell death and clearance, representing a number of pathways not previously implicated in phagocytosis. Interestingly, it was found that several genes not only affected the clearance process in the phagocytes, but also non-autonomously affected the process by which germline cells died. This kinase screen has revealed new avenues for further exploration and investigation.
Collapse
Affiliation(s)
- Diane P V Lebo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Alice Chirn
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jeffrey D Taylor
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Andre Levan
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | - Emily Agreda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sandy B Serizier
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Allison K Lord
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
11
|
Singh D, Ramniwas S, Kumar G. Response to laboratory selection for darker and lighter body color phenotypes in Drosophila melanogaster: correlated changes for larval behavioral traits. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2020.1845808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Divya Singh
- University Center for Research and Development, Chandigarh University, Mohali 140413, India
| | - Seema Ramniwas
- University Center for Research and Development, Chandigarh University, Mohali 140413, India
| | - Girish Kumar
- Genomics and Bioinformatics Cluster, Department of Biology University of Central Florida, Orlando FL 32816, USA
| |
Collapse
|
12
|
Lucas C, Ben-Shahar Y. The foraging gene as a modulator of division of labour in social insects. J Neurogenet 2021; 35:168-178. [PMID: 34151702 DOI: 10.1080/01677063.2021.1940173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The social ants, bees, wasps, and termites include some of the most ecologically-successful groups of animal species. Their dominance in most terrestrial environments is attributed to their social lifestyle, which enable their colonies to exploit environmental resources with remarkable efficiency. One key attribute of social insect colonies is the division of labour that emerges among the sterile workers, which represent the majority of colony members. Studies of the mechanisms that drive division of labour systems across diverse social species have provided fundamental insights into the developmental, physiological, molecular, and genomic processes that regulate sociality, and the possible genetic routes that may have led to its evolution from a solitary ancestor. Here we specifically discuss the conserved role of the foraging gene, which encodes a cGMP-dependent protein kinase (PKG). Originally identified as a behaviourally polymorphic gene that drives alternative foraging strategies in the fruit fly Drosophila melanogaster, changes in foraging expression and kinase activity were later shown to play a key role in the division of labour in diverse social insect species as well. In particular, foraging appears to regulate worker transitions between behavioural tasks and specific behavioural traits associated with morphological castes. Although the specific neuroethological role of foraging in the insect brain remains mostly unknown, studies in genetically tractable insect species indicate that PKG signalling plays a conserved role in the neuronal plasticity of sensory, cognitive and motor functions, which underlie behaviours relevant to division of labour, including appetitive learning, aggression, stress response, phototaxis, and the response to pheromones.
Collapse
Affiliation(s)
- Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
13
|
Gubina N, Naudi A, Stefanatos R, Jove M, Scialo F, Fernandez-Ayala DJ, Rantapero T, Yurkevych I, Portero-Otin M, Nykter M, Lushchak O, Navas P, Pamplona R, Sanz A. Essential Physiological Differences Characterize Short- and Long-Lived Strains of Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2020; 74:1835-1843. [PMID: 29945183 DOI: 10.1093/gerona/gly143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 12/17/2022] Open
Abstract
Aging is a multifactorial process which affects all animals. Aging as a result of damage accumulation is the most accepted explanation but the proximal causes remain to be elucidated. There is also evidence indicating that aging has an important genetic component. Animal species age at different rates and specific signaling pathways, such as insulin/insulin-like growth factor, can regulate life span of individuals within a species by reprogramming cells in response to environmental changes. Here, we use an unbiased approach to identify novel factors that regulate life span in Drosophila melanogaster. We compare the transcriptome and metabolome of two wild-type strains used widely in aging research: short-lived Dahomey and long-lived Oregon R flies. We found that Dahomey flies carry several traits associated with short-lived individuals and species such as increased lipoxidative stress, decreased mitochondrial gene expression, and increased Target of Rapamycin signaling. Dahomey flies also have upregulated octopamine signaling known to stimulate foraging behavior. Accordingly, we present evidence that increased foraging behavior, under laboratory conditions where nutrients are in excess increases damage generation and accelerates aging. In summary, we have identified several new pathways, which influence longevity highlighting the contribution and importance of the genetic component of aging.
Collapse
Affiliation(s)
- Nina Gubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Alba Naudi
- Department of Experimental Medicine, University of Lleida-IRB, Lleida, Spain
| | - Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Mariona Jove
- Department of Experimental Medicine, University of Lleida-IRB, Lleida, Spain
| | - Filippo Scialo
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel J Fernandez-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, and CIBERER, ISCIII, Seville, Spain
| | - Tommi Rantapero
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Finland
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Manuel Portero-Otin
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Matti Nykter
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Finland
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, and CIBERER, ISCIII, Seville, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-IRB, Lleida, Spain
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Massey JH, Rice GR, Firdaus AS, Chen CY, Yeh SD, Stern DL, Wittkopp PJ. Co-evolving wing spots and mating displays are genetically separable traits in Drosophila. Evolution 2020; 74:1098-1111. [PMID: 32363590 DOI: 10.1111/evo.13990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The evolution of sexual traits often involves correlated changes in morphology and behavior. For example, in Drosophila, divergent mating displays are often accompanied by divergent pigment patterns. To better understand how such traits co-evolve, we investigated the genetic basis of correlated divergence in wing pigmentation and mating display between the sibling species Drosophila elegans and Drosophila gunungcola. Drosophila elegans males have an area of black pigment on their wings known as a wing spot and appear to display this spot to females by extending their wings laterally during courtship. By contrast, D. gunungcola lost both of these traits. Using Multiplexed Shotgun Genotyping (MSG), we identified a ∼440 kb region on the X chromosome that behaves like a genetic switch controlling the presence or absence of male-specific wing spots. This region includes the candidate gene optomotor-blind (omb), which plays a critical role in patterning the Drosophila wing. The genetic basis of divergent wing display is more complex, with at least two loci on the X chromosome and two loci on autosomes contributing to its evolution. Introgressing the X-linked region affecting wing spot development from D. gunungcola into D. elegans reduced pigmentation in the wing spots but did not affect the wing display, indicating that these are genetically separable traits. Consistent with this observation, broader sampling of wild D. gunungcola populations confirmed that the wing spot and wing display are evolving independently: some D. gunungcola males performed wing displays similar to D. elegans despite lacking wing spots. These data suggest that correlated selection pressures rather than physical linkage or pleiotropy are responsible for the coevolution of these morphological and behavioral traits. They also suggest that the change in morphology evolved prior to the change in behavior.
Collapse
Affiliation(s)
- Jonathan H Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Gavin R Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Anggun S Firdaus
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Chi-Yang Chen
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Shu-Dan Yeh
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
15
|
Goossens S, Wybouw N, Van Leeuwen T, Bonte D. The physiology of movement. MOVEMENT ECOLOGY 2020; 8:5. [PMID: 32042434 PMCID: PMC7001223 DOI: 10.1186/s40462-020-0192-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
Movement, from foraging to migration, is known to be under the influence of the environment. The translation of environmental cues to individual movement decision making is determined by an individual's internal state and anticipated to balance costs and benefits. General body condition, metabolic and hormonal physiology mechanistically underpin this internal state. These physiological determinants are tightly, and often genetically linked with each other and hence central to a mechanistic understanding of movement. We here synthesise the available evidence of the physiological drivers and signatures of movement and review (1) how physiological state as measured in its most coarse way by body condition correlates with movement decisions during foraging, migration and dispersal, (2) how hormonal changes underlie changes in these movement strategies and (3) how these can be linked to molecular pathways. We reveale that a high body condition facilitates the efficiency of routine foraging, dispersal and migration. Dispersal decision making is, however, in some cases stimulated by a decreased individual condition. Many of the biotic and abiotic stressors that induce movement initiate a physiological cascade in vertebrates through the production of stress hormones. Movement is therefore associated with hormone levels in vertebrates but also insects, often in interaction with factors related to body or social condition. The underlying molecular and physiological mechanisms are currently studied in few model species, and show -in congruence with our insights on the role of body condition- a central role of energy metabolism during glycolysis, and the coupling with timing processes during migration. Molecular insights into the physiological basis of movement remain, however, highly refractory. We finalise this review with a critical reflection on the importance of these physiological feedbacks for a better mechanistic understanding of movement and its effects on ecological dynamics at all levels of biological organization.
Collapse
Affiliation(s)
- Steven Goossens
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Dries Bonte
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
17
|
Beckwith EJ, French AS. Sleep in Drosophila and Its Context. Front Physiol 2019; 10:1167. [PMID: 31572216 PMCID: PMC6749028 DOI: 10.3389/fphys.2019.01167] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
A prominent idea emerging from the study of sleep is that this key behavioural state is regulated in a complex fashion by ecologically and physiologically relevant environmental factors. This concept implies that sleep, as a behaviour, is plastic and can be regulated by external agents and changes in internal state. Drosophila melanogaster constitutes a resourceful model system to study behaviour. In the year 2000, the utility of the fly to study sleep was realised, and has since extensively contributed to this exciting field. At the centre of this review, we will discuss studies showing that temperature, food availability/quality, and interactions with conspecifics can regulate sleep. Indeed the relationship can be reciprocal and sleep perturbation can also affect feeding and social interaction. In particular, different environmental temperatures as well as gradual changes in temperature regulate when, and how much flies sleep. Moreover, the satiation/starvation status of an individual dictates the balance between sleep and foraging. Nutritional composition of diet also has a direct impact on sleep amount and its fragmentation. Likewise, aggression between males, courtship, sexual arousal, mating, and interactions within large groups of animals has an acute and long-lasting effect on sleep amount and quality. Importantly, the genes and neuronal circuits that relay information about the external environment and internal state to sleep centres are starting to be elucidated in the fly and are the focus of this review. In conclusion, sleep, as with most behaviours, needs the full commitment of the individual, preventing participation in other vital activities. A vast array of behaviours that are modulated by external and internal factors compete with the need to sleep and thus have a significant role in regulating it.
Collapse
Affiliation(s)
- Esteban J Beckwith
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alice S French
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Abstract
The Drosophila melanogaster foraging (for) gene is a well-established example of a gene with major effects on behavior and natural variation. This gene is best known for underlying the behavioral strategies of rover and sitter foraging larvae, having been mapped and named for this phenotype. Nevertheless, in the last three decades an extensive array of studies describing for's role as a modifier of behavior in a wide range of phenotypes, in both Drosophila and other organisms, has emerged. Furthermore, recent work reveals new insights into the genetic and molecular underpinnings of how for affects these phenotypes. In this article, we discuss the history of the for gene and its role in natural variation in behavior, plasticity, and behavioral pleiotropy, with special attention to recent findings on the molecular structure and transcriptional regulation of this gene.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada;
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada;
| |
Collapse
|
19
|
Drosophila melanogaster foraging regulates a nociceptive-like escape behavior through a developmentally plastic sensory circuit. Proc Natl Acad Sci U S A 2019; 117:23286-23291. [PMID: 31213548 DOI: 10.1073/pnas.1820840116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Painful or threatening experiences trigger escape responses that are guided by nociceptive neuronal circuitry. Although some components of this circuitry are known and conserved across animals, how this circuitry is regulated at the genetic and developmental levels is mostly unknown. To escape noxious stimuli, such as parasitoid wasp attacks, Drosophila melanogaster larvae generate a curling and rolling response. Rover and sitter allelic variants of the Drosophila foraging (for) gene differ in parasitoid wasp susceptibility, suggesting a link between for and nociception. By optogenetically activating cells associated with each of for's promoters (pr1-pr4), we show that pr1 cells regulate larval escape behavior. In accordance with rover and sitter differences in parasitoid wasp susceptibility, we found that rovers have higher pr1 expression and increased sensitivity to nociception relative to sitters. The for null mutants display impaired responses to thermal nociception, which are rescued by restoring for expression in pr1 cells. Conversely, knockdown of for in pr1 cells phenocopies the for null mutant. To gain insight into the circuitry underlying this response, we used an intersectional approach and activity-dependent GFP reconstitution across synaptic partners (GRASP) to show that pr1 cells in the ventral nerve cord (VNC) are required for the nociceptive response, and that multidendritic sensory nociceptive neurons synapse onto pr1 neurons in the VNC. Finally, we show that activation of the pr1 circuit during development suppresses the escape response. Our data demonstrate a role of for in larval nociceptive behavior. This function is specific to for pr1 neurons in the VNC, guiding a developmentally plastic escape response circuit.
Collapse
|
20
|
Kelly SP, Dawson-Scully K. Natural polymorphism in protein kinase G modulates functional senescence in D rosophila melanogaster. J Exp Biol 2019; 222:jeb.199364. [PMID: 30910834 DOI: 10.1242/jeb.199364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022]
Abstract
The common fruit fly, Drosophila melanogaster, is a well-characterized model for neurological disorders and is widely used to investigate the biology of aging, stress tolerance and pleiotropy. The foraging (for) gene encodes a cGMP-dependent protein kinase (PKG), which has been implicated in several behavioral phenotypes including feeding, sleep, learning and memory, and environmental stress tolerance. We used the well-established Drosophila activity monitor (DAM) to investigate the effects of the conserved NO/cGMP/PKG signaling pathway on functional senescence. Our results show that the polymorphic for gene confers protection during low oxygen stress at the expense of longevity and a decline in locomotor activity with age in D. melanogaster, which suggests a novel role for the PKG pathway in healthy aging and senescence.
Collapse
Affiliation(s)
- Stephanie P Kelly
- Florida Atlantic University, Department of Biological Sciences, Boca Raton, FL 33431, USA
| | - Ken Dawson-Scully
- Florida Atlantic University, Department of Biological Sciences, Boca Raton, FL 33431, USA
| |
Collapse
|
21
|
Abstract
Foraging is a goal-directed behavior that balances the need to explore the environment for resources with the need to exploit those resources. In Drosophila melanogaster, distinct phenotypes have been observed in relation to the foraging gene (for), labeled the rover and sitter. Adult rovers explore their environs more extensively than do adult sitters. We explored whether this distinction would be conserved in humans. We made use of a distinction from regulatory mode theory between those who "get on with it," so-called locomotors, and those who prefer to ensure they "do the right thing," so-called assessors. In this logic, rovers and locomotors share similarities in goal pursuit, as do sitters and assessors. We showed that genetic variation in PRKG1, the human ortholog of for, is associated with preferential adoption of a specific regulatory mode. Next, participants performed a foraging task to see whether genetic differences associated with distinct regulatory modes would be associated with distinct goal pursuit patterns. Assessors tended to hug the boundary of the foraging environment, much like behaviors seen in Drosophila adult sitters. In a patchy foraging environment, assessors adopted more cautious search strategies maximizing exploitation. These results show that distinct patterns of goal pursuit are associated with particular genotypes of PRKG1, the human ortholog of for.
Collapse
|
22
|
Nojima T, Chauvel I, Houot B, Bousquet F, Farine JP, Everaerts C, Yamamoto D, Ferveur JF. The desaturase1 gene affects reproduction before, during and after copulation in Drosophila melanogaster. J Neurogenet 2019; 33:96-115. [PMID: 30724684 DOI: 10.1080/01677063.2018.1559843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Desaturase1 (desat1) is one of the few genes known to be involved in the two complementary aspects of sensory communication - signal emission and signal reception - in Drosophila melanogaster. In particular, desat1 is necessary for the biosynthesis of major cuticular pheromones in both males and females. It is also involved in the male ability to discriminate sex pheromones. Each of these two sensory communication aspects depends on distinct desat1 putative regulatory regions. Here, we used (i) mutant alleles resulting from the insertion/excision of a transposable genomic element inserted in a desat1 regulatory region, and (ii) transgenics made with desat1 regulatory regions used to target desat1 RNAi. These genetic variants were used to study several reproduction-related phenotypes. In particular, we compared the fecundity of various mutant and transgenic desat1 females with regard to the developmental fate of their progeny. We also compared the mating performance in pairs of flies with altered desat1 expression in various desat1-expressing tissues together with their inability to disengage at the end of copulation. Moreover, we investigated the developmental origin of altered sex pheromone discrimination in male flies. We attempted to map some of the tissues involved in these reproduction-related phenotypes. Given that desat1 is expressed in many brain neurons and in non-neuronal tissues required for varied aspects of reproduction, our data suggest that the regulation of this gene has evolved to allow the optimal reproduction and a successful adaptation to varied environments in this cosmopolitan species.
Collapse
Affiliation(s)
- Tetsuya Nojima
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,c Centre for Neural Circuits and Behaviour , University of Oxford , Oxford , United Kingdom
| | - Isabelle Chauvel
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Benjamin Houot
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,d Division of Chemical Ecology, Department of Plant Protection Biology , Swedish University of Agricultural Sciences , Alnarp , Sweden
| | - François Bousquet
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Jean-Pierre Farine
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Claude Everaerts
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Daisuke Yamamoto
- b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,e Neuro-Network Evolution Project, Advanced ICT Research Institute , National Institute of Information and Communications Technology , Nishi-Ku , Japan Kobe
| | - Jean-François Ferveur
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| |
Collapse
|
23
|
Dahirel M, Masier S, Renault D, Bonte D. The distinct phenotypic signatures of dispersal and stress in an arthropod model: from physiology to life history. J Exp Biol 2019; 222:jeb.203596. [DOI: 10.1242/jeb.203596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/29/2019] [Indexed: 11/20/2022]
Abstract
Dispersing individuals are expected to encounter costs during transfer and in the novel environment, and may also have experienced stress in their natal patch. Given this, a non-random subset of the population should engage in dispersal and show divergent stress-related responses. This includes physiological shifts as expressed in the metabolome, which form a major part of responses to stress. We analyzed how metabolic profiles and life-history traits varied between dispersers and residents of the model two-spotted spider mite Tetranychus urticae, and whether and how these syndromes varied with exposure to a stressful new host plant (tomato). Regardless of the effect of host plant, we found a physiological dispersal syndrome where, relative to residents, dispersers were characterized by lower leaf consumption and a lower concentration of several amino acids, indicating a potential dispersal-foraging trade-off. As a possible consequence of this lower food intake, dispersers also laid smaller eggs. Responses to tomato were consistent with this plant being a stressor for Tetranychus urticae, including reduced fecundity and reduced feeding. Tomato-exposed mites laid larger eggs, which we interpret as a plastic response to food stress, increasing survival to maturity. Contrary to what was expected from the costs of dispersal and from previous meta-population level studies, there was no interaction between dispersal status and host plant for any of the examined traits, meaning stress impacts were equally incurred by residents and dispersers. We thus provide novel insights in the processes shaping dispersal and the feedbacks on ecological dynamics in spatially structured populations.
Collapse
Affiliation(s)
- Maxime Dahirel
- Ghent University, Department of Biology, B-9000 Ghent, Belgium
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
| | - Stefano Masier
- Ghent University, Department of Biology, B-9000 Ghent, Belgium
| | - David Renault
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
- Institut Universitaire de France, Paris, France
| | - Dries Bonte
- Ghent University, Department of Biology, B-9000 Ghent, Belgium
| |
Collapse
|
24
|
Thamm M, Sturm K, Schlossmann J, Scheiner R. Levels and activity of cyclic guanosine monophosphate-dependent protein kinase in nurse and forager honeybees. INSECT MOLECULAR BIOLOGY 2018; 27:815-823. [PMID: 30040150 DOI: 10.1111/imb.12520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Age-dependent division of labour in honeybees was shown to be connected to sensory response thresholds. Foragers show a higher gustatory responsiveness than nurse bees. It is generally assumed that nutrition-related signalling pathways underlie this behavioural plasticity. Here, one important candidate gene is the foraging gene, which encodes a cyclic guanosine monophosphate-dependent protein kinase (PKG). Several roles of members of this enzyme family were analysed in vertebrates. They own functions in important processes such as growth, secretion and neuronal adaptation. Honeybee foraging messenger RNA expression is upregulated in the brain of foragers. In vivo activation of PKG can modulate gustatory responsiveness. We present for the first time PKG protein level and activity data in the context of social behaviour and feeding. Protein level was significantly higher in brains of foragers than in those of nurse bees, substantiating the role of PKG in behavioural plasticity. However, enzyme activity did not differ between behavioural roles. The mediation of feeding status appears independent of PKG signalling. Neither PKG content nor enzyme activity differed between starved and satiated individuals. We suggest that even though nutrition-related pathways are surely involved in controlling behavioural plasticity, which involves changes in PKG signalling, mediation of satiety itself is independent of PKG.
Collapse
Affiliation(s)
- M Thamm
- Behavioral Physiology & Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - K Sturm
- Behavioral Physiology & Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - J Schlossmann
- Department of Pharmacology and Toxicology, Universität Regensburg, Regensburg, Germany
| | - R Scheiner
- Behavioral Physiology & Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Nagy O, Nuez I, Savisaar R, Peluffo AE, Yassin A, Lang M, Stern DL, Matute DR, David JR, Courtier-Orgogozo V. Correlated Evolution of Two Copulatory Organs via a Single cis-Regulatory Nucleotide Change. Curr Biol 2018; 28:3450-3457.e13. [PMID: 30344115 DOI: 10.1016/j.cub.2018.08.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/12/2018] [Accepted: 08/21/2018] [Indexed: 01/25/2023]
Abstract
Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Olga Nagy
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Isabelle Nuez
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Rosina Savisaar
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Alexandre E Peluffo
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Amir Yassin
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de Recherche Scientifique, MNHN, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Michael Lang
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - David L Stern
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Jean R David
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de Recherche Scientifique, MNHN, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France; Laboratoire Evolution, Génomes, Comportement, Biodiversité (EGCE), CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
26
|
Eimanifar A, Brooks SA, Bustamante T, Ellis JD. Population genomics and morphometric assignment of western honey bees (Apis mellifera L.) in the Republic of South Africa. BMC Genomics 2018; 19:615. [PMID: 30111292 PMCID: PMC6094452 DOI: 10.1186/s12864-018-4998-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/07/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUNDS Apis mellifera scutellata and A.m. capensis (the Cape honey bee) are western honey bee subspecies indigenous to the Republic of South Africa (RSA). Both bees are important for biological and economic reasons. First, A.m. scutellata is the invasive "African honey bee" of the Americas and exhibits a number of traits that beekeepers consider undesirable. They swarm excessively, are prone to absconding (vacating the nest entirely), usurp other honey bee colonies, and exhibit heightened defensiveness. Second, Cape honey bees are socially parasitic bees; the workers can reproduce thelytokously. Both bees are indistinguishable visually. Therefore, we employed Genotyping-by-Sequencing (GBS), wing geometry and standard morphometric approaches to assess the genetic diversity and population structure of these bees to search for diagnostic markers that can be employed to distinguish between the two subspecies. RESULTS Apis mellifera scutellata possessed the highest mean number of polymorphic SNPs (among 2449 informative SNPs) with minor allele frequencies > 0.05 (Np = 88%). The RSA honey bees generated a high level of expected heterozygosity (Hexp = 0.24). The mean genetic differentiation (FST; 6.5%) among the RSA honey bees revealed that approximately 93% of the genetic variation was accounted for within individuals of these subspecies. Two genetically distinct clusters (K = 2) corresponding to both subspecies were detected by Model-based Bayesian clustering and supported by Principal Coordinates Analysis (PCoA) inferences. Selected highly divergent loci (n = 83) further reinforced a distinctive clustering of two subspecies across geographical origins, accounting for approximately 83% of the total variation in the PCoA plot. The significant correlation of allele frequencies at divergent loci with environmental variables suggested that these populations are adapted to local conditions. Only 17 of 48 wing geometry and standard morphometric parameters were useful for clustering A.m. capensis, A.m. scutellata, and hybrid individuals. CONCLUSIONS We produced a minimal set of 83 SNP loci and 17 wing geometry and standard morphometric parameters useful for identifying the two RSA honey bee subspecies by genotype and phenotype. We found that genes involved in neurology/behavior and development/growth are the most prominent heritable traits evolved in the functional evolution of honey bee populations in RSA. These findings provide a starting point for understanding the functional basis of morphological differentiations and ecological adaptations of the two honey bee subspecies in RSA.
Collapse
Affiliation(s)
- Amin Eimanifar
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, Florida, 32611-0620 USA
| | - Samantha A. Brooks
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Tomas Bustamante
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, Florida, 32611-0620 USA
| | - James D. Ellis
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, Florida, 32611-0620 USA
| |
Collapse
|
27
|
Ahmad M, Keebaugh ES, Tariq M, Ja WW. Evolutionary responses of Drosophila melanogaster under chronic malnutrition. Front Ecol Evol 2018; 6. [PMID: 31286000 DOI: 10.3389/fevo.2018.00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drosophila species have successfully spread and adapted to diverse climates across the globe. For D. melanogaster, rotting vegetative matter provides the primary substrate for mating and oviposition, and also acts as a nutritional resource for developing larvae and adult flies. The transitory nature of decaying vegetation exposes D. melanogaster to rapidly changing nutrient availability. As evidenced by their successful global spread, flies are capable of dealing with fluctuating nutritional reserves within their respective ecological niches. Therefore, D. melanogaster populations might contain standing genetic variation to support survival during periods of nutrient scarcity. The natural history and genetic tractability of D. melanogaster make the fly an ideal model for studies on the genetic basis of resistance to nutritional stress. We review artificial selection studies on nutritionally-deprived D. melanogaster and summarize the phenotypic outcomes of selected animals. Many of the reported evolved traits phenocopy mutants of the nutrient-sensing PI3K/Akt pathway. Given that the PI3K/Akt pathway is also responsive to acute nutritional stress, the PI3K/Akt pathway might underlie traits evolved under chronic nutritional deprivation. Future studies that directly test for the genetic mechanisms driving evolutionary responses to nutritional stress will take advantage of the ease in manipulating fly nutrient availability in the laboratory.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA.,Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - Erin S Keebaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA.,Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - Muhammad Tariq
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA.,Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
28
|
Hughson BN, Anreiter I, Jackson Chornenki NL, Murphy KR, Ja WW, Huber R, Sokolowski MB. The adult foraging assay (AFA) detects strain and food-deprivation effects in feeding-related traits of Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:20-29. [PMID: 28860037 PMCID: PMC5832525 DOI: 10.1016/j.jinsphys.2017.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Abstract
We introduce a high-resolution adult foraging assay (AFA) that relates pre- and post-ingestive walking behavior to individual instances of food consumption. We explore the utility of the AFA by taking advantage of established rover and sitter strains known to differ in a number of feeding-related traits. The AFA allows us to effectively distinguish locomotor behavior in Fed and Food-Deprived (FD) rover and sitter foragers. We found that rovers exhibit more exploratory behavior into the center of an arena containing sucrose drops compared to sitters who hug the edges of the arena and exhibit thigmotaxic behavior. Rovers also discover and ingest more sucrose drops than sitters. Sitters become more exploratory with increasing durations of food deprivation and the number of ingestion events also increases progressively with prolonged fasting for both strains. AFA results are matched by strain differences in sucrose responsiveness, starvation resistance, and lipid levels, suggesting that under the same feeding condition, rovers are more motivated to forage than sitters. These findings demonstrate the AFA's ability to effectively discriminate movement and food ingestion patterns of different strains and feeding treatments.
Collapse
Affiliation(s)
- Bryon N Hughson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Ina Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), 180 Dundas St. West, Suite 1400, Toronto, Ontario M5G 1Z8, Canada
| | - Nicholas L Jackson Chornenki
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Keith R Murphy
- Program in Integrative Biology and Neuroscience, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way 3B3, Jupiter, FL 33458, USA; Center on Aging, The Scripps Research Institute, 130 Scripps Way 3B3, Jupiter, FL 33458, USA
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way 3B3, Jupiter, FL 33458, USA; Center on Aging, The Scripps Research Institute, 130 Scripps Way 3B3, Jupiter, FL 33458, USA
| | - Robert Huber
- JP Scott Center for Neuroscience, Mind & Behavior, Biological Sciences, Bowling Green State University, Bowling Green, OH 43614, USA; Radcliffe Institute for Advanced Study, Harvard University, 10 Garden Street, Cambridge, MA 02138, USA
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), 180 Dundas St. West, Suite 1400, Toronto, Ontario M5G 1Z8, Canada.
| |
Collapse
|
29
|
Lee YCG, Yang Q, Chi W, Turkson SA, Du WA, Kemkemer C, Zeng ZB, Long M, Zhuang X. Genetic Architecture of Natural Variation Underlying Adult Foraging Behavior That Is Essential for Survival of Drosophila melanogaster. Genome Biol Evol 2018; 9:1357-1369. [PMID: 28472322 PMCID: PMC5452641 DOI: 10.1093/gbe/evx089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 01/04/2023] Open
Abstract
Foraging behavior is critical for the fitness of individuals. However, the genetic basis of variation in foraging behavior and the evolutionary forces underlying such natural variation have rarely been investigated. We developed a systematic approach to assay the variation in survival rate in a foraging environment for adult flies derived from a wild Drosophila melanogaster population. Despite being such an essential trait, there is substantial variation of foraging behavior among D. melanogaster strains. Importantly, we provided the first evaluation of the potential caveats of using inbred Drosophila strains to perform genome-wide association studies on life-history traits, and concluded that inbreeding depression is unlikely a major contributor for the observed large variation in adult foraging behavior. We found that adult foraging behavior has a strong genetic component and, unlike larval foraging behavior, depends on multiple loci. Identified candidate genes are enriched in those with high expression in adult heads and, demonstrated by expression knock down assay, are involved in maintaining normal functions of the nervous system. Our study not only identified candidate genes for foraging behavior that is relevant to individual fitness, but also shed light on the initial stage underlying the evolution of the behavior.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,Present address: Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory; Department of Molecular Biology and Cell Biology, University of California, Berkeley
| | - Qian Yang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Wanhao Chi
- Department of Neurobiology, The University of Chicago, Chicago, IL.,Present address: Committee on Genetics, Genomics & Systems Biology, The University of Chicago, Chicago, IL
| | - Susie A Turkson
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Wei A Du
- Department of Biology, Wayne State University, Detroit, MI
| | - Claus Kemkemer
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL
| | - Zhao-Bang Zeng
- Department of Statistical Genetics and Bioinformatics, North Carolina State University, Raleigh, NC
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL
| | - Xiaoxi Zhuang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| |
Collapse
|
30
|
Bockoven AA, Coates CJ, Eubanks MD. Colony‐level behavioural variation correlates with differences in expression of the
foraging
gene in red imported fire ants. Mol Ecol 2017; 26:5953-5960. [DOI: 10.1111/mec.14347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 11/28/2022]
Affiliation(s)
| | - Craig J. Coates
- Department of Entomology Texas A&M University College Station TX USA
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station TX USA
| |
Collapse
|
31
|
McConnell MW, Fitzpatrick MJ. 'Foraging' for a place to lay eggs: A genetic link between foraging behaviour and oviposition preferences. PLoS One 2017; 12:e0179362. [PMID: 28622389 PMCID: PMC5473555 DOI: 10.1371/journal.pone.0179362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
Gravid female arthropods in search of egg-laying substrates embark on foraging-like forays: they survey the environment assessing multiple patches, tasting each with their tarsi and proboscis, and then, if interested, they deposit an egg (or eggs). In fruit flies, Drosophila melanogaster, allelic variation in the foraging gene (for) underlies the rover/sitter foraging behaviour polymorphism. Rover flies (forR) are more active foragers (both within and between food patches) compared to sitters (fors). In nematodes, Caenorhabditis elegans, a mutation in egl-4, the ortholog of for, leads to aberrations in egg laying. Given this and the notion that females may 'forage' for a place to oviposit, we hypothesized that for may underlie egg-laying decisions in the fruit fly. Indeed, when given a choice between patches of low- and high-nutrient availability, rovers lay significantly more eggs on the low-nutrient patches than sitters and also a sitter mutant (fors2). We confirm the role of for by inducing rover-like oviposition preferences in a sitter fly using the transgenic overexpression of for-mRNA in the nervous system.
Collapse
Affiliation(s)
- Murray W. McConnell
- Integrative Behaviour & Neuroscience Group, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Mark J. Fitzpatrick
- Integrative Behaviour & Neuroscience Group, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Decoupling of Behavioral Trait Correlation Across Life Stages in Two Holometabolous Insects. Behav Genet 2017; 47:459-467. [PMID: 28421346 DOI: 10.1007/s10519-017-9847-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Many animal behaviors have a genetic base, and behavioral traits often correlate with one another. In this study, we tested for a behavioral correlation between tonic immobility and walking distance in the larval and adult stages independently of two holometabolous insects. We confirmed a negative correlation of traits between strains in adults of both the species; however, we did not find it in larvae of either species. This suggests that the negative correlation between tonic immobility and walking is decoupled across life stages from larva to adult. In contrast, previous studies have reported that phenotypic correlations between behavioral traits are maintained from larvae to adults in hemimetabolous insects. In addition, our present results differ from previous results with holometabolous insects. Therefore, our results suggest that metamorphosis can change trade-offs between behavioral traits.
Collapse
|
33
|
Wang S, Sokolowski MB. Aggressive behaviours, food deprivation and the foraging gene. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170042. [PMID: 28484630 PMCID: PMC5414267 DOI: 10.1098/rsos.170042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
A pleiotropic gene governs multiple traits, which might constrain the evolution of complexity due to conflicting selection on these traits. However, if the pleiotropic effect is modular, then this can facilitate synergistic responses to selection on functionally related traits, thereby leveraging the evolution of complexity. To understand the evolutionary consequence of pleiotropy, the relation among functionally different traits governed by the same gene is key. We examined a pleiotropic function of the foraging (for) gene with its rover and sitter allelic variants in fruit fly, Drosophila melanogaster. We measured for's effect on adult male aggressive behaviours and whether this effect was shaped by for's known role in food-related traits. Rover exhibited higher levels of offensive behaviour than sitters and s2, a sitter-like mutant on rover genetic background. With a Markov chain model, we estimated the rate of aggression escalation, and found that the rover pattern of aggressive escalation more rapidly intensified fights. Subsequent analysis revealed that this was not caused by for's effect on food-related traits, suggesting that for might directly regulate aggressive behaviours. Food deprivation did not elevate aggression, but reduced intermediate-level aggressive behaviours. Aggression and other foraging-related behaviour might comprise a synergistic trait module underlaid by this pleiotropic gene.
Collapse
Affiliation(s)
- Silu Wang
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, CanadaV6T 1Z4
| | - Marla B. Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, CanadaM5S 3B2
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), 180 Dundas Street West, Suite 1400, Toronto, Ontario, CanadaM5G 1Z8
| |
Collapse
|
34
|
Sokolowski HM, Vasquez OE, Unternaehrer E, Sokolowski DJ, Biergans SD, Atkinson L, Gonzalez A, Silveira PP, Levitan R, O'Donnell KJ, Steiner M, Kennedy J, Meaney MJ, Fleming AS, Sokolowski MB. The Drosophila foraging gene human orthologue PRKG1 predicts individual differences in the effects of early adversity on maternal sensitivity. COGNITIVE DEVELOPMENT 2016; 42:62-73. [PMID: 28827895 DOI: 10.1016/j.cogdev.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is variation in the extent to which childhood adverse experience affects adult individual differences in maternal behavior. Genetic variation in the animal foraging gene, which encodes a cGMP-dependent protein kinase, contributes to variation in the responses of adult fruit flies, Drosophila melanogaster, to early life adversity and is also known to play a role in maternal behavior in social insects. Here we investigate genetic variation in the human foraging gene (PRKG1) as a predictor of individual differences in the effects of early adversity on maternal behavior in two cohorts. We show that the PRKG1 genetic polymorphism rs2043556 associates with maternal sensitivity towards their infants. We also show that rs2043556 moderates the association between self-reported childhood adversity of the mother and her later maternal sensitivity. Mothers with the TT allele of rs2043556 appeared buffered from the effects of early adversity, whereas mothers with the presence of a C allele were not. Our study used the Toronto Longitudinal Cohort (N=288 mother-16 month old infant pairs) and the Maternal Adversity and Vulnerability and Neurodevelopment Cohort (N=281 mother-18 month old infant pairs). Our findings expand the literature on the contributions of both genetics and gene-environment interactions to maternal sensitivity, a salient feature of the early environment relevant for child neurodevelopment.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, Westminster Hall, Room 325, London, Ontario, Canada, N6A 3K7
| | - Oscar E Vasquez
- Department of Ecology and Evolutionary Biology, 25 Wilcocks St. University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Eva Unternaehrer
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875, Boulevard LaSalle, Montréal, Québec, Canada H4H 1R3
| | - Dustin J Sokolowski
- Department of Biology, University of Western, Ontario, Toronto, Canada, N6A 3K7
| | - Stephanie D Biergans
- Department of Ecology and Evolutionary Biology, 25 Wilcocks St. University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Leslie Atkinson
- Department of Psychology, Ryerson University, Toronto, Ontario, Canada, M5B2K3
| | - Andrea Gonzalez
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster Innovation Park, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875, Boulevard LaSalle, Montréal, Québec, Canada H4H 1R3
| | - Robert Levitan
- Women's Health Concerns Clinic, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, Ontario, Canada, L8G 5E4
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875, Boulevard LaSalle, Montréal, Québec, Canada H4H 1R3.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), 180 Dundas St West, Suite 1400, Toronto, Ontario Canada M5G 1Z8
| | - Meir Steiner
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster Innovation Park, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1.,Women's Health Concerns Clinic, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, Ontario, Canada, L8G 5E4
| | - James Kennedy
- Department of Psychiatry, University of Toronto and Centre for Addiction an Mental Health, 33 Russell St, Toronto, Ontario, M5S 3M1
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875, Boulevard LaSalle, Montréal, Québec, Canada H4H 1R3.,Singapore Institute for Clinical Science, Brenner Centre for Molecular Medicine 30 Medical Drive, Singapore 117609.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), 180 Dundas St West, Suite 1400, Toronto, Ontario Canada M5G 1Z8
| | - Alison S Fleming
- Department of Psychology, 100 St. George Street, Sidney Smith Hall Toronto, Ontario, Canada M5S 3G3
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, 25 Wilcocks St. University of Toronto, Toronto, Ontario, Canada, M5S 3B2.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), 180 Dundas St West, Suite 1400, Toronto, Ontario Canada M5G 1Z8
| |
Collapse
|
35
|
Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster. Genetics 2016; 205:761-773. [PMID: 28007892 DOI: 10.1534/genetics.116.197939] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/03/2016] [Indexed: 12/31/2022] Open
Abstract
Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging's functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for0 null allele, and used recombineering to reintegrate a full copy of the gene, generating the {forBAC} rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging's transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1-4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging's functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis.
Collapse
|
36
|
Arnqvist G, Novičić ZK, Castro JA, Sayadi A. Negative frequency dependent selection on sympatric mtDNA haplotypes in Drosophila subobscura. Hereditas 2016; 153:15. [PMID: 28096777 PMCID: PMC5226107 DOI: 10.1186/s41065-016-0020-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent experimental evidence for selection on mitochondrial DNA (mtDNA) has prompted the question as to what processes act to maintain within-population variation in mtDNA. Balancing selection though negative frequency dependent selection (NFDS) among sympatric haplotypes is a possibility, but direct empirical evidence for this is very scarce. FINDINGS We extend the previous findings of a multi-generation replicated cage experiment in Drosophila subobscura, where mtDNA polymorphism was maintained in a laboratory setting. First, we use a set of Monte Carlo simulations to show that the haplotype frequency dynamics observed are inconsistent with genetic drift alone and most closely match those expected under NFDS. Second, we show that haplotype frequency changes over time were significantly different from those expected under either genetic drift or positive selection but were consistent with those expected under NFSD. CONCLUSIONS Collectively, our analyses provide novel support for NFDS on mtDNA haplotypes, suggesting that mtDNA polymorphism may at least in part be maintained by balancing selection also in natural populations. We very briefly discuss the possible mechanisms that might be involved.
Collapse
Affiliation(s)
- Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, University of Uppsala, Norbyv 18D, SE75236 Uppsala, Sweden
| | - Zorana Kurbalija Novičić
- Department of Ecology and Genetics, Animal Ecology, University of Uppsala, Norbyv 18D, SE75236 Uppsala, Sweden ; Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd 142, 11000 Belgrade, Serbia
| | - José A Castro
- Laboratori de Genètica, Departament de Biologia, Facultat de Ciencies, Edifici Guillem Colom, Universitat de les Illes Balears, Campus de la UIB, Palma de Mallorca, Balears 07122 Spain
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Animal Ecology, University of Uppsala, Norbyv 18D, SE75236 Uppsala, Sweden
| |
Collapse
|
37
|
Lockett GA, Almond EJ, Huggins TJ, Parker JD, Bourke AFG. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp Gerontol 2016; 77:52-61. [PMID: 26883339 DOI: 10.1016/j.exger.2016.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/24/2016] [Accepted: 02/12/2016] [Indexed: 02/03/2023]
Abstract
Eusocial insects provide special insights into the genetic pathways influencing aging because of their long-lived queens and flexible aging schedules. Using qRT-PCR in the primitively eusocial bumble bee Bombus terrestris (Linnaeus), we investigated expression levels of four candidate genes associated with taxonomically widespread age-related pathways (coenzyme Q biosynthesis protein 7, COQ7; DNA methyltransferase 3, Dnmt3; foraging, for; and vitellogenin, vg). In Experiment 1, we tested how expression changes with queen relative age and productivity. We found a significant age-related increase in COQ7 expression in queen ovary. In brain, all four genes showed higher expression with increasing female (queen plus worker) production, with this relationship strengthening as queen age increased, suggesting a link with the positive association of fecundity and longevity found in eusocial insect queens. In Experiment 2, we tested effects of relative age and social environment (worker removal) in foundress queens and effects of age and reproductive status in workers. In this experiment, workerless queens showed significantly higher for expression in brain, as predicted if downregulation of for is associated with the cessation of foraging by foundress queens following worker emergence. Workers showed a significant age-related increase in Dnmt3 expression in fat body, suggesting a novel association between aging and methylation in B. terrestris. Ovary activation was associated with significantly higher vg expression in fat body and, in younger workers, in brain, consistent with vitellogenin's ancestral role in regulating egg production. Overall, our findings reveal a mixture of novel and conserved features in age-related genetic pathways under primitive eusociality.
Collapse
Affiliation(s)
- Gabrielle A Lockett
- School of Biological Sciences, University of Southampton, Life Sciences Building, Highfield Campus, Southampton SO17 1BJ, UK
| | - Edward J Almond
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Timothy J Huggins
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Joel D Parker
- School of Biological Sciences, University of Southampton, Life Sciences Building, Highfield Campus, Southampton SO17 1BJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
38
|
Feldmeyer B, Mazur J, Beros S, Lerp H, Binder H, Foitzik S. Gene expression patterns underlying parasite-induced alterations in host behaviour and life history. Mol Ecol 2016; 25:648-60. [DOI: 10.1111/mec.13498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Barbara Feldmeyer
- Evolutionary Biology; Johannes Gutenberg University Mainz; Johannes-von-Müller-Weg 6 55128 Mainz Germany
- Biodiversity and Climate Research Centre; Senckenberg Gesellschaft für Naturforschung; Senckenberganlage 25 60325 Frankfurt Germany
| | - Johanna Mazur
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI); University Medical Center Johannes Gutenberg University Mainz; Obere Zahlbacher Str. 69 55131 Mainz Germany
| | - Sara Beros
- Evolutionary Biology; Johannes Gutenberg University Mainz; Johannes-von-Müller-Weg 6 55128 Mainz Germany
| | - Hannes Lerp
- Evolutionary Biology; Johannes Gutenberg University Mainz; Johannes-von-Müller-Weg 6 55128 Mainz Germany
- Natural History Collections; Museum Wiesbaden; Friedrich-Ebert-Allee 2 65185 Wiesbaden Germany
| | - Harald Binder
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI); University Medical Center Johannes Gutenberg University Mainz; Obere Zahlbacher Str. 69 55131 Mainz Germany
| | - Susanne Foitzik
- Evolutionary Biology; Johannes Gutenberg University Mainz; Johannes-von-Müller-Weg 6 55128 Mainz Germany
| |
Collapse
|
39
|
Oettler J, Nachtigal AL, Schrader L. Expression of the Foraging Gene Is Associated with Age Polyethism, Not Task Preference, in the Ant Cardiocondyla obscurior. PLoS One 2015; 10:e0144699. [PMID: 26650238 PMCID: PMC4674073 DOI: 10.1371/journal.pone.0144699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
One of the fundamental principles of social organization, age polyethism, describes behavioral maturation of workers leading to switches in task preference. Here we present a system that allows for studying division of labor (DOL) by taking advantage of the relative short life of Cardiocondyla obscurior workers and thereby the pace of behavioral transitions. By challenging same-age young and older age cohorts to de novo establish DOL into nurse and foraging tasks and by forcing nurses to precociously become foragers and vice versa we studied expression patterns of one of the best known candidates for social insect worker behavior, the foraging gene. Contrary to our expectations we found that foraging gene expression correlates with age, but not with the task foraging per se. This suggests that this nutrition-related gene, and the pathways it is embedded in, correlates with physiological changes over time and potentially primes, but not determines task preference of individual workers.
Collapse
Affiliation(s)
- Jan Oettler
- Institut für Zoologie, Universität Regensburg, 93053, Regensburg, Germany
| | | | - Lukas Schrader
- Institut für Zoologie, Universität Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
40
|
Ko KI, Root CM, Lindsay SA, Zaninovich OA, Shepherd AK, Wasserman SA, Kim SM, Wang JW. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife 2015; 4:e08298. [PMID: 26208339 PMCID: PMC4531282 DOI: 10.7554/elife.08298] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
The internal state of an organism influences its perception of attractive or aversive stimuli and thus promotes adaptive behaviors that increase its likelihood of survival. The mechanisms underlying these perceptual shifts are critical to our understanding of how neural circuits support animal cognition and behavior. Starved flies exhibit enhanced sensitivity to attractive odors and reduced sensitivity to aversive odors. Here, we show that a functional remodeling of the olfactory map is mediated by two parallel neuromodulatory systems that act in opposing directions on olfactory attraction and aversion at the level of the first synapse. Short neuropeptide F sensitizes an antennal lobe glomerulus wired for attraction, while tachykinin (DTK) suppresses activity of a glomerulus wired for aversion. Thus we show parallel neuromodulatory systems functionally reconfigure early olfactory processing to optimize detection of nutrients at the risk of ignoring potentially toxic food resources.
Collapse
Affiliation(s)
- Kang I Ko
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Cory M Root
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Scott A Lindsay
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Orel A Zaninovich
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Andrew K Shepherd
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Steven A Wasserman
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Susy M Kim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
41
|
Chardonnet F, Capdevielle-Dulac C, Chouquet B, Joly N, Harry M, Le Ru B, Silvain JF, Kaiser L. Food searching behaviour of a Lepidoptera pest species is modulated by the foraging gene polymorphism. ACTA ACUST UNITED AC 2015; 217:3465-73. [PMID: 25274324 DOI: 10.1242/jeb.108258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The extent of damage to crop plants from pest insects depends on the foraging behaviour of the insect's feeding stage. Little is known, however, about the genetic and molecular bases of foraging behaviour in phytophagous pest insects. The foraging gene (for), a candidate gene encoding a PKG-I, has an evolutionarily conserved function in feeding strategies. Until now, for had never been studied in Lepidoptera, which includes major pest species. The cereal stem borer Sesamia nonagrioides is therefore a relevant species within this order with which to study conservation of and polymorphism in the for gene, and its role in foraging - a behavioural trait that is directly associated with plant injuries. Full sequencing of for cDNA in S. nonagrioides revealed a high degree of conservation with other insect taxa. Activation of PKG by a cGMP analogue increased larval foraging activity, measured by how frequently larvae moved between food patches in an actimeter. We found one non-synonymous allelic variation in a natural population that defined two allelic variants. These variants presented significantly different levels of foraging activity, and the behaviour was positively correlated to gene expression levels. Our results show that for gene function is conserved in this species of Lepidoptera, and describe an original case of a single nucleotide polymorphism associated with foraging behaviour variation in a pest insect. By illustrating how variation in this single gene can predict phenotype, this work opens new perspectives into the evolutionary context of insect adaptation to plants, as well as pest management.
Collapse
Affiliation(s)
- Floriane Chardonnet
- Laboratoire Evolution Génome et Spéciation, CNRS UPR 9034, IRD UR 072 and Université Paris Sud Orsay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Claire Capdevielle-Dulac
- Laboratoire Evolution Génome et Spéciation, CNRS UPR 9034, IRD UR 072 and Université Paris Sud Orsay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Bastien Chouquet
- Laboratoire Evolution Génome et Spéciation, CNRS UPR 9034, IRD UR 072 and Université Paris Sud Orsay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Nicolas Joly
- Laboratoire Evolution Génome et Spéciation, CNRS UPR 9034, IRD UR 072 and Université Paris Sud Orsay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Myriam Harry
- Laboratoire Evolution Génome et Spéciation, CNRS UPR 9034, IRD UR 072 and Université Paris Sud Orsay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Bruno Le Ru
- Laboratoire Evolution Génome et Spéciation, CNRS UPR 9034, IRD UR 072 and Université Paris Sud Orsay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France icipe - African Insect Science for Food and Health, Duduville Campus, Kasarani, PO Box 30772-00100, Nairobi, Kenya
| | - Jean-François Silvain
- Laboratoire Evolution Génome et Spéciation, CNRS UPR 9034, IRD UR 072 and Université Paris Sud Orsay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Laure Kaiser
- Laboratoire Evolution Génome et Spéciation, CNRS UPR 9034, IRD UR 072 and Université Paris Sud Orsay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France INRA, UMR 1392, Institut d'Ecologie et des Sciences de l'Environnement de Paris, France
| |
Collapse
|
42
|
Anholt RRH, Mackay TFC. Dissecting the Genetic Architecture of Behavior in Drosophila melanogaster. Curr Opin Behav Sci 2015; 2:1-7. [PMID: 26203460 PMCID: PMC4507818 DOI: 10.1016/j.cobeha.2014.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Variation in behaviors in natural populations arises from complex networks of multiple segregating polymorphic alleles whose expression can be modulated by the environment. Since behaviors reflect dynamic interactions between organisms and their environments, they are central targets for adaptive evolution. Drosophila melanogaster presents a powerful system for dissecting the genetic basis of behavioral phenotypes, since both the genetic background and environmental conditions can be controlled and behaviors accurately quantified. Single gene mutational analyses can identify the roles of individual genes within cellular pathways, whereas systems genetic approaches that exploit natural variation can construct genetic networks that underlie phenotypic variation. Combining these approaches with emerging technologies, such as genome editing, is likely to yield a comprehensive understanding of the neurogenetic underpinnings that orchestrate the manifestation of behaviors.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology, and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA
| |
Collapse
|
43
|
Senior AM, Charleston MA, Lihoreau M, Buhl C, Raubenheimer D, Simpson SJ. Evolving nutritional strategies in the presence of competition: a geometric agent-based model. PLoS Comput Biol 2015; 11:e1004111. [PMID: 25815976 PMCID: PMC4376532 DOI: 10.1371/journal.pcbi.1004111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 01/05/2015] [Indexed: 12/02/2022] Open
Abstract
Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term 'nutritional latitude'; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts.
Collapse
Affiliation(s)
- Alistair M. Senior
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael A. Charleston
- School of Information Technologies, The University of Sydney, Sydney, New South Wales, Australia
| | - Mathieu Lihoreau
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, Toulouse, France
- Université Paul Sabatier (UPS), Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Camille Buhl
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide South Australia, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephen J. Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Lucas C, Nicolas M, Keller L. Expression of foraging and Gp-9 are associated with social organization in the fire ant Solenopsis invicta. INSECT MOLECULAR BIOLOGY 2015; 24:93-104. [PMID: 25315753 DOI: 10.1111/imb.12137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to investigate levels of expression of two major genes, the odorant binding protein Gp-9 (general protein-9) and foraging, that have been shown to be associated with behavioural polymorphisms in ants. We analysed workers and young nonreproductive queens collected from nests of the monogyne (single reproductive queen per nest) and polygyne (multiple reproductive queens) social forms of Solenopsis invicta. In workers but not young queens, the level of foraging expression was significantly associated with social form and the task performed (ie localization in the nest or foraging area). The level of expression of Gp-9 was also associated with social form and worker localization. In addition there was a higher level of expression of the Gp-9(b) allele compared with the Gp-9(B) allele in the heterozygote workers and the young nonreproductive queens. Finally, in the polygyne colonies the level of expression of foraging was not significantly associated with the Gp-9 genotype for either workers or young nonreproductive queens, suggesting that both genes have independent non-epistatic effects on behaviour in S. invicta.
Collapse
Affiliation(s)
- C Lucas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland; Institut de Recherche sur la Biologie de l'Insecte (UMR 7261), CNRS, University of Tours, Tours, France
| | | | | |
Collapse
|
45
|
Etges WJ, Trotter MV, de Oliveira CC, Rajpurohit S, Gibbs AG, Tuljapurkar S. Deciphering life history transcriptomes in different environments. Mol Ecol 2014; 24:151-79. [PMID: 25442828 DOI: 10.1111/mec.13017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/27/2014] [Accepted: 11/22/2014] [Indexed: 12/25/2022]
Abstract
We compared whole transcriptome variation in six pre-adult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants to understand how differences in gene expression influence standing life history variation. We used singular value decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pairwise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and ageing. Host cactus effects on female gene expression revealed population- and stage-specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behaviour gene expression levels. In 3- to 6-day-old virgin females, significant upregulation of genes associated with meiosis and oogenesis was accompanied by downregulation of genes associated with somatic maintenance, evidence for a life history trade-off. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome-wide influences on life history variation in natural populations.
Collapse
Affiliation(s)
- William J Etges
- Program in Ecology and Evolutionary Biology, Dept. of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | | | | | | | | | | |
Collapse
|
46
|
Flaven-Pouchon J, Garcia T, Abed-Vieillard D, Farine JP, Ferveur JF, Everaerts C. Transient and permanent experience with fatty acids changes Drosophila melanogaster preference and fitness. PLoS One 2014; 9:e92352. [PMID: 24667657 PMCID: PMC3965419 DOI: 10.1371/journal.pone.0092352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/21/2014] [Indexed: 01/01/2023] Open
Abstract
Food and host-preference relies on genetic adaptation and sensory experience. In vertebrates, experience with food-related cues during early development can change adult preference. This is also true in holometabolous insects, which undergo a drastic nervous system remodelling during their complete metamorphosis, but remains uncertain in Drosophila melanogaster. We have conditioned D. melanogaster with oleic (C18:1) and stearic (C18:0) acids, two common dietary fatty acids, respectively preferred by larvae and adult. Wild-type individuals exposed either during a transient period of development-from embryo to adult-or more permanently-during one to ten generation cycles-were affected by such conditioning. In particular, the oviposition preference of females exposed to each fatty acid during larval development was affected without cross-effect indicating the specificity of each substance. Permanent exposure to each fatty acid also drastically changed oviposition preference as well as major fitness traits (development duration, sex-ratio, fecundity, adult lethality). This suggests that D. melanogaster ability to adapt to new food sources is determined by its genetic and sensory plasticity both of which may explain the success of this generalist-diet species.
Collapse
Affiliation(s)
- Justin Flaven-Pouchon
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Thibault Garcia
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Dehbia Abed-Vieillard
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
47
|
Yeast growth plasticity is regulated by environment-specific multi-QTL interactions. G3-GENES GENOMES GENETICS 2014; 4:769-77. [PMID: 24474169 PMCID: PMC4025475 DOI: 10.1534/g3.113.009142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
For a unicellular, non-motile organism like Saccharomyces cerevisiae, carbon sources act both as nutrients and as signaling molecules and consequently affect various fitness parameters including growth. It is therefore advantageous for yeast strains to adapt their growth to carbon source variation. The ability of a given genotype to manifest different phenotypes in varying environments is known as phenotypic plasticity. To identify quantitative trait loci (QTL) that drive plasticity in growth, two growth parameters (growth rate and biomass) were measured in a published dataset from meiotic recombinants of two genetically divergent yeast strains grown in different carbon sources. To identify QTL contributing to plasticity across pairs of environments, gene–environment interaction mapping was performed, which identified several QTL that have a differential effect across environments, some of which act antagonistically across pairs of environments. Multi-QTL analysis identified loci interacting with previously known growth affecting QTL as well as novel two-QTL interactions that affect growth. A QTL that had no significant independent effect was found to alter growth rate and biomass for several carbon sources through two-QTL interactions. Our study demonstrates that environment-specific epistatic interactions contribute to the growth plasticity in yeast. We propose that a targeted scan for epistatic interactions, such as the one described here, can help unravel mechanisms regulating phenotypic plasticity.
Collapse
|
48
|
Edelsparre AH, Vesterberg A, Lim JH, Anwari M, Fitzpatrick MJ. Alleles underlying larval foraging behaviour influence adult dispersal in nature. Ecol Lett 2014; 17:333-9. [DOI: 10.1111/ele.12234] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/09/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Allan H. Edelsparre
- Integrative Behaviour and Neuroscience Group; Department of Biological Sciences; University of Toronto Scarborough; Toronto ON M1C 1A4 Canada
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON M5S 3B2 Canada
| | - Anders Vesterberg
- Integrative Behaviour and Neuroscience Group; Department of Biological Sciences; University of Toronto Scarborough; Toronto ON M1C 1A4 Canada
- Department of Cell and Systems Biology; University of Toronto; Toronto ON M5S 3G5 Canada
| | - Jang H. Lim
- Integrative Behaviour and Neuroscience Group; Department of Biological Sciences; University of Toronto Scarborough; Toronto ON M1C 1A4 Canada
| | - Milad Anwari
- Integrative Behaviour and Neuroscience Group; Department of Biological Sciences; University of Toronto Scarborough; Toronto ON M1C 1A4 Canada
| | - Mark J. Fitzpatrick
- Integrative Behaviour and Neuroscience Group; Department of Biological Sciences; University of Toronto Scarborough; Toronto ON M1C 1A4 Canada
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON M5S 3B2 Canada
- Department of Cell and Systems Biology; University of Toronto; Toronto ON M5S 3G5 Canada
| |
Collapse
|
49
|
Kohn NR, Reaume CJ, Moreno C, Burns JG, Sokolowski MB, Mery F. Social environment influences performance in a cognitive task in natural variants of the foraging gene. PLoS One 2013; 8:e81272. [PMID: 24349049 PMCID: PMC3861308 DOI: 10.1371/journal.pone.0081272] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
In Drosophila melanogaster, natural genetic variation in the foraging gene affects the foraging behaviour of larval and adult flies, larval reward learning, adult visual learning, and adult aversive training tasks. Sitters (for(s)) are more sedentary and aggregate within food patches whereas rovers (for(R)) have greater movement within and between food patches, suggesting that these natural variants are likely to experience different social environments. We hypothesized that social context would differentially influence rover and sitter behaviour in a cognitive task. We measured adult rover and sitter performance in a classical olfactory training test in groups and alone. All flies were reared in groups, but fly training and testing were done alone and in groups. Sitters trained and tested in a group had significantly higher learning performances compared to sitters trained and tested alone. Rovers performed similarly when trained and tested alone and in a group. In other words, rovers learning ability is independent of group training and testing. This suggests that sitters may be more sensitive to the social context than rovers. These differences in learning performance can be altered by pharmacological manipulations of PKG activity levels, the foraging (for) gene's gene product. Learning and memory is also affected by the type of social interaction (being in a group of the same strain or in a group of a different strain) in rovers, but not in sitters. These results suggest that for mediates social learning and memory in D. melanogaster.
Collapse
Affiliation(s)
- Nancy R. Kohn
- Laboratoire Evolution, Génome et Spéciation, CNRS, Gif sur Yvette, France
- Department of Biology, University of Missouri–Saint Louis, Saint Louis, Missouri, United States of America
| | - Christopher J. Reaume
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Celine Moreno
- Laboratoire Evolution, Génome et Spéciation, CNRS, Gif sur Yvette, France
| | - James G. Burns
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Marla B. Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Frederic Mery
- Laboratoire Evolution, Génome et Spéciation, CNRS, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
50
|
Camiletti AL, Awde DN, Thompson GJ. How flies respond to honey bee pheromone: the role of the foraging gene on reproductive response to queen mandibular pheromone. Naturwissenschaften 2013; 101:25-31. [DOI: 10.1007/s00114-013-1125-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/13/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
|