1
|
Molina GES, Ras G, da Silva DF, Duedahl‐Olesen L, Hansen EB, Bang‐Berthelsen CH. Metabolic insights of lactic acid bacteria in reducing off-flavors and antinutrients in plant-based fermented dairy alternatives. Compr Rev Food Sci Food Saf 2025; 24:e70134. [PMID: 40091739 PMCID: PMC11911983 DOI: 10.1111/1541-4337.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 03/19/2025]
Abstract
Multiple sensorial, technological, and nutritional challenges must be overcome when developing plant-based fermented dairy alternatives (PBFDA) to mimic their dairy counterparts. The elimination of plant-derived off-flavors (green, earthy, bitter, astringent) and the degradation of antinutrients are crucial quality factors highlighted by the industry for their effect on consumer acceptance. The adaptation of plant-derived lactic acid bacteria (LAB) species into plant niches is relevant when developing starter cultures for PBFDA products due to their evolutionary acquired ability to degrade plant-based undesirable compounds (off-flavors and antinutrients). Some plant-isolated species, such as Lactiplantibacillus plantarum and Limosilactobacillus fermentum, have been associated with the degradation of phytates, phenolic compounds, oxalates, and raffinose-family oligosaccharides (RFOs), whereas some animal-isolated species, such as Lactobacillus acidophilus strains, can metabolize phytates, RFOs, saponins, phenolic compounds, and oxalates. Some proteolytic LAB strains, such as Lacticaseibacillus paracasei and Lacticaseibacillus rhamnosus, have been characterized to degrade phytates, protease inhibitors, and oxalates. Other species have also been described regarding their abilities to biotransform phytic acid, RFOs, saponins, phenolic compounds, protease inhibitors, oxalates, and volatile off-flavor compounds (hexanal, nonanal, pentanal, and benzaldehyde). In addition, we performed a blast analysis considering antinutrient metabolic genes (42 genes) to up to 5 strains of all qualified presumption of safety-listed LAB species (55 species, 240 strains), finding out potential genotypical capabilities of LAB species that have not conventionally been used as starter cultures such as Lactiplantibacillus pentosus, Lactiplantibacillus paraplantarum, and Lactobacillus diolivorans for plant-based fermentations. This review provides a detailed understanding of genes and enzymes from LAB that target specific compounds in plant-based materials for plant-based fermented food applications.
Collapse
Affiliation(s)
- Guillermo Eduardo Sedó Molina
- Research Group for Microbial Biotechnology and Biorefining, National Food InstituteTechnical University of DenmarkKongens LyngbyDenmark
| | - Geoffrey Ras
- Combinatorial MicrobiologyNovonesisHørsholmDenmark
| | | | - Lene Duedahl‐Olesen
- Research Group for Analytical Food Chemistry, National Food InstituteTechnical University of DenmarkKongens LyngbyDenmark
| | - Egon Bech Hansen
- Research Group for Gut, Microbes, and HealthNational Food InstituteTechnical University of DenmarkKongens LyngbyDenmark
| | - Claus Heiner Bang‐Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food InstituteTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
2
|
Pei XM, Zhou LX, Tsang MW, Tai WCS, Wong SCC. The Oral Microbial Ecosystem in Age-Related Xerostomia: A Critical Review. Int J Mol Sci 2024; 25:12815. [PMID: 39684528 PMCID: PMC11640827 DOI: 10.3390/ijms252312815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Xerostomia is a widespread condition among the elderly, impacting as many as 50% of individuals within this demographic. This review aims to analyze the association between age-related xerostomia and the oral microbial ecosystem. Xerostomia not only induces discomfort but also heightens the susceptibility to oral diseases, including dental caries and infections. The oral microbial ecosystem, characterized by a dynamic equilibrium of microorganisms, is integral to the maintenance of oral health. Dysbiosis, defined as a microbial imbalance, can further aggravate oral health complications in those suffering from xerostomia. This review investigates the composition, diversity, and functionality of the oral microbiota in elderly individuals experiencing xerostomia, emphasizing the mechanisms underlying dysbiosis and its ramifications for both oral and systemic health. A comprehensive understanding of these interactions is vital for the formulation of effective management and prevention strategies aimed at enhancing the quality of life for older adults.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR 997700, China (W.C.-S.T.)
| |
Collapse
|
3
|
Li S, Fan S, Ma Y, Xia C, Yan Q. Influence of gender, age, and body mass index on the gut microbiota of individuals from South China. Front Cell Infect Microbiol 2024; 14:1419884. [PMID: 39544283 PMCID: PMC11560914 DOI: 10.3389/fcimb.2024.1419884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Background The symbiotic gut microbiota is pivotal for human health, with its composition linked to various diseases and metabolic disorders. Despite its significance, there remains a gap in systematically evaluating how host phenotypes, such as gender, age, and body mass index (BMI), influence gut microbiota. Methodology/principal findings We conducted an analysis of the gut microbiota of 185 Chinese adults based on whole-metagenome shotgun sequencing of fecal samples. Our investigation focused on assessing the effects of gender, age, and BMI on gut microbiota across three levels: diversity, gene/phylogenetic composition, and functional composition. Our findings suggest that these phenotypes have a minor impact on shaping the gut microbiome compared to enterotypes, they do not correlate significantly within- or between-sample diversity. We identified a substantial number of phenotype-associated genes and metagenomic linkage groups (MLGs), indicating variations in gut microflora composition. Specifically, we observed a decline in beneficial Firmicutes microbes, such as Eubacterium, Roseburia, Faecalibacterium and Ruminococcus spp., in both older individuals and those with higher BMI, while potentially harmful microbes like Erysipelotrichaceae, Subdoligranulum and Streptococcus spp. increased with age. Additionally, Blautia and Dorea spp. were found to increase with BMI, aligning with prior research. Surprisingly, individuals who were older or overweight exhibited a lack of Bacteroidetes, a dominant phylum in the human gut microbiota that includes opportunistic pathogens, while certain species of the well-known probiotics Bifidobacterium were enriched in these groups, suggesting a complex interplay of these bacteria warranting further investigation. Regarding gender, several gender-associated MLGs from Bacteroides, Parabacteroides, Clostridium and Akkermansia were enriched in females. Functional analysis revealed a multitude of phenotype-associated KEGG orthologs (KOs). Conclusions/significance Our study underscores the influence of gender, age, and BMI on gut metagenomes, affecting both phylogenetic and functional composition. However, further investigation is needed to elucidate the precise roles of these bacteria, including both pathogens and probiotics.
Collapse
Affiliation(s)
- Shenghui Li
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Puensum Genetech Institute, Wuhan, China
| | - Shao Fan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuan Xia
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Qu S, Yu Z, Zhou Y, Wang S, Jia M, Chen T, Zhang X. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol Res 2024; 287:127858. [PMID: 39106786 DOI: 10.1016/j.micres.2024.127858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
Neurotransmitters, including 5-hydroxytryptamine (5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and glutamate, are essential transductors in the Gut-Brain Axis (GBA), playing critical roles both peripherally and centrally. Accumulating evidence suggests that the gut microbiota modulates intestinal neurotransmitter metabolism and gut-to-brain signaling, shedding light on the crucial role of the gut microbiota in brain function and the pathogenesis of various neuropsychiatric diseases, such as major depression disorder (MDD), anxiety, addiction and Parkinson's disease (PD). Despite the exciting findings, the mechanisms underlying the modulation of neurotransmitter metabolism and function by the gut microbiota are still being elucidated. In this review, we aim to provide a comprehensive overview of the existing knowledge about the role of the gut microbiota in neurotransmitter metabolism and function in animal and clinical experiments. Moreover, we will discuss the potential mechanisms through which gut microbiota-derived neurotransmitters contribute to the pathogenesis of neuropsychiatric diseases, thus highlighting a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Shiyan Qu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zijin Yu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yaxuan Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Shiyi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Minqi Jia
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Ti Chen
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China.
| |
Collapse
|
5
|
Qin Y, Tong X, Mei WJ, Cheng Y, Zou Y, Han K, Yu J, Jie Z, Zhang T, Zhu S, Jin X, Wang J, Yang H, Xu X, Zhong H, Xiao L, Ding PR. Consistent signatures in the human gut microbiome of old- and young-onset colorectal cancer. Nat Commun 2024; 15:3396. [PMID: 38649355 PMCID: PMC11035630 DOI: 10.1038/s41467-024-47523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
The incidence of young-onset colorectal cancer (yCRC) has been increasing in recent decades, but little is known about the gut microbiome of these patients. Most studies have focused on old-onset CRC (oCRC), and it remains unclear whether CRC signatures derived from old patients are valid in young patients. To address this, we assembled the largest yCRC gut metagenomes to date from two independent cohorts and found that the CRC microbiome had limited association with age across adulthood. Differential analysis revealed that well-known CRC-associated taxa, such as Clostridium symbiosum, Peptostreptococcus stomatis, Parvimonas micra and Hungatella hathewayi were significantly enriched (false discovery rate <0.05) in both old- and young-onset patients. Similar strain-level patterns of Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli were observed for oCRC and yCRC. Almost all oCRC-associated metagenomic pathways had directionally concordant changes in young patients. Importantly, CRC-associated virulence factors (fadA, bft) were enriched in both oCRC and yCRC compared to their respective controls. Moreover, the microbiome-based classification model had similar predication accuracy for CRC status in old- and young-onset patients, underscoring the consistency of microbial signatures across different age groups.
Collapse
Affiliation(s)
- Youwen Qin
- BGI Research, Shenzhen, 518083, China.
- BGI Genomics, Shenzhen, 518083, China.
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
| | - Wei-Jian Mei
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yanshuang Cheng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yuanqiang Zou
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Kai Han
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Jiehai Yu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Zhuye Jie
- BGI Research, Shenzhen, 518083, China
| | - Tao Zhang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, Shenzhen, China
- BGI Research, Wuhan, 430074, China
| | - Shida Zhu
- BGI Genomics, Shenzhen, 518083, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Jian Wang
- BGI Research, Shenzhen, 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Huanzi Zhong
- BGI Research, Shenzhen, 518083, China
- BGI Genomics, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Pei-Rong Ding
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Yang S, Wu S, Zhao F, Zhao Z, Shen X, Yu X, Zhang M, Wen F, Sun Z, Menghe B. Diversity Analysis of Intestinal Bifidobacteria in the Hohhot Population. Microorganisms 2024; 12:756. [PMID: 38674700 PMCID: PMC11051944 DOI: 10.3390/microorganisms12040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Bifidobacterium plays a pivotal role within the gut microbiota, significantly affecting host health through its abundance and composition in the intestine. Factors such as age, gender, and living environment exert considerable influence on the gut microbiota, yet scant attention has been directed towards understanding the specific effects of these factors on the Bifidobacterium population. Therefore, this study focused on 98 adult fecal samples to conduct absolute and relative quantitative analyses of bifidobacteria. (2) Methods: Using droplet digital PCR and the PacBio Sequel II sequencing platform, this study sought to determine the influence of various factors, including living environment, age, and BMI, on the absolute content and biodiversity of intestinal bifidobacteria. (3) Results: Quantitative results indicated that the bifidobacteria content in the intestinal tract ranged from 106 to 109 CFU/g. Notably, the number of bifidobacteria in the intestinal tract of the school population surpassed that of the off-campus population significantly (p = 0.003). Additionally, the group of young people exhibited a significantly higher count of bifidobacteria than the middle-aged and elderly groups (p = 0.041). The normal-weight group displayed a significantly higher bifidobacteria count than the obese group (p = 0.027). Further analysis of the relative abundance of bifidobacteria under different influencing factors revealed that the living environment emerged as the primary factor affecting the intestinal bifidobacteria structure (p = 0.046, R2 = 2.411). Moreover, the diversity of bifidobacteria in the intestinal tract of college students surpassed that in the out-of-school population (p = 0.034). This was characterized by a notable increase in 11 strains, including B. longum, B. bifidum, and B. pseudolongum, in the intestinal tract of college students, forming a more intricate intestinal bifidobacteria interaction network. (4) Conclusions: In summary, this study elucidated the principal factors affecting intestinal bifidobacteria and delineated their characteristics of intestinal bifidobacteria in diverse populations. By enriching the theory surrounding gut microbiota and health, this study provides essential data support for further investigations into the intricate dynamics of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bilige Menghe
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Y.); (S.W.); (F.W.)
| |
Collapse
|
7
|
Gunjur A, Shao Y, Rozday T, Klein O, Mu A, Haak BW, Markman B, Kee D, Carlino MS, Underhill C, Frentzas S, Michael M, Gao B, Palmer J, Cebon J, Behren A, Adams DJ, Lawley TD. A gut microbial signature for combination immune checkpoint blockade across cancer types. Nat Med 2024; 30:797-809. [PMID: 38429524 PMCID: PMC10957475 DOI: 10.1038/s41591-024-02823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Immune checkpoint blockade (ICB) targeting programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte protein 4 (CTLA-4) can induce remarkable, yet unpredictable, responses across a variety of cancers. Studies suggest that there is a relationship between a cancer patient's gut microbiota composition and clinical response to ICB; however, defining microbiome-based biomarkers that generalize across cohorts has been challenging. This may relate to previous efforts quantifying microbiota to species (or higher taxonomic rank) abundances, whereas microbial functions are often strain specific. Here, we performed deep shotgun metagenomic sequencing of baseline fecal samples from a unique, richly annotated phase 2 trial cohort of patients with diverse rare cancers treated with combination ICB (n = 106 discovery cohort). We demonstrate that strain-resolved microbial abundances improve machine learning predictions of ICB response and 12-month progression-free survival relative to models built using species-rank quantifications or comprehensive pretreatment clinical factors. Through a meta-analysis of gut metagenomes from a further six comparable studies (n = 364 validation cohort), we found cross-cancer (and cross-country) validity of strain-response signatures, but only when the training and test cohorts used concordant ICB regimens (anti-PD-1 monotherapy or combination anti-PD-1 plus anti-CTLA-4). This suggests that future development of gut microbiome diagnostics or therapeutics should be tailored according to ICB treatment regimen rather than according to cancer type.
Collapse
Affiliation(s)
- Ashray Gunjur
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK.
| | - Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Timothy Rozday
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Oliver Klein
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
- Department of Medical Oncology, Austin Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andre Mu
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Bastiaan W Haak
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Ben Markman
- Department of Medical Oncology, Monash Health, Melbourne, Victoria, Australia
- Department of Medical Oncology, Alfred Health, Melbourne, Victoria, Australia
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Damien Kee
- Department of Medical Oncology, Austin Health, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Rare Cancer Laboratory, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Matteo S Carlino
- Department of Medical Oncology, Blacktown and Westmead Hospitals, Sydney, New South Wales, Australia
- Melanoma Institute of Australia, University of Sydney, Sydney, New South Wales, Australia
| | - Craig Underhill
- Border Medical Oncology and Haematology Research Unit, Albury-Wodonga Regional Cancer Centre, Albury-Wodonga, New South Wales, Australia
- Rural Medical School, University of New South Wales, Albury, New South Wales, Australia
| | - Sophia Frentzas
- Department of Medical Oncology, Monash Health, Melbourne, Victoria, Australia
| | - Michael Michael
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Bo Gao
- Department of Medical Oncology, Blacktown and Westmead Hospitals, Sydney, New South Wales, Australia
| | - Jodie Palmer
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
- Department of Medical Oncology, Austin Health, Melbourne, Victoria, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
8
|
Choksket S, Sharma S, Harshvardhan, Pal V, Jain A, Patil PB, Korpole S, Grover V. Evaluation of Human Dental Plaque Lactic Acid Bacilli for Probiotic Potential and Functional Analysis in Relevance to Oral Health. Indian J Microbiol 2023; 63:520-532. [PMID: 38031619 PMCID: PMC10682319 DOI: 10.1007/s12088-023-01108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Members of the lactic acid bacillus group are well-known probiotics and primarily isolated from fermented food, dairy products, intestinal and gut environment of human. Since probiotics from the human source are preferred, there exists a huge repertoire of lactobacilli in the human oral cavity which could prove a much better niche to be exploited for these beneficial microorganisms. Therefore, in this study, four lactobacilli strains, including strain DISK7, reported earlier, isolated from dental plaque samples of a healthy humans were evaluated for their probiotic potential. Strains displayed 99.9% of 16S rRNA gene sequence identity with species of the genera Lactobacillus and Limosilactobacillus. All strains showed lactic acid production, tolerance to low pH and antibiotic sensitivity. Variations were observed among strains in their aggregation ability, biofilm formation, bile salt resistance and cholesterol degradation. Further, we analyzed the interaction of strains with other oral commensals and opportunistic pathogens in co-culture experiments. Isolates DISK7 and DISK26 exhibited high co-aggregation (> 70%) with secondary colonizers, Streptococcus pyogenes and Veillonella parvula, respectively, but their aggregation ability was decreased with opportunistic pathogens. Furthermore, strains showed a substantial increase in biofilm in co-culture with other Lactobacillus isolates, indicating their ability to proliferate commensal bacteria in the oral environment. These microbes continually evolve in terms of niche adaptation as evidenced in genome analysis. The highlight of the investigation is the isolation and evaluation of the probiotic lactobacilli from the human oral cavity, which could prove a much better niche to be exploited for the effective commercialization of these beneficial microbes. Taken together, probiotic properties and interaction with commensal bacteria, these isolates exhibit the huge potential to be developed as alternative bioresource agents for maintenance of oral health. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01108-2.
Collapse
Affiliation(s)
- Stanzin Choksket
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Shikha Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Harshvardhan
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Vijay Pal
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Ashish Jain
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Prabhu B. Patil
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Suresh Korpole
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Vishakha Grover
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Bester A, O'Brien M, Cotter PD, Dam S, Civai C. Shotgun Metagenomic Sequencing Revealed the Prebiotic Potential of a Fruit Juice Drink with Fermentable Fibres in Healthy Humans. Foods 2023; 12:2480. [PMID: 37444219 DOI: 10.3390/foods12132480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Fibre-based dietary interventions are at the forefront of gut microbiome modulation research, with a wealth of 16S rRNA information to demonstrate the prebiotic effects of isolated fibres. However, there is a distinct lack of data relating to the effect of a combination of soluble and insoluble fibres in a convenient-to-consume fruit juice food matrix on gut microbiota structure, diversity, and function. Here, we aimed to determine the impact of the MOJU Prebiotic Shot, an apple, lemon, ginger, and raspberry fruit juice drink blend containing chicory inulin, baobab, golden kiwi, and green banana powders, on gut microbiota structure and function. Healthy adults (n = 20) were included in a randomised, double-blind, placebo-controlled, cross-over study, receiving 60 mL MOJU Prebiotic Shot or placebo (without the fibre mix) for 3 weeks with a 3-week washout period between interventions. Shotgun metagenomics revealed significant between-group differences in alpha and beta diversity. In addition, the relative abundance of the phyla Actinobacteria and Desulfobacteria was significantly increased as a result of the prebiotic intervention. Nine species were observed to be differentially abundant (uncorrected p-value of <0.05) as a result of the prebiotic treatment. Of these, Bifidobacterium adolescentis and CAG-81 sp900066785 (Lachnospiraceae) were present at increased abundance relative to baseline. Additionally, KEGG analysis showed an increased abundance in pathways associated with arginine biosynthesis and phenylacetate degradation during the prebiotic treatment. Our results show the effects of the daily consumption of 60 mL MOJU Prebiotic Shot for 3 weeks and provide insight into the functional potential of B. adolescentis.
Collapse
Affiliation(s)
- Adri Bester
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | | | | | | | - Claudia Civai
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
10
|
Alekseeva MG, Dyakov IN, Bushkova KK, Mavletova DA, Yunes RA, Chernyshova IN, Masalitin IA, Koshenko TA, Nezametdinova VZ, Danilenko VN. Study of the binding of ΔFN3.1 fragments of the Bifidobacterium longum GT15 with TNFα and prevalence of domain-containing proteins in groups of bacteria of the human gut microbiota. MICROBIOME RESEARCH REPORTS 2023; 2:10. [PMID: 38047275 PMCID: PMC10688814 DOI: 10.20517/mrr.2023.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 12/05/2023]
Abstract
Aim: This study is mainly devoted to determining the ability of ∆FN3.1 protein fragments of Bifidobacterium (B.) longum subsp. longum GT15, namely two FN3 domains (2D FN3) and a C-terminal domain (CD FN3), to bind to tumor necrosis factor-alpha (TNF-α). Methods: Fragments of the fn3 gene encoding the 2D FN3 and CD FN3 were cloned in Escherichia (E.) coli. In order to assess the binding specificity between 2D FN3 and CD FN3 to TNFα, we employed the previously developed sandwich ELISA system to detect any specific interactions between the purified protein and any of the studied cytokines. The trRosetta software was used to build 3D models of the ∆FN3.1, 2D FN3, and CD FN3 proteins. The detection of polymorphism in the amino acid sequences of the studied proteins and the analysis of human gut-derived bacterial proteins carrying FN3 domains were performed in silico. Results: We experimentally showed that neither 2D FN3 nor CD FN3 alone can bind to TNFα. Prediction of the 3D structures of ΔFN3.1, 2D FN3, and CD FN3 suggested that only ΔFN3.1 can form a pocket allowing binding with TNFα to occur. Polymorphism analysis of amino acid sequences of ΔFN3.1 proteins in B. longum strains uncovered substitutions that can alter the conformation of the spatial structure of the ΔFN3.1 protein. We also analyzed human gut-derived bacterial proteins harboring FN3 domains which allowed us to differentiate between those containing motifs of cytokine receptors (MCRs) in their FN3 domains and those lacking them. Conclusion: Only the complete ∆FN3.1 protein can selectively bind to TNFα. Analysis of 3D models of the 2D FN3, CD FN3, and ΔFN3.1 proteins showed that only the ΔFN3.1 protein is potentially capable of forming a pocket allowing TNFα binding to occur. Only FN3 domains containing MCRs exhibited sequence homology with FN3 domains of human proteins.
Collapse
Affiliation(s)
- Maria G. Alekseeva
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ilya N. Dyakov
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Kristina K. Bushkova
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Dilara A. Mavletova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Roman A. Yunes
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Irina N. Chernyshova
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Ilya A. Masalitin
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Tatiana A. Koshenko
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Venera Z. Nezametdinova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Valery N. Danilenko
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- Caspian International School of Medicine, Caspian University, Almaty 050000, Kazakhstan
| |
Collapse
|
11
|
Kashima T, Ishiwata A, Fujita K, Fushinobu S. Identification and structural basis of an enzyme that degrades oligosaccharides in caramel. Biophys Physicobiol 2023; 20:e200017. [PMID: 38496246 PMCID: PMC10941961 DOI: 10.2142/biophysico.bppb-v20.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Cooking with fire produces foods containing carbohydrates that are not naturally occurring, such as α-d-fructofuranoside found in caramel. Each of the hundreds of compounds produced by caramelization reactions is considered to possess its own characteristics. Various studies from the viewpoints of biology and biochemistry have been conducted to elucidate some of the scientific characteristics. Here, we review the composition of caramelized sugars and then describe the enzymatic studies that have been conducted and the physiological functions of the caramelized sugar components that have been elucidated. In particular, we recently identified a glycoside hydrolase (GH), GH172 difructose dianhydride I synthase/hydrolase (αFFase1), from oral and intestinal bacteria, which is implicated in the degradation of oligosaccharides in caramel. The structural basis of αFFase1 and its ligands provided many insights. This discovery opened the door to several research fields, including the structural and phylogenetic relationship between the GH172 family enzymes and viral capsid proteins and the degradation of cell membrane glycans of acid-fast bacteria by some αFFase1 homologs. This review article is an extended version of the Japanese article, Identification and Structural Basis of an Enzyme Degrading Oligosaccharides in Caramel, published in SEIBUTSU BUTSURI Vol. 62, p. 184-186 (2022).
Collapse
Affiliation(s)
- Toma Kashima
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiro Ishiwata
- Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Arjun OK, Prakash T. Identification of conserved genomic signatures specific to Bifidobacterium species colonising the human gut. 3 Biotech 2023; 13:97. [PMID: 36852175 PMCID: PMC9958220 DOI: 10.1007/s13205-023-03492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/25/2023] [Indexed: 02/26/2023] Open
Abstract
Bifidobacterium species are known for their ability to inhabit various habitats and are often regarded as the first colonisers of the human gut. In the present work, we have used comparative genomics to identify conserved genomic signatures specific to Bifidobacterium species associated with the human gut. Our approach discovered five genomic signatures with varying lengths and confidence. Among the predicted five signatures, a 1790 bp multi-drug resistance (MDR) signature was found to be remarkably specific to only those species that can colonise the human gut. The signature codes for a membrane transport protein belonging to the major facilitator superfamily (MFS) generally involved in MDR. Phylogenetic analyses of the MDR signature suggest a lineage-specific evolution of the MDR signature in bifidobacteria colonising the human gut. Functional annotation led to the discovery of two conserved domains in the protein; a catalytic MFS domain involved in the efflux of drugs and toxins, and a regulatory cystathionine-β-synthase (CBS) domain that can interact with adenosyl-carriers. Molecular docking simulation performed with the modelled tertiary structure of the MDR signature revealed the putative functional role of the covalently linked domains. The MFS domain displayed a high affinity towards various protein synthesis inhibitor antibiotics and human bile acids, whereas the C-terminally linked CBS domain exhibited favourable binding with molecular structures of ATP and AMP. Therefore, we believe that the predicted signature represents a niche-specific survival trait involved in bile and antibiotic resistance, imparting an adaptive advantage to the Bifidobacterium species colonising the human gut. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03492-4.
Collapse
Affiliation(s)
- O. K. Arjun
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005 India
| | - Tulika Prakash
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005 India
| |
Collapse
|
13
|
Téllez Corral MA, Herrera Daza E, Cuervo Jimenez HK, Bravo Becerra MDM, Villamil JC, Hidalgo Martinez P, Roa Molina NS, Otero L, Cortés ME, Parra Giraldo CM. Cryptic Oral Microbiota: What Is Its Role as Obstructive Sleep Apnea-Related Periodontal Pathogens? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1740. [PMID: 36767109 PMCID: PMC9913967 DOI: 10.3390/ijerph20031740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Periodontitis has been commonly linked to periodontopathogens categorized in Socransky's microbial complexes; however, there is a lack of knowledge regarding "other microorganisms" or "cryptic microorganisms", which are rarely thought of as significant oral pathogens and have been neither previously categorized nor connected to illnesses in the oral cavity. This study hypothesized that these cryptic microorganisms could contribute to the modulation of oral microbiota present in health or disease (periodontitis and/or obstructive sleep apnea (OSA) patients). For this purpose, the presence and correlation among these cultivable cryptic oral microorganisms were identified, and their possible role in both conditions was determined. Data from oral samples of individuals with or without periodontitis and with or without OSA were obtained from a previous study. Demographic data, clinical oral characteristics, and genera and species of cultivable cryptic oral microorganisms identified by MALDI-TOF were recorded. The data from 75 participants were analyzed to determine the relative frequencies of cultivable cryptic microorganisms' genera and species, and microbial clusters and correlations tests were performed. According to periodontal condition, dental-biofilm-induced gingivitis in reduced periodontium and stage III periodontitis were found to have the highest diversity of cryptic microorganism species. Based on the experimental condition, these findings showed that there are genera related to disease conditions and others related to healthy conditions, with species that could be related to different chronic diseases being highlighted as periodontitis and OSA comorbidities. The cryptic microorganisms within the oral microbiota of patients with periodontitis and OSA are present as potential pathogens, promoting the development of dysbiotic microbiota and the occurrence of chronic diseases, which have been previously proposed to be common risk factors for periodontitis and OSA. Understanding the function of possible pathogens in the oral microbiota will require more research.
Collapse
Affiliation(s)
- Mayra A. Téllez Corral
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Faculty of Dentistry and Innovation Technology Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Eddy Herrera Daza
- Departamento de Matemáticas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Hayde K. Cuervo Jimenez
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - María del Mar Bravo Becerra
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Jean Carlos Villamil
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Patricia Hidalgo Martinez
- Sleep Clinic, Hospital Universitario San Ignacio and Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Nelly S. Roa Molina
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Liliana Otero
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - María E. Cortés
- Faculty of Dentistry and Innovation Technology Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Claudia M. Parra Giraldo
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Departamento de Microbiología y Parasilogía, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Abstract
Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.
Collapse
Affiliation(s)
- Marie Schöpping
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ahmad A. Zeidan
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
15
|
Oh YJ, Kim SA, Yang SH, Kim DH, Cheng YY, Kang JI, Lee SY, Han NS. Integrated genome-based assessment of safety and probiotic characteristics of Lactiplantibacillus plantarum PMO 08 isolated from kimchi. PLoS One 2022; 17:e0273986. [PMID: 36190947 PMCID: PMC9529155 DOI: 10.1371/journal.pone.0273986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Lactiplantibacillus plantarum PMO 08 has been used as a probiotic starter culture for plant-based fermented beverages, with various health-promoting effects such as cholesterol-lowering and anti-inflammatory activities. This study aimed to analyze the genome sequence of Lp. plantarum PMO 08 and identify its safety and probiotic characteristics at the genomic level. For this, complete genome sequencing was conducted to investigate the genes associated with risk and probiotic characteristics by using Pacbio combined with Illumina HiSeq. This bacterial strain has one circular chromosome of 3,247,789 bp with 44.5% G + C content and two plasmids of 50,296 bp with 39.0% G + C content and 19,592 bp with 40.5% G + C content. Orthologous average nucleotide identity analysis showed that PMO 08 belongs to the Lp. plantarum group with 99.14% similarity to Lp. plantarum WCFS1. No deleterious genes were determined in the virulence factor analysis, and no hemolysin activity or secondary bile salt synthesis were detected in vitro test. In the case of antibiotic resistance analysis, PMO 08 was resistant to ampicillin in vitro test, but these genes were not transferable. In addition, the strain showed same carbohydrate utilization with Lp. plantarum WCFS1, except for mannopyranoside, which only our strain can metabolize. The strain also harbors a gene for inositol monophosphatase family protein related with phytate hydrolysis and have several genes for metabolizing various carbohydrate which were rich in plant environment. Furthermore, in probiotic characteristics several genes involved in phenotypes such as acid/bile tolerance, adhesion ability, and oxidative stress response were detected in genome analysis. This study demonstrates that Lp. plantarum PMO 08 harbors several probiotic-related genes (with no deleterious genes) and is a suitable probiotic starter for plant-based fermentation.
Collapse
Affiliation(s)
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Soo Hwi Yang
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Da Hye Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ya-Yun Cheng
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
Kato S, Nagasawa T, Uehara O, Shimizu S, Sugiyama N, Hasegawa-Nakamura K, Noguchi K, Hatae M, Kakinoki H, Furuichi Y. Increase in Bifidobacterium is a characteristic of the difference in the salivary microbiota of pregnant and non-pregnant women. BMC Oral Health 2022; 22:260. [PMID: 35764953 PMCID: PMC9238123 DOI: 10.1186/s12903-022-02293-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background The establishment of symbiotic microbiota in pregnant women is important for both the mother and her offspring. Little is known about the salivary symbiotic bacteria in pregnancy, and analysis of composition of microbiome (ANCOM) is useful to detect small differences in the number of bacteria. The aim of this study was to investigate the differences in the salivary bacteria between healthy pregnant and non-pregnant women using ANCOM. Methods Unstimulated saliva samples were collected from 35 healthy pregnant women at 35 weeks gestation and 30 healthy non-pregnant women during menstruation. All participants underwent a periodontal examination. Estradiol and progesterone levels were examined by enzyme-linked immunosorbent assay. DNA extracted from the saliva was assessed by 16S ribosomal RNA amplicon sequencing and real-time PCR. Results Salivary estradiol and progesterone levels were significantly increased in pregnant women. The alpha and beta diversities were higher in pregnant women than in non-pregnant women. The largest effect size difference noted when the microbiota of the pregnant and non-pregnant women were analyzed was that for Bifidobacteriales. Levels of Bifidobacterium dentium, but not of Bifidobacterium adolescentis, were significantly increased in pregnant women, and the levels were significantly correlated with progesterone concentration. Conclusion The results suggest that Bifidobacterium and progesterone levels are elevated in the saliva of healthy pregnant women compared with non-pregnant women.
Collapse
|
17
|
B Vitamins and Their Roles in Gut Health. Microorganisms 2022; 10:microorganisms10061168. [PMID: 35744686 PMCID: PMC9227236 DOI: 10.3390/microorganisms10061168] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
B vitamins act as coenzymes in a myriad of cellular reactions. These include energy production, methyl donor generation, neurotransmitter synthesis, and immune functions. Due to the ubiquitous roles of these vitamins, their deficiencies significantly affect the host’s metabolism. Recently, novel roles of B vitamins in the homeostasis of gut microbial ecology and intestinal health continue to be unravelled. This review focuses on the functional roles and biosynthesis of B vitamins and how these vitamins influence the growth and proliferation of the gut microbiota. We have identified the gut bacteria that can produce vitamins, and their biosynthetic mechanisms are presented. The effects of B vitamin deficiencies on intestinal morphology, inflammation, and its effects on intestinal disorders are also discussed.
Collapse
|
18
|
Abstract
Over the last decade, the genomes of several Bifidobacterium strains have been sequenced, delivering valuable insights into their genetic makeup. However, bifidobacterial genomes have not yet been systematically mined for genes associated with stress response functions and their regulation. In this work, a list of 76 genes related to stress response in bifidobacteria was compiled from previous studies. The prevalence of the genes was evaluated among the genome sequences of 171 Bifidobacterium strains. Although genes of the protein quality control and DNA repair systems appeared to be highly conserved, genome-wide in silico screening for consensus sequences of putative regulators suggested that the regulation of these systems differs among phylogenetic groups. Homologs of multiple oxidative stress-associated genes are shared across species, albeit at low sequence similarity. Bee isolates were confirmed to harbor unique genetic features linked to oxygen tolerance. Moreover, most studied Bifidobacterium adolescentis and all Bifidobacterium angulatum strains lacked a set of reactive oxygen species-detoxifying enzymes, which might explain their high sensitivity to oxygen. Furthermore, the presence of some putative transcriptional regulators of stress responses was found to vary across species and strains, indicating that different regulation strategies of stress-associated gene transcription contribute to the diverse stress tolerance. The presented stress response gene profiles of Bifidobacterium strains provide a valuable knowledge base for guiding future studies by enabling hypothesis generation and the identification of key genes for further analyses. IMPORTANCE Bifidobacteria are Gram-positive bacteria that naturally inhabit diverse ecological niches, including the gastrointestinal tract of humans and animals. Strains of the genus Bifidobacterium are widely used as probiotics, since they have been associated with health benefits. In the course of their production and administration, probiotic bifidobacteria are exposed to several stressors that can challenge their survival. The stress tolerance of probiotic bifidobacteria is, therefore, an important selection criterion for their commercial application, since strains must maintain their viability to exert their beneficial health effects. As the ability to cope with stressors varies among Bifidobacterium strains, comprehensive understanding of the underlying stress physiology is required for enabling knowledge-driven strain selection and optimization of industrial-scale production processes.
Collapse
|
19
|
Pino A, Benkaddour B, Inturri R, Amico P, Vaccaro SC, Russo N, Vaccalluzzo A, Agolino G, Caggia C, Miloud H, Randazzo CL. Characterization of Bifidobacterium asteroides Isolates. Microorganisms 2022; 10:655. [PMID: 35336230 PMCID: PMC8950671 DOI: 10.3390/microorganisms10030655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Bifidobacteria have long been recognized as bacteria with probiotic and therapeutic features. The aim of this work is to characterize the Bifidobacterium asteroides BA15 and BA17 strains, isolated from honeybee gut, to evaluate its safety for human use. An in-depth assessment was carried out on safety properties (antibiotic resistance profiling, β-hemolytic, DNase and gelatinase activities and virulence factor presence) and other properties (antimicrobial activity, auto-aggregation, co-aggregation and hydrophobicity). Based on phenotypic and genotypic characterization, both strains satisfied all the safety requirements. More specifically, genome analysis showed the absence of genes encoding for glycopeptide (vanA, vanB, vanC-1, vanC-2, vanD, vanE, vanG), resistance to tetracycline (tetM, tetL and tetO) and virulence genes (asa1, gelE, cylA, esp, hyl).
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Bachir Benkaddour
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran1, Oran 31000, Algeria; (B.B.); (H.M.)
| | - Rosanna Inturri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Pietro Amico
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Susanna C. Vaccaro
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Amanda Vaccalluzzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
| | - Gianluigi Agolino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Hadadji Miloud
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran1, Oran 31000, Algeria; (B.B.); (H.M.)
| | - Cinzia L. Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| |
Collapse
|
20
|
Fakhruddin KS, Samaranayake LP, Hamoudi RA, Ngo HC, Egusa H. Diversity of site-specific microbes of occlusal and proximal lesions in severe- early childhood caries (S-ECC). J Oral Microbiol 2022; 14:2037832. [PMID: 35173909 PMCID: PMC8843124 DOI: 10.1080/20002297.2022.2037832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Severe-early childhood caries (S-ECC) a global problem of significant concern, commonly manifest on the occlusal, and proximal surfaces of affected teeth. Despite the major ecological differences between these two niches the compositional differences, if any, in the microbiota of such lesions is unknown. METHODS Deep-dentine caries samples from asymptomatic primary molars of children with S-ECC (n 19) belonging to caries-code 5/6, (ICDAS classification) were evaluated. Employing two primer pools, we amplified and compared the bacterial 16S rRNA gene sequences of the seven hypervariable regions (V2-V4 and V6-V9) using NGS-based assay. RESULTS Bray-Curtisevaluation indicated that occlusal lesions (OL) had a more homogeneous community than the proximal lesions (PL) with significant compositional differences at the species level (p = 0.01; R- 0.513). Together, the occlusal and proximal niches harbored 263 species, of which 202 (76.8%) species were common to both , while 49 (18.6%) and 12 (4.6%) disparate species were exclusively isolated from the proximal and occlusal niches, respectively. The most commonl genera at both niches included Streptococcus, Prevotella, and Lactobacillus. S. mutans was predominant in PL (p ≤ 0.05), and Atopobium parvulum (p = 0.01) was predominant in OL. CONCLUSIONS Distinct differences exist between the caries microbiota of occlusal and proximal caries in S-ECC.
Collapse
Affiliation(s)
- Kausar Sadia Fakhruddin
- Department of Preventive and Restorative Dentistry, University of Sharjah, Sharjah, UAE
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai-city, Japan
| | | | - Rifat Akram Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Hien Chi Ngo
- Uwa Dental School, The University of Western Australia, Perth, Australia
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai-city, Japan
| |
Collapse
|
21
|
Yang B, Ding M, Chen Y, Han F, Yang C, Zhao J, Malard P, Stanton C, Ross RP, Zhang H, Chen W. Development of gut microbiota and bifidobacterial communities of neonates in the first 6 weeks and their inheritance from mother. Gut Microbes 2022; 13:1-13. [PMID: 33847206 PMCID: PMC8049200 DOI: 10.1080/19490976.2021.1908100] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microbiota especially Bifidobacterium play an important role in adjusting and maintaining homeostatic balance within the infant intestine. The aim of this study was to elucidate the relationship between maternal and infant gut microbiota and identify the Bifidobacterium species that may transfer from mother to infant over the first 42 days of the infant's life. Nineteen mother-infant-pair fecal samples were collected and the diversity and composition of the total bacterial and Bifidobacterium communities were analyzed via 16S rDNA and bifidobacterial groEL gene high throughput sequencing. The results revealed that the relative abundance of Bifidobacterium was significantly higher in the infant gut while Parabacteroides, Blautia, Coprococcus, Lachnospira and Faecalibacterium were at lower relative abundance in 7-day and 42-day infant fecal samples compared to the maternal samples. The maternal gut has more B. pseudocatenulatum. In the infant group, B. breve and B. dentium relative abundance increased while B. animalis subsp. lactis decreased from days 7 to 42. Additionally, B. longum subsp. longum isolated from FGZ16 and FGZ35 may have transferred from mother to infant and colonized the infant gut. The results of the current study provide insight toward the infant gut microbiota composition and structure during the first 42 days and may help guide Bifidobacterium supplementation strategies in mothers and infants.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China,International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China
| | - Mengfan Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yingqi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengzhen Han
- Department of Gynaecology and Obsterics, Guangdong Province People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Chunyan Yang
- Department of Gynaecology and Obsterics, Guangdong Province People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Patrice Malard
- Biostime (Guangzhou) Health Products Ltd., Guangzhou, China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China,Food Bioscience, Teagasc Food Research Centre, Fermoy, Ireland,CONTACT Catherine Stanton Teagasc Food Research Centre, Fermoy, Ireland
| | - R. Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China,Wei Chen School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Zafar H, Saier MH. Comparative Analyses of the Transport Proteins Encoded within the Genomes of nine Bifidobacterium Species. Microb Physiol 2022; 32:30-44. [PMID: 34555832 PMCID: PMC8940750 DOI: 10.1159/000518954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
The human microbiome influences human health in both negative and positive ways. Studies on the transportomes of these organisms yield information that may be utilized for various purposes, including the identification of novel drug targets and the manufacture of improved probiotic strains. Moreover, these genomic analyses help to improve our understanding of the physiology and metabolic capabilities of these organisms. The present study is a continuation of our studies on the transport proteins of the major gut microbes. Bifidobacterium species are essential members of the human gut microbiome, and they initiate colonization of the gut at birth, providing health benefits that last a lifetime. In this study we analyze the transportomes of nine bifidobacterial species: B. adolescentis, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. longum subsp. infantis, B. longum subsp. longum, and B. pseudocatenulatum. All of these species have proven probiotic characteristics and exert beneficial effects on human health. Surprisingly, we found that all nine of these species have similar pore-forming toxins and drug exporters that may play roles in pathogenesis. These species have transporters for amino acids, carbohydrates, and proteins, essential for their organismal lifestyles and adaption to their respective ecological niches. The strictly probiotic species, B. bifidum, however, contains fewer such transporters, thus indicative of limited interactions with host cells and other gut microbial counterparts. The results of this study were compared with those of our previous studies on the transportomes of multiple species of Bacteroides, Escherichia coli/Salmonella, and Lactobacillus. Overall, bifidobacteria have larger transportomes (based on percentages of total proteins) than the previously examined groups of bacterial species, with a preference for primary active transport systems over secondary carriers. Taken together, these results provide useful information about the physiologies and pathogenic potentials of these probiotic organisms as reflected by their transportomes.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116.,Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Corresponding Authors HZ: Tel: +420773283624, ; MS: Tel: +1 858 534 4084, Fax: +1 858 534 7108,
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116.,Corresponding Authors HZ: Tel: +420773283624, ; MS: Tel: +1 858 534 4084, Fax: +1 858 534 7108,
| |
Collapse
|
23
|
Chen L, Zheng T, Yang Y, Chaudhary PP, Teh JPY, Cheon BK, Moses D, Schuster SC, Schlundt J, Li J, Conway PL. Integrative multiomics analysis reveals host-microbe-metabolite interplays associated with the aging process in Singaporeans. Gut Microbes 2022; 14:2070392. [PMID: 35549618 PMCID: PMC9116421 DOI: 10.1080/19490976.2022.2070392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The age-associated alterations in microbiomes vary across populations due to the influence of genetics and lifestyles. To the best of our knowledge, the microbial changes associated with aging have not yet been investigated in Singapore adults. We conducted shotgun metagenomic sequencing of fecal and saliva samples, as well as fecal metabolomics to characterize the gut and oral microbial communities of 62 healthy adult male Singaporeans, including 32 young subjects (age, 23.1 ± 1.4 years) and 30 elderly subjects (age, 69.0 ± 3.5 years). We identified 8 gut and 13 oral species that were differentially abundant in elderly compared to young subjects. By combining the gut and oral microbiomes, 25 age-associated oral-gut species connections were identified. Moreover, oral bacteria Acidaminococcus intestine and Flavonifractor plautii were less prevalent/abundant in elderly gut samples than in young gut samples, whereas Collinsella aerofaciens and Roseburia hominis showed the opposite trends. These results indicate the varied gut-oral communications with aging. Subsequently, we expanded the association studies on microbiome, metabolome and host phenotypic parameters. In particular, Eubacterium eligens increased in elderly compared to young subjects, and was positively correlated with triglycerides, which implies that the potential role of E. eligens in lipid metabolism is altered during the aging process. Our results demonstrated aging-associated changes in the gut and oral microbiomes, as well as the connections between metabolites and host-microbe interactions, thereby deepening the understanding of alterations in the human microbiome during the aging process in a Singapore population.
Collapse
Affiliation(s)
- Liwei Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
| | - Tingting Zheng
- Department of Infectious Diseases and Public Health, The Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yifan Yang
- Office of Education Research, and Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, Singapore
| | - Prem Prashant Chaudhary
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Jean Pui Yi Teh
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
| | - Bobby K. Cheon
- School of Social Sciences, Nanyang Technological University, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
- Eunice Kenndy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniela Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Stephan C. Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Joergen Schlundt
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
| | - Jun Li
- Department of Infectious Diseases and Public Health, The Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Patricia L. Conway
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences,The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
24
|
Moya-Gonzálvez EM, Rubio-Del-Campo A, Rodríguez-Díaz J, Yebra MJ. Infant-gut associated Bifidobacterium dentium strains utilize the galactose moiety and release lacto-N-triose from the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose. Sci Rep 2021; 11:23328. [PMID: 34857830 PMCID: PMC8639736 DOI: 10.1038/s41598-021-02741-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Much evidence suggests a role for human milk oligosaccharides (HMOs) in establishing the infant microbiota in the large intestine, but the response of particular bacteria to individual HMOs is not well known. Here twelve bacterial strains belonging to the genera Bifidobacterium, Enterococcus, Limosilactobacillus, Lactobacillus, Lacticaseibacillus, Staphylococcus and Streptococcus were isolated from infant faeces and their growth was analyzed in the presence of the major HMOs, 2′-fucosyllactose (2′FL), 3-fucosyllactose (3FL), 2′,3-difucosyllactose (DFL), lacto-N-tetraose (LNT) and lacto-N-neo-tetraose (LNnT), present in human milk. Only the isolated Bifidobacterium strains demonstrated the capability to utilize these HMOs as carbon sources. Bifidobacterium infantis Y538 efficiently consumed all tested HMOs. Contrarily, Bifidobacterium dentium strains Y510 and Y521 just metabolized LNT and LNnT. Both tetra-saccharides are hydrolyzed into galactose and lacto-N-triose (LNTII) by B. dentium. Interestingly, this species consumed only the galactose moiety during growth on LNT or LNnT, and excreted the LNTII moiety. Two β-galactosidases were characterized from B. dentium Y510, Bdg42A showed the highest activity towards LNT, hydrolyzing it into galactose and LNTII, and Bdg2A towards lactose, degrading efficiently also 6′-galactopyranosyl-N-acetylglucosamine, N-acetyl-lactosamine and LNnT. The work presented here supports the hypothesis that HMOs are mainly metabolized by Bifidobacterium species in the infant gut.
Collapse
Affiliation(s)
- Eva M Moya-Gonzálvez
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Antonio Rubio-Del-Campo
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - María J Yebra
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
25
|
Widyarman AS, Theodorea CF, Udawatte NS, Drestia AM, Bachtiar EW, Astoeti TE, Bachtiar BM. Diversity of Oral Microbiome of Women From Urban and Rural Areas of Indonesia: A Pilot Study. FRONTIERS IN ORAL HEALTH 2021; 2:738306. [PMID: 35048055 PMCID: PMC8757682 DOI: 10.3389/froh.2021.738306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: The studies on the influence of geographical and socio-economic factors on the oral microbiome remain underrepresented. The Indonesia basic health research (RISKESDAS) 2018, showed an increasing trend in non-communicable diseases compared with the previous report in 2013. The prevalence of diabetes, heart disease, hypertension, and obesity are reported to be higher in urban areas than in rural areas. Interestingly, non-communicable diseases were found to be more prevalent in women than men. This pilot study aimed to examine the oral health and oral microbiome derived from tongue samples of healthy Indonesian women from urban and rural areas. Methods: Twenty women aged 21-47 years old from West Jakarta, residents of DKI Jakarta (n = 10) as representative of the urban area, and residents of Ende, Nangapanda, East Nusa Tenggara (n = 10) as representative of the rural area were recruited for this pilot study. The participants were evaluated by the Simplified Oral Hygiene Index (OHI-S) according to the criteria of Greene and Vermillion and divided into three groups. High-throughput DNA sequencing was performed on an Illumina iSeq 100 platform. Results: The principal component analysis displayed a marked difference in the bacterial community profiles between the urban and rural localities. The presence of manifest was associated with increased diversity and an altered oral bacterial community profile in the urban women. Two bacterial taxa were present at significantly higher levels (adjusted p < 0.01) in the urban oral microflora (Genus Prevotella and Leptotricia) could account for this difference irrespective of the individual oral hygiene status. The linear discriminant analysis effect size (LEfSe) analysis revealed several distinct urban biomarkers. At the species level, Leptotrichia wadei, Prevotella melaninogenica, Prevotella jejuni, and P. histicola, show an excellent discriminatory potential for distinguishing the oral microflora in women between urban and rural areas. Further, using SparCC co-occurrence network analysis, the co-occurrence pattern in the dominant core oral microbiome assembly was observed to be specific to its ecological niche between two populations. Conclusions: This is the first pilot study demonstrating the characterization of the oral microbiome in Indonesian women in urban and rural areas. We found that the oral microbiome in women displays distinct patterns consistent with geographic locality. The specific characterization of the microbiota of Indonesian women is likely linked to geographical specific dietary habits, cultural habits, and socio-economic status or the population studied.
Collapse
Affiliation(s)
- Armelia Sari Widyarman
- Department Head of Microbiology, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| | | | - Nadeeka S. Udawatte
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore (NDRIS) National Dental Centre Singapore, Oral Health ACP, Duke NUS Medical School, Singapore, Singapore
| | | | - Endang W. Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Central Jakarta, Indonesia
| | - Tri Erri Astoeti
- Department Preventive and Public Health Dentistry, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| | - Boy M. Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Central Jakarta, Indonesia
| |
Collapse
|
26
|
Ishikawa E, Yamada T, Yamaji K, Serata M, Fujii D, Umesaki Y, Tsuji H, Nomoto K, Ito M, Okada N, Nagaoka M, Gomi A. Critical roles of a housekeeping sortase of probiotic Bifidobacterium bifidum in bacterium-host cell crosstalk. iScience 2021; 24:103363. [PMID: 34825137 PMCID: PMC8603203 DOI: 10.1016/j.isci.2021.103363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/09/2021] [Accepted: 10/25/2021] [Indexed: 10/30/2022] Open
Abstract
Bifidobacterium bifidum YIT 10347 (BF-1) is adhesive in vitro. Here we studied the molecular aspects of the BF-1 adhesion process. We identified and characterized non-adhesive mutants and found that a class E housekeeping sortase was critical for the adhesion to mucin. These mutants were significantly less adhesive to GCIY cells than was the wild type (WT), which protected GCIY cells against acid treatment more than did a non-adhesive mutant. The non-adhesive mutants aberrantly accumulated precursors of putative sortase-dependent proteins (SDPs). Recombinant SDPs bound to mucin. Disruption of the housekeeping sortase influenced expression of SDPs and pilus components. Mutants defective in a pilin or in an SDP showed the same adhesion properties as WT. Therefore, multiple SDPs and pili seem to work cooperatively to achieve adhesion, and the housekeeping sortase is responsible for cell wall anchoring of its substrates to ensure their proper biological function.
Collapse
Affiliation(s)
- Eiji Ishikawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Tetsuya Yamada
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Kazuaki Yamaji
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Masaki Serata
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Daichi Fujii
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Yoshinori Umesaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Hirokazu Tsuji
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Koji Nomoto
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan.,Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Nagaoka
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Atsushi Gomi
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
27
|
Reyman M, Clerc M, van Houten MA, Arp K, Chu MLJN, Hasrat R, Sanders EAM, Bogaert D. Microbial community networks across body sites are associated with susceptibility to respiratory infections in infants. Commun Biol 2021; 4:1233. [PMID: 34711948 PMCID: PMC8553847 DOI: 10.1038/s42003-021-02755-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
Respiratory tract infections are a major cause of morbidity and mortality worldwide in young children. Concepts such as the gut-lung axis have highlighted the impact of microbial communities at distal sites in mediating disease locally. However, little is known about the extent to which microbial communities from multiple body sites are linked, and how this relates to disease susceptibility. Here, we combine 16S-based rRNA sequencing data from 112 healthy, term born infants, spanning three body sites (oral cavity, nasopharynx, gut) and the first six months of life. Using a cross-niche microbial network approach, we show that, already from the first week of life on, there is a strong association between both network structure and species essential to these structures (hub species), and consecutive susceptibility to respiratory tract infections in this cohort. Our findings underline the crucial role of cross-niche microbial connections in respiratory health.
Collapse
Affiliation(s)
- Marta Reyman
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, The Netherlands
- Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Melanie Clerc
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Kayleigh Arp
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Mei Ling J N Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Raiza Hasrat
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands.
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
28
|
Identification of difructose dianhydride I synthase/hydrolase from an oral bacterium establishes a novel glycoside hydrolase family. J Biol Chem 2021; 297:101324. [PMID: 34688653 PMCID: PMC8605356 DOI: 10.1016/j.jbc.2021.101324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on β-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of β-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2′:2,1′-β-D-Frup (diheterolevulosan II) and β-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2′:2,1′-β-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with β-D-Fruf and β-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).
Collapse
|
29
|
The diversity and composition of the human gut lactic acid bacteria and bifidobacterial microbiota vary depending on age. Appl Microbiol Biotechnol 2021; 105:8427-8440. [PMID: 34625821 DOI: 10.1007/s00253-021-11625-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022]
Abstract
Aging is associated with gut microbiota alterations, characterized by changes in intestinal microbial diversity and composition. However, no study has yet focused on investigating age-related changes in the low-abundant but potentially beneficial subpopulations of gut lactic acid bacteria (LAB) and Bifidobacterium. Our study found that the subjects' age correlated negatively with the alpha diversity of the gut bifidobacterial microbiota, and such correlation was not observed in the gut LAB subpopulation. Principal coordinate analysis (PCoA) and analysis of distribution of operational taxonomic units (OTUs) revealed that the structure and composition of the gut bifidobacterial subpopulation of the longevous elderly group were rather different from that of the other three age groups. The same analyses were applied to identify age-dependent characteristics of the gut LAB subpopulation, and the results revealed that the gut LAB subpopulation of young adults was significantly different from that of all three elderly groups. Our study identified several potentially beneficial bacteria (e.g., Bifidobacterium breve and Bifidobacterium longum) that were enriched in the longevous elderly group (P < 0.05), and the relative abundance of Bifidobacterium adolescentis decreased significantly with the increase in age (P < 0.05). Although both bifidobacteria and LAB are generally considered as health-promoting taxa, their age-dependent distribution varied from each other, suggesting their different life stage changes and potentially different functional roles. This study provided novel species-level gut bifidobacterial and LAB microbiota profiles of a large cohort of subjects and identified several age-or longevity-associated features and biomarkers. KEY POINTS: • The alpha diversity of the gut bifidobacterial microbiota decreased with age, while LAB did not change. • The structure and composition of the gut bifidobacterial subpopulation of the longevous elderly group were rather different from that of the other three age groups. • Several potentially beneficial bacteria (e.g., Bifidobacterium breve and Bifidobacterium longum) that were enriched in the longevous elderly group.
Collapse
|
30
|
Lactic Acid Bacteria Isolated from Fermented Doughs in Spain Produce Dextrans and Riboflavin. Foods 2021; 10:foods10092004. [PMID: 34574114 PMCID: PMC8470351 DOI: 10.3390/foods10092004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Many lactic acid bacteria (LAB) produce metabolites with applications in the food industry, such as dextran-type exopolysaccharides (EPS) and riboflavin (vitamin B2). Here, 72 bacteria were isolated from sourdoughs made by Spanish bread-makers. In the presence of sucrose, colonies of 22 isolates showed a ropy phenotype, and NMR analysis of their EPS supported that 21 of them were dextran producers. These isolates were identified by their random amplified polymorphic DNA (RAPD) patterns and their rrs and pheS gene sequences as LAB belonging to four species (Weissella cibaria, Leuconostoc citreum, Leuconostoc falkenbergense and Leuconostoc mesenteroides). Six selected strains from the Leuconostoc (3) and Weissella (3) genera grew in the absence of riboflavin and synthesized vitamin B2. The EPS produced by these strains were characterized as dextrans by physicochemical analysis, and the L. citreum polymer showed an unusually high degree of branching. Quantification of the riboflavin and the EPS productions showed that the W. cibaria strains produce the highest levels (585–685 μg/and 6.5–7.4 g/L, respectively). Therefore, these new LAB strains would be good candidates for the development of fermented foods bio-fortified with both dextrans and riboflavin. Moreover, this is the first report of riboflavin and dextran production by L. falkenbergense.
Collapse
|
31
|
Sivamaruthi BS, Kesika P, Chaiyasut C. A Review of the Role of Probiotic Supplementation in Dental Caries. Probiotics Antimicrob Proteins 2021; 12:1300-1309. [PMID: 32307660 DOI: 10.1007/s12602-020-09652-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dental diseases are among the common health issues experienced around the world. Dental caries is one of the most predominant oral diseases worldwide. Major factors associated with caries development include poor oral hygiene, the content of specific carbohydrates in the diet, dental biofilm formation, the cariogenic microbial load, reduction in salivary flow, insufficient fluoride exposure, gingival recession, genetic factors, and lack of personal attention to one's dental health. Several preventive measures have been implemented to reduce the risk of the development of caries. Probiotics are live microbes that when administered in suitable amounts confer health benefits on the host; they are recognized as potential adjunct therapeutic agents for several diseases. The present manuscript summarizes recent findings on the role of probiotics in dental caries prevention and the possible mechanisms of probiotic effects. Review of the literature indicates the regular consumption of probiotic products significantly reduced the risk of caries by inhibiting cariogenic bacteria and enriching commensal microbes in the oral cavity. Buffering the salivary pH, production of bacteriocin and enzymes (dextranase, mutanase, and urease), the capacity of competing for the adhesion and colonization on tooth surfaces are the possible mechanisms behind the beneficial effect of probiotics. Further studies are necessary to address the efficacy of long-term probiotic supplementation on the control of dental diseases and the influence of childhood probiotic supplementation on the risk of caries development.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
32
|
Engevik MA, Danhof HA, Hall A, Engevik KA, Horvath TD, Haidacher SJ, Hoch KM, Endres BT, Bajaj M, Garey KW, Britton RA, Spinler JK, Haag AM, Versalovic J. The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiol 2021; 21:154. [PMID: 34030655 PMCID: PMC8145834 DOI: 10.1186/s12866-021-02166-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bifidobacteria are commensal microbes of the mammalian gastrointestinal tract. In this study, we aimed to identify the intestinal colonization mechanisms and key metabolic pathways implemented by Bifidobacterium dentium. RESULTS B. dentium displayed acid resistance, with high viability over a pH range from 4 to 7; findings that correlated to the expression of Na+/H+ antiporters within the B. dentium genome. B. dentium was found to adhere to human MUC2+ mucus and harbor mucin-binding proteins. Using microbial phenotyping microarrays and fully-defined media, we demonstrated that in the absence of glucose, B. dentium could metabolize a variety of nutrient sources. Many of these nutrient sources were plant-based, suggesting that B. dentium can consume dietary substances. In contrast to other bifidobacteria, B. dentium was largely unable to grow on compounds found in human mucus; a finding that was supported by its glycosyl hydrolase (GH) profile. Of the proteins identified in B. dentium by proteomic analysis, a large cohort of proteins were associated with diverse metabolic pathways, indicating metabolic plasticity which supports colonization of the dynamic gastrointestinal environment. CONCLUSIONS Taken together, we conclude that B. dentium is well adapted for commensalism in the gastrointestinal tract.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
- Department of Regernative Medicine & Cell Biology, Medical University of South Carolina, SC, Charleston, USA.
| | - Heather A Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kristen A Engevik
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kathleen M Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Meghna Bajaj
- Department of Chemistry and Physics, and Department of Biotechnology, Alcorn State University, Lorman, MS, 39096, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Robert A Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer K Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
33
|
Identification of Synbiotics Conducive to Probiotics Adherence to Intestinal Mucosa Using an In Vitro Caco-2 and HT29-MTX Cell Model. Processes (Basel) 2021. [DOI: 10.3390/pr9040569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability of bacteria to adhere to the intestinal mucosa is a critical property necessary for the long-term colonization of the intestinal tract. This ability can be highly sensitive to the presence of prebiotics. However, limited data are available in this respect for beneficial bacteria such as probiotics or resident gut microbiota. We previously demonstrated that the presence of prebiotics may decrease adherence in several pre- and probiotic combinations. Thus, characterizing the interactions between numerous combinations involving different classes of pre- and probiotics can be crucial in identifying new synbiotics. Accordingly, here, we extend our prior analyses to evaluate the adhesion of five lactobacilli, six bifidobacteria, and one probiotic Escherichia coli strains, as commercial probiotics or promising probiotic candidates, together with the cariogenic Bifidobacterium dentium strain. As an in vitro intestinal mucosa model, Caco-2 and mucin-secreting HT29-MTX cells were co-cultured at 9:1 in the presence or absence of prebiotics. Commercial inulin-type fructooligosaccharide prebiotics Orafti® GR, Orafti® P95, and galactooligosaccharide-based prebiotic formula Vivinal®, including purified human milk oligosaccharides (HMOs) were added into the cultivation media as the sole sugar source (2.5% each). Adherence was tested using microtiter plates and was evaluated as the percentage of fluorescently labeled bacteria present in the wells after three washes. Consistent prebiotics-mediated enhanced adherence was observed only for the commercial probiotic strain E. coli O83. For the remaining strains, the presence of HMO or prebiotics Orafti® P95 or Orafti® GR decreased adherence, reaching statistical significance (p < 0.05) for three of out of eight (HMO) or five of out of 11 strains tested, respectively. Conversely, Vivinal® enhanced adhesion in six out of the 12 strains tested, and notably, it significantly attenuated the adherence of the cariogenic Bifidobacterium dentium Culture Collection of Dairy Microorganisms (CCDM) 318. To our knowledge, this represents the first report on the influence of commercial prebiotics and HMOs on the adhesion of the cariogenic Bifidobacterium sp. Vivinal® seems to be a promising prebiotic to be used in the formulation of synbiotics, supporting the adhesion of a wide range of probiotics, especially the strains B. bifidum BBV and BBM and the probiotic Escherichia coli O83.
Collapse
|
34
|
Li J, Si H, Du H, Guo H, Dai H, Xu S, Wan J. Comparison of gut microbiota structure and Actinobacteria abundances in healthy young adults and elderly subjects: a pilot study. BMC Microbiol 2021; 21:13. [PMID: 33407122 PMCID: PMC7788997 DOI: 10.1186/s12866-020-02068-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The aim was to determine the potential association of the gut microbiota composition, especially the abundance of Actinobacteria, as well as the differentiation of functional and resistance genes with age (young adults vs elderly subjects) in China. RESULTS The patterns of relative abundance of all bacteria isolated from fecal samples differed between young adults and elderly subjects, but the alpha diversity (Chao1 P = 0.370, Shannon P = 0.560 and Simpson P = 0.270) and beta diversity (ANOSIM R = 0.031, P = 0.226) were not significantly different. There were 3 Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways (carbon metabolism, inositol phosphate metabolism, and sesquiterpenoid and triterpenoid biosynthesis) and 7 antibiotic resistant genes (ARGs) (macrolide lincosamide-streptogramin B (MLSB), tetracycline, aminoglycoside, sulfonamide, fosmidomycin, lincomycin, and vancomycin) that showed significant differences between the 2 groups (all P < 0.05). The abundance of Actinomycetes was enriched (about 2.4-fold) in young adults. Bifidobacteria dominated in both young adults and elderly subjects, with overall higher abundances in young adults (P > 0.05). Only the Bifidobacterium_dentium species showed significant differences between the 2 groups (P = 0.013), with a higher abundance in elderly subjects but absent in young adults. CONCLUSIONS The present study revealed that there were 3 KEGG metabolic pathways and 7 ARGs as well as enhanced Bifidobacterium_dentium species abundance in elderly compared to young subjects.
Collapse
Affiliation(s)
- Jun Li
- Department of Gastroenterology, 2nd Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Haiyan Si
- Department of Oncology, First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Haitao Du
- Department of Gastroenterology, 2nd Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Hongxia Guo
- Department of Oncology, First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Huanqin Dai
- Chinese Academy Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shiping Xu
- Department of Gastroenterology, 2nd Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Jun Wan
- Department of Gastroenterology, 2nd Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
35
|
Lugli GA, Tarracchini C, Alessandri G, Milani C, Mancabelli L, Turroni F, Neuzil-Bunesova V, Ruiz L, Margolles A, Ventura M. Decoding the Genomic Variability among Members of the Bifidobacterium dentium Species. Microorganisms 2020; 8:E1720. [PMID: 33152994 PMCID: PMC7693768 DOI: 10.3390/microorganisms8111720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Members of the Bifidobacterium dentium species are usually identified in the oral cavity of humans and associated with the development of plaque and dental caries. Nevertheless, they have also been detected from fecal samples, highlighting a widespread distribution among mammals. To explore the genetic variability of this species, we isolated and sequenced the genomes of 18 different B. dentium strains collected from fecal samples of several primate species and an Ursus arctos. Thus, we investigated the genomic variability and metabolic abilities of the new B. dentium isolates together with 20 public genome sequences. Comparative genomic analyses provided insights into the vast metabolic repertoire of the species, highlighting 19 glycosyl hydrolases families shared between each analyzed strain. Phylogenetic analysis of the B. dentium taxon, involving 1140 conserved genes, revealed a very close phylogenetic relatedness among members of this species. Furthermore, low genomic variability between strains was also confirmed by an average nucleotide identity analysis showing values higher than 98.2%. Investigating the genetic features of each strain, few putative functional mobile elements were identified. Besides, a consistent occurrence of defense mechanisms such as CRISPR-Cas and restriction-modification systems may be responsible for the high genome synteny identified among members of this taxon.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Giulia Alessandri
- Department of Veterinary Medical Science, University of Parma, 43126 Parma, Italy;
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
- Microbiome Research Hub, University of Parma, 13121 Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic;
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain; (L.R.); (A.M.)
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain; (L.R.); (A.M.)
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
- Microbiome Research Hub, University of Parma, 13121 Parma, Italy
| |
Collapse
|
36
|
Jung DH, Seo DH, Kim YJ, Chung WH, Nam YD, Park CS. The presence of resistant starch-degrading amylases in Bifidobacterium adolescentis of the human gut. Int J Biol Macromol 2020; 161:389-397. [DOI: 10.1016/j.ijbiomac.2020.05.235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/11/2023]
|
37
|
Engevik MA, Luck B, Visuthranukul C, Ihekweazu FD, Engevik AC, Shi Z, Danhof HA, Chang-Graham AL, Hall A, Endres BT, Haidacher SJ, Horvath TD, Haag AM, Devaraj S, Garey KW, Britton RA, Hyser JM, Shroyer NF, Versalovic J. Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut-Brain Axis. Cell Mol Gastroenterol Hepatol 2020; 11:221-248. [PMID: 32795610 PMCID: PMC7683275 DOI: 10.1016/j.jcmgh.2020.08.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The human gut microbiota can regulate production of serotonin (5-hydroxytryptamine [5-HT]) from enterochromaffin cells. However, the mechanisms underlying microbial-induced serotonin signaling are not well understood. METHODS Adult germ-free mice were treated with sterile media, live Bifidobacterium dentium, heat-killed B dentium, or live Bacteroides ovatus. Mouse and human enteroids were used to assess the effects of B dentium metabolites on 5-HT release from enterochromaffin cells. In vitro and in vivo short-chain fatty acids and 5-HT levels were assessed by mass spectrometry. Expression of tryptophan hydroxylase, short-chain fatty acid receptor free fatty acid receptor 2, 5-HT receptors, and the 5-HT re-uptake transporter (serotonin transporter) were assessed by quantitative polymerase chain reaction and immunostaining. RNA in situ hybridization assessed 5-HT-receptor expression in the brain, and 5-HT-receptor-dependent behavior was evaluated using the marble burying test. RESULTS B dentium mono-associated mice showed increased fecal acetate. This finding corresponded with increased intestinal 5-HT concentrations and increased expression of 5-HT receptors 2a, 4, and serotonin transporter. These effects were absent in B ovatus-treated mice. Application of acetate and B dentium-secreted products stimulated 5-HT release in mouse and human enteroids. In situ hybridization of brain tissue also showed significantly increased hippocampal expression of 5-HT-receptor 2a in B dentium-treated mice relative to germ-free controls. Functionally, B dentium colonization normalized species-typical repetitive and anxiety-like behaviors previously shown to be linked to 5-HT-receptor 2a. CONCLUSIONS These data suggest that B dentium, and the bacterial metabolite acetate, are capable of regulating key components of the serotonergic system in multiple host tissues, and are associated with a functional change in adult behavior.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Berkley Luck
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Chonnikant Visuthranukul
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Department of Pediatrics, Pediatric Nutrition Special Task Force for Activating Research (STAR), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Faith D Ihekweazu
- Pediatric Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Amy C Engevik
- Department of Surgical Sciences, Vanderbilt University Medical Center, Nashville Tennessee
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Heather A Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Robert A Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph M Hyser
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
38
|
Wong CB, Odamaki T, Xiao JZ. Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol Rev 2020; 44:369-385. [PMID: 32319522 PMCID: PMC7326374 DOI: 10.1093/femsre/fuaa010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Members of Bifidobacterium are among the first microbes to colonise the human gut, and certain species are recognised as the natural resident of human gut microbiota. Their presence in the human gut has been associated with health-promoting benefits and reduced abundance of this genus is linked with several diseases. Bifidobacterial species are assumed to have coevolved with their hosts and include members that are naturally present in the human gut, thus recognised as Human-Residential Bifidobacteria (HRB). The physiological functions of these bacteria and the reasons why they occur in and how they adapt to the human gut are of immense significance. In this review, we provide an overview of the biology of bifidobacteria as members of the human gut microbiota and address factors that contribute to the preponderance of HRB in the human gut. We highlight some of the important genetic attributes and core physiological traits of these bacteria that may explain their adaptive advantages, ecological fitness, and competitiveness in the human gut. This review will help to widen our understanding of one of the most important human commensal bacteria and shed light on the practical consideration for selecting bifidobacterial strains as human probiotics.
Collapse
Affiliation(s)
- Chyn Boon Wong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| |
Collapse
|
39
|
Lugli GA, Duranti S, Milani C, Mancabelli L, Turroni F, Alessandri G, Longhi G, Anzalone R, Viappinai A, Tarracchini C, Bernasconi S, Yonemitsu C, Bode L, Goran MI, Ossiprandi MC, van Sinderen D, Ventura M. Investigating bifidobacteria and human milk oligosaccharide composition of lactating mothers. FEMS Microbiol Ecol 2020; 96:5809960. [PMID: 32188978 DOI: 10.1093/femsec/fiaa049] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Human milk is known to carry its own microbiota, of which the precise origin remains obscure. Breastfeeding allows mother-to-baby transmission of microorganisms as well as the transfer of many other milk components, such as human milk oligosaccharides (HMOs), which act as metabolizable substrates for particular bacteria, such as bifidobacteria, residing in infant intestinal tract. In the current study, we report the HMO composition of 249 human milk samples, in 163 of which we quantified the abundance of members of the Bifidobacterium genus using a combination of metagenomic and flow cytometric approaches. Metagenomic data allowed us to identify four clusters dominated by Bifidobacterium adolescentis and Bifidobacterium pseudolongum, Bifidobacterium crudilactis or Bifidobacterium dentium, as well as a cluster represented by a heterogeneous mix of bifidobacterial species such as Bifidobacterium breve and Bifidobacterium longum. Furthermore, in vitro growth assays on HMOs coupled with in silico glycobiome analyses allowed us to elucidate that members of the Bifidobacterium bifidum and B. breve species exhibit the greatest ability to degrade and grow on HMOs. Altogether, these findings indicate that the bifidobacterial component of the human milk microbiota is not strictly correlated with their ability to metabolize HMOs.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | | | | | | | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Chloe Yonemitsu
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California-San Diego, La Jolla, CA, USA
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California-San Diego, La Jolla, CA, USA
| | - Michael I Goran
- Department of Pediatrics, Children's Hospital Los Angeles, The University of Southern California, Los Angeles, CA, USA
| | | | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
40
|
Mekadim C, Bunešová V, Vlková E, Hroncová Z, Killer J. Genetic marker-based multi-locus sequence analysis for classification, genotyping, and phylogenetics of the family Bifidobacteriaceae as an alternative approach to phylogenomics. Antonie van Leeuwenhoek 2019; 112:1785-1800. [PMID: 31368048 DOI: 10.1007/s10482-019-01307-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Bifidobacteria are widely known for their probiotic potential; however, little is known regarding the ecological significance and potential probiotic effects of the phylogenetically related 'scardovial' genera (Aeriscardovia, Alloscardovia, Bombiscardovia, Galliscardovia, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia) and Gardnerella classified with bifidobacteria within the Bifidobacteriaceae family. Accurate classification and genotyping of bacteria using certain housekeeping genes is possible, whilst current phylogenomic analyses allow for extremely precise classification. Studies of applicable genetic markers may provide results comparable to those obtained from phylogenomic analyses of the family Bifidobacteriaceae. Segments of the glyS (624 nucleotides), pheS (555 nucleotides), rpsA (630 nucleotides), and rpsB (432 nucleotides) genes and their concatenated sequence were explored. The mean glyS, pheS, rpsB and rpsA gene sequence similarities calculated for Bifidobacterium taxa were 84.8, 85.2, 90.2 and 86.8%, respectively. Interestingly, the average value of the Average Nucleotide Identity among 67 type strains of the family Bifidobacteriaceae (84.70%) calculated based on values published recently was in agreement with the average pairwise similarity (84.6%) among 75 type strains of Bifidobacteriaceae family computed in this study using the concatenated sequences of four gene fragments. Similar to phylogenomic analyses, several gene sequence and phylogenetic analyses revealed that concatenated gene regions allow for classification of Bifidobacteriaceae strains into particular phylogenetic clusters and groups. Phylogeny reconstructed from the concatenated sequences assisted in defining two novel phylogenetic groups, the Bifidobacterium psychraerophilum group consisting of B. psychraerophilum, Bifidobacterium crudilactis and Bifidobacterium aquikefiri species and the Bifidobacterium bombi group consisting of B. bombi, Bifidobacterium bohemicum and Bifidobacterium commune.
Collapse
Affiliation(s)
- Chahrazed Mekadim
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Krč, Czech Republic.,Department of Microbiology, Nutrition and Dietetics, Food and Natural Resources, Faculty of Agrobiology, Czech University of Life Sciences, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| | - Věra Bunešová
- Department of Microbiology, Nutrition and Dietetics, Food and Natural Resources, Faculty of Agrobiology, Czech University of Life Sciences, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| | - Eva Vlková
- Department of Microbiology, Nutrition and Dietetics, Food and Natural Resources, Faculty of Agrobiology, Czech University of Life Sciences, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| | - Zuzana Hroncová
- Department of Microbiology, Nutrition and Dietetics, Food and Natural Resources, Faculty of Agrobiology, Czech University of Life Sciences, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| | - Jiří Killer
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Krč, Czech Republic. .,Department of Microbiology, Nutrition and Dietetics, Food and Natural Resources, Faculty of Agrobiology, Czech University of Life Sciences, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic.
| |
Collapse
|
41
|
Short-chain fatty acid and vitamin production potentials of Lactobacillus isolated from fermented foods of Khasi Tribes, Meghalaya, India. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01500-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
42
|
Engevik MA, Luk B, Chang-Graham AL, Hall A, Herrmann B, Ruan W, Endres BT, Shi Z, Garey KW, Hyser JM, Versalovic J. Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio 2019; 10:e01087-19. [PMID: 31213556 PMCID: PMC6581858 DOI: 10.1128/mbio.01087-19] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Much remains unknown about how the intestinal microbiome interfaces with the protective intestinal mucus layer. Bifidobacterium species colonize the intestinal mucus layer and can modulate mucus production by goblet cells. However, select Bifidobacterium strains can also degrade protective glycans on mucin proteins. We hypothesized that the human-derived species Bifidobacterium dentium would increase intestinal mucus synthesis and expulsion, without extensive degradation of mucin glycans. In silico data revealed that B. dentium lacked the enzymes necessary to extensively degrade mucin glycans. This finding was confirmed by demonstrating that B. dentium could not use naive mucin glycans as primary carbon sources in vitro To examine B. dentium mucus modulation in vivo, Swiss Webster germfree mice were monoassociated with live or heat-killed B. dentium Live B. dentium-monoassociated mice exhibited increased colonic expression of goblet cell markers Krüppel-like factor 4 (Klf4), Trefoil factor 3 (Tff3), Relm-β, Muc2, and several glycosyltransferases compared to both heat-killed B. dentium and germfree counterparts. Likewise, live B. dentium-monoassociated colon had increased acidic mucin-filled goblet cells, as denoted by Periodic Acid-Schiff-Alcian Blue (PAS-AB) staining and MUC2 immunostaining. In vitro, B. dentium-secreted products, including acetate, were able to increase MUC2 levels in T84 cells. We also identified that B. dentium-secreted products, such as γ-aminobutyric acid (GABA), stimulated autophagy-mediated calcium signaling and MUC2 release. This work illustrates that B. dentium is capable of enhancing the intestinal mucus layer and goblet cell function via upregulation of gene expression and autophagy signaling pathways, with a net increase in mucin production.IMPORTANCE Microbe-host interactions in the intestine occur along the mucus-covered epithelium. In the gastrointestinal tract, mucus is composed of glycan-covered proteins, or mucins, which are secreted by goblet cells to form a protective gel-like structure above the epithelium. Low levels of mucin or alterations in mucin glycans are associated with inflammation and colitis in mice and humans. Although current literature links microbes to the modulation of goblet cells and mucins, the molecular pathways involved are not yet fully understood. Using a combination of gnotobiotic mice and mucus-secreting cell lines, we have identified a human-derived microbe, Bifidobacterium dentium, which adheres to intestinal mucus and secretes metabolites that upregulate the major mucin MUC2 and modulate goblet cell function. Unlike other Bifidobacterium species, B. dentium does not extensively degrade mucin glycans and cannot grow on mucin alone. This work points to the potential of using B. dentium and similar mucin-friendly microbes as therapeutic agents for intestinal disorders with disruptions in the mucus barrier.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Berkley Luk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Beatrice Herrmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
43
|
Safety, functional properties and technological performance in whey-based media of probiotic candidates from human breast milk. Int Microbiol 2019; 22:265-277. [PMID: 30810989 DOI: 10.1007/s10123-018-00046-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
We aimed at isolating and characterising microorganisms present in human breast milk with probiotic potential. In an 8-week postpartum sampling period, two strains of bifidobacteria (Bifidobacterium longum LM7a and Bifidobacterium dentium LM8a') and four strains of lactobacilli were isolated, all during the first 4-week postpartum. B. longum LM7a and B. dentium LM8a', together with four strains previously isolated from breast milk (Bifidobacterium lactis INL1, INL2, INL4 and INL5), were considered for further studies. Susceptibility of the strains to tetracycline, erythromycin, clindamycin, streptomycin, vancomycin and chloramphenicol was evaluated and the isolates exhibited, in general, the same properties as previously reported for bifidobacteria. All isolates showed low hydrophobicity and B. lactis and B. longum strains had satisfactory resistance to gastric digestion and bile shock, but not to pancreatin. B. lactis INL1, B. longum LM7a and B. dentium LM8a' were selected for some comparative technological studies. In particular, B. lactis INL1 displayed technological potential, with satisfactory growth in cheese whey-based media in biofermentor and resistance to freeze-drying, accelerated storage conditions and simulated gastric digestion.
Collapse
|
44
|
Fakhruddin KS, Ngo HC, Samaranayake LP. Cariogenic microbiome and microbiota of the early primary dentition: A contemporary overview. Oral Dis 2018; 25:982-995. [PMID: 29969843 DOI: 10.1111/odi.12932] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Abstract
Recent advances in the field of molecular microbiology provide an unprecedented opportunity to decipher the vast diversity of the oral microbiome in health and disease. Here, we provide a contemporary overview of the oral microbiome and the microbiota of early childhood caries (ECC) with particular reference to newer analytical techniques. A MEDLINE search revealed a total of 20 metagenomic studies describing cariogenic microbiomes of ECC, 10 of which also detailed the healthy microbiomes. In addition, seven studies on site-specific microbiomes, focusing on acidogenic and aciduric microbiota of deep-dentinal lesions, were also reviewed. These studies evaluated plaque and saliva of children aged 1.5-11 years, in cohorts of 12-485 individuals. These studies reveal a very rich and diverse microbial communities, with hundreds of different phylotypes and microbial species, including novel species and phyla such as Scardovia wiggsiae, Slackia exigua, Granulicatella elegans, Firmicutes in the plaque biofilms of children with ECC. On the contrary, bacteria such as Streptococcus cristatus, S. gordonii, S. sanguinis, Corynebacterium matruchotii, and Neisseria flavescens were common in plaque biofilm of noncarious, healthy, tooth surfaces in subjects with caries. The review illustrates the immense complexity and the diversity of the human oral microbiota of the cariogenic plaque microbiome in ECC, and the daunting prospect of its demystification.
Collapse
Affiliation(s)
| | - Hien Chi Ngo
- Department of Preventive and Restorative Dentistry, University of Sharjah, Sharjah, UAE
| | - Lakshman Perera Samaranayake
- Department of Preventive and Restorative Dentistry, University of Sharjah, Sharjah, UAE.,The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| |
Collapse
|
45
|
Arzamasov AA, van Sinderen D, Rodionov DA. Comparative Genomics Reveals the Regulatory Complexity of Bifidobacterial Arabinose and Arabino-Oligosaccharide Utilization. Front Microbiol 2018; 9:776. [PMID: 29740413 PMCID: PMC5928203 DOI: 10.3389/fmicb.2018.00776] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/05/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the genus Bifidobacterium are common inhabitants of the human gastrointestinal tract. Previously it was shown that arabino-oligosaccharides (AOS) might act as prebiotics and stimulate the bifidobacterial growth in the gut. However, despite the rapid accumulation of genomic data, the precise mechanisms by which these sugars are utilized and associated transcription control still remain unclear. In the current study, we used a comparative genomic approach to reconstruct arabinose and AOS utilization pathways in over 40 bacterial species belonging to the Bifidobacteriaceae family. The results indicate that the gene repertoire involved in the catabolism of these sugars is highly diverse, and even phylogenetically close species may differ in their utilization capabilities. Using bioinformatics analysis we identified potential DNA-binding motifs and reconstructed putative regulons for the arabinose and AOS utilization genes in the Bifidobacteriaceae genomes. Six LacI-family transcriptional factors (named AbfR, AauR, AauU1, AauU2, BauR1 and BauR2) and a TetR-family regulator (XsaR) presumably act as local repressors for AOS utilization genes encoding various α- or β-L-arabinofuranosidases and predicted AOS transporters. The ROK-family regulator AraU and the LacI-family regulator AraQ control adjacent operons encoding putative arabinose transporters and catabolic enzymes, respectively. However, the AraQ regulator is universally present in all Bifidobacterium species including those lacking the arabinose catabolic genes araBDA, suggesting its control of other genes. Comparative genomic analyses of prospective AraQ-binding sites allowed the reconstruction of AraQ regulons and a proposed binary repression/activation mechanism. The conserved core of reconstructed AraQ regulons in bifidobacteria includes araBDA, as well as genes from the central glycolytic and fermentation pathways (pyk, eno, gap, tkt, tal, galM, ldh). The current study expands the range of genes involved in bifidobacterial arabinose/AOS utilization and demonstrates considerable variations in associated metabolic pathways and regulons. Detailed comparative and phylogenetic analyses allowed us to hypothesize how the identified reconstructed regulons evolved in bifidobacteria. Our findings may help to improve carbohydrate catabolic phenotype prediction and metabolic modeling, while it may also facilitate rational development of novel prebiotics.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | - Dmitry A Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
46
|
Freitas AC, Hill JE. Bifidobacteria isolated from vaginal and gut microbiomes are indistinguishable by comparative genomics. PLoS One 2018; 13:e0196290. [PMID: 29684056 PMCID: PMC5912743 DOI: 10.1371/journal.pone.0196290] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
Bifidobacteria colonize the human gastrointestinal tract, vagina, oral cavity and breast milk. They influence human physiology and nutrition through health-promoting effects, play an important role as primary colonizers of the newborn gut, and contribute to vaginal microbiome homeostasis by producing lactic acid. Nevertheless, the mechanisms by which bifidobacteria are transmitted from mother to infant remains in discussion. Moreover, studies have suggested that Bifidobacterium spp. have specializations for gut colonization, but comparisons of strains of the same bifidobacteria species from different body sites are lacking. Here, our objective was to compare the genomes of Bifidobacterium breve (n = 17) and Bifidobacterium longum (n = 26) to assess whether gut and vaginal isolates of either species were distinguishable based on genome content. Comparison of the general genome features showed that vaginal and gut isolates did not differ in size, GC content, number of genes and CRISPR, either for B. breve or B. longum. Average nucleotide identity and whole genome phylogeny analysis revealed that vaginal and gut isolates did not cluster separately. Vaginal and gut isolates also had a similar COG (Cluster of Orthologous Group) category distribution. Differences in the accessory genomes between vaginal and gut strains were observed, but were not sufficient to distinguish isolates based on their origin. The results of this study support the hypothesis that the vaginal and gut microbiomes are colonized by a shared community of Bifidobacterium, and further emphasize the potential importance of the maternal vaginal microbiome as a source of infant gut microbiota.
Collapse
Affiliation(s)
- Aline C. Freitas
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
47
|
Turroni F, Milani C, Duranti S, Ferrario C, Lugli GA, Mancabelli L, van Sinderen D, Ventura M. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci 2018; 75:103-118. [PMID: 28983638 PMCID: PMC11105234 DOI: 10.1007/s00018-017-2672-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
Throughout the human life, the gut microbiota interacts with us in a number of different ways, thereby influencing our health status. The acquisition of such an interactive gut microbiota commences at birth. Medical and environmental factors including diet, antibiotic exposure and mode of delivery are major factors that shape the composition of the microbial communities in the infant gut. Among the most abundant members of the infant microbiota are species belonging to the Bifidobacterium genus, which are believed to confer beneficial effects upon their host. Bifidobacteria may be acquired directly from the mother by vertical transmission and their persistence in the infant gut is associated with their saccharolytic activity toward glycans that are abundant in the infant gut. Here, we discuss the establishment of the infant gut microbiota and the contribution of bifidobacteria to this early life microbial consortium.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| |
Collapse
|
48
|
Omics of bifidobacteria: research and insights into their health-promoting activities. Biochem J 2017; 474:4137-4152. [PMID: 29212851 DOI: 10.1042/bcj20160756] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Members of the genus Bifidobacterium include gut commensals that are particularly abundant among the microbial communities residing in the gut of healthy breast-fed infants, where their presence has been linked to many beneficial host effects. Next-generation DNA sequencing and comparative and functional genome methodologies have been shown to be particularly useful in exploring the diversity of this genus. These combined approaches have allowed the identification of genetic features related to bifidobacterial establishment in the gut, involving host-microbe as well as microbe-microbe interactions. Among these, proteinaceous structures, which protrude from the bacterial surface, i.e. pili or fimbriae, and exopolysaccharidic cell surface layers or capsules represent crucial features that assist in their colonization and persistence in the gut. As bifidobacteria are colonizers of the large intestine, they have to be able to cope with various sources of osmotic, oxidative, bile and acid stress during their transit across the gastric barrier and the small intestine. Bifidobacterial genomes thus encode various survival mechanisms, such as molecular chaperones and efflux pumps, to overcome such challenges. Bifidobacteria represent part of an anaerobic gut community, and feed on nondigestible carbohydrates through a specialized fermentative metabolic pathway, which in turn produces growth substrates for other members of the gut community. Conversely, bifidobacteria may also be dependent on other (bifido)bacteria to access host- and diet-derived glycans, and these complex co-operative interactions, based on resource sharing and cross-feeding strategies, represent powerful driving forces that shape gut microbiota composition.
Collapse
|
49
|
Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev 2017; 81:e00036-17. [PMID: 29118049 PMCID: PMC5706746 DOI: 10.1128/mmbr.00036-17] [Citation(s) in RCA: 1116] [Impact Index Per Article: 139.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease.
Collapse
Affiliation(s)
- Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Bottacini
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Eoghan Casey
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Jennifer Mahony
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Susana Delgado Palacio
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Silvia Arboleya Montes
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Juan Miguel Rodriguez
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California-San Diego, La Jolla, California, USA
| | - Willem de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Department of Bacteriology & Immunology, RPU Immunobiology, University of Helsinki, Helsinki, Finland
| | - Miguel Gueimonde
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
50
|
Lugli GA, Milani C, Turroni F, Duranti S, Mancabelli L, Mangifesta M, Ferrario C, Modesto M, Mattarelli P, Jiří K, van Sinderen D, Ventura M. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics 2017; 18:568. [PMID: 28764658 PMCID: PMC5540593 DOI: 10.1186/s12864-017-3955-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/24/2017] [Indexed: 11/26/2022] Open
Abstract
Background Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia, Alloscardovia, Bifidobacterium, Bombiscardovia, Gardnerella, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far. Results Phylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host. Conclusions Within the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3955-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Monica Modesto
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Paola Mattarelli
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Killer Jiří
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic.,Institute of Animal Physiology and Genetics v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|