1
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
2
|
Ait Saada A, Costa AB, Sheng Z, Guo W, Haber JE, Lobachev K. Structural parameters of palindromic repeats determine the specificity of nuclease attack of secondary structures. Nucleic Acids Res 2021; 49:3932-3947. [PMID: 33772579 PMCID: PMC8053094 DOI: 10.1093/nar/gkab168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Palindromic sequences are a potent source of chromosomal instability in many organisms and are implicated in the pathogenesis of human diseases. In this study, we investigate which nucleases are responsible for cleavage of the hairpin and cruciform structures and generation of double-strand breaks at inverted repeats in Saccharomyces cerevisiae. We demonstrate that the involvement of structure-specific nucleases in palindrome fragility depends on the distance between inverted repeats and their transcriptional status. The attack by the Mre11 complex is constrained to hairpins with loops <9 nucleotides. This restriction is alleviated upon RPA depletion, indicating that RPA controls the stability and/or formation of secondary structures otherwise responsible for replication fork stalling and DSB formation. Mus81-Mms4 cleavage of cruciforms occurs at divergently but not convergently transcribed or nontranscribed repeats. Our study also reveals the third pathway for fragility at perfect and quasi-palindromes, which involves cruciform resolution during the G2 phase of the cell cycle.
Collapse
Affiliation(s)
- Anissia Ait Saada
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Alex B Costa
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Ziwei Sheng
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Wenying Guo
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Waltham, MA 02454-9110, USA
| | - Kirill S Lobachev
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| |
Collapse
|
3
|
Pham N, Yan Z, Yu Y, Faria Afreen M, Malkova A, Haber JE, Ira G. Mechanisms restraining break-induced replication at two-ended DNA double-strand breaks. EMBO J 2021; 40:e104847. [PMID: 33844333 DOI: 10.15252/embj.2020104847] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two-ended DNA double-strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single-ended DSBs are repaired by break-induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two-ended DSBs. Here, we demonstrate that BIR is suppressed at two-ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D-loop unwinding helicase Mph1, and (iii) Mre11-Rad50-Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.
Collapse
Affiliation(s)
- Nhung Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mosammat Faria Afreen
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Mehnert AK, Prorocic M, Dujeancourt-Henry A, Hutchinson S, McCulloch R, Glover L. The MRN complex promotes DNA repair by homologous recombination and restrains antigenic variation in African trypanosomes. Nucleic Acids Res 2021; 49:1436-1454. [PMID: 33450001 PMCID: PMC7897489 DOI: 10.1093/nar/gkaa1265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination dominates as the major form of DNA repair in Trypanosoma brucei, and is especially important for recombination of the subtelomeric variant surface glycoprotein during antigenic variation. RAD50, a component of the MRN complex (MRE11, RAD50, NBS1), is central to homologous recombination through facilitating resection and governing the DNA damage response. The function of RAD50 in trypanosomes is untested. Here we report that RAD50 and MRE11 are required for RAD51-dependent homologous recombination and phosphorylation of histone H2A following a DNA double strand break (DSB), but neither MRE11 nor RAD50 substantially influence DSB resection at a chromosome-internal locus. In addition, we reveal intrinsic separation-of-function between T. brucei RAD50 and MRE11, with only RAD50 suppressing DSB repair using donors with short stretches of homology at a subtelomeric locus, and only MRE11 directing DSB resection at the same locus. Finally, we show that loss of either MRE11 or RAD50 causes a greater diversity of expressed VSG variants following DSB repair. We conclude that MRN promotes stringent homologous recombination at subtelomeric loci and restrains antigenic variation.
Collapse
Affiliation(s)
- Ann-Kathrin Mehnert
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 75015, Paris, France
| | - Marco Prorocic
- Wellcome Center for Integrative Parasitology, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Annick Dujeancourt-Henry
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 75015, Paris, France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur & INSERM U1201, 75015 Paris, France
| | - Richard McCulloch
- Wellcome Center for Integrative Parasitology, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Lucy Glover
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 75015, Paris, France
| |
Collapse
|
5
|
Ait Saada A, Costa AB, Lobachev KS. Genetic and Molecular Approaches to Study Chromosomal Breakage at Secondary Structure-Forming Repeats. Methods Mol Biol 2021; 2153:71-86. [PMID: 32840773 DOI: 10.1007/978-1-0716-0644-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA repeats capable of adopting stable secondary structures are hotspots for double-strand break (DSB) formation and, hence, for homologous recombination and gross chromosomal rearrangements (GCR) in many prokaryotic and eukaryotic organisms, including humans. Here, we provide protocols for studying chromosomal instability triggered by hairpin- and cruciform-forming palindromic sequences in the budding yeast, Saccharomyces cerevisiae. First, we describe two sensitive genetic assays aimed to determine the recombinogenic potential of inverted repeats and their ability to induce GCRs. Then, we detail an approach to monitor chromosomal DSBs by Southern blot hybridization. Finally, we describe how to define the molecular structure of DSBs. We provide, as an example, the analysis of chromosomal fragility at a reporter system containing unstable Alu-inverted repeats. By using these approaches, any DNA sequence motif can be assessed for its breakage potential and ability to drive genome instability.
Collapse
Affiliation(s)
- Anissia Ait Saada
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alex B Costa
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kirill S Lobachev
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Gnügge R, Symington LS. Efficient DNA double-strand break formation at single or multiple defined sites in the Saccharomyces cerevisiae genome. Nucleic Acids Res 2020; 48:e115. [PMID: 33053188 PMCID: PMC7672422 DOI: 10.1093/nar/gkaa833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/18/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) are common genome lesions that threaten genome stability and cell survival. Cells use sophisticated repair machineries to detect and heal DSBs. To study DSB repair pathways and associated factors, inducible site-specific endonucleases have proven to be fundamental tools. In Saccharomyces cerevisiae, galactose-inducible rare-cutting endonucleases are commonly used to create a single DSB at a unique cleavage site. Galactose induction requires cell cultivation in suboptimal growth media, which is tedious especially when working with slow growing DSB repair mutants. Moreover, endonucleases that simultaneously create DSBs in multiple defined and unique loci of the yeast genome are not available, hindering studies of DSB repair in different genomic regions and chromatin contexts. Here, we present new tools to overcome these limitations. We employ a heterologous media-independent induction system to express the yeast HO endonuclease or bacterial restriction enzymes for single or multiple DSB formation, respectively. The systems facilitate tightly controlled and efficient DSB formation at defined genomic sites and will be valuable tools to study DSB repair at a local and genome-wide scale.
Collapse
Affiliation(s)
- Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Zhao F, Kim W, Kloeber JA, Lou Z. DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Exp Mol Med 2020; 52:1705-1714. [PMID: 33122806 PMCID: PMC8080561 DOI: 10.1038/s12276-020-00519-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
DNA end resection has a key role in double-strand break repair and DNA replication. Defective DNA end resection can cause malfunctions in DNA repair and replication, leading to greater genomic instability. DNA end resection is initiated by MRN-CtIP generating short, 3′-single-stranded DNA (ssDNA). This newly generated ssDNA is further elongated by multiple nucleases and DNA helicases, such as EXO1, DNA2, and BLM. Effective DNA end resection is essential for error-free homologous recombination DNA repair, the degradation of incorrectly replicated DNA and double-strand break repair choice. Because of its importance in DNA repair, DNA end resection is strictly regulated. Numerous mechanisms have been reported to regulate the initiation, extension, and termination of DNA end resection. Here, we review the general process of DNA end resection and its role in DNA replication and repair pathway choice. Carefully regulated enzymatic processing of the ends of DNA strands is essential for efficient replication and damage repair while also minimizing the risk of genomic instability. Replication and repair depend on a mechanism known as DNA resection, in which enzymes trim back double-stranded DNA ends to leave single-stranded overhangs. Zhenkun Lou and colleagues at the Mayo Clinic in Rochester, USA, have reviewed the various steps involved in the initiation and control of DNA resection. There are multiple different DNA repair processes, and the manner in which resection occurs can determine which of these processes subsequently takes place. The authors note that cancer cells rely heavily on these repair pathways to survive radiotherapy and chemotherapy, and highlight research opportunities that might reveal therapeutically useful vulnerabilities in the resection mechanism.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Monitoring of DNA Replication and DNA Double-Strand Breaks in Saccharomyces cerevisiae by Pulsed-Field Gel Electrophoresis (PFGE). Methods Mol Biol 2020. [PMID: 31989520 DOI: 10.1007/978-1-0716-0323-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Separating DNA fragments using standard agarose gel electrophoresis is based on the capacity of negatively charged DNA molecules to move through the agarose gel matrix toward the positive electrode. Pulsed-field gel electrophoresis (PFGE) is an agarose gel electrophoresis technique that enables the separation of DNA molecules at a megabase scale, making the direct genomic analysis of large DNA molecules possible. For instance, 16 chromosomes (size range; 0.2-2.2 Mb) in Saccharomyces cerevisiae, whose karyotype cannot be easily observed with a microscope, can be directly separated on agarose gel. PFGE is also a powerful analytical tool for chromosomal mapping and genome structure analysis in bacterial and mammalian cells. In this chapter, we will describe the preparation of intact yeast chromosomal DNA for PFGE and general PFGE procedures and will introduce a PFGE method to monitor the DNA replication fork progression and DNA double-strand breaks (DSBs).
Collapse
|
9
|
Sakofsky CJ, Saini N, Klimczak LJ, Chan K, Malc EP, Mieczkowski PA, Burkholder AB, Fargo D, Gordenin DA. Repair of multiple simultaneous double-strand breaks causes bursts of genome-wide clustered hypermutation. PLoS Biol 2019; 17:e3000464. [PMID: 31568516 PMCID: PMC6786661 DOI: 10.1371/journal.pbio.3000464] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/10/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
A single cancer genome can harbor thousands of clustered mutations. Mutation signature analyses have revealed that the origin of clusters are lesions in long tracts of single-stranded (ss) DNA damaged by apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases, raising questions about molecular mechanisms that generate long ssDNA vulnerable to hypermutation. Here, we show that ssDNA intermediates formed during the repair of gamma-induced bursts of double-strand breaks (DSBs) in the presence of APOBEC3A in yeast lead to multiple APOBEC-induced clusters similar to cancer. We identified three independent pathways enabling cluster formation associated with repairing bursts of DSBs: 5′ to 3′ bidirectional resection, unidirectional resection, and break-induced replication (BIR). Analysis of millions of mutations in APOBEC-hypermutated cancer genomes revealed that cancer tolerance to formation of hypermutable ssDNA is similar to yeast and that the predominant pattern of clustered mutagenesis is the same as in resection-defective yeast, suggesting that cluster formation in cancers is driven by a BIR-like mechanism. The phenomenon of genome-wide burst of clustered mutagenesis revealed by our study can play an important role in generating somatic hypermutation in cancers as well as in noncancerous cells. This study uses yeast expressing a human cytidine deaminase to reveal simultaneous stretches of long single-strand DNA and multiple vast mutation clusters in a single eukaryotic cell repairing multiple double-strand breaks. This is reminiscent of the phenomenon of “kataegis” or hypermutation observed in cancer genomes, suggesting that a similar mechanism is involved.
Collapse
Affiliation(s)
- Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - Kin Chan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - Ewa P. Malc
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Piotr A. Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Adam B. Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - David Fargo
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
10
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
11
|
Bellido A, Hermosa B, Ciudad T, Larriba G. Role of homologous recombination genesRAD51,RAD52, andRAD59in the repair of lesions caused by γ-radiation to cycling and G2/M-arrested cells ofCandida albicans. Cell Microbiol 2018; 20:e12950. [DOI: 10.1111/cmi.12950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Alberto Bellido
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Belén Hermosa
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Toni Ciudad
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Germán Larriba
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| |
Collapse
|
12
|
Ramakrishnan S, Kockler Z, Evans R, Downing BD, Malkova A. Single-strand annealing between inverted DNA repeats: Pathway choice, participating proteins, and genome destabilizing consequences. PLoS Genet 2018; 14:e1007543. [PMID: 30091972 PMCID: PMC6103520 DOI: 10.1371/journal.pgen.1007543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/21/2018] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
Abstract
Double strand DNA breaks (DSBs) are dangerous events that can result from various causes including environmental assaults or the collapse of DNA replication. While the efficient and precise repair of DSBs is essential for cell survival, faulty repair can lead to genetic instability, making the choice of DSB repair an important step. Here we report that inverted DNA repeats (IRs) placed near a DSB can channel its repair from an accurate pathway that leads to gene conversion to instead a break-induced replication (BIR) pathway that leads to genetic instabilities. The effect of IRs is explained by their ability to form unusual DNA structures when present in ssDNA that is formed by DSB resection. We demonstrate that IRs can form two types of unusual DNA structures, and the choice between these structures depends on the length of the spacer separating IRs. In particular, IRs separated by a long (1-kb) spacer are predominantly involved in inter-molecular single-strand annealing (SSA) leading to the formation of inverted dimers; IRs separated by a short (12-bp) spacer participate in intra-molecular SSA, leading to the formation of fold-back (FB) structures. Both of these structures interfere with an accurate DSB repair by gene conversion and channel DSB repair into BIR, which promotes genomic destabilization. We also report that different protein complexes participate in the processing of FBs containing short (12-bp) versus long (1-kb) ssDNA loops. Specifically, FBs with short loops are processed by the MRX-Sae2 complex, whereas the Rad1-Rad10 complex is responsible for the processing of long loops. Overall, our studies uncover the mechanisms of genomic destabilization resulting from re-routing DSB repair into unusual pathways by IRs. Given the high abundance of IRs in the human genome, our findings may contribute to the understanding of IR-mediated genomic destabilization associated with human disease. Efficient and accurate repair of double-strand DNA breaks (DSBs), resulting from the exposure of cells to ionizing radiation or various chemicals, is crucial for cell survival. Conversely, faulty DSB repair can generate genomic instability that can lead to birth defects or cancer in humans. Here we demonstrate that inverted DNA repeats (IRs) placed in the vicinity of a DSB, interfere with the accurate repair of DSBs and promote genomic rearrangements and chromosome loss. This results from annealing between inverted repeats, located either in different DNA molecules or in the same molecule. In addition, we describe a new role for the Rad1-Rad10 protein complex in processing fold-back (FB) structures formed by intra-molecular annealing involving IRs separated by long spacers. In contrast, FBs with short spacers are processed by the Mre11-Rad50-Xrs2/-Sae2 complex. Overall, we describe several pathways of DSB promoted interaction between IRs that can lead to genomic instability. Given the large number of IRs in the human genome, our findings are relevant to the mechanisms driving genomic destabilization in humans contributing to the development of cancer and other diseases.
Collapse
Affiliation(s)
- Sreejith Ramakrishnan
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Zachary Kockler
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
| | - Robert Evans
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Brandon D. Downing
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
- * E-mail:
| |
Collapse
|
13
|
Krol K, Jendrysek J, Debski J, Skoneczny M, Kurlandzka A, Kaminska J, Dadlez M, Skoneczna A. Ribosomal DNA status inferred from DNA cloud assays and mass spectrometry identification of agarose-squeezed proteins interacting with chromatin (ASPIC-MS). Oncotarget 2018; 8:24988-25004. [PMID: 28212567 PMCID: PMC5421904 DOI: 10.18632/oncotarget.15332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
Ribosomal RNA-encoding genes (rDNA) are the most abundant genes in eukaryotic genomes. To meet the high demand for rRNA, rDNA genes are present in multiple tandem repeats clustered on a single or several chromosomes and are vastly transcribed. To facilitate intensive transcription and prevent rDNA destabilization, the rDNA-encoding portion of the chromosome is confined in the nucleolus. However, the rDNA region is susceptible to recombination and DNA damage, accumulating mutations, rearrangements and atypical DNA structures. Various sophisticated techniques have been applied to detect these abnormalities. Here, we present a simple method for the evaluation of the activity and integrity of an rDNA region called a “DNA cloud assay”. We verified the efficacy of this method using yeast mutants lacking genes important for nucleolus function and maintenance (RAD52, SGS1, RRM3, PIF1, FOB1 and RPA12). The DNA cloud assay permits the evaluation of nucleolus status and is compatible with downstream analyses, such as the chromosome comet assay to identify DNA structures present in the cloud and mass spectrometry of agarose squeezed proteins (ASPIC-MS) to detect nucleolar DNA-bound proteins, including Las17, the homolog of human Wiskott-Aldrich Syndrome Protein (WASP).
Collapse
Affiliation(s)
- Kamil Krol
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Warsaw, 02-106, Poland
| | - Justyna Jendrysek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Warsaw, 02-106, Poland
| | - Janusz Debski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Mass Spectrometry Laboratory, Warsaw, 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Warsaw, 02-106, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Warsaw, 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Warsaw, 02-106, Poland
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Mass Spectrometry Laboratory, Warsaw, 02-106, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Warsaw, 02-106, Poland
| |
Collapse
|
14
|
Westmoreland JW, Mihalevic MJ, Bernstein KA, Resnick MA. The global role for Cdc13 and Yku70 in preventing telomere resection across the genome. DNA Repair (Amst) 2017; 62:8-17. [PMID: 29247743 DOI: 10.1016/j.dnarep.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022]
Abstract
Yeast Cdc13 protein (related to human CTC1) maintains telomere stability by preventing 5'-3' end resection. While Cdc13 and Yku70/Yku80 proteins appear to prevent excessive resection, their combined contribution to maintenance of telomere ends across the genome and their relative roles at specific ends of different chromosomes have not been addressable because Cdc13 and Yku70/Yku80 double mutants are sickly. Using our PFGE-shift approach where large resected molecules have slower pulse field gel electrophoresis mobilities, along with methods for maintaining viable double mutants, we address end-resection on most chromosomes as well as telomere end differences. In this global approach to looking at ends of most chromosomes, we identify chromosomes with 1-end resections and end-preferences. We also identify chromosomes with resection at both ends, previously not possible. 10-20% of chromosomes exhibit PFGE-shift when cdc13-1 cells are switched to restrictive temperature (37 °C). In yku70Δ cdc13-1 mutants, there is a telomere resection "storm" with approximately half the chromosomes experiencing at least 1-end resection, ∼10 kb/telomere, due to exonuclease1 and many exhibiting 2-end resection. Unlike for random internal chromosome breaks, resection of telomere ends is not coordinated. Telomere restitution at permissive temperature is rapid (<1 h) in yku70Δ cdc13-1 cells. Surprisingly, survival can be high although strain background dependent. Given large amount of resected telomeres, we examined associated proteins. Up to 90% of cells have ≥1 Rfa1 (RPA) focus and 60% have multiple foci when ∼30-40 telomeres/cell are resected. The ends are dispersed in the nucleus suggesting wide distribution of resected telomeres across nuclear space. The previously reported Rad52 nuclear centers of repair for random DSBs also appear in cells with many resected telomere ends, suggesting a Rad52 commonality to the organization of single strand ends and/or limitation on interactions of single-strand ends with Rad52.
Collapse
Affiliation(s)
- James W Westmoreland
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Michael J Mihalevic
- University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, United States
| | - Kara A Bernstein
- University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, United States
| | - Michael A Resnick
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
15
|
Sds22 participates in Glc7 mediated Rad53 dephosphorylation in MMS-induced DNA damage in Candida albicans. Fungal Genet Biol 2016; 93:50-61. [DOI: 10.1016/j.fgb.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 01/21/2023]
|
16
|
Pathak R, Bachri A, Ghosh SP, Koturbash I, Boerma M, Binz RK, Sawyer JR, Hauer-Jensen M. The Vitamin E Analog Gamma-Tocotrienol (GT3) Suppresses Radiation-Induced Cytogenetic Damage. Pharm Res 2016; 33:2117-25. [PMID: 27216753 PMCID: PMC4967083 DOI: 10.1007/s11095-016-1950-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/13/2016] [Indexed: 01/24/2023]
Abstract
Purpose Ionizing radiation (IR) generates reactive oxygen species (ROS), which cause DNA double-strand breaks (DSBs) that are responsible for cytogenetic alterations. Because antioxidants are potent ROS scavengers, we determined whether the vitamin E isoform γ-tocotrienol (GT3), a radio-protective multifunctional dietary antioxidant, can suppress IR-induced cytogenetic damage. Methods We measured DSB formation in irradiated primary human umbilical vein endothelial cells (HUVECs) by quantifying the formation of γ-H2AX foci. Chromosomal aberrations (CAs) were analyzed in irradiated HUVECs and in the bone marrow cells of irradiated mice by conventional and fluorescence-based chromosome painting techniques. Gene expression was measured in HUVECs with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results GT3 pretreatment reduced DSB formation in HUVECS, and also decreased CAs in HUVECs and mouse bone marrow cells after irradiation. Moreover, GT3 increased expression of the DNA-repair gene RAD50 and attenuated radiation-induced RAD50 suppression. Conclusions GT3 attenuates radiation-induced cytogenetic damage, possibly by affecting RAD50 expression. GT3 should be explored as a therapeutic to reduce the risk of developing genetic diseases after radiation exposure.
Collapse
Affiliation(s)
- Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Biomed I, Suite 238, 4301 West Markham, Slot 522-3, Little Rock, Arkansas, 72205, USA.
| | - Abdel Bachri
- Department of Engineering and Engineering Physics, Southern Arkansas University, Magnolia, Arkansas, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, Maryland, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Biomed I, Suite 238, 4301 West Markham, Slot 522-3, Little Rock, Arkansas, 72205, USA
| | - Regina K Binz
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jeffrey R Sawyer
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Biomed I, Suite 238, 4301 West Markham, Slot 522-3, Little Rock, Arkansas, 72205, USA
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
17
|
Chang L, Huang J, Wang K, Li J, Yan R, Zhu L, Ye J, Wu X, Zhuang S, Li D, Zhang G. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy. BMC Cancer 2016; 16:190. [PMID: 26951044 PMCID: PMC4782334 DOI: 10.1186/s12885-016-2190-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Mre11-Rad50-Nbs1 (MRN) complex is well known for its crucial role in initiating DNA double strand breaks (DSBs) repair pathways to resistant irradiation (IR) injury and thus facilitating radioresistance which severely reduces radiocurability of nasopharyngeal cancer (NPC). Targeting native cellular MRN function would sensitize NPC cells to IR. METHODS A recombinant adenovirus containing a mutant Rad50 gene (Ad-RAD50) expressing Rad50 zinc hook domain but lacking the ATPase domain and the Mre11 interaction domain was constructed to disrupt native cellular MRN functions. The effects of Ad-RAD50 on the MRN functions were assessed in NPC cells lines using western blot, co-immunoprecipitation and confocal microscopy analyses. The increased radiosensitivity of transient Ad-RAD50 to IR was examined in NPC cells, including MTT assay, colony formation. The molecular mechanisms of radiosensitization were confirmed by neutral comet assay and western bolts. Nude mice subcutaneous injection, tumor growth curve and TUNEL assay were used to evaluate tumor regression and apoptosis in vivo. RESULTS Rad50 is remarkably upregulated in NPC cells after IR, implying the critical role of Rad50 in MRN functions. The transient expression of this mutant Rad50 decreased the levels of native cellular Rad50, Mre11 and Nbs1, weakened the interactions among these proteins, abrogated the G2/M arrest induced by DSBs and reduced the DNA repair ability in NPC cells. A combination of IR and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage, prevented proliferation and cell viability. Furthermore, Ad-RAD50 sensitized NPC cells to IR by causing dramatic tumor regression and inducing apoptosis in vivo. CONCLUSION Our findings define a novel therapeutic approach to NPC radiosensitization via targeted native cellular Rad50 disruption.
Collapse
Affiliation(s)
- Lihong Chang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Jiancong Huang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Kai Wang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otorhinolaryngology-Head & Neck Surgery, The First People's Hospital of Foshan, Cancheng District, NO.81 Lingnan Bei Road, Foshan, 528000, China.
| | - Jingjia Li
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Ruicheng Yan
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, Zengcheng District People's Hospital of Guangzhou (Boji-Affiliated Hospital of Sun Yat-sen University), Zengcheng District, NO.1 Guangming Dong Road, Guangzhou, 511300, China.
| | - Ling Zhu
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, Nanhai Maternity and Child Healthcare Hospital, Nanhai District, NO.6 Guiping Xi Road, Foshan, 528000, China.
| | - Jin Ye
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Xifu Wu
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Shimin Zhuang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, NO.26 Yuancun Erheng Road, Guangzhou, 510655, China.
| | - Daqing Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | - Gehua Zhang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
18
|
Westmoreland JW, Resnick MA. Recombinational repair of radiation-induced double-strand breaks occurs in the absence of extensive resection. Nucleic Acids Res 2015; 44:695-704. [PMID: 26503252 PMCID: PMC4737140 DOI: 10.1093/nar/gkv1109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
Recombinational repair provides accurate chromosomal restitution after double-strand break (DSB) induction. While all DSB recombination repair models include 5′-3′ resection, there are no studies that directly assess the resection needed for repair between sister chromatids in G-2 arrested cells of random, radiation-induced ‘dirty’ DSBs. Using our Pulse Field Gel Electrophoresis-shift approach, we determined resection at IR-DSBs in WT and mutants lacking exonuclease1 or Sgs1 helicase. Lack of either reduced resection length by half, without decreased DSB repair or survival. In the exo1Δ sgs1Δ double mutant, resection was barely detectable, yet it only took an additional hour to achieve a level of repair comparable to WT and there was only a 2-fold dose-modifying effect on survival. Results with a Dnl4 deletion strain showed that remaining repair was not due to endjoining. Thus, similar to what has been shown for a single, clean HO-induced DSB, a severe reduction in resection tract length has only a modest effect on repair of multiple, dirty DSBs in G2-arrested cells. Significantly, this study provides the first opportunity to directly relate resection length at DSBs to the capability for global recombination repair between sister chromatids.
Collapse
Affiliation(s)
- James W Westmoreland
- Chromosome Stability Section, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Michael A Resnick
- Chromosome Stability Section, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
19
|
DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol Mol Biol Rev 2015; 78:469-86. [PMID: 25184562 DOI: 10.1128/mmbr.00059-13] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.
Collapse
|
20
|
Lopez V, Barinova N, Onishi M, Pobiega S, Pringle JR, Dubrana K, Marcand S. Cytokinesis breaks dicentric chromosomes preferentially at pericentromeric regions and telomere fusions. Genes Dev 2015; 29:322-36. [PMID: 25644606 PMCID: PMC4318148 DOI: 10.1101/gad.254664.114] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dicentric chromosomes are unstable products of erroneous DNA repair events that can lead to further genome rearrangements and extended gene copy number variations. Lopez et al. find that dicentrics without internal telomere sequences preferentially break at pericentromeric regions. In all cases, cleavage does not occur in anaphase but instead requires cytokinesis. Dicentrics cause the spindle pole bodies and centromeres to relocate to the bud neck during cytokinesis, explaining how cytokinesis can sever dicentrics near centromeres. Dicentric chromosomes are unstable products of erroneous DNA repair events that can lead to further genome rearrangements and extended gene copy number variations. During mitosis, they form anaphase bridges, resulting in chromosome breakage by an unknown mechanism. In budding yeast, dicentrics generated by telomere fusion break at the fusion, a process that restores the parental karyotype and protects cells from rare accidental telomere fusion. Here, we observed that dicentrics lacking telomere fusion preferentially break within a 25- to 30-kb-long region next to the centromeres. In all cases, dicentric breakage requires anaphase exit, ruling out stretching by the elongated mitotic spindle as the cause of breakage. Instead, breakage requires cytokinesis. In the presence of dicentrics, the cytokinetic septa pinch the nucleus, suggesting that dicentrics are severed after actomyosin ring contraction. At this time, centromeres and spindle pole bodies relocate to the bud neck, explaining how cytokinesis can sever dicentrics near centromeres.
Collapse
Affiliation(s)
- Virginia Lopez
- Laboratoire Télomères et Réparation du Chromosome, Service Instabilité Génétique Réparation et Recombinaison, Institut de Radiobiologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France; UMR967, Institut National de la Santé et de la Recherche Médicale, 92265 Fontenay-aux-Roses, France
| | - Natalja Barinova
- Laboratoire Télomères et Réparation du Chromosome, Service Instabilité Génétique Réparation et Recombinaison, Institut de Radiobiologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France; UMR967, Institut National de la Santé et de la Recherche Médicale, 92265 Fontenay-aux-Roses, France
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sabrina Pobiega
- Laboratoire Télomères et Réparation du Chromosome, Service Instabilité Génétique Réparation et Recombinaison, Institut de Radiobiologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France; UMR967, Institut National de la Santé et de la Recherche Médicale, 92265 Fontenay-aux-Roses, France
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Karine Dubrana
- UMR967, Institut National de la Santé et de la Recherche Médicale, 92265 Fontenay-aux-Roses, France; Laboratoire Instabilité Génétique et Organisation Nucléaire, Service Instabilité Génétique Réparation et Recombinaison, Institut de Radiobiologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France
| | - Stéphane Marcand
- Laboratoire Télomères et Réparation du Chromosome, Service Instabilité Génétique Réparation et Recombinaison, Institut de Radiobiologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France; UMR967, Institut National de la Santé et de la Recherche Médicale, 92265 Fontenay-aux-Roses, France;
| |
Collapse
|
21
|
Garcia V, Gray S, Allison RM, Cooper TJ, Neale MJ. Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation. Nature 2015; 520:114-8. [PMID: 25539084 DOI: 10.1038/nature13993] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/27/2014] [Indexed: 12/24/2022]
Abstract
Meiotic recombination is a critical step in gametogenesis for many organisms, enabling the creation of genetically diverse haploid gametes. In each meiotic cell, recombination is initiated by numerous DNA double-strand breaks (DSBs) created by Spo11, the evolutionarily conserved topoisomerase-like protein, but how these DSBs are distributed relatively uniformly across the four chromatids that make up each chromosome pair is poorly understood. Here we employ Saccharomyces cerevisiae to demonstrate distance-dependent DSB interference in cis (in which the occurrence of a DSB suppresses adjacent DSB formation)--a process that is mediated by the conserved DNA damage response kinase, Tel1(ATM). The inhibitory function of Tel1 acts on a relatively local scale, while over large distances DSBs have a tendency to form independently of one another even in the presence of Tel1. Notably, over very short distances, loss of Tel1 activity causes DSBs to cluster within discrete zones of concerted DSB activity. Our observations support a hierarchical view of recombination initiation where Tel1(ATM) prevents clusters of DSBs, and further suppresses DSBs within the surrounding chromosomal region. Such collective negative regulation will help to ensure that recombination events are dispersed evenly and arranged optimally for genetic exchange and efficient chromosome segregation.
Collapse
Affiliation(s)
- Valerie Garcia
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Stephen Gray
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Rachal M Allison
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Tim J Cooper
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Matthew J Neale
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| |
Collapse
|
22
|
Covo S, Chiou E, Gordenin DA, Resnick MA. Suppression of allelic recombination and aneuploidy by cohesin is independent of Chk1 in Saccharomyces cerevisiae. PLoS One 2014; 9:e113435. [PMID: 25551702 PMCID: PMC4281242 DOI: 10.1371/journal.pone.0113435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022] Open
Abstract
Sister chromatid cohesion (SCC), which is established during DNA replication, ensures genome stability. Establishment of SCC is inhibited in G2. However, this inhibition is relived and SCC is established as a response to DNA damage, a process known as Damage Induced Cohesion (DIC). In yeast, Chk1, which is a kinase that functions in DNA damage signal transduction, is considered an activator of SCC through DIC. Nonetheless, here we show that, unlike SCC mutations, loss of CHK1 did not increase spontaneous or damage-induced allelic recombination or aneuploidy. We suggest that Chk1 has a redundant role in the control of DIC or that DIC is redundant for maintaining genome stability.
Collapse
Affiliation(s)
- Shay Covo
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Eric Chiou
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
23
|
Cruz-García A, López-Saavedra A, Huertas P. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep 2014; 9:451-9. [PMID: 25310973 DOI: 10.1016/j.celrep.2014.08.076] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/10/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023] Open
Abstract
DNA-end resection is a highly regulated and critical step in the response and repair of DNA double-strand breaks. In higher eukaryotes, CtIP regulates resection by integrating cellular signals via its posttranslational modifications and protein-protein interactions, including cell-cycle-controlled interaction with BRCA1. The role of BRCA1 in DNA-end resection is not clear. Here, we develop an assay to study DNA resection in higher eukaryotes at high resolution. We demonstrate that the BRCA1-CtIP interaction, albeit not essential for resection, modulates the speed at which this process takes place.
Collapse
Affiliation(s)
- Andrés Cruz-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain; Departamento de Genética, Universidad de Sevilla, 41080, Sevilla, Spain
| | - Ana López-Saavedra
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain; Departamento de Genética, Universidad de Sevilla, 41080, Sevilla, Spain
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain; Departamento de Genética, Universidad de Sevilla, 41080, Sevilla, Spain.
| |
Collapse
|
24
|
Roberts SA, Gordenin DA. Clustered and genome-wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness. Bioessays 2014; 36:382-393. [PMID: 24615916 DOI: 10.1002/bies.201300140] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gain of a selective advantage in cancer as well as the establishment of complex traits during evolution require multiple genetic alterations, but how these mutations accumulate over time is currently unclear. There is increasing evidence that a mutator phenotype perpetuates the development of many human cancers. While in some cases the increased mutation rate is the result of a genetic disruption of DNA repair and replication or environmental exposures, other evidence suggests that endogenous DNA damage induced by AID/APOBEC cytidine deaminases can result in transient localized hypermutation generating simultaneous, closely spaced (i.e. "clustered") multiple mutations. Here, we discuss mechanisms that lead to mutation cluster formation, the biological consequences of their formation in cancer and evidence suggesting that APOBEC mutagenesis can also occur genome-wide. This raises the possibility that dysregulation of these enzymes may enable rapid malignant transformation by increasing mutation rates without the loss of fitness associated with permanent mutators.
Collapse
Affiliation(s)
- Steven A Roberts
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | |
Collapse
|
25
|
Homologous recombination rescues ssDNA gaps generated by nucleotide excision repair and reduced translesion DNA synthesis in yeast G2 cells. Proc Natl Acad Sci U S A 2013; 110:E2895-904. [PMID: 23858457 DOI: 10.1073/pnas.1301676110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repair of DNA bulky lesions often involves multiple repair pathways such as nucleotide-excision repair, translesion DNA synthesis (TLS), and homologous recombination (HR). Although there is considerable information about individual pathways, little is known about the complex interactions or extent to which damage in single strands, such as the damage generated by UV, can result in double-strand breaks (DSBs) and/or generate HR. We investigated the consequences of UV-induced lesions in nonreplicating G2 cells of budding yeast. In contrast to WT cells, there was a dramatic increase in ssDNA gaps for cells deficient in the TLS polymerases η (Rad30) and ζ (Rev3). Surprisingly, repair in TLS-deficient G2 cells required HR repair genes RAD51 and RAD52, directly revealing a redundancy of TLS and HR functions in repair of ssDNAs. Using a physical assay that detects recombination between circular sister chromatids within a few hours after UV, we show an approximate three-fold increase in recombinants in the TLS mutants over that in WT cells. The recombination, which required RAD51 and RAD52, does not appear to be caused by DSBs, because a dose of ionizing radiation producing 20 times more DSBs was much less efficient than UV in producing recombinants. Thus, in addition to revealing TLS and HR functional redundancy, we establish that UV-induced recombination in TLS mutants is not attributable to DSBs. These findings suggest that ssDNA that might originate during the repair of closely opposed lesions or of ssDNA-containing lesions or from uncoupled replication may drive recombination directly in various species, including humans.
Collapse
|
26
|
Khan SR, Kuzminov A. Trapping and breaking of in vivo nicked DNA during pulsed field gel electrophoresis. Anal Biochem 2013; 443:269-81. [PMID: 23770235 DOI: 10.1016/j.ab.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 01/06/2023]
Abstract
Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percentage of chromosomal DNA entering the gel. The degree of separation in pulsed field gel (PFG) depends on the size of DNA as well as various conditions of electrophoresis such as electric field strength, time of electrophoresis, switch time, and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that subchromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single-strand interruptions results in artifactual decrease in molecular weight of linear DNA making accurate determination of the number of double-strand breaks difficult. Although breakage of nicked subchromosomal fragments is field strength independent, some high-molecular-weight subchromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage.
Collapse
Affiliation(s)
- Sharik R Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
27
|
Westmoreland JW, Resnick MA. Coincident resection at both ends of random, γ-induced double-strand breaks requires MRX (MRN), Sae2 (Ctp1), and Mre11-nuclease. PLoS Genet 2013; 9:e1003420. [PMID: 23555316 PMCID: PMC3610664 DOI: 10.1371/journal.pgen.1003420] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/12/2013] [Indexed: 11/18/2022] Open
Abstract
Resection is an early step in homology-directed recombinational repair (HDRR) of DNA double-strand breaks (DSBs). Resection enables strand invasion as well as reannealing following DNA synthesis across a DSB to assure efficient HDRR. While resection of only one end could result in genome instability, it has not been feasible to address events at both ends of a DSB, or to distinguish 1- versus 2-end resections at random, radiation-induced "dirty" DSBs or even enzyme-induced "clean" DSBs. Previously, we quantitatively addressed resection and the role of Mre11/Rad50/Xrs2 complex (MRX) at random DSBs in circular chromosomes within budding yeast based on reduced pulsed-field gel electrophoretic mobility ("PFGE-shift"). Here, we extend PFGE analysis to a second dimension and demonstrate unique patterns associated with 0-, 1-, and 2-end resections at DSBs, providing opportunities to examine coincidence of resection. In G2-arrested WT, Δrad51 and Δrad52 cells deficient in late stages of HDRR, resection occurs at both ends of γ-DSBs. However, for radiation-induced and I-SceI-induced DSBs, 1-end resections predominate in MRX (MRN) null mutants with or without Ku70. Surprisingly, Sae2 (Ctp1/CtIP) and Mre11 nuclease-deficient mutants have similar responses, although there is less impact on repair. Thus, we provide direct molecular characterization of coincident resection at random, radiation-induced DSBs and show that rapid and coincident initiation of resection at γ-DSBs requires MRX, Sae2 protein, and Mre11 nuclease. Structural features of MRX complex are consistent with coincident resection being due to an ability to interact with both DSB ends to directly coordinate resection. Interestingly, coincident resection at clean I-SceI-induced breaks is much less dependent on Mre11 nuclease or Sae2, contrary to a strong dependence on MRX complex, suggesting different roles for these functions at "dirty" and clean DSB ends. These approaches apply to resection at other DSBs. Given evolutionary conservation, the observations are relevant to DNA repair in human cells.
Collapse
Affiliation(s)
- James W. Westmoreland
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
28
|
Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms. PLoS One 2012; 7:e48674. [PMID: 23139812 PMCID: PMC3490873 DOI: 10.1371/journal.pone.0048674] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/27/2012] [Indexed: 11/25/2022] Open
Abstract
Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes regulated by radiation.
Collapse
|
29
|
Covo S, Ma W, Westmoreland JW, Gordenin DA, Resnick MA. Understanding the origins of UV-induced recombination through manipulation of sister chromatid cohesion. Cell Cycle 2012; 11:3937-44. [PMID: 22987150 PMCID: PMC3507489 DOI: 10.4161/cc.21945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet light (UV) can provoke genome instability, partly through its ability to induce homologous recombination (HR). However, the mechanism(s) of UV-induced recombination is poorly understood. Although double-strand breaks (DSBs) have been invoked, there is little evidence for their generation by UV. Alternatively, single-strand DNA lesions that stall replication forks could provoke recombination. Recent findings suggest efficient initiation of UV-induced recombination in G1 through processing of closely spaced single-strand lesions to DSBs. However, other scenarios are possible, since the recombination initiated in G1 can be completed in the following stages of the cell cycle. We developed a system that could address UV-induced recombination events that start and finish in G2 by manipulating the activity of the sister chromatid cohesion complex. Here we show that sister-chromatid cohesion suppresses UV-induced recombination events that are initiated and resolved in G2. By comparing recombination frequencies and survival between UV and ionizing radiation, we conclude that a substantial portion of UV-induced recombination occurs through DSBs. This notion is supported by a direct physical observation of UV-induced DSBs that are dependent on nucleotide excision repair. However, a significant role of nonDSB intermediates in UV-induced recombination cannot be excluded.
Collapse
Affiliation(s)
- Shay Covo
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA.
| | | | | | | | | |
Collapse
|
30
|
Roberts SA, Sterling J, Thompson C, Harris S, Mav D, Shah R, Klimczak LJ, Kryukov GV, Malc E, Mieczkowski PA, Resnick MA, Gordenin DA. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 2012; 46:424-35. [PMID: 22607975 DOI: 10.1016/j.molcel.2012.03.030] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/14/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
Abstract
Mutations are typically perceived as random, independent events. We describe here nonrandom clustered mutations in yeast and in human cancers. Genome sequencing of yeast grown under chronic alkylation damage identified mutation clusters that extend up to 200 kb. A predominance of "strand-coordinated" changes of either cytosines or guanines in the same strand, mutation patterns, and genetic controls indicated that simultaneous mutations were generated by base alkylation in abnormally long single-strand DNA (ssDNA) formed at double-strand breaks (DSBs) and replication forks. Significantly, we found mutation clusters with analogous features in sequenced human cancers. Strand-coordinated clusters of mutated cytosines or guanines often resided near chromosome rearrangement breakpoints and were highly enriched with a motif targeted by APOBEC family cytosine-deaminases, which strongly prefer ssDNA. These data indicate that hypermutation via multiple simultaneous changes in randomly formed ssDNA is a general phenomenon that may be an important mechanism producing rapid genetic variation.
Collapse
Affiliation(s)
- Steven A Roberts
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Differential effects of poly(ADP-ribose) polymerase inhibition on DNA break repair in human cells are revealed with Epstein-Barr virus. Proc Natl Acad Sci U S A 2012; 109:6590-5. [PMID: 22493268 DOI: 10.1073/pnas.1118078109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors can generate synthetic lethality in cancer cells defective in homologous recombination. However, the mechanism(s) by which they affect DNA repair has not been established. Here we directly determined the effects of PARP inhibition and PARP1 depletion on the repair of ionizing radiation-induced single- and double-strand breaks (SSBs and DSBs) in human lymphoid cell lines. To do this, we developed an in vivo repair assay based on large endogenous Epstein-Barr virus (EBV) circular episomes. The EBV break assay provides the opportunity to assess quantitatively and simultaneously the induction and repair of SSBs and DSBs in human cells. Repair was efficient in G1 and G2 cells and was not dependent on functional p53. shRNA-mediated knockdown of PARP1 demonstrated that the PARP1 protein was not essential for SSB repair. Among 10 widely used PARP inhibitors, none affected DSB repair, although an inhibitor of DNA-dependent protein kinase was highly effective at reducing DSB repair. Only Olaparib and Iniparib, which are in clinical cancer therapy trials, as well as 4-AN inhibited SSB repair. However, a decrease in PARP1 expression reversed the ability of Iniparib to reduce SSB repair. Because Iniparib disrupts PARP1-DNA binding, the mechanism of inhibition does not appear to involve trapping PARP at SSBs.
Collapse
|
32
|
Fu YR, Yi ZJ, Guan SZ, Zhang SY, Li M. Proteomic analysis of sputum in patients with active pulmonary tuberculosis. Clin Microbiol Infect 2012; 18:1241-7. [PMID: 22486982 DOI: 10.1111/j.1469-0691.2012.03824.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The protein composition of sputum most faithfully reflects the state of the lungs. The aim of this study was to determine whether relative qualitative and quantitative differences in protein expression of sputum could be related to active pulmonary tuberculosis. Sputum samples were collected from 65 patients with active pulmonary tuberculosis and 38 healthy controls. Comprehensive proteomic approaches were used to profile the proteome changes of host sputum in response to Mycobacterium tuberculosis infection using two-dimensional electrophoresis in combination with matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry. Mascot software was used to identify proteins from protein databases. Enzyme-linked immunosorbent assay was used to confirm the proteomic results. A total of 62 differentially expressed proteins were identified, among which, 15 proteins were up-regulated and 47 proteins were down-regulated in the tuberculosis sputum compared with the controls. Bacterial protein UqhC was the most increased protein, whereas serum albumin was the most decreased protein in the tuberculosis sputum compared with the controls. The enzyme-linked immunosorbent assay analysis was consistent with proteomic data. Bioinformatics analysis suggested that multiple host cell pathways were involved in the tuberculosis infection processes, including acute phase response, signal transduction, cytoskeleton structure, immune response and so on. In all, for the first time, our results revealed that a number of proteins were differentially expressed during active pulmonary tuberculosis infection. These data will provide valuable clues for further investigation of tuberculosis pathogenesis and biomarkers for detection of active pulmonary tuberculosis infection.
Collapse
Affiliation(s)
- Y R Fu
- Department of Medical Microbiology of Weifang Medical University, Weifang, China
| | | | | | | | | |
Collapse
|
33
|
RAD53 is limiting in double-strand break repair and in protection against toxicity associated with ribonucleotide reductase inhibition. DNA Repair (Amst) 2012; 11:317-23. [PMID: 22277748 DOI: 10.1016/j.dnarep.2011.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/28/2011] [Accepted: 12/24/2011] [Indexed: 02/08/2023]
Abstract
The yeast Chk2/Chk1 homolog Rad53 is a central component of the DNA damage checkpoint system. While it controls genotoxic stress responses such as cell cycle arrest, replication fork stabilization and increase in dNTP pools, little is known about the consequences of reduced Rad53 levels on the various cellular endpoints or about its roles in dealing with chronic vs. acute genotoxic challenges. Using a tetraploid gene dosage model in which only one copy of the yeast RAD53 is functional (simplex), we found that the simplex strain was not sensitive to acute UV radiation or chronic MMS exposure. However, the simplex strain was sensitized to chronic exposure of the ribonucleotide reductase inhibitor hydroxyurea (HU). Surprisingly, reduced RAD53 gene dosage did not affect sensitivity to HU acute exposure, indicating that immediate checkpoint responses and recovery from HU-induced stress were not compromised. Interestingly, cells of most of the colonies that arise after chronic HU exposure acquired heritable resistance to HU. We also found that short HU exposure before and after treatment of G₂ cells with ionizing radiation (IR) reduced the capability of RAD53 simplex cells to repair DSBs, in agreement with sensitivity of RAD53 simplex strain to high doses of IR. We propose that a modest reduction in Rad53 activity can impact the activation of the ribonucleotide reductase catalytic subunit Rnr1 following stress, reducing the ability to generate nucleotide pools sufficient for DNA repair and replication. At the same time, reduced Rad53 activity may lead to genome instability and to the acquisition of drug resistance before and/or during the chronic exposure to HU. These results have implications for developing drug enhancers as well as for understanding mechanisms of drug resistance in cells compromised for DNA damage checkpoint.
Collapse
|
34
|
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that can result in mutagenic events or cell death if left unrepaired or repaired inappropriately. Cells use two major pathways for DSB repair: nonhomologous end joining (NHEJ) and homologous recombination (HR). The choice between these pathways depends on the phase of the cell cycle and the nature of the DSB ends. A critical determinant of repair pathway choice is the initiation of 5'-3' resection of DNA ends, which commits cells to homology-dependent repair, and prevents repair by classical NHEJ. Here, we review the components of the end resection machinery, the role of end structure, and the cell-cycle phase on resection and the interplay of end processing with NHEJ.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
35
|
Ma W, Westmoreland JW, Gordenin DA, Resnick MA. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease. PLoS Genet 2011; 7:e1002059. [PMID: 21552545 PMCID: PMC3084215 DOI: 10.1371/journal.pgen.1002059] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are potent sources of genome instability. While there is considerable genetic and molecular information about the disposition of direct DSBs and breaks that arise during replication, relatively little is known about DSBs derived during processing of single-strand lesions, especially for the case of single-strand breaks (SSBs) with 3′-blocked termini generated in vivo. Using our recently developed assay for detecting end-processing at random DSBs in budding yeast, we show that single-strand lesions produced by the alkylating agent methyl methanesulfonate (MMS) can generate DSBs in G2-arrested cells, i.e., S-phase independent. These derived DSBs were observed in apn1/2 endonuclease mutants and resulted from aborted base excision repair leading to 3′ blocked single-strand breaks following the creation of abasic (AP) sites. DSB formation was reduced by additional mutations that affect processing of AP sites including ntg1, ntg2, and, unexpectedly, ogg1, or by a lack of AP sites due to deletion of the MAG1 glycosylase gene. Similar to direct DSBs, the derived DSBs were subject to MRX (Mre11, Rad50, Xrs2)-determined resection and relied upon the recombinational repair genes RAD51, RAD52, as well as on the MCD1 cohesin gene, for repair. In addition, we identified a novel DNA intermediate, detected as slow-moving chromosomal DNA (SMD) in pulsed field electrophoresis gels shortly after MMS exposure in apn1/2 cells. The SMD requires nicked AP sites, but is independent of resection/recombination processes, suggesting that it is a novel structure generated during processing of 3′-blocked SSBs. Collectively, this study provides new insights into the potential consequences of alkylation base damage in vivo, including creation of novel structures as well as generation and repair of DSBs in nonreplicating cells. DNA double-strand breaks (DSBs) are an important source of genome instability that can lead to severe biological consequences including tumorigenesis and cell death. Although much is known about DSBs induced directly by ionizing radiation and radiomimetic cancer drugs, there is a relative dearth of information about the formation of derived DSBs that arise from processing of single-strand lesions. Since as many as 10,000–200,000 single-strand lesions have been estimated to occur each day in mammalian cells, conversion of even a small percentage of such lesions to DSBs could dramatically affect genome stability. Here we addressed the mechanism of formation and repair of derived DSBs in vivo during the processing of DNA methylation damage in yeast that are defective in base excision repair (BER) due to a lack of AP endonucleases. Armed with a technique developed in our lab that detects resection at DSBs, a first step in DSB repair, we demonstrated formation of DSBs in G2 cells and the role of recombinational repair in subsequent chromosome restitution. Furthermore, we have identified a novel repair intermediate that can be generated if abasic sites are nicked by AP lyases, providing additional insights into the processing of 3′-blocked groups at single-strand breaks.
Collapse
Affiliation(s)
- Wenjian Ma
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Jim W. Westmoreland
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Mike A. Resnick
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Chan CY, Zhu J, Schiestl RH. Effect of rad50 mutation on illegitimate recombination in Saccharomyces cerevisiae. Mol Genet Genomics 2011; 285:471-84. [PMID: 21512733 DOI: 10.1007/s00438-011-0619-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 03/31/2011] [Indexed: 11/28/2022]
Abstract
Genes in the RAD52 epistasis group are involved in repairing DNA double-stranded breaks via homologous recombination. We have previously shown that RAD50 is involved in mitotic nonhomologous integration but not in homologous integration. However, the role of Rad50 in nonhomologous integration has not previously been examined. In the current work, we report that the rad50∆ mutation caused a tenfold decrease in the frequency of nonhomologous integration with the majority of nonhomologous integrants showing an unstable Ura(+) phenotype. Sequencing analysis of the integration target sites showed that integration events of both ends of the integrating vector in the rad50∆ mutant occurred at different chromosomal locations, resulting in large deletions or translocations on the genomic insertion sites. Interestingly, 47% of events in the rad50∆ mutant were integrated into repetitive sequences including rDNA locus, telomeres and Ty elements and 27% of events were integrated into non-repetitive sequences as compared to 11% of events integrated into rDNA and 70% into non-repetitive sequences in the wild-type cells. These results showed that deletion of RAD50 significantly changes the distribution of different classes of integration events, suggesting that Rad50 is required for nonhomologous integration at non-repetitive sequences more so than at repetitive ones. Furthermore, Southern analysis indicated that half of the events contained deletions at one or at both ends of the integrating DNA fragment, suggesting that Rad50 might have a role in protecting free ends of double-strand breaks. In contrast to the rad50∆ mutant, the rad50S mutant (separation of function allele) slightly increases the frequency of nonhomologous integration but the distribution of integration events is similar to that of wild-type cells with the majority of events integrated into a chromosomal locus. Our results suggest that deletion of RAD50 may block the major pathway of nonhomologous integration into a non-repetitive chromosomal locus and Rad50 may be involved in tethering two ends of the integrating DNA into close proximity that facilitates nonhomologous integration of both ends into a single chromosomal locus.
Collapse
Affiliation(s)
- Cecilia Y Chan
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
37
|
Howard-Till RA, Lukaszewicz A, Loidl J. The recombinases Rad51 and Dmc1 play distinct roles in DNA break repair and recombination partner choice in the meiosis of Tetrahymena. PLoS Genet 2011; 7:e1001359. [PMID: 21483758 PMCID: PMC3069121 DOI: 10.1371/journal.pgen.1001359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 03/01/2011] [Indexed: 11/18/2022] Open
Abstract
Repair of programmed DNA double-strand breaks (DSBs) by meiotic recombination relies on the generation of flanking 3' single-stranded DNA overhangs and their interaction with a homologous double-stranded DNA template. In various common model organisms, the ubiquitous strand exchange protein Rad51 and its meiosis-specific homologue Dmc1 have been implicated in the joint promotion of DNA-strand exchange at meiotic recombination sites. However, the division of labor between these two recombinases is still a puzzle. Using RNAi and gene-disruption experiments, we have studied their roles in meiotic recombination and chromosome pairing in the ciliated protist Tetrahymena as an evolutionarily distant meiotic model. Cytological and electrophoresis-based assays for DSBs revealed that, without Rad51p, DSBs were not repaired. However, in the absence of Dmc1p, efficient Rad51p-dependent repair took place, but crossing over was suppressed. Immunostaining and protein tagging demonstrated that only Dmc1p formed strong DSB-dependent foci on meiotic chromatin, whereas the distribution of Rad51p was diffuse within nuclei. This suggests that meiotic nucleoprotein filaments consist primarily of Dmc1p. Moreover, a proximity ligation assay confirmed that little if any Rad51p forms mixed nucleoprotein filaments with Dmc1p. Dmc1p focus formation was independent of the presence of Rad51p. The absence of Dmc1p did not result in compensatory assembly of Rad51p repair foci, and even artificial DNA damage by UV failed to induce Rad51p foci in meiotic nuclei, while it did so in somatic nuclei within one and the same cell. The observed interhomologue repair deficit in dmc1Δ meiosis is consistent with a requirement for Dmc1p in promoting the homologue as the preferred recombination partner. We propose that relatively short and/or transient Rad51p nucleoprotein filaments are sufficient for intrachromosomal recombination, whereas long nucleoprotein filaments consisting primarily of Dmc1p are required for interhomolog recombination.
Collapse
Affiliation(s)
- Rachel A. Howard-Till
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Ma W, Westmoreland J, Nakai W, Malkova A, Resnick MA. Characterizing resection at random and unique chromosome double-strand breaks and telomere ends. Methods Mol Biol 2011; 745:15-31. [PMID: 21660686 PMCID: PMC4857595 DOI: 10.1007/978-1-61779-129-1_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Resection of DNA double-strand break (DSB) ends, which results in 3(') single-stranded tails, is an early event of DSB repair and can be a critical determinant in choice of repair pathways and eventual genome stability. Current techniques for examining resection are restricted to model in vivo systems with defined substrates (i.e., HO-endonuclease targets). We present here a robust assay that can analyze not only the resection of site-specific DSBs which typically have "clean" double-strand ends but also random "dirty-ended" DSBs such as those generated by ionizing radiation and chemotherapeutic agents. The assay is based on our finding that yeast chromosomes with single-stranded DNA tails caused by resection are less mobile during pulsed-field gel electrophoresis (PFGE) than those without a tail. In combination with the use of a circular chromosome and enzymatic trimming of single-stranded DNA, resection of random DSBs can be easily detected and analyzed. This mobility-shift assay provides a unique opportunity to examine the mechanisms of resection, early events in DSB repair, as well as factors involved in pathway regulation.
Collapse
Affiliation(s)
- Wenjian Ma
- Chromosome Stability Section, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
39
|
Nakai W, Westmoreland J, Yeh E, Bloom K, Resnick MA. Chromosome integrity at a double-strand break requires exonuclease 1 and MRX. DNA Repair (Amst) 2010; 10:102-10. [PMID: 21115410 DOI: 10.1016/j.dnarep.2010.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 09/09/2010] [Accepted: 10/11/2010] [Indexed: 12/16/2022]
Abstract
The continuity of duplex DNA is generally considered a prerequisite for chromosome continuity. However, as previously shown in yeast as well as human cells, the introduction of a double-strand break (DSB) does not generate a chromosome break (CRB) in yeast or human cells. The transition from DSB to CRB was found to be under limited control by the tethering function of the RAD50/MRE11/XRS2 (MRX) complex. Using a system for differential fluorescent marking of both sides of an endonuclease-induced DSB in single cells, we found that nearly all DSBs are converted to CRBs in cells lacking both exonuclease 1 (EXO1) activity and MRX complex. Thus, it appears that some feature of exonuclease processing or resection at a DSB is critical for maintaining broken chromosome ends in close proximity. In addition, we discovered a thermal sensitive (cold) component to CRB formation in an MRX mutant that has implications for chromosome end mobility and/or end-processing.
Collapse
Affiliation(s)
- Wataru Nakai
- National Institute of Environmental Health Sciences, NIH, Laboratory of Molecular Genetics, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
40
|
Covo S, Westmoreland JW, Gordenin DA, Resnick MA. Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet 2010; 6:e1001006. [PMID: 20617204 PMCID: PMC2895640 DOI: 10.1371/journal.pgen.1001006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/27/2010] [Indexed: 01/09/2023] Open
Abstract
Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage-induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G(2)/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G(2)/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage-induced recombinants in G(2)/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.
Collapse
Affiliation(s)
- Shay Covo
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - James W. Westmoreland
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
41
|
Blunt-ended DNA double-strand breaks induced by endonucleases PvuII and EcoRV are poor substrates for repair in Saccharomyces cerevisiae. DNA Repair (Amst) 2010; 9:617-26. [PMID: 20356803 DOI: 10.1016/j.dnarep.2010.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/11/2010] [Accepted: 02/12/2010] [Indexed: 12/26/2022]
Abstract
Most mechanistic studies of repair of DNA double-strand breaks (DSBs) produced by in vivo expression of endonucleases have utilized enzymes that produce cohesive-ended DSBs such as HO, I-SceI and EcoRI. We have developed systems for expression of PvuII and EcoRV, nucleases that produce DSBs containing blunt ends, using a modified GAL1 promoter that has reduced basal activity. Expression of PvuII and EcoRV caused growth inhibition and strong cell killing in both haploid and diploid yeast cells. Surprisingly, there was little difference in sensitivities of wildtype cells and mutants defective in homologous recombination, nonhomologous end-joining (NHEJ), or both pathways. Physical analysis using standard and pulsed field gel electrophoresis demonstrated time-dependent breakage of chromosomal DNA within cells. Although ionizing radiation-induced DSBs were largely repaired within 4h, no repair of PvuII-induced breaks could be detected in diploid cells, even after arrest in G2/M. Rare survivors of PvuII expression had an increased frequency of chromosome XII deletions, an indication that a fraction of the induced DSBs could be repaired by an error-prone process. These results indicate that, unlike DSBs with complementary single-stranded DNA overhangs, blunt-ended DSBs in yeast chromosomes are poor substrates for repair by either NHEJ or recombination.
Collapse
|