1
|
Cao S, Zeng Y, Pang K, Chen M, Guo R, Wu N, Fang C, Deng H, Zhang X, Xie X, Ouyang W, Yang H. Unraveling the causal impact of smoking and its DNA methylation signatures on cardiovascular disease: Mendelian randomization and colocalization analysis. Clin Epigenetics 2025; 17:1. [PMID: 39748436 PMCID: PMC11694376 DOI: 10.1186/s13148-024-01808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND To explore the mechanisms linking smoking to cardiovascular diseases (CVDs) from an epigenetic perspective. METHODS Mendelian Randomization (MR) analysis was performed to assess the causal effects of smoking behavior and DNA methylation levels at smoking-related CpG sites on nine CVDs, including aortic aneurysm, atrial fibrillation, coronary atherosclerosis, coronary heart disease, heart failure, intracerebral hemorrhage, ischemic stroke, myocardial infarction, subarachnoid hemorrhage. Colocalization analysis was used to further identify key smoking-related CpG sites from the MR causal estimates. Reactome enrichment analysis was used to elucidate the potential mechanisms. RESULTS MR analysis indicates that smoking behaviors are significantly associated with an increased risk of nine CVDs (OR > 1, P < 0.05). Through MR and colocalization analysis, five key smoking-related CpG sites were ultimately determined. DNA methylation alteration at cg25313468 (located in the TSS1500 region of REST) is simultaneously associated with the risk of atrial fibrillation, coronary atherosclerosis, coronary heart disease, and myocardial infarction. Additionally, cg21647257 (located in the TSS200 region of CLIP3) is associated with the risk of atrial fibrillation; cg06197751 (located in SGEF gene body) and cg07520810 (located in ARID5B gene body) are associated with the risk of coronary atherosclerosis; cg16822035 (located in MCF2L gene body) is associated with the risk of myocardial infarction. Enrichment analysis suggests that phosphatase and tensin homologue (PTEN) may be involved in the downstream mechanisms of cg25313468 (REST). CONCLUSION This study uncovers the relationship between smoking, DNA methylation, and CVDs, providing new insights into the pathogenic effect of smoking on CVDs from an epigenetic perspective.
Collapse
Affiliation(s)
- Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ke Pang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Minghua Chen
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Chao Fang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Huiyin Deng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoyi Zhang
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xiaohui Xie
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Abedin Y, Minchella P, Peterson R, Gonnella F, Graham A, Cook I, Javellana M, Jewell A, Spoozak L, Nothnick WB. Functional Analysis of RE1 Silencing Transcription Factor as a Putative Tumor Suppressor in Human Endometrial Cancer. Int J Mol Sci 2024; 25:9693. [PMID: 39273639 PMCID: PMC11395688 DOI: 10.3390/ijms25179693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Uterine cancer is the most common gynecologic malignancy in the United States, with endometrioid endometrial adenocarcinoma (EC) being the most common histologic sub-type. Considering the molecular classifications of EC, efforts have been made to identify additional biomarkers that can assist in diagnosis, prognosis, and individualized therapy. We sought to explore the relationship of Repressor Element 1 (RE1) silencing transcription factor (REST), which downregulates neuronal genes in non-neuronal tissue, along with matrix metalloproteinase-24 (MMP24) and EC. We analyzed the expression of REST and MMP24 in 31 cases of endometrial cancer and 16 controls. We then explored the baseline expression of REST and MMP24 in two EC cell lines (Ishikawa and HEC-1-A) compared to a benign cell line (t-HESC) and subsequently evaluated proliferation, migration, and invasion in the setting of loss of REST gene expression. REST and MMP24 expression were significantly lower in human EC samples compared to control samples. REST was highly expressed in EC cell lines, but decreasing REST gene expression increased proliferation (FC: 1.13X, p < 0.0001), migration (1.72X, p < 0.0001), and invasion (FC: 7.77X, p < 0.05) in Ishikawa cells, which are hallmarks of cancer progression and metastasis. These findings elicit a potential role for REST as a putative tumor suppressor in EC.
Collapse
Affiliation(s)
- Yasmin Abedin
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
| | - Paige Minchella
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (P.M.); (R.P.); (F.G.); (A.G.)
| | - Riley Peterson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (P.M.); (R.P.); (F.G.); (A.G.)
| | - Francesca Gonnella
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (P.M.); (R.P.); (F.G.); (A.G.)
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Amanda Graham
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (P.M.); (R.P.); (F.G.); (A.G.)
| | - Ian Cook
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
| | - Melissa Javellana
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
| | - Andrea Jewell
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
| | - Lori Spoozak
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
| | - Warren B. Nothnick
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.A.); (I.C.); (M.J.); (A.J.); (L.S.)
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (P.M.); (R.P.); (F.G.); (A.G.)
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Zheng D, Zhang Y, Yang S, Su N, Bakhoum M, Zhang G, Naderinezhad S, Mao Z, Wang Z, Zhou T, Li W. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST. Cell Death Discov 2024; 10:246. [PMID: 38777812 PMCID: PMC11111810 DOI: 10.1038/s41420-024-02031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively. No direct link between these two master neuronal regulators has been elucidated in the NED of PCa. We show that REST mRNA is downregulated in NEPC cell and mouse models, as well as in patient samples. Phenotypically, REST overexpression increases ADT sensitivity, represses NE genes, inhibits colony formation in culture, and xenograft tumor growth of PCa cells. As expected, ADT downregulates REST in PCa cells in culture and in mouse xenografts. Interestingly, CREB1 signaling represses REST expression. In studying the largely unclear mechanism underlying transcriptional repression of REST by ADT, we found that REST is a direct target of EZH2 epigenetic repression. Finally, genetic rescue experiments demonstrated that ADT induces NED through EZH2's repression of REST, which is enhanced by ADT-activated CREB1 signaling. In summary, our study has revealed a key pathway underlying NE gene upregulation by ADT, as well as established novel relationships between CREB1 and REST, and between EZH2 and REST, which may also have implications in other cancer types and in neurobiology.
Collapse
Affiliation(s)
- Dayong Zheng
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Oncology, Shunde Hospital, Southern Medical University, Foshan, China
- The First People's Hospital of Shunde, Foshan, China
| | - Yan Zhang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sukjin Yang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ning Su
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Bakhoum
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guoliang Zhang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Samira Naderinezhad
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Zhengmei Mao
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng Wang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ting Zhou
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wenliang Li
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
4
|
Deshpande K, Martirosian V, Nakamura BN, Das D, Iyer M, Reed M, Shao L, Bamshad D, Buckley NJ, Neman J. SRRM4-mediated REST to REST4 dysregulation promotes tumor growth and neural adaptation in breast cancer leading to brain metastasis. Neuro Oncol 2024; 26:309-322. [PMID: 37716001 PMCID: PMC10836770 DOI: 10.1093/neuonc/noad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Effective control of brain metastasis remains an urgent clinical need due a limited understanding of the mechanisms driving it. Although the gain of neuro-adaptive attributes in breast-to-brain metastases (BBMs) has been described, the mechanisms that govern this neural acclimation and the resulting brain metastasis competency are poorly understood. Herein, we define the role of neural-specific splicing factor Serine/Arginine Repetitive Matrix Protein 4 (SRRM4) in regulating microenvironmental adaptation and brain metastasis colonization in breast cancer cells. METHODS Utilizing pure neuronal cultures and brain-naive and patient-derived BM tumor cells, along with in vivo tumor modeling, we surveyed the early induction of mediators of neural acclimation in tumor cells. RESULTS When SRRM4 is overexpressed in systemic breast cancer cells, there is enhanced BBM leading to poorer overall survival in vivo. Concomitantly, SRRM4 knockdown expression does not provide any advantage in central nervous system metastasis. In addition, reducing SRRM4 expression in breast cancer cells slows down proliferation and increases resistance to chemotherapy. Conversely, when SRRM4/REST4 levels are elevated, tumor cell growth is maintained even in nutrient-deprived conditions. In neuronal coculture, decreasing SRRM4 expression in breast cancer cells impairs their ability to adapt to the brain microenvironment, while increasing SRRM4/RE-1 Silencing Transcription Factor (REST4) levels leads to greater expression of neurotransmitter and synaptic signaling mediators and a significant colonization advantage. CONCLUSIONS Collectively, our findings identify SRRM4 as a regulator of brain metastasis colonization, and a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA)
| | - Vahan Martirosian
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brooke N Nakamura
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Diganta Das
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mukund Iyer
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Max Reed
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ling Shao
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniella Bamshad
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Josh Neman
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Barra J, Crosbourne I, Roberge CL, Bossardi-Ramos R, Warren JSA, Matteson K, Wang L, Jourd'heuil F, Borisov SM, Bresnahan E, Bravo-Cordero JJ, Dmitriev RI, Jourd'heuil D, Adam AP, Lamar JM, Corr DT, Barroso MM. DMT1-dependent endosome-mitochondria interactions regulate mitochondrial iron translocation and metastatic outgrowth. Oncogene 2024; 43:650-667. [PMID: 38184712 PMCID: PMC10890933 DOI: 10.1038/s41388-023-02933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Transient early endosome (EE)-mitochondria interactions can mediate mitochondrial iron translocation, but the associated mechanisms are still elusive. We showed that Divalent Metal Transporter 1 (DMT1) sustains mitochondrial iron translocation via EE-mitochondria interactions in triple-negative MDA-MB-231, but not in luminal A T47D breast cancer cells. DMT1 silencing increases labile iron pool (LIP) levels and activates PINK1/Parkin-dependent mitophagy in MDA-MB-231 cells. Mitochondrial bioenergetics and the iron-associated protein profile were altered by DMT1 silencing and rescued by DMT1 re-expression. Transcriptomic profiles upon DMT1 silencing are strikingly different between 2D and 3D culture conditions, suggesting that the environment context is crucial for the DMT1 knockout phenotype observed in MDA-MB-231 cells. Lastly, in vivo lung metastasis assay revealed that DMT1 silencing promoted the outgrowth of lung metastatic nodules in both human and murine models of triple-negative breast cancer cells. These findings reveal a DMT1-dependent pathway connecting EE-mitochondria interactions to mitochondrial iron translocation and metastatic fitness of breast cancer cells.
Collapse
Affiliation(s)
- Jonathan Barra
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Isaiah Crosbourne
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Cassandra L Roberge
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Ramon Bossardi-Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Kailie Matteson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ling Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Frances Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology Stremayrgasse 9, 8010, Graz, Austria
| | - Erin Bresnahan
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medical and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Margarida M Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
6
|
Briest F, Noerenberg D, Hennch C, Yoshida K, Hablesreiter R, Nimo J, Sasca D, Kirchner M, Mansouri L, Inoue Y, Wiegand L, Staiger AM, Casadei B, Korkolopoulou P, Weiner J, Lopez-Guillermo A, Warth A, Schneider T, Nagy Á, Klapper W, Hummel M, Kanellis G, Anagnostopoulos I, Mertins P, Bullinger L, Rosenquist R, Vassilakopoulos TP, Ott G, Ogawa S, Damm F. Frequent ZNF217 mutations lead to transcriptional deregulation of interferon signal transduction via altered chromatin accessibility in B cell lymphoma. Leukemia 2023; 37:2237-2249. [PMID: 37648814 PMCID: PMC10624633 DOI: 10.1038/s41375-023-02013-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Recent exome-wide studies discovered frequent somatic mutations in the epigenetic modifier ZNF217 in primary mediastinal B cell lymphoma (PMBCL) and related disorders. As functional consequences of ZNF217 alterations remain unknown, we comprehensively evaluated their impact in PMBCL. Targeted sequencing identified genetic lesions affecting ZNF217 in 33% of 157 PMBCL patients. Subsequent gene expression profiling (n = 120) revealed changes in cytokine and interferon signal transduction in ZNF217-aberrant PMBCL cases. In vitro, knockout of ZNF217 led to changes in chromatin accessibility interfering with binding motifs for crucial lymphoma-associated transcription factors. This led to disturbed expression of interferon-responsive and inflammation-associated genes, altered cell behavior, and aberrant differentiation. Mass spectrometry demonstrates that ZNF217 acts within a histone modifier complex containing LSD1, CoREST and HDAC and interferes with H3K4 methylation and H3K27 acetylation. Concluding, our data suggest non-catalytic activity of ZNF217, which directs histone modifier complex function and controls B cell differentiation-associated patterns of chromatin structure.
Collapse
Affiliation(s)
- Franziska Briest
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Noerenberg
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Hennch
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Cancer Genome Project Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Raphael Hablesreiter
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose Nimo
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Sasca
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Laura Wiegand
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, and University of Tuebingen, Stuttgart, Germany
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - January Weiner
- Core Unit Bioinformatics Berlin, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Ákos Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Michael Hummel
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - George Kanellis
- Department of Hematopathology, Evangelismos General Hospital, Athens, Greece
| | - Ioannis Anagnostopoulos
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros P Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Li W, Zheng D, Zhang Y, Yang S, Su N, Bakhoum M, Zhang G, Naderinezhad S, Mao Z, Wang Z, Zhou T. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST. RESEARCH SQUARE 2023:rs.3.rs-3270539. [PMID: 37886478 PMCID: PMC10602109 DOI: 10.21203/rs.3.rs-3270539/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively. No direct link between these two master neuronal regulators has been elucidated in the NED of PCa. We show that REST mRNA is downregulated in NEPC cell and mouse models, as well as in patient samples. Phenotypically, REST overexpression increases ADT sensitivity, represses NE genes, inhibits colony formation in culture, and xenograft tumor growth of PCa cells. As expected, ADT downregulates REST in PCa cells in culture and in mouse xenografts. Interestingly, CREB1 signaling represses REST expression. In studying the largely unclear mechanism underlying transcriptional repression of REST by ADT, we found that REST is a direct target of EZH2 epigenetic repression. Finally, genetic rescue experiments demonstrated that ADT induces NED through EZH2's repression of REST, which is enhanced by ADT-activated CREB signaling. In summary, our study has revealed a key pathway underlying NE gene upregulation by ADT, as well as established novel relationships between CREB1 and REST, and between EZH2 and REST, which may also have implications in other cancer types and in neurobiology.
Collapse
Affiliation(s)
- Wenliang Li
- The University of Texas Health Science Center at Houston
| | - Dayong Zheng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University
| | - Yan Zhang
- The University of Texas Health Science Center at Houston
| | - Sukjin Yang
- The University of Texas Health Science Center at Houston
| | - Ning Su
- The University of Texas Health Science Center at Houston
| | | | - Guoliang Zhang
- Shanghai Sixth People's Hospital, Shanghai Jiaotong University
| | | | - Zhengmei Mao
- The University of Texas Health Science Center at Houston
| | - Zheng Wang
- The University of Texas Health Science Center at Houston
| | - Ting Zhou
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston
| |
Collapse
|
8
|
Naderinezhad S, Zhang G, Wang Z, Zheng D, Hulsurkar M, Bakhoum M, Su N, Yang H, Shen T, Li W. A novel GRK3-HDAC2 regulatory pathway is a key direct link between neuroendocrine differentiation and angiogenesis in prostate cancer progression. Cancer Lett 2023; 571:216333. [PMID: 37543278 PMCID: PMC11235056 DOI: 10.1016/j.canlet.2023.216333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The mechanisms underlying the progression of prostate cancer (PCa) to neuroendocrine prostate cancer (NEPC), an aggressive PCa variant, are largely unclear. Two prominent NEPC phenotypes are elevated NE marker expression and heightened angiogenesis. Identifying the still elusive direct molecular links connecting angiogenesis and neuroendocrine differentiation (NED) is crucial for our understanding and targeting of NEPC. Here we found that histone deacetylase 2 (HDAC2), whose role in NEPC has not been reported, is one of the most upregulated epigenetic regulators in NEPC. HDAC2 promotes both NED and angiogenesis. G protein-coupled receptor kinase 3 (GRK3), also upregulated in NEPC, is a critical promoter for both phenotypes too. Of note, GRK3 phosphorylates HDAC2 at S394, which enhances HDAC2's epigenetic repression of potent anti-angiogenic factor Thrombospondin 1 (TSP1) and master NE-repressor RE1 Silencing Transcription Factor (REST). Intriguingly, REST suppresses angiogenesis while TSP1 suppresses NE marker expression in PCa cells, indicative of their novel functions and their synergy in cross-repressing the two phenotypes. Furthermore, the GRK3-HDAC2 pathway is activated by androgen deprivation therapy and hypoxia, both known to promote NED and angiogenesis in PCa. These results indicate that NED and angiogenesis converge on GRK3-enhanced HDAC2 suppression of REST and TSP1, which constitutes a key missing link between two prominent phenotypes of NEPC.
Collapse
Affiliation(s)
- Samira Naderinezhad
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Guoliang Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dayong Zheng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mohit Hulsurkar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Michael Bakhoum
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ning Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Han Yang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
9
|
Vega-Benedetti AF, Loi E, Moi L, Zavattari P. DNA methylation alterations at RE1-silencing transcription factor binding sites and their flanking regions in cancer. Clin Epigenetics 2023; 15:98. [PMID: 37301955 PMCID: PMC10257853 DOI: 10.1186/s13148-023-01514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND DNA methylation changes, frequent early events in cancer, can modulate the binding of transcription factors. RE1-silencing transcription factor (REST) plays a fundamental role in regulating the expression of neuronal genes, and in particular their silencing in non-neuronal tissues, by inducing chromatin modifications, including DNA methylation changes, not only in the proximity of its binding sites but also in the flanking regions. REST has been found aberrantly expressed in brain cancer and other cancer types. In this work, we investigated DNA methylation alterations at REST binding sites and their flanking regions in a brain cancer (pilocytic astrocytoma), two gastrointestinal tumours (colorectal cancer and biliary tract cancer) and a blood cancer (chronic lymphocytic leukemia). RESULTS Differential methylation analyses focused on REST binding sites and their flanking regions were conducted between tumour and normal samples from our experimental datasets analysed by Illumina microarrays and the identified alterations were validated using publicly available datasets. We discovered distinct DNA methylation patterns between pilocytic astrocytoma and the other cancer types in agreement with the opposite oncogenic and tumour suppressive role of REST in glioma and non-brain tumours. CONCLUSIONS Our results suggest that these DNA methylation alterations in cancer may be associated with REST dysfunction opening the enthusiastic possibility to develop novel therapeutic interventions based on the modulation of this master regulator in order to restore the aberrant methylation of its target regions into a normal status.
Collapse
Affiliation(s)
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042, Cagliari, Italy
| | - Loredana Moi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042, Cagliari, Italy
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042, Cagliari, Italy.
| |
Collapse
|
10
|
REST/NRSF Silencing Modifies Neuronal Gene Expression in siRNA-Treated HeLa Cells: A Preliminary Exploration in the Search for Neuronal Biomarkers of Cervical Cancer. Medicina (B Aires) 2023; 59:medicina59030537. [PMID: 36984538 PMCID: PMC10054478 DOI: 10.3390/medicina59030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Background and Objectives: REST (RE1-silencing transcription factor) diminution is associated with transcriptional relaxation, neuropeptide overexpression, and phenotype redefinition in neuroendocrine cancers, but this effect has barely been studied in cervical cancer (CC). We previously reported reduced expressions of REST in samples with premalignant lesions and CC; however, the transcriptional consequences for neural genes associated with reduced REST expression in CC are unknown. Therefore, the objective of this work was to evaluate the expression of neuronal genes in cancerous cells with reduced expression levels of REST. Materials and Methods: Here, we monitored levels of REST by immunostaining along the premalignant lesions and in invasive cervical squamous cell carcinoma (SCC) and endocervical adenocarcinoma (ADC) in tissue samples from female patients from southern Mexico and the derivative cell lines SiHa and HeLa, respectively. Next, we selected REST target genes in silico and explored the effect of REST silencing by RT-PCR in siRNA-treated HeLa cells. Results: The results show a REST diminution in premalignant lesions, SCC, ADC, and cancerous cell lines. Further REST silencing in HeLa cells altered the expression of genes containing the RE1 (Restrictive Element 1) sequence, including CgA (chromogranin A), CHRNβ2 (cholinergic receptor nicotinic β 2 subunit), BDNF (brain-derived neurotrophic factor), CRF (corticotropin-releasing factor), and RASSF1A (Ras association domain family 1). Conclusions: This work provides preliminary evidence of the role of REST loss in the transcriptional regulation of its target genes in HeLa cells, which could have positive implications for the search for new biomarkers of cervical cancer.
Collapse
|
11
|
The NRSF/REST transcription factor in hallmarks of cancer: From molecular mechanisms to clinical relevance. Biochimie 2023; 206:116-134. [PMID: 36283507 DOI: 10.1016/j.biochi.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
The RE-1 silencing transcription factor (REST), or neuron restrictive silencing factor (NRSF), was first identified as a repressor of neuronal genes in non-neuronal tissue. Interestingly, this transcription factor may act as a tumor suppressor or an oncogenic role in developing neuroendocrine and other tumors in patients. The hallmarks of cancer include six biological processes, including proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, inducing angiogenesis, and activating invasion and metastasis. In addition to two emerging hallmarks, the reprogramming of energy metabolism and evasion of the immune response are all implicated in the development of human tumors. It is essential to know the role of these processes as they will affect the outcome of alternatives for cancer treatment. Various studies in this review demonstrate that NRSF/REST affects the different hallmarks of cancer that could position NRSF/REST as an essential target in the therapy and diagnosis of certain types of cancer.
Collapse
|
12
|
Yoshida M, Oda C, Mishima K, Tsuji I, Obika S, Shimojo M. An antisense amido-bridged nucleic acid gapmer oligonucleotide targeting SRRM4 alters REST splicing and exhibits anti-tumor effects in small cell lung cancer and prostate cancer cells. Cancer Cell Int 2023; 23:8. [PMID: 36650528 PMCID: PMC9847160 DOI: 10.1186/s12935-022-02842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Antisense oligonucleotide (ASO) medicine for clinical applications has been becoming a reality. We previously developed a gapmer ASO targeting Ser/Arg repetitive matrix 4 (SRRM4) that is abnormally expressed in small cell lung cancer (SCLC). However the detailed mechanism of ASO through repressing SRRM4 has not been completely elucidated. Further, effectiveness of SRRM4 ASO to prostate cancer (PCa) cells expressing SRRM4 similar to SCLC remains to be elucidated. RE1-silencing transcription factor (REST) is a tumor suppressor, and its splicing isoform (sREST) is abnormally expressed by SRRM4 and causes carcinogenesis with neuroendocrine phenotype in SCLC. The present study aimed to understand the contribution of REST splicing by SRRM4 ASO administration. METHODS SRRM4 expression and REST splicing were analyzed by RT-qPCR and conventional RT-PCR after treating SRRM4 ASO, and cell viability was analyzed in vitro. Exogenous reconstitution of Flag-tagged REST plasmid in SCLC cells and the splice-switching oligonucleotide (SSO) specific for REST was analyzed for cell viability. Furthermore, we expanded the application of SRRM4 ASO in PCa cells abnormally expressing SRRM4 mRNA in vitro. RESULTS SRRM4 ASO successfully downregulated SRRM4 expression, followed by repressed cell viability of SCLC and PCa cells in a dose-dependent manner. Administration of SRRM4 ASO then modified the alternative splicing of REST, resulting reduced cell viability. REST SSO specifically modified REST splicing increased REST expression, resulting in reduced cell viability. CONCLUSIONS Our data demonstrate that a gapmer ASO targeting SRRM4 (SRRM4 ASO) reduces cell viability through splicing changes of REST, followed by affecting REST-controlled genes in recalcitrant tumors SCLC and PCa cells.
Collapse
Affiliation(s)
- Misa Yoshida
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Chihiro Oda
- grid.136593.b0000 0004 0373 3971School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Keishiro Mishima
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Itsuki Tsuji
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Satoshi Obika
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871 Japan ,grid.482562.fNational Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka 567-0085 Japan
| | - Masahito Shimojo
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
13
|
Loss of the repressor REST affects progesterone receptor function and promotes uterine leiomyoma pathogenesis. Proc Natl Acad Sci U S A 2022; 119:e2205524119. [PMID: 36282915 PMCID: PMC9636955 DOI: 10.1073/pnas.2205524119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Uterine leiomyomas (UL) are benign tumors that arise in the myometrial layer of the uterus. The standard treatment option for UL is hysterectomy, although hormonal therapies, such as selective progesterone receptor modulators, are often used as temporary treatment options to reduce symptoms or to slow the growth of tumors. However, since the pathogenesis of UL is poorly understood and most hormonal therapies are not based on UL-specific, divergent hormone signaling pathways, hallmarks that predict long-term efficacy and safety of pharmacotherapies remain largely undefined. In a previous study, we reported that aberrant expression of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes activate UL growth due to the near ubiquitous loss of REST. Here, we show that ablation of the Rest gene in mouse uterus leads to UL phenotype and gene-expression patterns analogous to UL, including altered estrogen and progesterone signaling pathways. We demonstrate that many of the genes dysregulated in UL harbor cis-regulatory elements bound by REST and progesterone receptor (PGR) adjacent to each other. Crucially, we identify an interaction between REST and PGR in healthy myometrium and present a putative mechanism for the dysregulation of progesterone-responsive genes in UL ensuing in the loss of REST. Using three Rest conditional knockout mouse lines, we provide a comprehensive picture of the impact loss of REST has in UL pathogenesis and in altering the response of UL to steroid hormones.
Collapse
|
14
|
Cloud AS, Vargheese AM, Gunewardena S, Shimak RM, Ganeshkumar S, Kumaraswamy E, Jensen RA, Chennathukuzhi VM. Loss of REST in breast cancer promotes tumor progression through estrogen sensitization, MMP24 and CEMIP overexpression. BMC Cancer 2022; 22:180. [PMID: 35177031 PMCID: PMC8851790 DOI: 10.1186/s12885-022-09280-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women, and is both pathologically and genetically heterogeneous, making early detection and treatment difficult. A subset of breast cancers express normal levels of REST (repressor element 1 silencing transcription factor) mRNA but lack functional REST protein. Loss of REST function is seen in ~ 20% of breast cancers and is associated with a more aggressive phenotype and poor prognosis. Despite the frequent loss of REST, little is known about the role of REST in the molecular pathogenesis of breast cancer. METHODS TCGA data was analyzed for the expression of REST target genes in breast cancer patient samples. We then utilized gene knockdown in MCF-7 cells in the presence or absence of steroid hormones estrogen and/ progesterone followed by RNA sequencing, as well as chromatin immunoprecipitation and PCR in an attempt to understand the tumor suppressor role of REST in breast cancer. RESULTS We show that REST directly regulates CEMIP (cell migration-inducing and hyaluronan-binding protein, KIAA1199) and MMP24 (matrix metallopeptidase 24), genes known to have roles in invasion and metastasis. REST knockdown in breast cancer cells leads to significant upregulation of CEMIP and MMP24. In addition, we found REST binds to RE-1 sites (repressor element-1) within the genes and influences their transcription. Furthermore, we found that the estrogen receptor (ESR1) signaling pathway is activated in the absence of REST, regardless of hormone treatment. CONCLUSIONS We demonstrate a critical role for the loss of REST in aggressive breast cancer pathogenesis and provide evidence for REST as an important diagnostic marker for personalized treatment plans.
Collapse
Affiliation(s)
- Ashley S. Cloud
- grid.412016.00000 0001 2177 6375Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS USA
| | - Aditya M. Vargheese
- grid.412016.00000 0001 2177 6375Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS USA ,grid.468219.00000 0004 0408 2680The University of Kansas Cancer Center, Kansas City, KS USA ,grid.266515.30000 0001 2106 0692University of Kansas, Lawrence, KS USA
| | - Sumedha Gunewardena
- grid.412016.00000 0001 2177 6375Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS USA ,grid.412016.00000 0001 2177 6375Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS USA
| | - Raeann M. Shimak
- grid.468219.00000 0004 0408 2680The University of Kansas Cancer Center, Kansas City, KS USA ,grid.412016.00000 0001 2177 6375Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS USA
| | - Sornakala Ganeshkumar
- grid.412016.00000 0001 2177 6375Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS USA
| | - Easwari Kumaraswamy
- grid.468219.00000 0004 0408 2680The University of Kansas Cancer Center, Kansas City, KS USA ,grid.412016.00000 0001 2177 6375Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS USA
| | - Roy A. Jensen
- grid.468219.00000 0004 0408 2680The University of Kansas Cancer Center, Kansas City, KS USA ,grid.266515.30000 0001 2106 0692University of Kansas, Lawrence, KS USA ,grid.412016.00000 0001 2177 6375Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS USA ,grid.412016.00000 0001 2177 6375Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS USA ,grid.412016.00000 0001 2177 6375Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS USA
| | - Vargheese M. Chennathukuzhi
- grid.412016.00000 0001 2177 6375Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS USA ,grid.468219.00000 0004 0408 2680The University of Kansas Cancer Center, Kansas City, KS USA
| |
Collapse
|
15
|
Lee C, Chen Y, Hernandez E, Pong R, Ma S, Hofstad M, Kapur P, Zhau H, Chung LWK, Lai C, Lin H, Lee M, Raj GV, Hsieh J. The central role of Sphingosine kinase 1 in the development of neuroendocrine prostate cancer (NEPC): A new targeted therapy of NEPC. Clin Transl Med 2022; 12:e695. [PMID: 35184376 PMCID: PMC8858611 DOI: 10.1002/ctm2.695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroendocrine prostate cancer (NEPC) is often diagnosed as a sub-type from the castration-resistant prostate cancer (CRPC) recurred from the second generation of anti-androgen treatment and is a rapidly progressive fatal disease. The molecular mechanisms underlying the trans-differentiation from CRPC to NEPC are not fully characterized, which hampers the development of effective targeted therapy. METHODS Bioinformatic analyses were conducted to determine the clinical correlation of sphingosine kinase 1 (SphK1) in CRPC progression. To investigate the transcriptional regulation SphK1 and neuroendocrine (NE) transcription factor genes, both chromosome immunoprecipitation and luciferase reporter gene assays were performed. To demonstrate the role of SphK1 in NEPC development, neurosphere assay was carried out along with several biomarkers determined by quantitative PCR and western blot. Furthermore, in vivo NEPC xenograft models and patient-derived xenograft (PDX) model were employed to determine the effect of SphK1 inhibitors and target validation. RESULTS Significant prevalence of SphK1 in NEPC development is observed from clinical datasets. SphK1 is transcriptionally repressed by androgen receptor-RE1-silencing transcription factor (REST) complex. Furthermore, sphingosine 1-phosphate produced by SphK1 can modulate REST protein turnover via MAPK signaling pathway. Also, decreased REST protein levels enhance the expression of NE markers in CRPC, enabling the transition to NEPC. Finally, specific SphK1 inhibitors can effectively inhibit the growth of NEPC tumors and block the REST protein degradation in PDX. CONCLUSIONS SphK1 plays a central role in NEPC development, which offers a new target for this lethal cancer using clinically approved SphK1 inhibitors.
Collapse
Affiliation(s)
- Cheng‐Fan Lee
- Department of UrologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of Biochemistry and Molecular BiologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yu‐An Chen
- Department of UrologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Elizabeth Hernandez
- Department of UrologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Rey‐Chen Pong
- Department of UrologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Shihong Ma
- Department of UrologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Mia Hofstad
- Department of UrologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Payal Kapur
- Urology and PathologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Haiyen Zhau
- Uro‐Oncology ResearchDepartment of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Leland WK Chung
- Uro‐Oncology ResearchDepartment of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Chih‐Ho Lai
- Department of Microbiology and ImmunologyGraduate Institute of Biomedical SciencesCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Ho Lin
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan
| | - Ming‐Shyue Lee
- Department of Biochemistry and Molecular BiologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Ganesh V Raj
- Department of UrologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jer‐Tsong Hsieh
- Department of UrologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
16
|
He R, Zhang X, Ding L. DBX2 promotes glioblastoma cell proliferation by regulating REST expression. Curr Pharm Biotechnol 2021; 23:1101-1108. [PMID: 34463226 DOI: 10.2174/1389201022666210830142827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common but lethal brain cancer with poor prognosis. The developing brain homeobox 2 (DBX2) has been reported to play important roles in tumor growth. However, the mechanisms of DBX2 in GBM are still unknown. OBJECTIVE This study aims to investigate the function and mechanisms of DBX2 in GBM. METHODS The expressions of DBX2 and REST in GBM were measured by analyzing data from databases, and the results were checked by qPCR and/or western blot of GBM cell lines. Cell proliferation was determined by CCK8 assay, immunohistochemistry and colony formation assay. ChIP-qPCR was used to determine the binding sites of DBX2 on REST. RESULTS In this study, we found that the expression of DBX2 was upregulated in the GBM cell lines. The cell proliferation was damaged after blocking DBX2 expression in U87 and U251 GBM cell lines. The expression level of DBX2 had a positive relationship with that of REST. Our ChIP-qPCR results showed that DBX2 is directly bound to the promoter region of REST. Additionally, the increased GBM cell proliferation caused by DBX2 overexpression can be rescued by REST loss of function. CONCLUSION DBX2 could promote cell proliferation of GBM by binding to the promoter region of REST gene and increasing REST expression.
Collapse
Affiliation(s)
- Ruixing He
- Neurosurgery Department, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu. China
| | - Xiaotian Zhang
- Neurosurgery Department, Hongze Huai'an District People's Hospital, Jiangsu. China
| | - Lianshu Ding
- Neurosurgery Department, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu. China
| |
Collapse
|
17
|
Vinchure OS, Whittemore K, Kushwah D, Blasco MA, Kulshreshtha R. miR-490 suppresses telomere maintenance program and associated hallmarks in glioblastoma. Cell Mol Life Sci 2021; 78:2299-2314. [PMID: 32970185 PMCID: PMC11073096 DOI: 10.1007/s00018-020-03644-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 01/15/2023]
Abstract
Glioblastoma (GBM) is the most aggressive cancer of central nervous system with worst patient outcome. Telomere maintenance is a crucial mechanism governing GBM initiation and progression making it an attractive target. microRNAs (miRNAs) have shown therapeutic potential in GBM. Earlier, we showed miR-490 is downregulated in GBM patients and plays a tumor suppressive role. Here, we show that miR-490 regulates telomere maintenance program in GBM by directly targeting Telomeric Repeat-binding Factor 2 (TERF2) of the shelterin complex, Tankyrase 2 (TNKS2) and Serine/Threonine-protein kinase, SMG1. Overexpression of miR-490 resulted in effects characteristic to hampered telomere maintenance via TERF2 inhibition. These include induction of telomere dysfunction-induced foci and global DNA damage (53BP1 foci), along with an increase in p-γH2AX levels. Further, it led to inhibition of telomere maintenance hallmarks via reduced stemness (SOX2 and SOX4 downregulation) and induction of senescence (H3K9me3 marks gain and SIRT1 downregulation). It also initiated downstream DNA damage response (DDR) leading to p53 pathway activation. Moreover, microarray data analysis highlighted an overlap between miR-490 expression and REST-inhibition responses in GBM. Thus, miR-490-mediated targeting of telomere maintenance could be therapeutically important in GBM.
Collapse
Affiliation(s)
- Omkar Suhas Vinchure
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Kurt Whittemore
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Deependra Kushwah
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Maria A Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
18
|
Criscuolo S, Gatti Iou M, Merolla A, Maragliano L, Cesca F, Benfenati F. Engineering REST-Specific Synthetic PUF Proteins to Control Neuronal Gene Expression: A Combined Experimental and Computational Study. ACS Synth Biol 2020; 9:2039-2054. [PMID: 32678979 DOI: 10.1021/acssynbio.0c00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regulation of gene transcription is an essential mechanism for differentiation and adaptation of organisms. A key actor in this regulation process is the repressor element 1 (RE1)-silencing transcription factor (REST), a transcriptional repressor that controls more than 2000 putative target genes, most of which are neuron-specific. With the purpose of modulating REST expression, we exploited synthetic, ad hoc designed, RNA binding proteins (RBPs) able to specifically target and dock to REST mRNA. Among the various families of RBPs, we focused on the Pumilio and FBF (PUF) proteins, present in all eukaryotic organisms and controlling a variety of cellular functions. Here, a combined experimental and computational approach was used to design and test 8- and 16-repeat PUF proteins specific for REST mRNA. We explored the conformational properties and atomic features of the PUF-RNA recognition code by Molecular Dynamics simulations. Biochemical assays revealed that the 8- and 16-repeat PUF-based variants specifically bind the endogenous REST mRNA without affecting its translational regulation. The data also indicate a key role of stacking residues in determining the binding specificity. The newly characterized REST-specific PUF-based constructs act as excellent RNA-binding modules and represent a versatile and functional platform to specifically target REST mRNA and modulate its endogenous expression.
Collapse
Affiliation(s)
- Stefania Criscuolo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Mahad Gatti Iou
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Assunta Merolla
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
- University of Genova, Genova 16132, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy
| |
Collapse
|
19
|
Significant decrease of a master regulator of genes (REST/NRSF) in high-grade squamous intraepithelial lesion and cervical cancer. Biomed J 2020; 44:S171-S178. [PMID: 35491677 PMCID: PMC9068566 DOI: 10.1016/j.bj.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
20
|
Roopra A. MAGIC: A tool for predicting transcription factors and cofactors driving gene sets using ENCODE data. PLoS Comput Biol 2020; 16:e1007800. [PMID: 32251445 PMCID: PMC7162552 DOI: 10.1371/journal.pcbi.1007800] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 04/16/2020] [Accepted: 03/19/2020] [Indexed: 01/26/2023] Open
Abstract
Transcriptomic profiling is an immensely powerful hypothesis generating tool. However, accurately predicting the transcription factors (TFs) and cofactors that drive transcriptomic differences between samples is challenging. A number of algorithms draw on ChIP-seq tracks to define TFs and cofactors behind gene changes. These approaches assign TFs and cofactors to genes via a binary designation of 'target', or 'non-target' followed by Fisher Exact Tests to assess enrichment of TFs and cofactors. ENCODE archives 2314 ChIP-seq tracks of 684 TFs and cofactors assayed across a 117 human cell lines under a multitude of growth and maintenance conditions. The algorithm presented herein, Mining Algorithm for GenetIc Controllers (MAGIC), uses ENCODE ChIP-seq data to look for statistical enrichment of TFs and cofactors in gene bodies and flanking regions in gene lists without an a priori binary classification of genes as targets or non-targets. When compared to other TF mining resources, MAGIC displayed favourable performance in predicting TFs and cofactors that drive gene changes in 4 settings: 1) A cell line expressing or lacking single TF, 2) Breast tumors divided along PAM50 designations 3) Whole brain samples from WT mice or mice lacking a single TF in a particular neuronal subtype 4) Single cell RNAseq analysis of neurons divided by Immediate Early Gene expression levels. In summary, MAGIC is a standalone application that produces meaningful predictions of TFs and cofactors in transcriptomic experiments.
Collapse
Affiliation(s)
- Avtar Roopra
- Dept. of Neuroscience, 5507 WIMR, University of Wisconsin-Madison, Madison, United States of America
| |
Collapse
|
21
|
Belluti S, Rigillo G, Imbriano C. Transcription Factors in Cancer: When Alternative Splicing Determines Opposite Cell Fates. Cells 2020; 9:E760. [PMID: 32244895 PMCID: PMC7140685 DOI: 10.3390/cells9030760] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine.
Collapse
Affiliation(s)
| | | | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; (S.B.); (G.R.)
| |
Collapse
|
22
|
Loss of RE-1 silencing transcription factor accelerates exocrine damage from pancreatic injury. Cell Death Dis 2020; 11:138. [PMID: 32080178 PMCID: PMC7033132 DOI: 10.1038/s41419-020-2269-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Regulation of pancreas plasticity is critical for preventing injury and promoting regeneration upon tissue damage. The intricate process of pancreatic differentiation is governed by an orchestrated network of positive and negative transcription factors for appropriate gene expression. While the transcriptional repressor REST is well characterized as a silencer of neuronal genes in non-neuronal cells, the role of REST in regulating exocrine pancreas cell identity remains largely unexplored. Rest expression is increased upon injury in the mouse pancreas, such as induced acute and chronic pancreatitis and ductal adenocarcinoma. At the cellular level, Rest expression is lower in mature acinar cells compared with pancreas progenitor and ductal cells. To investigate the role of REST activity in pancreatic transdifferentiation and homeostasis, we developed a novel mouse model (Cre/RESTfl/fl) with conditional knockout (KO) of Rest expression within pancreas cells. The high Cre-mediated excision efficiency of Rest exon two KO caused decreased Rest expression and activity within the pancreas. Short-term organoid cultures of pancreatic acini to undergo acinar-to-ductal metaplasia (ADM) showed that loss of REST impedes induced ADM, while overexpression of REST increases ADM. Interestingly, REST ablation accelerated acute pancreatitis in mice treated with the cholecystokinin analog caerulein, as indicated by cellular morphology, elevated serum amylase levels and pancreatic edema. Furthermore, Cre/RESTfl/fl mice were more sensitive to acute pancreatitis injury and displayed augmented tissue damage and cellular lesions. These results suggest REST has a novel protective role against pancreatic tissue damage by acting as a regulator of exocrine cell identity.
Collapse
|
23
|
Roles of TrkC Signaling in the Regulation of Tumorigenicity and Metastasis of Cancer. Cancers (Basel) 2020; 12:cancers12010147. [PMID: 31936239 PMCID: PMC7016819 DOI: 10.3390/cancers12010147] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tropomyosin receptor kinase (Trk) C contributes to the clinicopathology of a variety of human cancers, and new chimeric oncoproteins containing the tyrosine kinase domain of TrkC occur after fusion to the partner genes. Overexpression of TrkC and TrkC fusion proteins was observed in patients with a variety of cancers, including mesenchymal, hematopoietic, and those of epithelial cell lineage. Both microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) were involved in the regulation of TrkC expression through transcriptional and posttranscriptional alteration. Aberrant activation of TrkC and TrkC fusion proteins markedly induces the epithelial-mesenchymal transition (EMT) program, growth rate, tumorigenic capacity via constitutive activation of Ras-MAP kinase (MAPK), PI3K-AKT, and the JAK2-STAT3 pathway. The clinical trial of TrkC or TrkC fusion-positive cancers with newly developed Trk inhibitors demonstrated that Trk inhibitors were highly effective in inducing tumor regression in patients who do not harbor mutations in the kinase domain. Recently, there has been a progressive accumulation of mutations in TrkC or the TrkC fusion protein detected in the clinic and its related cancer cell lines caused by high-throughput DNA sequencing. Despite given the high overall response rate against Trk or Trk fusion proteins-positive solid tumors, acquired drug resistance was observed in patients with various cancers caused by mutations in the Trk kinase domain. To overcome acquired resistance caused by kinase domain mutation, next-generation Trk inhibitors have been developed, and these inhibitors are currently under investigation in clinical trials.
Collapse
|
24
|
Non-Methylation-Linked Mechanism of REST-Induced Neuroglobin Expression Impacts Mitochondrial Phenotypes in a Mouse Model of Amyotrophic Lateral Sclerosis. Neuroscience 2019; 412:233-247. [DOI: 10.1016/j.neuroscience.2019.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
|
25
|
Cortés-Sarabia K, Medina-Flores Y, Alarcón-Romero LDC, Mata-Ruíz O, Vences-Velázquez A, Rodríguez-Ruíz HA, Valdés J, Ortuño-Pineda C. Production and characterization of monoclonal antibodies against the DNA binding domain of the RE1-silencing transcription factor. J Biochem 2019; 166:393-402. [DOI: 10.1093/jb/mvz046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
The use of monoclonal antibodies for the detection of cellular biomarkers during carcinogenesis provides new strategies for cancer diagnosis or prognosis in patients. Loss of the Restrictive Element 1-Silencing Transcription (REST) factor has been observed in previous molecular and immunological approaches in aggressive breast cancer, small cell lung cancer, liver carcinoma, and colo-rectal cancer; however, for clinic diagnosis, monoclonal antibodies for REST recognition are unavailable. The goal of this work was to design, produce and characterize monoclonal antibodies against the REST DNA binding damain (DBD) that would be suitable for immunoassays. We searched for conserved domains, and immunogenic and antigenic sites in the REST structure via in silico analysis. For mice immunization, we used a recombinant REST DBD purified by affinity chromatography, and then Hybridomas were generated by mouse spleen fusion with myeloma cells. Finally, for monoclonal antibody characterization, we performed enzyme-linked immunosorbent (ELISA), western blot, dot blot, immunocytochemistry (ICC) and immunoprecipitation assays. Results showed that the DBD is conserved in REST isoforms and contains immunogenic and antigenic sites. We generated three clones producing monoclonal antibodies against REST DBD, one of them specifically recognized native REST and was suitable for ICC in samples from patients.
Collapse
Affiliation(s)
- Karen Cortés-Sarabia
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, Guerrero
| | - Yolanda Medina-Flores
- Instituto de Diagnóstico y Referencia Epidemiológicos “Dr. Manuel Martínez Báez”, Francisco de P. Miranda 177, Lomas de Plateros, Ciudad de México
| | - Luz Del Carmen Alarcón-Romero
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, Guerrero
| | - Olga Mata-Ruíz
- Instituto de Diagnóstico y Referencia Epidemiológicos “Dr. Manuel Martínez Báez”, Francisco de P. Miranda 177, Lomas de Plateros, Ciudad de México
| | - Amalia Vences-Velázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, Guerrero
| | - Hugo Alberto Rodríguez-Ruíz
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, Guerrero
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, 2508, Ciudad de México, México
| | - Carlos Ortuño-Pineda
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, Guerrero
| |
Collapse
|
26
|
Shimojo M, Kasahara Y, Inoue M, Tsunoda SI, Shudo Y, Kurata T, Obika S. A gapmer antisense oligonucleotide targeting SRRM4 is a novel therapeutic medicine for lung cancer. Sci Rep 2019; 9:7618. [PMID: 31110284 PMCID: PMC6527545 DOI: 10.1038/s41598-019-43100-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Small cell lung cancer (SCLC) is the most aggressive neuroendocrine phenotype of the deadliest human lung cancers. However the therapeutic landscape for SCLC has not changed in over 30 years. Effective treatment and prognosis are needed to combat this aggressive cancer. Herein we report that Ser/Arg repetitive matrix 4 (SRRM4), a splicing activator, is abnormally expressed at high levels in SCLC and thus is a potential therapeutic target. We screened an effective gapmer antisense oligonucleotide (gASO) targeting SRRM4 in vitro which led to cell death of SCLC. Our gASO, which is stabilized by containing artificial nucleotides, effectively represses SRRM4 mRNA. We found that our gASO repressed SRRM4 synthesis leading to a dramatic tumor reduction in a lung cancer mouse model. We also analyzed miRNA microarray and found that the miR-4516 is abnormally increased in exosomes in the blood of SCLC patients. Treating with gASO suppressed tumors in the SCLC model mouse concurrently reduced plasma miR-4516. In conclusion this study reports that administration of an SRRM4-targeted gASO coupled with a novel miRNA diagnostic methodology represents a potential breakthrough in the therapeutic treatment of high mortality SCLC.
Collapse
Affiliation(s)
- Masahito Shimojo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masaki Inoue
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo, 650-8586, Japan
| | - Shin-Ichi Tsunoda
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo, 650-8586, Japan
| | - Yoshie Shudo
- Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Takayasu Kurata
- Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| |
Collapse
|
27
|
Jin H, Liu P, Kong L, Fei X, Gao Y, Wu T, Sun D, Tan X. Identification of RE1-Silencing Transcription Factor as a Promoter of Metastasis in Pancreatic Cancer. Front Oncol 2019; 9:291. [PMID: 31041193 PMCID: PMC6476950 DOI: 10.3389/fonc.2019.00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is characterized by its rapid progression and early metastasis. This requires further elucidation of the key promoters for its progression and metastasis. In this study, we identified REST as the hub gene of a gene module which is closely associated with cancer stage by weighted gene correlation network analysis. Validation with the TCGA database, western blot analysis of human pancreatic cancer cell lines (AsPC-1, Capan-2, SW-1990, and PANC-1) and immunohistochemical analysis of paraffin-embedded pancreatic cancer tissue sections showed that REST was enriched in tissue samples of advanced stage and metastatic phenotype cell lines. Survival analysis with the TCGA database and our own follow-up data suggested that patients with higher expression level of REST showed worse overall survival rate. In vitro functional experiments suggested that knockdown of REST suppressed proliferation, migration, invasion and epithelial-mesenchymal transition of AsPC-1 and PANC-1 cells. In vivo experiments (a subcutaneous BALB/c nude mouse model and a superior mesenteric vein injection BALB/c nude mouse model) suggested that knockdown of REST suppressed growth and metastasis of xenograft tumor. Finally, we investigated the underlying molecular mechanism of REST and identified REST as a potential downstream target of MAPK signaling pathway. In conclusion, our results of bioinformatic analysis, in vitro and in vivo functional analysis suggested that REST may serve as a promoter of metastasis in pancreatic cancer.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Liu
- Thyroid and Pancreatic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingming Kong
- Department of Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Fei
- Department of Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Gao
- Department of Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianyu Wu
- Department of Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Defeng Sun
- Department of Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Tan
- Thyroid and Pancreatic Surgery Ward, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Dobson THW, Tao RH, Swaminathan J, Maegawa S, Shaik S, Bravo-Alegria J, Sharma A, Kennis B, Yang Y, Callegari K, Haltom AR, Taylor P, Kogiso M, Qi L, Khatua S, Goldman S, Lulla RR, Fangusaro J, MacDonald TJ, Li XN, Hawkins C, Rajaram V, Gopalakrishnan V. Transcriptional repressor REST drives lineage stage-specific chromatin compaction at Ptch1 and increases AKT activation in a mouse model of medulloblastoma. Sci Signal 2019; 12:12/565/eaan8680. [PMID: 30670636 DOI: 10.1126/scisignal.aan8680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In medulloblastomas (MBs), the expression and activity of RE1-silencing transcription factor (REST) is increased in tumors driven by the sonic hedgehog (SHH) pathway, specifically the SHH-α (children 3 to 16 years) and SHH-β (infants) subgroups. Neuronal maturation is greater in SHH-β than SHH-α tumors, but both correlate with poor overall patient survival. We studied the contribution of REST to MB using a transgenic mouse model (RESTTG ) wherein conditional NeuroD2-controlled REST transgene expression in lineage-committed Ptch1 +/- cerebellar granule neuron progenitors (CGNPs) accelerated tumorigenesis and increased penetrance and infiltrative disease. This model revealed a neuronal maturation context-specific antagonistic interplay between the transcriptional repressor REST and the activator GLI1 at Ptch1 Expression of Arrb1, which encodes β-arrestin1 (a GLI1 inhibitor), was substantially reduced in proliferating and, to a lesser extent, lineage-committed RESTTG cells compared with wild-type proliferating CGNPs. Lineage-committed RESTTG cells also had decreased GLI1 activity and increased histone H3K9 methylation at the Ptch1 locus, which correlated with premature silencing of Ptch1 These cells also had decreased expression of Pten, which encodes a negative regulator of the kinase AKT. Expression of PTCH1 and GLI1 were less, and ARRB1 was somewhat greater, in patient SHH-β than SHH-α MBs, whereas that of PTEN was similarly lower in both subtypes than in others. Inhibition of histone modifiers or AKT reduced proliferation and induced apoptosis, respectively, in cultured REST-high MB cells. Our findings linking REST to differentiation-specific chromatin remodeling, PTCH1 silencing, and AKT activation in MB tissues reveal potential subgroup-specific therapeutic targets for MB patients.
Collapse
Affiliation(s)
- Tara H W Dobson
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rong-Hua Tao
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Shinji Maegawa
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shavali Shaik
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Javiera Bravo-Alegria
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ajay Sharma
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bridget Kennis
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanwen Yang
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keri Callegari
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amanda R Haltom
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pete Taylor
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mari Kogiso
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lin Qi
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Soumen Khatua
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stewart Goldman
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Rishi R Lulla
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Jason Fangusaro
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | | | - Xiao-Nan Li
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Cynthia Hawkins
- Department of Pathology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Veena Rajaram
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA. .,Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Brain Tumor Center, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center-University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
29
|
Neuroendocrine Key Regulator Gene Expression in Merkel Cell Carcinoma. Neoplasia 2018; 20:1227-1235. [PMID: 30414538 PMCID: PMC6226622 DOI: 10.1016/j.neo.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 01/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive non-melanoma skin cancer of the elderly which is associated with the Merkel cell polyomavirus (MCPyV). MCC reveals a trilinear differentiation characterized by neuroendocrine, epithelial and pre/pro B-cell lymphocytic gene expression disguising the cellular origin of MCC. Here we investigated the expression of the neuroendocrine key regulators RE1 silencing transcription factor (REST), neurogenic differentiation 1 (NeuroD1) and the Achaete-scute homolog 1 (ASCL1) in MCC. All MCCs were devoid of REST and were positive for NeuroD1 expression. Only one MCC tissue revealed focal ASCL1 expression. This was confirmed in MCPyV-positive MCC cell lines. Of interest, MCPyV-negative cell lines did express REST. The introduction of REST expression in REST-negative, MCPyV-positive MCC cells downregulated the neuroendocrine gene expression. The lack of the neuroendocrine master regulator ASCL1 in almost all tested MCCs points to an important role of the absence of the negative regulator REST towards the MCC neuroendocrine phenotype. This is underlined by the expression of the REST-regulated microRNAs miR-9/9* in REST-negative MCC cell lines. These data might provide the basis for the understanding of neuroendocrine gene expression profile which is expected to help to elucidate the cellular origin of MCC.
Collapse
|
30
|
Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers. PLoS One 2018; 13:e0206008. [PMID: 30335837 PMCID: PMC6193703 DOI: 10.1371/journal.pone.0206008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancers (TNBCs) are known to express low PGR, ESR1, and ERBB2, and high KRT5, KRT14, and KRT17. However, the reasons behind the increased expressions of KRT5, KRT14, KRT17 and decreased expressions of PGR, ESR1, and ERBB2 in TNBCs are not fully understood. Here we show that, expression of chromosome 19 miRNA cluster (C19MC) specifically marks human TNBCs. Low REST and high CEBPB correlate with expression of C19MC, KRT5, KRT14, and KRT17 and enhancers of these genes/cluster are regulated by CEBPB and REST binding sites. The C19MC miRNAs in turn can potentially target REST to offer a positive feedback loop, and might target PGR, ESR1, ERBB2, GATA3, SCUBE2, TFF3 mRNAs to contribute towards TNBC phenotype. Thus our study demonstrates that C19MC miRNA expression marks TNBCs and that C19MC miRNAs and CEBPB might together determine the TNBC marker expression pattern.
Collapse
|
31
|
Burkholder NT, Mayfield JE, Yu X, Irani S, Arce DK, Jiang F, Matthews WL, Xue Y, Zhang YJ. Phosphatase activity of small C-terminal domain phosphatase 1 (SCP1) controls the stability of the key neuronal regulator RE1-silencing transcription factor (REST). J Biol Chem 2018; 293:16851-16861. [PMID: 30217818 DOI: 10.1074/jbc.ra118.004722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
The RE1-silencing transcription factor (REST) is the major scaffold protein for assembly of neuronal gene silencing complexes that suppress gene transcription through regulating the surrounding chromatin structure. REST represses neuronal gene expression in stem cells and non-neuronal cells, but it is minimally expressed in neuronal cells to ensure proper neuronal development. Dysregulation of REST function has been implicated in several cancers and neurological diseases. Modulating REST gene silencing is challenging because cellular and developmental differences can affect its activity. We therefore considered the possibility of modulating REST activity through its regulatory proteins. The human small C-terminal domain phosphatase 1 (SCP1) regulates the phosphorylation state of REST at sites that function as REST degradation checkpoints. Using kinetic analysis and direct visualization with X-ray crystallography, we show that SCP1 dephosphorylates two degron phosphosites of REST with a clear preference for phosphoserine 861 (pSer-861). Furthermore, we show that SCP1 stabilizes REST protein levels, which sustains REST's gene silencing function in HEK293 cells. In summary, our findings strongly suggest that REST is a bona fide substrate for SCP1 in vivo and that SCP1 phosphatase activity protects REST against degradation. These observations indicate that targeting REST via its regulatory protein SCP1 can modulate its activity and alter signaling in this essential developmental pathway.
Collapse
Affiliation(s)
| | | | - Xiaohua Yu
- the Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | | | | | - Faqin Jiang
- the School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Yuanchao Xue
- the Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Yan Jessie Zhang
- From the Departments of Molecular Biosciences and .,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
32
|
Yu Y, Li S, Zhang H, Zhang X, Guo D, Zhang J. NRSF/REST levels are decreased in cholangiocellular carcinoma but not hepatocellular carcinoma compared with normal liver tissues: A tissue microarray study. Oncol Lett 2018; 15:6592-6598. [PMID: 29725406 DOI: 10.3892/ol.2018.8169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/15/2017] [Indexed: 01/02/2023] Open
Abstract
The transcription factor neuron-restrictive silencer factor (NRSF), also termed repressor element 1-silencing transcription factor (REST), has been previously demonstrated to repress the expression of neuronal genes in non-neuronal cells, facilitating the controlled development and organization of nerve tissue. However, previous studies have reported NRSF/REST to be upregulated or downregulated in multiple types of carcinoma. Liver diseases are a major global health concern, with cirrhosis and liver carcinoma among the most common causes of mortality worldwide. A previous study demonstrated that there were >400 NRSF/REST target genes in mouse liver cells; however, the expression profile of NRSF/REST in human liver disease remains unclear. The present study examined NRSF/REST expression in human normal and liver carcinoma samples using tissue microarray immunohistochemistry. The results demonstrated that in normal liver tissues, NRSF/REST can be detected in the cytoplasm and nuclei of the cell; whereas in the liver carcinoma tissue, NRSF/REST is only detected in the cytoplasm. Furthermore, the number of samples with high levels of NRSF/REST was significantly lower in cholangiocellular carcinoma samples compared with normal tissues. Additionally, no detectable sex- or age-associated differences were identified in NRSF/REST expression among all the tissues examined. In conclusion, the results of the present study revealed nuclear loss of NRSF/REST in hepatic carcinomas and decreased expression of NRSF/REST in cholangiocellular carcinoma, indicating that the cytoplasmic translocation of NRSF/REST may be involved in liver tumorigenesis. A low expression level of NRSF/REST may be a novel biomarker for cholangiocellular carcinoma.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shan Li
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huiyan Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xuqing Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Deyu Guo
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
33
|
Xiong J, Su T, Qu Z, Yang Q, Wang Y, Li J, Zhou S. Triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer. Oncotarget 2018; 7:23933-46. [PMID: 27004407 PMCID: PMC5029675 DOI: 10.18632/oncotarget.8207] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/02/2016] [Indexed: 12/28/2022] Open
Abstract
Triptolide has been shown to exhibit anticancer activity. However, its mechanism of action is not clearly defined. Herein we report a novel signaling pathway, MDM2/Akt, is involved in the anticancer mechanism of triptolide. We observed that triptolide inhibits MDM2 expression in human breast cancer cells with either wild-type or mutant p53. This MDM2 inhibition resulted in decreased Akt activation. More specifically, triptolide interfered with the interaction between MDM2 and the transcription factor REST to increase expression of the regulatory subunit of PI3-kinase p85 and consequently inhibit Akt activation. We further showed that, regardless of p53 status, triptolide inhibited proliferation, induced apoptosis, and caused G1 phase cell cycle arrest. Triptolide also enhanced the cytotoxic effect of doxorubicin. MDM2 inhibition plays a causative role in these effects. The inhibitory effect of triptolide on MDM2-mediated Akt activation was eliminated with MDM2 overexpression. MDM2-overexpressing tumor cells, in turn, were less susceptible to the anticancer and chemosensitization effects of triptolide than control cells. Triptolide also exhibited anticancer and chemosensitization effects in nude mouse xenograft model. When it was administered to tumor-bearing nude mice, triptolide inhibited tumor growth and enhanced the antitumor effects of doxorubicin. In summary, triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer. Our study helps to elucidate the p53-independent regulatory function of MDM2 in Akt signaling, offering a novel view of the mechanism by which triptolide functions as an anticancer agent.
Collapse
Affiliation(s)
- Jing Xiong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiefen Su
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiling Qu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiansha Li
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sheng Zhou
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
34
|
Chen G, Ma Q, Goswami D, Shang J, Miller GM. Modulation of nuclear REST by alternative splicing: a potential therapeutic target for Huntington's disease. J Cell Mol Med 2017; 21:2974-2984. [PMID: 28524599 PMCID: PMC5661251 DOI: 10.1111/jcmm.13209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is caused by a genetically mutated huntingtin (mHtt) protein with expanded polyQ stretch, which impairs cytosolic sequestration of the repressor element-1 silencing transcription factor (REST), resulting in excessive nuclear REST and subsequent repression of neuronal genes. We recently demonstrated that REST undergoes extensive, context-dependent alternative splicing, of which exon-3 skipping (∆E3 )-a common event in human and nonhuman primates-causes loss of a motif critical for REST nuclear targeting. This study aimed to determine whether ∆E3 can be targeted to reduce nuclear REST and rescue neuronal gene expression in mouse striatal-derived, mHtt-expressing STHdhQ111/Q111 cells-a well-established cellular model of HD. We designed two morpholino antisense oligos (ASOs) targeting the splice sites of Rest E3 and examined their effects on ∆E3 , nuclear Rest accumulation and Rest-controlled gene expression in STHdhQ111/Q111 cells. We found that (1) the ASOs treatment significantly induced ∆E3 , reduced nuclear Rest, and rescued transcription and/or mis-splicing of specific neuronal genes (e.g. Syn1 and Stmn2) in STHdhQ111/Q111 cells; and (2) the ASOs-induced transcriptional regulation was dependent on ∆E3 induction and mimicked by siRNA-mediated knock-down of Rest expression. Our findings demonstrate modulation of nuclear REST by ∆E3 and its potential as a new therapeutic target for HD and provide new insights into environmental regulation of genome function and pathogenesis of HD. As ∆E3 is modulated by cellular signalling and linked to various types of cancer, we anticipate that ∆E3 contributes to environmentally tuned REST function and may have a broad range of clinical implications.
Collapse
Affiliation(s)
- Guo‐Lin Chen
- Department of Pharmaceutical Sciences and Center for Drug DiscoverySchool of PharmacyNortheastern UniversityBostonMAUSA
- Guangxi Collaborative Innovation Center for BiomedicineGuangxi Medical UniversityNanningGuangxiChina
- Research Center for Regenerative Medicine of GuangxiGuangxi Medical UniversityNanningGuangxiChina
| | - Qi Ma
- Department of PsychiatryInstitute for Human PerformanceSUNY Upstate Medical UniversitySyracuseNYUSA
| | - Dharmendra Goswami
- Center for the Study of Traumatic EncephalopathyBoston University School of MedicineBostonMAUSA
- Department of NeurologyBoston University School of MedicineBostonMAUSA
- VA Boston HealthCare SystemBostonMAUSA
| | - Jianyu Shang
- Department of Pharmaceutical Sciences and Center for Drug DiscoverySchool of PharmacyNortheastern UniversityBostonMAUSA
| | - Gregory M. Miller
- Department of Pharmaceutical Sciences and Center for Drug DiscoverySchool of PharmacyNortheastern UniversityBostonMAUSA
- Department of Chemical EngineeringSchool of EngineeringNortheastern UniversityBostonMAUSA
| |
Collapse
|
35
|
Kamarulzaman NS, Dewadas HD, Leow CY, Yaacob NS, Mokhtar NF. The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer. Cancer Cell Int 2017; 17:74. [PMID: 28785170 PMCID: PMC5540501 DOI: 10.1186/s12935-017-0442-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased expression of voltage-gated sodium channels (VGSCs) have been implicated with strong metastatic potential of human breast cancer in vitro and in vivo where the main culprits are cardiac isoform Nav1.5 and its 'neonatal' splice variant, nNav1.5. Several factors have been associated with Nav1.5 and nNav1.5 gain of expression in breast cancer mainly hormones, and growth factors. AIM This study aimed to investigate the role of epigenetics via transcription repressor, repressor element silencing transcription factor (REST) and histone deacetylases (HDACs) in enhancing Nav1.5 and nNav1.5 expression in human breast cancer by assessing the effect of HDAC inhibitor, trichostatin A (TSA). METHODS The less aggressive human breast cancer cell line, MCF-7 cells which lack Nav1.5 and nNav1.5 expression was treated with TSA at a concentration range 10-10,000 ng/ml for 24 h whilst the aggressive MDA-MB-231 cells was used as control. The effect of TSA on Nav1.5, nNav1.5, REST, HDAC1, HDAC2, HDAC3, MMP2 and N-cadherin gene expression level was analysed by real-time PCR. Cell growth (MTT assay) and metastatic behaviors (lateral motility and migration assays) were also measured. RESULTS mRNA expression level of Nav1.5 and nNav1.5 were initially very low in MCF-7 compared to MDA-MB-231 cells. Inversely, mRNA expression level of REST, HDAC1, HDAC2, and HDAC3 were all greater in MCF-7 compared to MDA-MB-231 cells. Treatment with TSA significantly increased the mRNA expression level of Nav1.5 and nNav1.5 in MCF-7 cells. On the contrary, TSA significantly reduced the mRNA expression level of REST and HDAC2 in this cell line. Remarkably, despite cell growth inhibition by TSA, motility and migration of MCF-7 cells were enhanced after TSA treatment, confirmed with the up-regulation of metastatic markers, MMP2 and N-cadherin. CONCLUSIONS This study identified epigenetics as another factor that regulate the expression level of Nav1.5 and nNav1.5 in breast cancer where REST and HDAC2 play important role as epigenetic regulators that when lacking enhances the expression of Nav1.5 and nNav1.5 thus promotes motility and migration of breast cancer. Elucidation of the regulatory mechanisms for gain of Nav1.5 and nNav1.5 expression may be helpful for seeking effective strategies for the management of metastatic diseases.
Collapse
Affiliation(s)
- Nur Sabrina Kamarulzaman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Hemaniswarri Dewi Dewadas
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
36
|
Russelli G, Pizzillo P, Iannolo G, Barbera F, Tuzzolino F, Liotta R, Traina M, Vizzini G, Gridelli B, Badami E, Conaldi PG. HCV replication in gastrointestinal mucosa: Potential extra-hepatic viral reservoir and possible role in HCV infection recurrence after liver transplantation. PLoS One 2017; 12:e0181683. [PMID: 28750044 PMCID: PMC5531480 DOI: 10.1371/journal.pone.0181683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Hepatitis C virus (HCV) predominantly infects hepatocytes, although it is known that receptors for viral entry are distributed on a wide array of target cells. Chronic HCV infection is indeed characterized by multiple non-liver manifestations, suggesting a more complex HCV tropism extended to extrahepatic tissues and remains to be fully elucidated. In this study, we investigated the gastrointestinal mucosa (GIM) as a potential extrahepatic viral replication site and its contribution to HCV recurrence. METHODS We analyzed GIM biopsies from a cohort of 76 patients, 11 of which were HCV-negative and 65 HCV-positive. Of these, 54 biopsies were from liver-transplanted patients. In 29 cases, we were able to investigate gastrointestinal biopsies from the same patient before and after transplant. To evaluate the presence of HCV, we looked for viral antigens and genome RNA, whilst to assess viral replicative activity, we searched for the replicative intermediate minus-strand RNA. We studied the genetic diversity and the phylogenetic relationship of HCV quasispecies from plasma, liver and gastrointestinal mucosa of HCV-liver-transplanted patients in order to assess HCV compartmentalization and possible contribution of gastrointestinal variants to liver re-infection after transplantation. RESULTS Here we show that HCV infects and replicates in the cells of the GIM and that the favorite hosts were mostly enteroendocrine cells. Interestingly, we observed compartmentalization of the HCV quasispecies present in the gastrointestinal mucosa compared to other tissues of the same patient. Moreover, the phylogenetic analysis revealed a high similarity between HCV variants detected in gastrointestinal mucosa and those present in the re-infected graft. CONCLUSIONS Our results demonstrated that the gastrointestinal mucosa might be considered as an extrahepatic reservoir of HCV and that could contribute to viral recurrence. Moreover, the finding that HCV infects and replicates in neuroendocrine cells opens new perspectives on the role of these cells in the natural history of HCV infection.
Collapse
Affiliation(s)
- Giovanna Russelli
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Pizzillo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Gioacchin Iannolo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Floriana Barbera
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Rosa Liotta
- Pathology Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Mario Traina
- Endoscopy Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Giovanni Vizzini
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Bruno Gridelli
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | | | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Fondazione Ri.MED, Palermo, Italy
| |
Collapse
|
37
|
Li C, Wang Z, Tang X, Zeng L, Fan X, Li Z. Molecular mechanisms and potential prognostic effects of REST and REST4 in glioma (Review). Mol Med Rep 2017; 16:3707-3712. [PMID: 29067465 DOI: 10.3892/mmr.2017.7071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/24/2017] [Indexed: 11/06/2022] Open
Abstract
Glioma refers to a tumor of the brain and central nervous system, which is characterized by high incidence, high mortality and high recurrence rate. Although the association between glioma and the repressor element silencing transcription factor (REST) has been reported by numerous studies, the complicated regulatory mechanisms underlying REST remain unknown. REST is a transcriptional repressor that undergoes alternative splicing to produce splicing variants when transcribed. Previous studies have demonstrated that alternative splicing may serve a role in the outcome of glioma. The present review discussed the mutual relationship among REST, REST4 and glioma. It was concluded that increased REST expression in glioma may be associated with poor prognosis; and REST4, an AS variant of REST, also functions to regulate glioma by suppressing REST. In addition, the present review discussed the regulation of REST and its target genes in glioma, and identified factors that induce REST alternative splicing, particularly in glioma. These findings suggest that REST may be considered a prognostic factor, which can be predictive of patient outcome.
Collapse
Affiliation(s)
- Cuilin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhifei Wang
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xinyue Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liu Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xitang Fan
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
38
|
Abstract
A recent study identified SCYL1 as one of the components of the oncogenic STP axis, which promotes triple-negative breast cancer by regulating degradation of the REST tumor suppressor. Contrary to the findings of that study, herein we show by using 3 distinct genetic approaches that SCYL1 does not regulate REST turnover. Specifically, REST protein levels and turnover were identical in Scyl1+/+ and Scyl1-/- mouse embryonic fibroblasts. Similarly, targeted inactivation of SCYL1 in Hek293T cells by using CRIPSR-Cas9 technology did not affect REST steady-state level and turnover. Furthermore, RNA interference–mediated depletion of SCYL1 in Hek293T or MDA-MB-231 cells did not alter REST steady-state level and turnover. Together, our findings indicate that SCYL1 does not contribute to REST turnover and thus do not support a previous study suggesting a role for SCYL1 in mediating REST degradation.
Collapse
|
39
|
REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep 2017; 7:42795. [PMID: 28256535 PMCID: PMC5335619 DOI: 10.1038/srep42795] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Castration-resistance prostate cancer (CRPC), also known as hormone-refractory prostate cancer (HRPC), requires immediate attention since it is not only resistant to androgen ablation, chemo- and radiotherapy, but also highly metastatic. Increasing evidence suggests that enrichment of neuroendocrine (NE) cells is associated with CRPC. Here, combined RNA-seq and ChIP-seq analysis reveals that REST is involved in epithelial-mesenchymal transition (EMT) and stemness acquisition in NE differentiated prostate cancer (PCa) cells via direct transcriptional repression of Twist1 and CD44. Specifically we show that short-term knockdown of REST induces NE differentiation of LNCaP cells. Long-term REST knockdown enhanced the expression of Twist1 and CD44, cell migration and sphere formation. Overexpression of REST in hormone-refractory CWR22Rv1 PCa cells significantly reduces Twist1 and CD44 expression, cell migration and sphere formation. Collectively, our study uncovers REST in regulating EMT and stemness properties of NE PCa cells and suggests that REST is a potential therapeutic target for CRPC.
Collapse
|
40
|
Interactomic analysis of REST/NRSF and implications of its functional links with the transcription suppressor TRIM28 during neuronal differentiation. Sci Rep 2016; 6:39049. [PMID: 27976729 PMCID: PMC5157023 DOI: 10.1038/srep39049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/17/2016] [Indexed: 01/06/2023] Open
Abstract
RE-1 silencing transcription factor (REST) is a transcriptional repressor that regulates gene expression by binding to repressor element 1. However, despite its critical function in physiology, little is known about its interaction proteins. Here we identified 204 REST-interacting proteins using affinity purification and mass spectrometry. The interactome included proteins associated with mRNA processing/splicing, chromatin organization, and transcription. The interactions of these REST-interacting proteins, which included TRIM28, were confirmed by co-immunoprecipitation and immunocytochemistry, respectively. Gene Ontology (GO) analysis revealed that neuronal differentiation-related GO terms were enriched among target genes that were co-regulated by REST and TRIM28, while the level of CTNND2 was increased by the knockdown of REST and TRIM28. Consistently, the level of CTNND2 increased while those of REST and TRIM28 decreased during neuronal differentiation in the primary neurons, suggesting that CTNND2 expression may be co-regulated by both. Furthermore, neurite outgrowth was increased by depletion of REST or TRIM28, implying that reduction of both REST and TRIM28 could promote neuronal differentiation via induction of CTNND2 expression. In conclusion, our study of REST reveals novel interacting proteins which could be a valuable resource for investigating unidentified functions of REST and also suggested functional links between REST and TRIM28 during neuronal development.
Collapse
|
41
|
α-Synuclein enhances histone H3 lysine-9 dimethylation and H3K9me2-dependent transcriptional responses. Sci Rep 2016; 6:36328. [PMID: 27808254 PMCID: PMC5093762 DOI: 10.1038/srep36328] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/11/2016] [Indexed: 12/26/2022] Open
Abstract
α-Synuclein (αS) is a protein linked to Parkinson’s disease (PD) and related neurodegenerative disorders. It is mostly localized within synapses, but αS has also been suggested to play a role in the nucleus. We used transgenic Drosophila and inducible SH-SY5Y neuroblastoma cells to investigate the effects of αS on chromatin with a particular focus on histone modifications. Overexpression of αS in male flies as well as in retinoic acid pre-treated neuroblastoma cells led to an elevation of histone H3K9 methylations, mostly mono- (H3K9me1) and di- (H3K9me2). The transient increase of H3K9 methylation in αS-induced SH-SY5Y cells was preceded by mRNA induction of the euchromatic histone lysine N-methyltransferase 2 (EHMT2). EHMT2 and H3K9me2 can function within the REST complex. Chromatin immunoprecipitation (ChIP) analyses of selected candidate, REST regulated genes showed significantly increased H3K9me2 promoter occupancy of genes encoding the L1CAM cell adhesion molecule and the synaptosomal-associated protein SNAP25, whose reduced expression levels were confirmed by RT-qPCR in αS induced cells. Treatment with EHMT inhibitor UNC0638 restored the mRNA levels of L1CAM and SNAP25. Thus, αS overexpression enhances H3K9 methylations via ΕΗΜΤ2 resulting in elevated H3K9me2 at the SNAP25 promoter, possibly affecting SNARE complex assembly and hence synaptic vesicle fusion events regulated by αS.
Collapse
|
42
|
An expression based REST signature predicts patient survival and therapeutic response for glioblastoma multiforme. Sci Rep 2016; 6:34556. [PMID: 27698411 PMCID: PMC5048293 DOI: 10.1038/srep34556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Proper regulation of neuronal gene expression is crucial for the development and differentiation of the central nervous system. The transcriptional repressor REST (repressor element-1 silencing transcription factor) is a key regulator in differentiation of pluripotent stem cells to neuronal progenitors and mature neurons. Dysregulated REST activity has been implicated in various diseases, among which the most deadly is glioblastoma multiforme (GBM). Here we have developed an expression-based REST signature (EXPREST), a device providing quantitative measurements of REST activity for GBM tumors. EXPREST robustly quantifies REST activity (REST score) using gene expression profiles in absence of clinic-pathologic assessments of REST. Molecular characterization of REST activity identified global alterations at the DNA, RNA, protein and microRNA levels, suggesting a widespread role of REST in GBM tumorigenesis. Although originally aimed to capture REST activity, REST score was found to be a prognostic factor for overall survival. Further, cell lines with enhanced REST activity was found to be more sensitive to IGF1R, VEGFR and ABL inhibitors. In contrast, cell lines with low REST score were more sensitive to cytotoxic drugs including Mitomycin, Camptothecin and Cisplatin. Together, our work suggests that therapeutic targeting of REST provides a promising opportunity for GBM treatment.
Collapse
|
43
|
Liu Y, Lv H, Wu X, Zhou J, Shi Y, Wen J. Demethylation of Repressor Element-1 Silencing Transcription (REST) Suppresses the Malignant Phenotype of Breast Cancer via MMP9. Oncol Res 2016; 25:445-454. [PMID: 27697091 PMCID: PMC7841195 DOI: 10.3727/096504016x14747368729786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is the leading cause of cancer deaths in females all over the world, mainly resulting from metastasis. Previous studies have revealed that repressor element-1 (RE-1) silencing transcription (REST) acted as a tumor suppressor in breast cancer. However, the mechanism by which REST is regulated remains unknown, and its role in the metastasis in breast cancer cells remains unclear. In the present study, we showed that the expression of REST was lower in breast cancer samples than that of adjacent samples by immunohistochemical analysis, which may be due to hypermethylation of the REST promoter. Low REST levels are significantly associated with malignant progression in breast cancer patients. Additionally, we elucidated the functions of REST on proliferation and invasion in breast cancer cells. Lentivirus transfection was used to overexpress REST in human breast MDA-MB-231 cells. Then the biologic consequences of overexpressing REST in regard to cell proliferation, apoptosis, and invasion were determined. Furthermore, we also determined matrix metalloproteinase-9 (MMP9) as a target of REST. These results demonstrate that downregulation of REST, a tumor suppressor in breast cancer, is associated with hypermethylation. Induced REST expression is capable of attenuating invasion ability of breast cancer cells, which may be a novel strategy for metastatic breast cancer treatment.
Collapse
|
44
|
Cavadas MAS, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Keogh CE, Fabian Z, Scholz CC, Nolan KA, Rocha LMA, Tambuwala MM, Brown S, Wdowicz A, Corbett D, Murphy KJ, Godson C, Cummins EP, Taylor CT, Cheong A. REST is a hypoxia-responsive transcriptional repressor. Sci Rep 2016; 6:31355. [PMID: 27531581 PMCID: PMC4987654 DOI: 10.1038/srep31355] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.
Collapse
Affiliation(s)
- Miguel A S Cavadas
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Marion Mesnieres
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Bianca Crifo
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Mario C Manresa
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Andrew C Selfridge
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Ciara E Keogh
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Zsolt Fabian
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Carsten C Scholz
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Karen A Nolan
- Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Diabetes Complications Research Centre, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Liliane M A Rocha
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK
| | - Stuart Brown
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA
| | - Anita Wdowicz
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Danielle Corbett
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Eoin P Cummins
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Alex Cheong
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
45
|
Shan M, Su Y, Kang W, Gao R, Li X, Zhang G. Aberrant expression and functions of protocadherins in human malignant tumors. Tumour Biol 2016; 37:12969-12981. [PMID: 27449047 DOI: 10.1007/s13277-016-5169-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Protocadherins (PCDHs) are a group of transmembrane proteins belonging to the cadherin superfamily and are subdivided into "clustered" and "non-clustered" groups. PCDHs vary in both structure and interaction partners and thus regulate multiple biological responses in complex and versatile patterns. Previous researches showed that PCDHs regulated the development of brain and were involved in some neuronal diseases. Recently, studies have revealed aberrant expression of PCDHs in various human malignant tumors. The down-regulation or absence of PCDHs in malignant cells has been associated with cancer progression. Further researches suggest that PCDHs may play major functions as tumor suppressor by inhibiting the proliferation and metastasis of cancer cells. In this review, we focus on the altered expression of PCDHs and their roles in the development of cancer progression. We also discuss the potential mechanisms, by which PCDHs are aberrantly expressed, and its implications in regulating cancers.
Collapse
Affiliation(s)
- Ming Shan
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yonghui Su
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Wenli Kang
- Department of Oncology, General Hospital of Hei Longjiang Province Land Reclamation Headquarter, Harbin, China
| | - Ruixin Gao
- Department of Breast Surgery, The First Hospital of Qiqihaer City, Qiqihaer, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Guoqiang Zhang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
46
|
Nechiporuk T, McGann J, Mullendorff K, Hsieh J, Wurst W, Floss T, Mandel G. The REST remodeling complex protects genomic integrity during embryonic neurogenesis. eLife 2016; 5:e09584. [PMID: 26745185 PMCID: PMC4728133 DOI: 10.7554/elife.09584] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/20/2015] [Indexed: 01/01/2023] Open
Abstract
The timely transition from neural progenitor to post-mitotic neuron requires down-regulation and loss of the neuronal transcriptional repressor, REST. Here, we have used mice containing a gene trap in the Rest gene, eliminating transcription from all coding exons, to remove REST prematurely from neural progenitors. We find that catastrophic DNA damage occurs during S-phase of the cell cycle, with long-term consequences including abnormal chromosome separation, apoptosis, and smaller brains. Persistent effects are evident by latent appearance of proneural glioblastoma in adult mice deleted additionally for the tumor suppressor p53 protein (p53). A previous line of mice deleted for REST in progenitors by conventional gene targeting does not exhibit these phenotypes, likely due to a remaining C-terminal peptide that still binds chromatin and recruits co-repressors. Our results suggest that REST-mediated chromatin remodeling is required in neural progenitors for proper S-phase dynamics, as part of its well-established role in repressing neuronal genes until terminal differentiation. DOI:http://dx.doi.org/10.7554/eLife.09584.001 In the brain, cells called neurons connect to each other to form complex networks through which information is rapidly processed. These cells start to form in the developing brains of animal embryos when “neural” stem cells divide in a process called neurogenesis. For this process to proceed normally, particular genes in the stem cells have to be switched on or off at different times. This ensures that the protein products of the genes are only made when they are needed. Proteins called transcription factors can bind to DNA to activate or inactivate particular genes; for example, a transcription factor called REST inactivates thousands of genes that are needed by neurons. During neurogenesis, the production of REST normally declines, and some studies have shown that if the production of this protein is artificially increased, the formation of neurons is delayed. However, other studies suggest that REST may not play a major role in neurogenesis. Here, Nechiporuk et al. re-examine the role of REST in mice. The experiments used genetically modified mice in which the gene that encodes REST was prematurely switched off in neural stem cells. Compared with normal mice, these mutant mice had much smaller brains that contained fewer neurons because the stem cells stopped dividing earlier than normal. Unexpectedly, many genes that are normally switched off by REST, were not significantly changed, while genes that are not normally regulated by REST – such as the gene that encodes a protein called p53 – were active. It is known from previous work that p53 is expressed when cells are exposed to harmful conditions that can damage DNA. This helps to prevent cells from becoming cancerous. Nechiporuk et al. found that cells that lacked REST had higher levels of DNA damage than normal cells due to errors during the process of copying DNA before a cell divides. Furthermore, when both REST and p53 were absent, the neural stem cells became cancerous and formed tumors in the mice. Nechiporuk et al.’s findings suggest that REST protects the DNA of genes that are needed for neurons to form and work properly. The new challenge is to understand where in the genome the damage is occurring. DOI:http://dx.doi.org/10.7554/eLife.09584.002
Collapse
Affiliation(s)
- Tamilla Nechiporuk
- Vollum Institute, Howard Hughes Medical Institute, Oregon Health and Science University, Portland, United States
| | - James McGann
- Vollum Institute, Howard Hughes Medical Institute, Oregon Health and Science University, Portland, United States
| | - Karin Mullendorff
- Vollum Institute, Howard Hughes Medical Institute, Oregon Health and Science University, Portland, United States
| | - Jenny Hsieh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Technische Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Floss
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gail Mandel
- Vollum Institute, Howard Hughes Medical Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
47
|
Thakore-Shah K, Koleilat T, Jan M, John A, Pyle AD. REST/NRSF Knockdown Alters Survival, Lineage Differentiation and Signaling in Human Embryonic Stem Cells. PLoS One 2015; 10:e0145280. [PMID: 26690059 PMCID: PMC4699193 DOI: 10.1371/journal.pone.0145280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022] Open
Abstract
REST (RE1 silencing transcription factor), also known as NRSF (neuron-restrictive silencer factor), is a well-known transcriptional repressor of neural genes in non-neural tissues and stem cells. Dysregulation of REST activity is thought to play a role in diverse diseases including epilepsy, cancer, Down’s syndrome and Huntington’s disease. The role of REST/NRSF in control of human embryonic stem cell (hESC) fate has never been examined. To evaluate the role of REST in hESCs we developed an inducible REST knockdown system and examined both growth and differentiation over short and long term culture. Interestingly, we have found that altering REST levels in multiple hESC lines does not result in loss of self-renewal but instead leads to increased survival. During differentiation, REST knockdown resulted in increased MAPK/ERK and WNT signaling and increased expression of mesendoderm differentiation markers. Therefore we have uncovered a new role for REST in regulation of growth and early differentiation decisions in human embryonic stem cells.
Collapse
Affiliation(s)
- Kaushali Thakore-Shah
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
| | - Tasneem Koleilat
- California State University, Northridge, CA, 91325, United States of America
| | - Majib Jan
- California State University, Northridge, CA, 91325, United States of America
| | - Alan John
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
| | - April D. Pyle
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
- * E-mail:
| |
Collapse
|
48
|
Transcriptional regulation of the neuropeptide VGF by the neuron-restrictive silencer factor/neuron-restrictive silencer element. Neuroreport 2015; 26:144-51. [PMID: 25569790 DOI: 10.1097/wnr.0000000000000316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neurotrophin-inducible gene VGF plays an important role in the maintenance of organismal energy balance and in the mediation of hippocampal synaptic activity. The regulatory mechanism of VGF transcription is not fully understood. The neuron-restrictive silencer factor (NRSF) binds with the neuron-restrictive silencer element (NRSE), thereby suppressing the transcription of NRSE-containing genes. In this study, we show that the NRSE sequence of the VGF gene critically regulates the repression of VGF expression in NMB cells. Sequence analysis also establishes the presence of two putative NRSEs (NRSE-1 and NRSE-2) in the promoter region of the VGF gene. In reporter gene experiments, a more than eight-fold increase in the promoter activity was observed when both NRSE-1 and NRSE-2 were deleted. Deletion of NRSE-2 alone did not affect the promoter activity, thus indicating that NRSE-1 could be solely responsible for the repression of VGF gene expression. Mutations in the NRSE-1 sequence increased promoter activity. However, no change in activity was observed when NRSE-1 was coexpressed with dominant-negative NRSF, thereby suggesting that endogenous NRSF interacts with NRSE-1. Binding of NRSF to NRSE in a sequence-specific manner was confirmed with chromatin immunoprecipitation assays, respectively. Furthermore, the overexpressed NRSF in PC12 cells significantly suppressed the VGF gene expression by interacting with the NRSE located in the VGF promoter region. Our results indicate that NRSF plays an important role as a repressor of VGF gene regulation in NMB cells through a mechanism that is dependent on VGF-NRSE.
Collapse
|
49
|
Meyer K, Albaugh B, Schoenike B, Roopra A. Type 1 Insulin-Like Growth Factor Receptor/Insulin Receptor Substrate 1 Signaling Confers Pathogenic Activity on Breast Tumor Cells Lacking REST. Mol Cell Biol 2015; 35:2991-3004. [PMID: 26100015 PMCID: PMC4525306 DOI: 10.1128/mcb.01149-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/16/2014] [Accepted: 06/14/2015] [Indexed: 11/20/2022] Open
Abstract
Loss of repressor element 1 silencing transcription factor (REST) occurs in 20% of breast cancers and correlates with a poor patient prognosis. However, the molecular basis for enhanced malignancy in tumors lacking REST (RESTless) is only partially understood. We used multiplatform array data from the Cancer Genome Atlas to identify consistent changes in key signaling pathways. Of the proteins screened in the reverse-phase protein array, we found that insulin receptor substrate 1 (IRS1) is the most highly upregulated protein in RESTless breast tumors. Analysis of breast tumor cell lines showed that REST directly represses IRS1, and cells lacking REST have increased levels of IRS1 mRNA and protein. We find that the upregulation of IRS1 function is both necessary and sufficient for enhanced signaling and growth in breast cancer cells lacking REST. IRS1 overexpression is sufficient to phenocopy the enhanced activation of the signaling hubs AKT and mitogen-activated protein kinase (MAPK) of MCF7 cells lacking REST. Loss of REST renders MCF7 and MDA-MB-231 breast tumor cells dependent on IRS1 activity for colony formation in soft agar. Inhibition of the type 1 insulin-like growth factor receptor (IGF1R) reduces the enhanced signaling, growth, and migration in breast tumor cells that occur upon REST loss. We show that loss of REST induces a pathogenic program that works through the IGF1R/IRS1 pathway.
Collapse
Affiliation(s)
- Kassondra Meyer
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brittany Albaugh
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Barry Schoenike
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
50
|
Altevogt P, Doberstein K, Fogel M. L1CAM in human cancer. Int J Cancer 2015; 138:1565-76. [DOI: 10.1002/ijc.29658] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology; University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg; Mannheim Germany
| | - Kai Doberstein
- Ovarian Cancer Research Center, Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA
| | - Mina Fogel
- Central Laboratories; Kaplan Medical Center; Rehovot Israel
| |
Collapse
|