1
|
Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Yu SC, McKellar CE, Sterling A, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GSXE, Murthy M, Bidaye SS, Hampel S, Seeds AM, Scott K. A Drosophila computational brain model reveals sensorimotor processing. Nature 2024; 634:210-219. [PMID: 39358519 PMCID: PMC11446845 DOI: 10.1038/s41586-024-07763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/27/2024] [Indexed: 10/04/2024]
Abstract
The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1,2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6-10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.
Collapse
Affiliation(s)
- Philip K Shiu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
- Eon Systems, San Francisco, CA, USA.
| | - Gabriella R Sterne
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- University of Rochester Medical Center, Department of Biomedical Genetics, New York, NY, USA
| | - Nico Spiller
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Andrea Sandoval
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Joie Zhou
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Neha Simha
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Chan Hyuk Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Seongbong Yu
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Jinseop S Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Gregory S X E Jefferis
- Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Salil S Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
2
|
Hofbauer B, Zandawala M, Reinhard N, Rieger D, Werner C, Evers JF, Wegener C. The neuropeptide pigment-dispersing factor signals independently of Bruchpilot-labelled active zones in daily remodelled terminals of Drosophila clock neurons. Eur J Neurosci 2024; 59:2665-2685. [PMID: 38414155 DOI: 10.1111/ejn.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
The small ventrolateral neurons (sLNvs) are key components of the central clock in the Drosophila brain. They signal via the neuropeptide pigment-dispersing factor (PDF) to align the molecular clockwork of different central clock neurons and to modulate downstream circuits. The dorsal terminals of the sLNvs undergo daily morphological changes that affect presynaptic sites organised by the active zone protein Bruchpilot (BRP), a homolog of mammalian ELKS proteins. However, the role of these presynaptic sites for PDF release is ill-defined. Here, we combined expansion microscopy with labelling of active zones by endogenously tagged BRP to examine the spatial correlation between PDF-containing dense-core vesicles and BRP-labelled active zones. We found that the number of BRP-labelled puncta in the sLNv terminals was similar while their density differed between Zeitgeber time (ZT) 2 and 14. The relative distance between BRP- and PDF-labelled puncta was increased in the morning, around the reported time of PDF release. Spontaneous dense-core vesicle release profiles of sLNvs in a publicly available ssTEM dataset (FAFB) consistently lacked spatial correlation to BRP-organised active zones. RNAi-mediated downregulation of brp and other active zone proteins expressed by the sLNvs did not affect PDF-dependent locomotor rhythmicity. In contrast, down-regulation of genes encoding proteins of the canonical vesicle release machinery, the dense-core vesicle-related protein CADPS, as well as PDF impaired locomotor rhythmicity. Taken together, our study suggests that PDF release from the sLNvs is independent of BRP-organised active zones, while BRP may be redistributed to active zones in a time-dependent manner.
Collapse
Affiliation(s)
- Benedikt Hofbauer
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV, USA
| | - Nils Reinhard
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Dirk Rieger
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Werner
- Biocenter, Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jan Felix Evers
- Centre for organismal studies COS, Universität Heidelberg, Heidelberg, Germany
- Cairn GmbH, Heidelberg, Germany
| | - Christian Wegener
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Lee GG, Zeng K, Duffy CM, Sriharsha Y, Yoo S, Park JH. In vivo characterization of the maturation steps of a pigment dispersing factor neuropeptide precursor in the Drosophila circadian pacemaker neurons. Genetics 2023; 225:iyad118. [PMID: 37364299 PMCID: PMC10471210 DOI: 10.1093/genetics/iyad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Pigment dispersing factor (PDF) is a key signaling molecule coordinating the neuronal network associated with the circadian rhythms in Drosophila. The precursor (proPDF) of the mature PDF (mPDF) consists of 2 motifs, a larger PDF-associated peptide (PAP) and PDF. Through cleavage and amidation, the proPDF is predicted to produce cleaved-PAP (cPAP) and mPDF. To delve into the in vivo mechanisms underlying proPDF maturation, we generated various mutations that eliminate putative processing sites and then analyzed the effect of each mutation on the production of cPAP and mPDF by 4 different antibodies in both ectopic and endogenous conditions. We also assessed the knockdown effects of processing enzymes on the proPDF maturation. At the functional level, circadian phenotypes were measured for all mutants and knockdown lines. As results, we confirm the roles of key enzymes and their target residues: Amontillado (Amon) for the cleavage at the consensus dibasic KR site, Silver (Svr) for the removal of C-terminal basic residues from the intermediates, PAP-KR and PDF-GK, derived from proPDF, and PHM (peptidylglycine-α-hydroxylating monooxygenase) for the amidation of PDF. Our results suggest that the C-terminal amidation occurs independently of proPDF cleavage. Moreover, the PAP domain is important for the proPDF trafficking into the secretory vesicles and a close association between cPAP and mPDF following cleavage seems required for their stability within the vesicles. These studies highlight the biological significance of individual processing steps and the roles of the PAP for the stability and function of mPDF which is essential for the circadian clockworks.
Collapse
Affiliation(s)
- Gyunghee G Lee
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kevin Zeng
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Cole M Duffy
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Yadali Sriharsha
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Siuk Yoo
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Jae H Park
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN 37996, USA
- NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Glendinning S, Fitzgibbon QP, Smith GG, Ventura T. Unravelling the neuropeptidome of the ornate spiny lobster Panulirus ornatus: A focus on peptide hormones and their processing enzymes expressed in the reproductive tissues. Gen Comp Endocrinol 2023; 332:114183. [PMID: 36471526 DOI: 10.1016/j.ygcen.2022.114183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Neuropeptides are commonly produced in the neural tissues yet can have effects on far-reaching targets, with varied biological responses. We describe here the neuropeptidome of the ornate spiny lobster, Panulirus ornatus, a species of emerging importance to closed-system aquaculture, with a focus on peptide hormones produced by the reproductive tissues. Transcripts for a precursor to one neuropeptide, adipokinetic hormone/corazonin-related peptide (ACP) were identified in high numbers in the sperm duct of adult spiny lobsters suggesting a role for ACP in the reproduction of this species. Neuropeptide production in the sperm duct may be linked with physiological control of spermatophore production in the male, or alternatively may function in signalling to the female. The enzymes which process nascent neuropeptide precursors into their mature, active forms have seldom been studied in decapods, and never before at the multi-tissue level. We have identified transcripts for multiple members of the proprotein convertase subtisilin/kexin family in the ornate spiny lobster, with some enzymes showing specificity to certain tissues. In addition, other enzyme transcripts involved with neuropeptide processing are identified along with their tissue and life stage expression patterns.
Collapse
Affiliation(s)
- Susan Glendinning
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
5
|
Miao Y, Chen R, Wang X, Zhang J, Tang W, Zhang Z, Liu Y, Xu Q. Drosophila melanogaster diabetes models and its usage in the research of anti-diabetes management with traditional Chinese medicines. Front Med (Lausanne) 2022; 9:953490. [PMID: 36035393 PMCID: PMC9403128 DOI: 10.3389/fmed.2022.953490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of diabetes mellitus (DM) is increasing rapidly worldwide, but the underlying molecular mechanisms of disease development have not been elucidated, and the current popular anti-diabetic approaches still have non-negligible limitations. In the last decades, several different DM models were established on the classic model animal, the fruit fly (Drosophila melanogaster), which provided a convenient way to study the mechanisms underlying diabetes and to discover and evaluate new anti-diabetic compounds. In this article, we introduce the Drosophila Diabetes model from three aspects, including signal pathways, established methods, and pharmacodynamic evaluations. As a highlight, the progress in the treatments and experimental studies of diabetes with Traditional Chinese Medicine (TCM) based on the Drosophila Diabetes model is reviewed. We believe that the values of TCMs are underrated in DM management, and the Drosophila Diabetes models can provide a much more efficient tool to explore its values of it.
Collapse
Affiliation(s)
- Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yaodong Miao,
| | - Rui Chen
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Wang
- Jimo District Qingdao Hospital of Traditional Chinese Medicine, Qingdao, China
| | - Jie Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Weina Tang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaoyuan Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qiang Xu
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Qiang Xu,
| |
Collapse
|
6
|
Hughson BN. The Glucagon-Like Adipokinetic Hormone in Drosophila melanogaster - Biosynthesis and Secretion. Front Physiol 2021; 12:710652. [PMID: 35002748 PMCID: PMC8733639 DOI: 10.3389/fphys.2021.710652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic homeostasis requires the precise regulation of circulating sugar titers. In mammals, homeostatic control of circulating sugar titers requires the coordinated secretion and systemic activities of glucagon and insulin. Metabolic homeostasis is similarly regulated in Drosophila melanogaster through the glucagon-like adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). In flies and mammals, glucagon and AKH are biosynthesized in and secreted from specialized endocrine cells. KATP channels borne on these cells respond to fluctuations in circulating glucose titers and thereby regulate glucagon secretion. The influence of glucagon in the pathogenesis of type 2 diabetes mellitus is now recognized, and a crucial mechanism that regulates glucagon secretion was reported nearly a decade ago. Ongoing efforts to develop D. melanogaster models for metabolic syndrome must build upon this seminal work. These efforts make a critical review of AKH physiology timely. This review focuses on AKH biosynthesis and the regulation of glucose-responsive AKH secretion through changes in CC cell electrical activity. Future directions for AKH research in flies are discussed, including the development of models for hyperglucagonemia and epigenetic inheritance of acquired metabolic traits. Many avenues of AKH physiology remain to be explored and thus present great potential for improving the utility of D. melanogaster in metabolic research.
Collapse
Affiliation(s)
- Bryon N. Hughson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Endocrine signals fine-tune daily activity patterns in Drosophila. Curr Biol 2021; 31:4076-4087.e5. [PMID: 34329588 DOI: 10.1016/j.cub.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/24/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Animals need to balance competitive behaviors to maintain internal homeostasis. The underlying mechanisms are complex but typically involve neuroendocrine signaling. Using Drosophila, we systematically manipulated signaling between energy-mobilizing endocrine cells producing adipokinetic hormone (AKH), octopaminergic neurons, and the energy-storing fat body to assess whether this neuroendocrine axis involved in starvation-induced hyperactivity also balances activity levels under ad libitum access to food. Our results suggest that AKH signals via two divergent pathways that are mutually competitive in terms of activity and rest. AKH increases activity via the octopaminergic system during the day, while it prevents high activity levels during the night by signaling to the fat body. This regulation involves feedback signaling from octopaminergic neurons to AKH-producing cells (APCs). APCs are known to integrate a multitude of metabolic and endocrine signals. Our results add a new facet to the versatile regulatory functions of APCs by showing that their output contributes to shape the daily activity pattern under ad libitum access to food.
Collapse
|
8
|
Nelson JM, Saunders CJ, Johnson EC. The Intrinsic Nutrient Sensing Adipokinetic Hormone Producing Cells Function in Modulation of Metabolism, Activity, and Stress. Int J Mol Sci 2021; 22:7515. [PMID: 34299134 PMCID: PMC8307046 DOI: 10.3390/ijms22147515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022] Open
Abstract
All organisms confront the challenges of maintaining metabolic homeostasis in light of both variabilities in nutrient supplies and energetic costs of different physiologies and behaviors. While all cells are nutrient sensitive, only relative few cells within Metazoans are nutrient sensing cells. Nutrient sensing cells organize systemic behavioral and physiological responses to changing metabolic states. One group of cells present in the arthropods, is the adipokinetic hormone producing cells (APCs). APCs possess intrinsic nutrient sensors and receive contextual information regarding metabolic state through other endocrine connections. APCs express receptors for different hormones which modulate APC physiology and the secretion of the adipokinetic hormone (AKH). APCs are functionally similar to alpha cells in the mammalian pancreas and display a similar physiological organization. AKH release results in both hypertrehalosemia and hyperlipidemia through high affinity binding to the AKH receptor (AKHR). Another hallmark of AKH signaling is heightened locomotor activity, which accompanies starvation and is thought to enhance foraging. In this review, we discuss mechanisms of nutrient sensing and modulation of AKH release. Additionally, we compare the organization of AKH/AKHR signaling in different taxa. Lastly, we consider the signals that APCs integrate as well as recent experimental results that have expanded the functional repertoire of AKH signaling, further establishing this as both a metabolic and stress hormone.
Collapse
Affiliation(s)
- Jonathan M. Nelson
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA; (J.M.N.); (C.J.S.)
| | - Cecil J. Saunders
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA; (J.M.N.); (C.J.S.)
| | - Erik C. Johnson
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA; (J.M.N.); (C.J.S.)
- Center of Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
9
|
Fritzsche S, Hunnekuhl VS. Cell-specific expression and individual function of prohormone convertase PC1/3 in Tribolium larval growth highlights major evolutionary changes between beetle and fly neuroendocrine systems. EvoDevo 2021; 12:9. [PMID: 34187565 PMCID: PMC8244231 DOI: 10.1186/s13227-021-00179-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background The insect neuroendocrine system acts in the regulation of physiology, development and growth. Molecular evolution of this system hence has the potential to allow for major biological differences between insect groups. Two prohormone convertases, PC1/3 and PC2, are found in animals and both function in the processing of neuropeptide precursors in the vertebrate neurosecretory pathway. Whereas PC2-function is conserved between the fly Drosophila and vertebrates, ancestral PC1/3 was lost in the fly lineage and has not been functionally studied in any protostome. Results In order to understand its original functions and the changes accompanying the gene loss in the fly, we investigated PC1/3 and PC2 expression and function in the beetle Tribolium castaneum. We found that PC2 is broadly expressed in the nervous system, whereas surprisingly, PC1/3 expression is restricted to specific cell groups in the posterior brain and suboesophageal ganglion. Both proteases have parallel but non-redundant functions in adult beetles’ viability and fertility. Female infertility following RNAi is caused by a failure to deposit sufficient yolk to the developing oocytes. Larval RNAi against PC2 produced moulting defects where the larvae were not able to shed their old cuticle. This ecdysis phenotype was also observed in a small subset of PC1/3 knockdown larvae and was strongest in a double knockdown. Unexpectedly, most PC1/3-RNAi larvae showed strongly reduced growth, but went through larval moults despite minimal to zero weight gain. Conclusions The cell type-specific expression of PC1/3 and its essential requirement for larval growth highlight the important role of this gene within the insect neuroendocrine system. Genomic conservation in most insect groups suggests that it has a comparable individual function in other insects as well, which has been replaced by alternative mechanisms in flies. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-021-00179-w.
Collapse
Affiliation(s)
- Sonja Fritzsche
- Johann-Friedrich-Blumenbach Institute, GZMB, Göttingen University, Göttingen, Germany
| | - Vera S Hunnekuhl
- Johann-Friedrich-Blumenbach Institute, GZMB, Göttingen University, Göttingen, Germany.
| |
Collapse
|
10
|
Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020; 77:4523-4551. [PMID: 32448994 PMCID: PMC7599194 DOI: 10.1007/s00018-020-03547-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their chances of survival and reproduction. To achieve such flexibility, organisms must be able to sense and respond to changes in external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert major influences on growth and final adult body size in animals. This developmental plasticity depends on adaptive responses to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit fly Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerging evidence showing that various environmental cues and internal conditions are sensed in different organs that, via inter-organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Selcho M, Pauls D. Linking physiological processes and feeding behaviors by octopamine. CURRENT OPINION IN INSECT SCIENCE 2019; 36:125-130. [PMID: 31606580 DOI: 10.1016/j.cois.2019.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/09/2019] [Indexed: 05/21/2023]
Abstract
The biogenic amine octopamine and to some extent its precursor tyramine function as an alerting signal in insects. Octopaminergic/tyraminergic neurons arborize in most parts of the central nervous system and additionally reach almost all peripheral organs, tissues, and muscles. Indeed, octopamine is involved in motivation, arousal, and the initiation of different behaviors reflecting its function as an alerting signal. A well-studied example of octopamine function is feeding behavior in Drosophila. Here, the amine is involved in food search, sugar/bitter sensitivity, food intake, and starvation-induced hyperactivity. Thereby octopamine modulates feeding initiation in response to internal needs and external stimuli. Additionally, it seems that octopamine/tyramine orchestrate behaviors such as locomotion and feeding or flight and song production to adapt the behavioral outcome of an animal to physiological and environmental conditions. There is a possibility that octopamine and tyramine are required in the selection of behaviors in insects.
Collapse
Affiliation(s)
- Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri-Institute Biocenter, University of Würzburg, Würzburg, Germany; Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.
| | - Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri-Institute Biocenter, University of Würzburg, Würzburg, Germany; Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.
| |
Collapse
|
12
|
Pauls D, Hamarat Y, Trufasu L, Schendzielorz TM, Gramlich G, Kahnt J, Vanselow JT, Schlosser A, Wegener C. Drosophila carboxypeptidase D (SILVER) is a key enzyme in neuropeptide processing required to maintain locomotor activity levels and survival rate. Eur J Neurosci 2019; 50:3502-3519. [PMID: 31309630 DOI: 10.1111/ejn.14516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 11/27/2022]
Abstract
Neuropeptides are processed from larger preproproteins by a dedicated set of enzymes. The molecular and biochemical mechanisms underlying preproprotein processing and the functional importance of processing enzymes are well-characterised in mammals, but little studied outside this group. In contrast to mammals, Drosophila melanogaster lacks a gene for carboxypeptidase E (CPE), a key enzyme for mammalian peptide processing. By combining peptidomics and neurogenetics, we addressed the role of carboxypeptidase D (dCPD) in global neuropeptide processing and selected peptide-regulated behaviours in Drosophila. We found that a deficiency in dCPD results in C-terminally extended peptides across the peptidome, suggesting that dCPD took over CPE function in the fruit fly. dCPD is widely expressed throughout the nervous system, including peptidergic neurons in the mushroom body and neuroendocrine cells expressing adipokinetic hormone. Conditional hypomorphic mutation in the dCPD-encoding gene silver in the larva causes lethality, and leads to deficits in starvation-induced hyperactivity and appetitive gustatory preference, as well as to reduced viability and activity levels in adults. A phylogenomic analysis suggests that loss of CPE is not common to insects, but only occurred in Hymenoptera and Diptera. Our results show that dCPD is a key enzyme for neuropeptide processing and peptide-regulated behaviour in Drosophila. dCPD thus appears as a suitable target to genetically shut down total neuropeptide production in peptidergic neurons. The persistent occurrence of CPD in insect genomes may point to important further CPD functions beyond neuropeptide processing which cannot be fulfilled by CPE.
Collapse
Affiliation(s)
- Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Yasin Hamarat
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.,'Santaka' Valley I Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Luisa Trufasu
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Tim M Schendzielorz
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gertrud Gramlich
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jörg Kahnt
- Max-Planck-Institute of Terrestrial Microbiology, Marburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Wegener C, Hasan G. ER-Ca2+ sensor STIM regulates neuropeptides required for development under nutrient restriction in Drosophila. PLoS One 2019; 14:e0219719. [PMID: 31295329 PMCID: PMC6622525 DOI: 10.1371/journal.pone.0219719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
Neuroendocrine cells communicate via neuropeptides to regulate behaviour and physiology. This study examines how STIM (Stromal Interacting Molecule), an ER-Ca2+ sensor required for Store-operated Ca2+ entry, regulates neuropeptides required for Drosophila development under nutrient restriction (NR). We find two STIM-regulated peptides, Corazonin and short Neuropeptide F, to be required for NR larvae to complete development. Further, a set of secretory DLP (Dorso lateral peptidergic) neurons which co-express both peptides was identified. Partial loss of dSTIM caused peptide accumulation in the DLPs, and reduced systemic Corazonin signalling. Upon NR, larval development correlated with increased peptide levels in the DLPs, which failed to occur when dSTIM was reduced. Comparison of systemic and cellular phenotypes associated with reduced dSTIM, with other cellular perturbations, along with genetic rescue experiments, suggested that dSTIM primarily compromises neuroendocrine function by interfering with neuropeptide release. Under chronic stimulation, dSTIM also appears to regulate neuropeptide synthesis.
Collapse
Affiliation(s)
- Christian Wegener
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Am Hubland, Würzburg, Germany
| | - Gaiti Hasan
- National Centre For Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| |
Collapse
|
14
|
Degner EC, Ahmed-Braimah YH, Borziak K, Wolfner MF, Harrington LC, Dorus S. Proteins, Transcripts, and Genetic Architecture of Seminal Fluid and Sperm in the Mosquito Aedes aegypti. Mol Cell Proteomics 2019; 18:S6-S22. [PMID: 30552291 PMCID: PMC6427228 DOI: 10.1074/mcp.ra118.001067] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
The yellow fever mosquito, Aedes aegypti,, transmits several viruses causative of serious diseases, including dengue, Zika, and chikungunya. Some proposed efforts to control this vector involve manipulating reproduction to suppress wild populations or to replace them with disease-resistant mosquitoes. The design of such strategies requires an intimate knowledge of reproductive processes, yet our basic understanding of reproductive genetics in this vector remains largely incomplete. To accelerate future investigations, we have comprehensively catalogued sperm and seminal fluid proteins (SFPs) transferred to females in the ejaculate using tandem mass spectrometry. By excluding female-derived proteins using an isotopic labeling approach, we identified 870 sperm proteins and 280 SFPs. Functional composition analysis revealed parallels with known aspects of sperm biology and SFP function in other insects. To corroborate our proteome characterization, we also generated transcriptomes for testes and the male accessory glands-the primary contributors to Ae. aegypti, sperm and seminal fluid, respectively. Differential gene expression of accessory glands from virgin and mated males suggests that transcripts encoding proteins involved in protein translation are upregulated post-mating. Several SFP transcripts were also modulated after mating, but >90% remained unchanged. Finally, a significant enrichment of SFPs was observed on chromosome 1, which harbors the male sex determining locus in this species. Our study provides a comprehensive proteomic and transcriptomic characterization of ejaculate production and composition and thus provides a foundation for future investigations of Ae. aegypti, reproductive biology, from functional analysis of individual proteins to broader examination of reproductive processes.
Collapse
Affiliation(s)
- Ethan C Degner
- From the ‡Department of Entomology, Cornell University, Ithaca, New York
| | | | - Kirill Borziak
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York;.
| | - Laura C Harrington
- From the ‡Department of Entomology, Cornell University, Ithaca, New York;.
| | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York.
| |
Collapse
|
15
|
Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster. Genetics 2018; 207:1231-1253. [PMID: 29203701 DOI: 10.1534/genetics.117.199885] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 02/08/2023] Open
Abstract
Carbohydrate metabolism is essential for cellular energy balance as well as for the biosynthesis of new cellular building blocks. As animal nutrient intake displays temporal fluctuations and each cell type within the animal possesses specific metabolic needs, elaborate regulatory systems are needed to coordinate carbohydrate metabolism in time and space. Carbohydrate metabolism is regulated locally through gene regulatory networks and signaling pathways, which receive inputs from nutrient sensors as well as other pathways, such as developmental signals. Superimposed on cell-intrinsic control, hormonal signaling mediates intertissue information to maintain organismal homeostasis. Misregulation of carbohydrate metabolism is causative for many human diseases, such as diabetes and cancer. Recent work in Drosophila melanogaster has uncovered new regulators of carbohydrate metabolism and introduced novel physiological roles for previously known pathways. Moreover, genetically tractable Drosophila models to study carbohydrate metabolism-related human diseases have provided new insight into the mechanisms of pathogenesis. Due to the high degree of conservation of relevant regulatory pathways, as well as vast possibilities for the analysis of gene-nutrient interactions and tissue-specific gene function, Drosophila is emerging as an important model system for research on carbohydrate metabolism.
Collapse
|
16
|
Brookheart RT, Duncan JG. Modeling dietary influences on offspring metabolic programming in Drosophila melanogaster. Reproduction 2017; 152:R79-90. [PMID: 27450801 DOI: 10.1530/rep-15-0595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/17/2016] [Indexed: 01/08/2023]
Abstract
The influence of nutrition on offspring metabolism has become a hot topic in recent years owing to the growing prevalence of maternal and childhood obesity. Studies in mammals have identified several factors correlating with parental and early offspring dietary influences on progeny health; however, the molecular mechanisms that underlie these factors remain undiscovered. Mammalian metabolic tissues and pathways are heavily conserved in Drosophila melanogaster, making the fly an invaluable genetic model organism for studying metabolism. In this review, we discuss the metabolic similarities between mammals and Drosophila and present evidence supporting its use as an emerging model of metabolic programming.
Collapse
Affiliation(s)
- Rita T Brookheart
- Department of PediatricsWashington University School of Medicine, St Louis, MO, USA
| | - Jennifer G Duncan
- Department of PediatricsWashington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
17
|
Song W, Cheng D, Hong S, Sappe B, Hu Y, Wei N, Zhu C, O'Connor MB, Pissios P, Perrimon N. Midgut-Derived Activin Regulates Glucagon-like Action in the Fat Body and Glycemic Control. Cell Metab 2017; 25:386-399. [PMID: 28178568 PMCID: PMC5373560 DOI: 10.1016/j.cmet.2017.01.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/03/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
While high-caloric diet impairs insulin response to cause hyperglycemia, whether and how counter-regulatory hormones are modulated by high-caloric diet is largely unknown. We find that enhanced response of Drosophila adipokinetic hormone (AKH, the glucagon homolog) in the fat body is essential for hyperglycemia associated with a chronic high-sugar diet. We show that the activin type I receptor Baboon (Babo) autonomously increases AKH signaling without affecting insulin signaling in the fat body via, at least, increase of Akh receptor (AkhR) expression. Further, we demonstrate that Activin-β (Actβ), an activin ligand predominantly produced in the enteroendocrine cells (EEs) of the midgut, is upregulated by chronic high-sugar diet and signals through Babo to promote AKH action in the fat body, leading to hyperglycemia. Importantly, activin signaling in mouse primary hepatocytes also increases glucagon response and glucagon-induced glucose production, indicating a conserved role for activin in enhancing AKH/glucagon signaling and glycemic control.
Collapse
Affiliation(s)
- Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Daojun Cheng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Shangyu Hong
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Benoit Sappe
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Neil Wei
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Changqi Zhu
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pavlos Pissios
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Ordan E, Volk T. Amontillado is required for Drosophila Slit processing and for tendon-mediated muscle patterning. Biol Open 2016; 5:1530-1534. [PMID: 27628033 PMCID: PMC5087687 DOI: 10.1242/bio.020636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Slit cleavage into N-terminal and C-terminal polypeptides is essential for restricting the range of Slit activity. Although the Slit cleavage site has been characterized previously and is evolutionally conserved, the identity of the protease that cleaves Slit remains elusive. Our previous analysis indicated that Slit cleavage is essential to immobilize the active Slit-N at the tendon cell surfaces, mediating the arrest of muscle elongation. In an attempt to identify the protease required for Slit cleavage we performed an RNAi-based assay in the ectoderm and followed the process of elongation of the lateral transverse muscles toward tendon cells. The screen led to the identification of the Drosophila homolog of pheromone convertase 2 (PC2), Amontillado (Amon), as an essential protease for Slit cleavage. Further analysis indicated that Slit mobility on SDS polyacrylamide gel electrophoresis (SDS-PAGE) is slightly up-shifted in amon mutants, and its conventional cleavage into the Slit-N and Slit-C polypeptides is attenuated. Consistent with the requirement for amon to promote Slit cleavage and membrane immobilization of Slit-N, the muscle phenotype of amon mutant embryos was rescued by co-expressing a membrane-bound form of full-length Slit lacking the cleavage site and knocked into the slit locus. The identification of a novel protease component essential for Slit processing may represent an additional regulatory step in the Slit signaling pathway. Summary: The Drosophila homolog of pheromone convertase 2 (PC2), amontillado (Amon), is shown to contribute to Slit processing and further cleavage into an N-Slit, essential for Slit activity in directing muscle patterning.
Collapse
Affiliation(s)
- Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
19
|
Musashe DT, Purice MD, Speese SD, Doherty J, Logan MA. Insulin-like Signaling Promotes Glial Phagocytic Clearance of Degenerating Axons through Regulation of Draper. Cell Rep 2016; 16:1838-50. [PMID: 27498858 DOI: 10.1016/j.celrep.2016.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 05/23/2016] [Accepted: 07/09/2016] [Indexed: 01/15/2023] Open
Abstract
Neuronal injury triggers robust responses from glial cells, including altered gene expression and enhanced phagocytic activity to ensure prompt removal of damaged neurons. The molecular underpinnings of glial responses to trauma remain unclear. Here, we find that the evolutionarily conserved insulin-like signaling (ILS) pathway promotes glial phagocytic clearance of degenerating axons in adult Drosophila. We find that the insulin-like receptor (InR) and downstream effector Akt1 are acutely activated in local ensheathing glia after axotomy and are required for proper clearance of axonal debris. InR/Akt1 activity, it is also essential for injury-induced activation of STAT92E and its transcriptional target draper, which encodes a conserved receptor essential for glial engulfment of degenerating axons. Increasing Draper levels in adult glia partially rescues delayed clearance of severed axons in glial InR-inhibited flies. We propose that ILS functions as a key post-injury communication relay to activate glial responses, including phagocytic activity.
Collapse
Affiliation(s)
- Derek T Musashe
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Maria D Purice
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Sean D Speese
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Johnna Doherty
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 North Lake Avenue, Worcester, MA 01605, USA
| | - Mary A Logan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
20
|
Ou Q, Zeng J, Yamanaka N, Brakken-Thal C, O'Connor MB, King-Jones K. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. Cell Rep 2016; 16:247-262. [PMID: 27320926 DOI: 10.1016/j.celrep.2016.05.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/01/2016] [Accepted: 05/12/2016] [Indexed: 11/17/2022] Open
Abstract
Steroid hormones are ancient signaling molecules found in vertebrates and insects alike. Both taxa show intriguing parallels with respect to how steroids function and how their synthesis is regulated. As such, insects are excellent models for studying universal aspects of steroid physiology. Here, we present a comprehensive genomic and genetic analysis of the principal steroid hormone-producing organs in two popular insect models, Drosophila and Bombyx. We identified 173 genes with previously unknown specific expression in steroid-producing cells, 15 of which had critical roles in development. The insect neuropeptide PTTH and its vertebrate counterpart ACTH both regulate steroid production, but molecular targets of these pathways remain poorly characterized. Identification of PTTH-dependent gene sets identified the nuclear receptor HR4 as a highly conserved target in both Drosophila and Bombyx. We consider this study to be a critical step toward understanding how steroid hormone production and release are regulated in all animal models.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Jie Zeng
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Naoki Yamanaka
- Institute for Integrative Genome Biology, Center for Disease Vector Research, and Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Christina Brakken-Thal
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
21
|
Davis SM, Thomas AL, Nomie KJ, Huang L, Dierick HA. Tailless and Atrophin control Drosophila aggression by regulating neuropeptide signalling in the pars intercerebralis. Nat Commun 2016; 5:3177. [PMID: 24495972 DOI: 10.1038/ncomms4177] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/23/2013] [Indexed: 01/21/2023] Open
Abstract
Aggressive behaviour is widespread throughout the animal kingdom. However, its mechanisms are poorly understood, and the degree of molecular conservation between distantly related species is unknown. Here we show that knockdown of tailless (tll) increases aggression in Drosophila, similar to the effect of its mouse orthologue Nr2e1. Tll localizes to the adult pars intercerebralis (PI), which shows similarity to the mammalian hypothalamus. Knockdown of tll in the PI is sufficient to increase aggression and is rescued by co-expressing human NR2E1. Knockdown of Atrophin, a Tll co-repressor, also increases aggression, and both proteins physically interact in the PI. tll knockdown-induced aggression is fully suppressed by blocking neuropeptide processing or release from the PI. In addition, genetically activating PI neurons increases aggression, mimicking the aggression-inducing effect of hypothalamic stimulation. Together, our results suggest that a transcriptional control module regulates neuropeptide signalling from the neurosecretory cells of the brain to control aggressive behaviour.
Collapse
Affiliation(s)
- Shaun M Davis
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Amanda L Thomas
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Krystle J Nomie
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Longwen Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Herman A Dierick
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA [3] Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA [4] Program in Developmental Biology, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Diao F, Ironfield H, Luan H, Diao F, Shropshire WC, Ewer J, Marr E, Potter CJ, Landgraf M, White BH. Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. Cell Rep 2015; 10:1410-21. [PMID: 25732830 PMCID: PMC4373654 DOI: 10.1016/j.celrep.2015.01.059] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/06/2015] [Accepted: 01/27/2015] [Indexed: 12/27/2022] Open
Abstract
Genetically encoded effectors are important tools for probing cellular function in living animals, but improved methods for directing their expression to specific cell types are required. Here, we introduce a simple, versatile method for achieving cell-type-specific expression of transgenes that leverages the untapped potential of "coding introns" (i.e., introns between coding exons). Our method couples the expression of a transgene to that of a native gene expressed in the cells of interest using intronically inserted "plug-and-play" cassettes (called "Trojan exons") that carry a splice acceptor site followed by the coding sequences of T2A peptide and an effector transgene. We demonstrate the efficacy of this approach in Drosophila using lines containing suitable MiMIC (Minos-mediated integration cassette) transposons and a palette of Trojan exons capable of expressing a range of commonly used transcription factors. We also introduce an exchangeable, MiMIC-like Trojan exon construct that can be targeted to coding introns using the Crispr/Cas system.
Collapse
Affiliation(s)
- Fengqiu Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Holly Ironfield
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Feici Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - William C Shropshire
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - John Ewer
- Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Pasaje Harrington 287, Playa Ancha, Valparaiso, Chile
| | - Elizabeth Marr
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Boes KE, Ribeiro JMC, Wong A, Harrington LC, Wolfner MF, Sirot LK. Identification and characterization of seminal fluid proteins in the Asian tiger mosquito, Aedes albopictus. PLoS Negl Trop Dis 2014; 8:e2946. [PMID: 24945155 PMCID: PMC4063707 DOI: 10.1371/journal.pntd.0002946] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022] Open
Abstract
The Asian tiger mosquito (Aedes albopictus) is an important vector for pathogens that affect human health, including the viruses that cause dengue and Chikungunya fevers. It is also one of the world's fastest-spreading invasive species. For these reasons, it is crucial to identify strategies for controlling the reproduction and spread of this mosquito. During mating, seminal fluid proteins (Sfps) are transferred from male mosquitoes to females, and these Sfps modulate female behavior and physiology in ways that influence reproduction. Despite the importance of Sfps on female reproductive behavior in mosquitoes and other insects, the identity of Sfps in Ae. albopictus has not previously been reported. We used transcriptomics and proteomics to identify 198 Sfps in Ae. albopictus. We discuss possible functions of these Sfps in relation to Ae. albopictus reproduction-related biology. We additionally compare the sequences of these Sfps with proteins (including reported Sfps) in several other species, including Ae. aegypti. While only 72 (36.4%) of Ae. albopictus Sfps have putative orthologs in Ae. aegypti, suggesting low conservation of the complement of Sfps in these species, we find no evidence for an elevated rate of evolution or positive selection in the Sfps that are shared between the two Aedes species, suggesting high sequence conservation of those shared Sfps. Our results provide a foundation for future studies to investigate the roles of individual Sfps on feeding and reproduction in this mosquito. Functional analysis of these Sfps could inform strategies for managing the rate of pathogen transmission by Ae. albopictus.
Collapse
Affiliation(s)
- Kathryn E. Boes
- Department of Biology, College of Wooster, Wooster, Ohio, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Laura K. Sirot
- Department of Biology, College of Wooster, Wooster, Ohio, United States of America
| |
Collapse
|
24
|
Pauls D, Chen J, Reiher W, Vanselow JT, Schlosser A, Kahnt J, Wegener C. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling. Proc Natl Acad Sci U S A 2014; 111:8137-42. [PMID: 24821805 DOI: 10.1073/pnas.1315461111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sensory perception modulates lifespan across taxa, presumably due to alterations in physiological homeostasis after central nervous system integration. The coordinating circuitry of this control, however, remains unknown. Here, we used the Drosophila melanogaster gustatory system to dissect one component of sensory regulation of aging. We found that loss of the critical water sensor, pickpocket 28 (ppk28), altered metabolic homeostasis to promote internal lipid and water stores and extended healthy lifespan. Additionally, loss of ppk28 increased neuronal glucagon-like adipokinetic hormone (AKH) signaling, and the AKH receptor was necessary for ppk28 mutant effects. Furthermore, activation of AKH-producing cells alone was sufficient to enhance longevity, suggesting that a perceived lack of water availability triggers a metabolic shift that promotes the production of metabolic water and increases lifespan via AKH signaling. This work provides an example of how discrete gustatory signals recruit nutrient-dependent endocrine systems to coordinate metabolic homeostasis, thereby influencing long-term health and aging.
Collapse
|
26
|
Page RE, Rueppell O, Amdam GV. Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior. Annu Rev Genet 2012; 46:97-119. [PMID: 22934646 DOI: 10.1146/annurev-genet-110711-155610] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Honeybees form complex societies with a division of labor for reproduction, nutrition, nest construction and maintenance, and defense. How does it evolve? Tasks performed by worker honeybees are distributed in time and space. There is no central control over behavior and there is no central genome on which selection can act and effect adaptive change. For 22 years, we have been addressing these questions by selecting on a single social trait associated with nutrition: the amount of surplus pollen (a source of protein) that is stored in the combs of the nest. Forty-two generations of selection have revealed changes at biological levels extending from the society down to the level of the gene. We show how we constructed this vertical understanding of social evolution using behavioral and anatomical analyses, physiology, genetic mapping, and gene knockdowns. We map out the phenotypic and genetic architectures of food storage and foraging behavior and show how they are linked through broad epistasis and pleiotropy affecting a reproductive regulatory network that influences foraging behavior. This is remarkable because worker honeybees have reduced reproductive organs and are normally sterile; however, the reproductive regulatory network has been co-opted for behavioral division of labor.
Collapse
Affiliation(s)
- Robert E Page
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | |
Collapse
|
27
|
Sellami A, Wegener C, Veenstra JA. Functional significance of the copper transporter ATP7 in peptidergic neurons and endocrine cells inDrosophila melanogaster. FEBS Lett 2012; 586:3633-8. [DOI: 10.1016/j.febslet.2012.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
|
28
|
Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase. Genetics 2012; 192:457-66. [PMID: 22798489 DOI: 10.1534/genetics.112.143610] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adipokinetic hormone (AKH) is the equivalent of mammalian glucagon, as it is the primary insect hormone that causes energy mobilization. In Drosophila, current knowledge of the mechanisms regulating AKH signaling is limited. Here, we report that AMP-activated protein kinase (AMPK) is critical for normal AKH secretion during periods of metabolic challenges. Reduction of AMPK in AKH cells causes a suite of behavioral and physiological phenotypes resembling AKH cell ablations. Specifically, reduced AMPK function increases life span during starvation and delays starvation-induced hyperactivity. Neither AKH cell survival nor gene expression is significantly impacted by reduced AMPK function. AKH immunolabeling was significantly higher in animals with reduced AMPK function; this result is paralleled by genetic inhibition of synaptic release, suggesting that AMPK promotes AKH secretion. We observed reduced secretion in AKH cells bearing AMPK mutations employing a specific secretion reporter, confirming that AMPK functions in AKH secretion. Live-cell imaging of wild-type AKH neuroendocrine cells shows heightened excitability under reduced sugar levels, and this response was delayed and reduced in AMPK-deficient backgrounds. Furthermore, AMPK activation in AKH cells increases intracellular calcium levels in constant high sugar levels, suggesting that the underlying mechanism of AMPK action is modification of ionic currents. These results demonstrate that AMPK signaling is a critical feature that regulates AKH secretion, and, ultimately, metabolic homeostasis. The significance of these findings is that AMPK is important in the regulation of glucagon signaling, suggesting that the organization of metabolic networks is highly conserved and that AMPK plays a prominent role in these networks.
Collapse
|
29
|
|
30
|
Wegener C, Herbert H, Kahnt J, Bender M, Rhea JM. Deficiency of prohormone convertase dPC2 (AMONTILLADO) results in impaired production of bioactive neuropeptide hormones in Drosophila. J Neurochem 2011; 118:581-95. [PMID: 21138435 DOI: 10.1111/j.1471-4159.2010.07130.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christian Wegener
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany.
| | | | | | | | | |
Collapse
|