1
|
Strasser AS, Gonzalez-Reiche AS, Zhou X, Valdebenito-Maturana B, Ye X, Zhang B, Wu M, van Bakel H, Jabs EW. Limb reduction in an Esco2 cohesinopathy mouse model is mediated by p53-dependent apoptosis and vascular disruption. Nat Commun 2024; 15:7154. [PMID: 39168984 PMCID: PMC11339411 DOI: 10.1038/s41467-024-51328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Roberts syndrome (RBS) is an autosomal recessive disorder with profound growth deficiency and limb reduction caused by ESCO2 loss-of-function variants. Here, we elucidate the pathogenesis of limb reduction in an Esco2fl/fl;Prrx1-CreTg/0 mouse model using bulk- and single-cell-RNA-seq and gene co-expression network analyses during embryogenesis. Our results reveal morphological and vascular defects culminating in hemorrhage of mutant limbs at E12.5. Underlying this abnormal developmental progression is a pre-apoptotic, mesenchymal cell population specific to mutant limb buds enriched for p53-related signaling beginning at E9.5. We then characterize these p53-related processes of cell cycle arrest, DNA damage, cell death, and the inflammatory leukotriene signaling pathway in vivo. In utero treatment with pifithrin-α, a p53 inhibitor, rescued the hemorrhage in mutant limbs. Lastly, significant enrichments were identified among genes associated with RBS, thalidomide embryopathy, and other genetic limb reduction disorders, suggesting a common vascular etiology among these conditions.
Collapse
Affiliation(s)
- Arielle S Strasser
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Ana Silvia Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Braulio Valdebenito-Maturana
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xiaoqian Ye
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| |
Collapse
|
2
|
Golov AK, Gavrilov AA. Cohesin-Dependent Loop Extrusion: Molecular Mechanics and Role in Cell Physiology. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:601-625. [PMID: 38831499 DOI: 10.1134/s0006297924040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/29/2023] [Accepted: 02/15/2024] [Indexed: 06/05/2024]
Abstract
The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.
Collapse
Affiliation(s)
- Arkadiy K Golov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Technion - Israel Institute of Technology, Haifa, 3525433, Israel
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
3
|
Dileep V, Boix CA, Mathys H, Marco A, Welch GM, Meharena HS, Loon A, Jeloka R, Peng Z, Bennett DA, Kellis M, Tsai LH. Neuronal DNA double-strand breaks lead to genome structural variations and 3D genome disruption in neurodegeneration. Cell 2023; 186:4404-4421.e20. [PMID: 37774679 PMCID: PMC10697236 DOI: 10.1016/j.cell.2023.08.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/02/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Persistent DNA double-strand breaks (DSBs) in neurons are an early pathological hallmark of neurodegenerative diseases including Alzheimer's disease (AD), with the potential to disrupt genome integrity. We used single-nucleus RNA-seq in human postmortem prefrontal cortex samples and found that excitatory neurons in AD were enriched for somatic mosaic gene fusions. Gene fusions were particularly enriched in excitatory neurons with DNA damage repair and senescence gene signatures. In addition, somatic genome structural variations and gene fusions were enriched in neurons burdened with DSBs in the CK-p25 mouse model of neurodegeneration. Neurons enriched for DSBs also had elevated levels of cohesin along with progressive multiscale disruption of the 3D genome organization aligned with transcriptional changes in synaptic, neuronal development, and histone genes. Overall, this study demonstrates the disruption of genome stability and the 3D genome organization by DSBs in neurons as pathological steps in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Carles A Boix
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Asaf Marco
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gwyneth M Welch
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiruy S Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anjanet Loon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ritika Jeloka
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhuyu Peng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Abstract
Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Sohn EJ, Goralsky JA, Shay JW, Min J. The Molecular Mechanisms and Therapeutic Prospects of Alternative Lengthening of Telomeres (ALT). Cancers (Basel) 2023; 15:cancers15071945. [PMID: 37046606 PMCID: PMC10093677 DOI: 10.3390/cancers15071945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
As detailed by the end replication problem, the linear ends of a cell's chromosomes, known as telomeres, shorten with each successive round of replication until a cell enters into a state of growth arrest referred to as senescence. To maintain their immortal proliferation capacity, cancer cells must employ a telomere maintenance mechanism, such as telomerase activation or the Alternative Lengthening of Telomeres pathway (ALT). With only 10-15% of cancers utilizing the ALT mechanism, progress towards understanding its molecular components and associated hallmarks has only recently been made. This review analyzes the advances towards understanding the ALT pathway by: (1) detailing the mechanisms associated with engaging the ALT pathway as well as (2) identifying potential therapeutic targets of ALT that may lead to novel cancer therapeutic treatments. Collectively, these studies indicate that the ALT molecular mechanisms involve at least two distinct pathways induced by replication stress and damage at telomeres. We suggest exploiting tumor dependency on ALT is a promising field of study because it suggests new approaches to ALT-specific therapies for cancers with poorer prognosis. While substantial progress has been made in the ALT research field, additional progress will be required to realize these advances into clinical practices to treat ALT cancers and improve patient prognoses.
Collapse
Affiliation(s)
- Eric J Sohn
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia A Goralsky
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Wang J, Thomas HR, Chen Y, Percival SM, Waldrep SC, Ramaker RC, Thompson RG, Cooper SJ, Chong Z, Parant JM. Reduced sister chromatid cohesion acts as a tumor penetrance modifier. PLoS Genet 2022; 18:e1010341. [PMID: 35994499 PMCID: PMC9436123 DOI: 10.1371/journal.pgen.1010341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/01/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sister chromatid cohesion (SCC) is an important process in chromosome segregation. ESCO2 is essential for establishment of SCC and is often deleted/altered in human cancers. We demonstrate that esco2 haploinsufficiency results in reduced SCC and accelerates the timing of tumor onset in both zebrafish and mouse p53 heterozygous null models, but not in p53 homozygous mutant or wild-type animals. These data indicate that esco2 haploinsufficiency accelerates tumor onset in a loss of heterozygosity (LOH) sensitive background. Analysis of The Cancer Genome Atlas (TCGA) confirmed ESCO2 deficient tumors have elevated number of LOH events throughout the genome. Further, we demonstrated heterozygous loss of sgo1, important in maintaining SCC, also results in reduced SCC and accelerated tumor formation in a p53 heterozygous background. Surprisingly, while we did observe elevated levels of chromosome missegregation and micronuclei formation in esco2 heterozygous mutant animals, this chromosomal instability did not contribute to the accelerated tumor onset in a p53 heterozygous background. Interestingly, SCC also plays a role in homologous recombination, and we did observe elevated levels of mitotic recombination derived p53 LOH in tumors from esco2 haploinsufficient animals; as well as elevated levels of mitotic recombination throughout the genome of human ESCO2 deficient tumors. Together these data suggest that reduced SCC contributes to accelerated tumor penetrance through elevated mitotic recombination. Tumorigenesis often involves the inactivation of tumor suppressor genes. This often encompasses an inactivation mutation in one allele and loss of the other wild-type allele, referred to as loss of heterozygosity (LOH). The rate at which the cells lose the wild-type allele can influence the timing of tumor onset, and therefore an indicator of a patient’s risk of cancer. Factors that influence this process could be used as a predictive indicator of cancer risk, however these factors are still unclear. We demonstrate that partial impairment of sister chromatid cohesion (SCC), a fundamental component of the chromosome segregation in mitosis and homologous recombination repair, enhanced tumorigenesis. Our data suggest this is through elevated levels of mitotic recombination derived p53 LOH. This study emphasizes the importance of understanding how impaired SCC, mitotic recombination rates, and LOH rates influence cancer risk.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Yu Chen
- Department of Genetics, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- Informatics Institute, University of Alabama at Birmingham Heersink School of Medicine, Alabama, United States of America
| | - Stefanie M. Percival
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Stephanie C. Waldrep
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Ryne C. Ramaker
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Robert G. Thompson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Sara J. Cooper
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Zechen Chong
- Department of Genetics, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- Informatics Institute, University of Alabama at Birmingham Heersink School of Medicine, Alabama, United States of America
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
7
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
8
|
Mechanisms of DNA Mobilization and Sequestration. Genes (Basel) 2022; 13:genes13020352. [PMID: 35205396 PMCID: PMC8872102 DOI: 10.3390/genes13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
The entire genome becomes mobilized following DNA damage. Understanding the mechanisms that act at the genome level requires that we embrace experimental and computational strategies to capture the behavior of the long-chain DNA polymer, which is the building block for the chromosome. Long-chain polymers exhibit constrained, sub-diffusive motion in the nucleus. Cross-linking proteins, including cohesin and condensin, have a disproportionate effect on genome organization in their ability to stabilize transient interactions. Cross-linking proteins can segregate the genome into sub-domains through polymer–polymer phase separation (PPPS) and can drive the formation of gene clusters through small changes in their binding kinetics. Principles from polymer physics provide a means to unravel the mysteries hidden in the chains of life.
Collapse
|
9
|
Sakuno T, Hiraoka Y. Rec8 Cohesin: A Structural Platform for Shaping the Meiotic Chromosomes. Genes (Basel) 2022; 13:200. [PMID: 35205245 PMCID: PMC8871791 DOI: 10.3390/genes13020200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Meiosis is critically different from mitosis in that during meiosis, pairing and segregation of homologous chromosomes occur. During meiosis, the morphology of sister chromatids changes drastically, forming a prominent axial structure in the synaptonemal complex. The meiosis-specific cohesin complex plays a central role in the regulation of the processes required for recombination. In particular, the Rec8 subunit of the meiotic cohesin complex, which is conserved in a wide range of eukaryotes, has been analyzed for its function in modulating chromosomal architecture during the pairing and recombination of homologous chromosomes in meiosis. Here, we review the current understanding of Rec8 cohesin as a structural platform for meiotic chromosomes.
Collapse
Affiliation(s)
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan;
| |
Collapse
|
10
|
Sebastian R, Aladjem MI, Oberdoerffer P. Encounters in Three Dimensions: How Nuclear Topology Shapes Genome Integrity. Front Genet 2021; 12:746380. [PMID: 34745220 PMCID: PMC8566435 DOI: 10.3389/fgene.2021.746380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Almost 25 years ago, the phosphorylation of a chromatin component, histone H2AX, was discovered as an integral part of the DNA damage response in eukaryotes. Much has been learned since then about the control of DNA repair in the context of chromatin. Recent technical and computational advances in imaging, biophysics and deep sequencing have led to unprecedented insight into nuclear organization, highlighting the impact of three-dimensional (3D) chromatin structure and nuclear topology on DNA repair. In this review, we will describe how DNA repair processes have adjusted to and in many cases adopted these organizational features to ensure accurate lesion repair. We focus on new findings that highlight the importance of chromatin context, topologically associated domains, phase separation and DNA break mobility for the establishment of repair-conducive nuclear environments. Finally, we address the consequences of aberrant 3D genome maintenance for genome instability and disease.
Collapse
Affiliation(s)
- Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Philipp Oberdoerffer
- Division of Cancer Biology, National Cancer Institute, NIH, Rockville, MD, United States
| |
Collapse
|
11
|
Piazza A, Bordelet H, Dumont A, Thierry A, Savocco J, Girard F, Koszul R. Cohesin regulates homology search during recombinational DNA repair. Nat Cell Biol 2021; 23:1176-1186. [PMID: 34750581 DOI: 10.1038/s41556-021-00783-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination repairs DNA double-strand breaks (DSB) using an intact dsDNA molecule as a template. It entails a homology search step, carried out along a conserved RecA/Rad51-ssDNA filament assembled on each DSB end. Whether, how and to what extent a DSB impacts chromatin folding, and how this (re)organization in turns influences the homology search process, remain ill-defined. Here we characterize two layers of spatial chromatin reorganization following DSB formation in Saccharomyces cerevisiae. Although cohesin folds chromosomes into cohesive arrays of ~20-kb-long chromatin loops as cells arrest in G2/M, the DSB-flanking regions interact locally in a resection- and 9-1-1 clamp-dependent manner, independently of cohesin, Mec1ATR, Rad52 and Rad51. This local structure blocks cohesin progression, constraining the DSB region at the base of a loop. Functionally, cohesin promotes DSB-dsDNA interactions and donor identification in cis, while inhibiting them in trans. This study identifies multiple direct and indirect ways by which cohesin regulates homology search during recombinational DNA repair.
Collapse
Affiliation(s)
- Aurèle Piazza
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France.
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France.
| | - Hélène Bordelet
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Agnès Dumont
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
| | - Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Fabien Girard
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France.
| |
Collapse
|
12
|
Savocco J, Piazza A. Recombination-mediated genome rearrangements. Curr Opin Genet Dev 2021; 71:63-71. [PMID: 34325160 DOI: 10.1016/j.gde.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Homologous recombination (HR) is a universal DNA double-strand break (DSB) repair pathway that uses an intact DNA molecule as a template. Signature HR reactions are homology search and DNA strand invasion catalyzed by the prototypical RecA-ssDNA filament (Rad51 and Dmc1 in eukaryotes), which produces heteroduplex DNA-containing joint molecules (JMs). These reactions uniquely infringe on the DNA strands association established at replication, on the basis of substantial sequence similarity. For that reason, and despite the high fidelity of its templated nature, DSB repair by HR authorizes the alteration of genome structure, guided by repetitive DNA elements. The resulting structural variations (SVs) can involve vast genomic regions, potentially affecting multiple coding sequences and regulatory elements at once, with possible pathological consequences. Here, we discuss recent advances in our understanding of genetic and molecular vulnerabilities of HR leading to SVs, and of the various fidelity-enforcing factors acting across scales on the balancing act of this complex pathway. An emphasis is put on extra-chomosomal DNAs, both product of, and substrate for HR-mediated chromosomal rearrangements.
Collapse
Affiliation(s)
- Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Aurèle Piazza
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France.
| |
Collapse
|
13
|
Al-Zain AM, Symington LS. The dark side of homology-directed repair. DNA Repair (Amst) 2021; 106:103181. [PMID: 34311272 DOI: 10.1016/j.dnarep.2021.103181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
DNA double strand breaks (DSB) are cytotoxic lesions that can lead to genome rearrangements and genomic instability, which are hallmarks of cancer. The two main DSB repair pathways are non-homologous end joining and homologous recombination (HR). While HR is generally highly accurate, it has the potential for rearrangements that occur directly or through intermediates generated during the repair process. Whole genome sequencing of cancers has revealed numerous types of structural rearrangement signatures that are often indicative of repair mediated by sequence homology. However, it can be challenging to delineate repair mechanisms from sequence analysis of rearrangement end products from cancer genomes, or even model systems, because the same rearrangements can be generated by different pathways. Here, we review homology-directed repair pathways and their consequences. Exploring those pathways can lead to a greater understanding of rearrangements that occur in cancer cells.
Collapse
Affiliation(s)
- Amr M Al-Zain
- Program in Biological Sciences, Columbia University, New York, NY, 10027, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, United States.
| |
Collapse
|
14
|
Zhang N, Coutinho LE, Pati D. PDS5A and PDS5B in Cohesin Function and Human Disease. Int J Mol Sci 2021; 22:ijms22115868. [PMID: 34070827 PMCID: PMC8198109 DOI: 10.3390/ijms22115868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Precocious dissociation of sisters 5 (PDS5) is an associate protein of cohesin that is conserved from yeast to humans. It acts as a regulator of the cohesin complex and plays important roles in various cellular processes, such as sister chromatid cohesion, DNA damage repair, gene transcription, and DNA replication. Vertebrates have two paralogs of PDS5, PDS5A and PDS5B, which have redundant and unique roles in regulating cohesin functions. Herein, we discuss the molecular characteristics and functions of PDS5, as well as the effects of its mutations in the development of diseases and their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Debananda Pati
- Correspondence: ; Tel.: +1-832-824-4575; Fax: +1-832-825-4651
| |
Collapse
|
15
|
Arnould C, Rocher V, Finoux AL, Clouaire T, Li K, Zhou F, Caron P, Mangeot PE, Ricci EP, Mourad R, Haber JE, Noordermeer D, Legube G. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 2021; 590:660-665. [PMID: 33597753 PMCID: PMC7116834 DOI: 10.1038/s41586-021-03193-z] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022]
Abstract
The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci1. It is unclear how these foci are rapidly assembled to establish a 'repair-prone' environment within the nucleus. Topologically associating domains are a key feature of 3D genome organization that compartmentalize transcription and replication, but little is known about their contribution to DNA repair processes2,3. Here we show that topologically associating domains are functional units of the DNA damage response, and are instrumental for the correct establishment of γH2AX-53BP1 chromatin domains in a manner that involves one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a model in which H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. Our work highlights the importance of chromosome conformation in the maintenance of genome integrity and demonstrates the establishment of a chromatin modification by loop extrusion.
Collapse
Affiliation(s)
- Coline Arnould
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Vincent Rocher
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Anne-Laure Finoux
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Thomas Clouaire
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Kevin Li
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Felix Zhou
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Pierre Caron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Philippe E Mangeot
- CIRI - International Center for Infectiology Research, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, INSERM U1293, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Raphaël Mourad
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Gaëlle Legube
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France.
| |
Collapse
|
16
|
Wu PS, Enervald E, Joelsson A, Palmberg C, Rutishauser D, Hällberg BM, Ström L. Post-translational Regulation of DNA Polymerase η, a Connection to Damage-Induced Cohesion in Saccharomyces cerevisiae. Genetics 2020; 216:1009-1022. [PMID: 33033113 PMCID: PMC7768261 DOI: 10.1534/genetics.120.303494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Double-strand breaks that are induced postreplication trigger establishment of damage-induced cohesion in Saccharomyces cerevisiae, locally at the break site and genome-wide on undamaged chromosomes. The translesion synthesis polymerase, polymerase η, is required for generation of damage-induced cohesion genome-wide. However, its precise role and regulation in this process is unclear. Here, we investigated the possibility that the cyclin-dependent kinase Cdc28 and the acetyltransferase Eco1 modulate polymerase η activity. Through in vitro phosphorylation and structure modeling, we showed that polymerase η is an attractive substrate for Cdc28 Mutation of the putative Cdc28-phosphorylation site Ser14 to Ala not only affected polymerase η protein level, but also prevented generation of damage-induced cohesion in vivo We also demonstrated that Eco1 acetylated polymerase η in vitro Certain nonacetylatable polymerase η mutants showed reduced protein level, deficient nuclear accumulation, and increased ultraviolet irradiation sensitivity. In addition, we found that both Eco1 and subunits of the cohesin network are required for cell survival after ultraviolet irradiation. Our findings support functionally important Cdc28-mediated phosphorylation, as well as post-translational modifications of multiple lysine residues that modulate polymerase η activity, and provide new insights into understanding the regulation of polymerase η for damage-induced cohesion.
Collapse
Affiliation(s)
- Pei-Shang Wu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Elin Enervald
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Angelica Joelsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Carina Palmberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Dorothea Rutishauser
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Lena Ström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
17
|
Lovejoy CA, Takai K, Huh MS, Picketts DJ, de Lange T. ATRX affects the repair of telomeric DSBs by promoting cohesion and a DAXX-dependent activity. PLoS Biol 2020; 18:e3000594. [PMID: 31895940 PMCID: PMC6959610 DOI: 10.1371/journal.pbio.3000594] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX), a DAXX (death domain-associated protein) interacting protein, is often lost in cells using the alternative lengthening of telomeres (ALT) pathway, but it is not known how ATRX loss leads to ALT. We report that ATRX deletion from mouse cells altered the repair of telomeric double-strand breaks (DSBs) and induced ALT-like phenotypes, including ALT-associated promyelocytic leukemia (PML) bodies (APBs), telomere sister chromatid exchanges (T-SCEs), and extrachromosomal telomeric signals (ECTSs). Mechanistically, we show that ATRX affects telomeric DSB repair by promoting cohesion of sister telomeres and that loss of ATRX in ALT cells results in diminished telomere cohesion. In addition, we document a role for DAXX in the repair of telomeric DSBs. Removal of telomeric cohesion in combination with DAXX deficiency recapitulates all telomeric DSB repair phenotypes associated with ATRX loss. The data reveal that ATRX has an effect on telomeric DSB repair and that this role involves both telomere cohesion and a DAXX-dependent pathway.
Collapse
Affiliation(s)
- Courtney A. Lovejoy
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
| | - Kaori Takai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
| | - Michael S. Huh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Arnould C, Legube G. The Secret Life of Chromosome Loops upon DNA Double-Strand Break. J Mol Biol 2019; 432:724-736. [PMID: 31401119 PMCID: PMC7057266 DOI: 10.1016/j.jmb.2019.07.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
DNA double-strand breaks (DSBs) are harmful lesions that severely challenge genomic integrity, and recent evidence suggests that DSBs occur more frequently on the genome than previously thought. These lesions activate a complex and multilayered response called the DNA damage response, which allows to coordinate their repair with the cell cycle progression. While the mechanistic details of repair processes have been narrowed, thanks to several decades of intense studies, our knowledge of the impact of DSB on chromatin composition and chromosome architecture is still very sparse. However, the recent development of various tools to induce DSB at annotated loci, compatible with next-generation sequencing-based approaches, is opening a new framework to tackle these questions. Here we discuss the influence of initial and DSB-induced chromatin conformation and the strong potential of 3C-based technologies to decipher the contribution of chromosome architecture during DSB repair.
Collapse
Affiliation(s)
- Coline Arnould
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| |
Collapse
|
19
|
Large-scale chromatin organisation in interphase, mitosis and meiosis. Biochem J 2019; 476:2141-2156. [DOI: 10.1042/bcj20180512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/17/2023]
Abstract
AbstractThe spatial configuration of chromatin is fundamental to ensure any given cell can fulfil its functional duties, from gene expression to specialised cellular division. Significant technological innovations have facilitated further insights into the structure, function and regulation of three-dimensional chromatin organisation. To date, the vast majority of investigations into chromatin organisation have been conducted in interphase and mitotic cells leaving meiotic chromatin relatively unexplored. In combination, cytological and genome-wide contact frequency analyses in mammalian germ cells have recently demonstrated that large-scale chromatin structures in meiotic prophase I are reminiscent of the sequential loop arrays found in mitotic cells, although interphase-like segmentation of transcriptionally active and inactive regions are also evident along the length of chromosomes. Here, we discuss the similarities and differences of such large-scale chromatin architecture, between interphase, mitotic and meiotic cells, as well as their functional relevance and the proposed modulatory mechanisms which underlie them.
Collapse
|
20
|
Lawrimore J, Bloom K. The regulation of chromosome segregation via centromere loops. Crit Rev Biochem Mol Biol 2019; 54:352-370. [PMID: 31573359 PMCID: PMC6856439 DOI: 10.1080/10409238.2019.1670130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Pareek M, Almog Y, Bari VK, Hazkani-Covo E, Onn I, Covo S. Alternative Functional rad21 Paralogs in Fusarium oxysporum. Front Microbiol 2019; 10:1370. [PMID: 31275285 PMCID: PMC6591460 DOI: 10.3389/fmicb.2019.01370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 11/16/2022] Open
Abstract
Cohesin, the sister chromatid cohesion complex, is an essential complex that ensures faithful sister chromatid segregation in eukaryotes. It also participates in DNA repair, transcription and maintenance of chromosome structure. Mitotic cohesin is composed of Smc1, Smc3, Scc3, and Rad21/Mcd1. The meiotic cohesin complex contains Rec8, a Rad21 paralog and not Rad21 itself. Very little is known about sister chromatid cohesion in fungal plant pathogens. Fusarium oxysporum is an important fungal plant pathogen without known sexual life cycle. Here, we describe that F. oxysporum encodes for three Rad21 paralogs; Rad21, Rec8, and the first alternative Rad21 paralog in the phylum of ascomycete. This last paralog is found only in several fungal plant pathogens from the Fusarium family and thus termed rad21nc (non-conserved). Conserved rad21 (rad21c), rad21nc, and rec8 genes are expressed in F. oxysporum although the expression of rad21c is much higher than the other paralogs. F. oxysporum strains deleted for the rad21nc or rec8 genes were analyzed for their role in fungal life cycle. Δrad21nc and Δrec8 single mutants were proficient in sporulation, conidia germination, hyphal growth and pathogenicity under optimal growth conditions. Interestingly, Δrad21nc and Δrec8 single mutants germinate less effectively than wild type (WT) strains under DNA replication and mitosis stresses. We provide here the first genetic analysis of alternative rad21nc and rec8 paralogs in filamentous fungi. Our results suggest that rad21nc and rec8 may have a unique role in cell cycle related functions of F. oxysporum.
Collapse
Affiliation(s)
- Manish Pareek
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yael Almog
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar Bari
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einat Hazkani-Covo
- Department of Natural Sciences, Open University of Israel, Ra’anana, Israel
| | - Itay Onn
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
22
|
Fernandes JB, Wlodzimierz P, Henderson IR. Meiotic recombination within plant centromeres. CURRENT OPINION IN PLANT BIOLOGY 2019; 48:26-35. [PMID: 30954771 DOI: 10.1016/j.pbi.2019.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/21/2019] [Accepted: 02/28/2019] [Indexed: 05/18/2023]
Abstract
Meiosis is a conserved eukaryotic cell division that increases genetic diversity in sexual populations. During meiosis homologous chromosomes pair and undergo recombination that can result in reciprocal genetic exchange, termed crossover. The frequency of crossover is highly variable along chromosomes, with hot spots and cold spots. For example, the centromeres that contain the kinetochore, which attach chromosomes to the microtubular spindle, are crossover cold spots. Plant centromeres typically consist of large tandemly repeated arrays of satellite sequences and retrotransposons, a subset of which assemble CENH3-variant nucleosomes, which bind to kinetochore proteins. Although crossovers are suppressed in centromeres, there is abundant evidence for gene conversion and homologous recombination between repeats, which plays a role in satellite array change. We review the evidence for recombination within plant centromeres and the implications for satellite sequence evolution. We speculate on the genetic and epigenetic features of centromeres that may influence meiotic recombination in these regions. We also highlight unresolved questions relating to centromere function and sequence change and how the advent of new technologies promises to provide insights.
Collapse
Affiliation(s)
- Joiselle B Fernandes
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
23
|
Kuhl L, Vader G. Kinetochores, cohesin, and DNA breaks: Controlling meiotic recombination within pericentromeres. Yeast 2019; 36:121-127. [PMID: 30625250 PMCID: PMC6519163 DOI: 10.1002/yea.3366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/26/2022] Open
Abstract
In meiosis, DNA break formation and repair are essential for the formation of crossovers between homologous chromosomes. Without crossover formation, faithful meiotic chromosome segregation and sexual reproduction cannot occur. Crossover formation is initiated by the programmed, meiosis-specific introduction of numerous DNA double-strand breaks, after which specific repair pathways promote recombination between homologous chromosomes. Despite its crucial nature, meiotic recombination is fraud with danger: When positioned or repaired inappropriately, DNA breaks can have catastrophic consequences on genome stability of the resulting gametes. As such, DNA break formation and repair needs to be carefully controlled. Within centromeres and surrounding regions (i.e., pericentromeres), meiotic crossover recombination is repressed in organisms ranging from yeast to humans, and a failure to do so is implicated in chromosome missegregation and developmental aneuploidy. (Peri)centromere sequence identity and organization diverge considerably across eukaryotes, yet suppression of meiotic DNA break formation and repair appear universal. Here, we discuss emerging work that has used budding and fission yeast systems to study the mechanisms underlying pericentromeric suppression of DNA break formation and repair. We particularly highlight a role for the kinetochore, a universally conserved, centromere-associated structure essential for chromosome segregation, in suppressing (peri)centromeric DNA break formation and repair. We discuss the current understanding of kinetochore-associated and chromosomal factors involved in this regulation and suggest future avenues of research.
Collapse
Affiliation(s)
- Lisa‐Marie Kuhl
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Gerben Vader
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
24
|
Litwin I, Pilarczyk E, Wysocki R. The Emerging Role of Cohesin in the DNA Damage Response. Genes (Basel) 2018; 9:genes9120581. [PMID: 30487431 PMCID: PMC6316000 DOI: 10.3390/genes9120581] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Faithful transmission of genetic material is crucial for all organisms since changes in genetic information may result in genomic instability that causes developmental disorders and cancers. Thus, understanding the mechanisms that preserve genome integrity is of fundamental importance. Cohesin is a multiprotein complex whose canonical function is to hold sister chromatids together from S-phase until the onset of anaphase to ensure the equal division of chromosomes. However, recent research points to a crucial function of cohesin in the DNA damage response (DDR). In this review, we summarize recent advances in the understanding of cohesin function in DNA damage signaling and repair. First, we focus on cohesin architecture and molecular mechanisms that govern sister chromatid cohesion. Next, we briefly characterize the main DDR pathways. Finally, we describe mechanisms that determine cohesin accumulation at DNA damage sites and discuss possible roles of cohesin in DDR.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Ewa Pilarczyk
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| |
Collapse
|
25
|
Bellido A, Hermosa B, Ciudad T, Larriba G. Role of homologous recombination genesRAD51,RAD52, andRAD59in the repair of lesions caused by γ-radiation to cycling and G2/M-arrested cells ofCandida albicans. Cell Microbiol 2018; 20:e12950. [DOI: 10.1111/cmi.12950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Alberto Bellido
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Belén Hermosa
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Toni Ciudad
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Germán Larriba
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| |
Collapse
|
26
|
Role of Homologous Recombination Genes in Repair of Alkylation Base Damage by Candida albicans. Genes (Basel) 2018; 9:genes9090447. [PMID: 30205450 PMCID: PMC6162806 DOI: 10.3390/genes9090447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Candida albicans mutants deficient in homologous recombination (HR) are extremely sensitive to the alkylating agent methyl-methane-sulfonate (MMS). Here, we have investigated the role of HR genes in the protection and repair of C. albicans chromosomes by taking advantage of the heat-labile property (55 °C) of MMS-induced base damage. Acute MMS treatments of cycling cells caused chromosome fragmentation in vitro (55 °C) due to the generation of heat-dependent breaks (HDBs), but not in vivo (30 °C). Following removal of MMS wild type, cells regained the chromosome ladder regardless of whether they were transferred to yeast extract/peptone/dextrose (YPD) or to phosphate buffer saline (PBS); however, repair of HDB/chromosome restitution was faster in YPD, suggesting that it was accelerated by metabolic energy and further fueled by the subsequent overgrowth of survivors. Compared to wild type CAI4, chromosome restitution in YPD was not altered in a Carad59 isogenic derivative, whereas it was significantly delayed in Carad51 and Carad52 counterparts. However, when post-MMS incubation took place in PBS, chromosome restitution in wild type and HR mutants occurred with similar kinetics, suggesting that the exquisite sensitivity of Carad51 and Carad52 mutants to MMS is due to defective fork restart. Overall, our results demonstrate that repair of HDBs by resting cells of C. albicans is rather independent of CaRad51, CaRad52, and CaRad59, suggesting that it occurs mainly by base excision repair (BER).
Collapse
|
27
|
Ding S, Diep J, Feng N, Ren L, Li B, Ooi YS, Wang X, Brulois KF, Yasukawa LL, Li X, Kuo CJ, Solomon DA, Carette JE, Greenberg HB. STAG2 deficiency induces interferon responses via cGAS-STING pathway and restricts virus infection. Nat Commun 2018; 9:1485. [PMID: 29662124 PMCID: PMC5902600 DOI: 10.1038/s41467-018-03782-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 03/13/2018] [Indexed: 12/18/2022] Open
Abstract
Cohesin is a multi-subunit nuclear protein complex that coordinates sister chromatid separation during cell division. Highly frequent somatic mutations in genes encoding core cohesin subunits have been reported in multiple cancer types. Here, using a genome-wide CRISPR-Cas9 screening approach to identify host dependency factors and novel innate immune regulators of rotavirus (RV) infection, we demonstrate that the loss of STAG2, an important component of the cohesin complex, confers resistance to RV replication in cell culture and human intestinal enteroids. Mechanistically, STAG2 deficiency results in spontaneous genomic DNA damage and robust interferon (IFN) expression via the cGAS-STING cytosolic DNA-sensing pathway. The resultant activation of JAK-STAT signaling and IFN-stimulated gene (ISG) expression broadly protects against virus infections, including RVs. Our work highlights a previously undocumented role of the cohesin complex in regulating IFN homeostasis and identifies new therapeutic avenues for manipulating the innate immunity.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Jonathan Diep
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Ningguo Feng
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lili Ren
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- School of Pharmaceutical Sciences, Nanjing Tech University, 211816, Nanjing, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Xin Wang
- Department of Immunology, Cleveland Clinic, Cleveland, OH, 44195, USA
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 266071, Qingdao, China
| | - Kevin F Brulois
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Linda L Yasukawa
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Xingnan Li
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, 94305, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA, 94143, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Harry B Greenberg
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, 94305, USA.
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
28
|
Increased LOH due to Defective Sister Chromatid Cohesion Is due Primarily to Chromosomal Aneuploidy and not Recombination. G3-GENES GENOMES GENETICS 2017; 7:3305-3315. [PMID: 28983067 PMCID: PMC5633381 DOI: 10.1534/g3.117.300091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss of heterozygosity (LOH) is an important factor in cancer, pathogenic fungi, and adaptation to changing environments. The sister chromatid cohesion process (SCC) suppresses aneuploidy and therefore whole chromosome LOH. SCC is also important to channel recombinational repair to sister chromatids, thereby preventing LOH mediated by allelic recombination. There is, however, insufficient information about the relative roles that the SCC pathway plays in the different modes of LOH. Here, we found that the cohesin mutation mcd1-1, and other mutations in SCC, differentially affect the various types of LOH. The greatest effect, by three orders of magnitude, was on whole chromosome loss (CL). In contrast, there was little increase in recombination-mediated LOH, even for telomeric markers. Some of the LOH events that were increased by SCC mutations were complex, i.e., they were the result of several chromosome transactions. Although these events were independent of POL32, the most parsimonious way to explain the formation of at least some of them was break-induced replication through the centromere. Interestingly, the mcd1-1 pol32Δ double mutant showed a significant reduction in the rate of CL in comparison with the mcd1-1 single mutant. Our results show that defects in SCC allow the formation of complex LOH events that, in turn, can promote drug or pesticide resistance in diploid microbes that are pathogenic to humans or plants.
Collapse
|
29
|
So similar yet so different: The two ends of a double strand break. Mutat Res 2017; 809:70-80. [PMID: 28693746 DOI: 10.1016/j.mrfmmm.2017.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 11/22/2022]
Abstract
Homologous recombination (HR) is essential for ensuring proper segregation of chromosomes in the first round of meiotic division. HR is also crucial for preserving genomic integrity of somatic cells due to its ability to rescue collapsed replication forks and eliminate deleterious DNA lesions, such as double-strand breaks (DSBs), interstrand crosslinks, and single-strand DNA gaps. Here, we review the early steps of HR (homology search and strand exchange), focusing on the roles of the two ends of a DSB. A detailed overview of the basic HR machinery and its mechanism for template selection and capture of duplex DNA via strand exchange is provided. Roles of proteins involved in these steps are discussed in both mitotic and meiotic HR. Central to this review is the hypothesis, which suggests that in meiosis, HR begins with a symmetrical DSB, but the symmetry is quickly lost with the two ends assuming different roles; it argues that this disparity of the two ends is essential for regulation of HR in meiosis and successful production of haploid gametes. We also propose a possible evolutionary reason for the asymmetry of the ends in HR.
Collapse
|
30
|
Abstract
Cohesin is a large ring-shaped protein complex, conserved from yeast to human, which participates in most DNA transactions that take place in the nucleus. It mediates sister chromatid cohesion, which is essential for chromosome segregation and homologous recombination (HR)-mediated DNA repair. Together with architectural proteins and transcriptional regulators, such as CTCF and Mediator, respectively, it contributes to genome organization at different scales and thereby affects transcription, DNA replication, and locus rearrangement. Although cohesin is essential for cell viability, partial loss of function can affect these processes differently in distinct cell types. Mutations in genes encoding cohesin subunits and regulators of the complex have been identified in several cancers. Understanding the functional significance of these alterations may have relevant implications for patient classification, risk prediction, and choice of treatment. Moreover, identification of vulnerabilities in cancer cells harboring cohesin mutations may provide new therapeutic opportunities and guide the design of personalized treatments.
Collapse
Affiliation(s)
- Magali De Koninck
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| |
Collapse
|
31
|
Keyamura K, Arai K, Hishida T. Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates. PLoS Genet 2016; 12:e1006136. [PMID: 27390022 PMCID: PMC4936719 DOI: 10.1371/journal.pgen.1006136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/31/2016] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination is an evolutionally conserved mechanism that promotes genome stability through the faithful repair of double-strand breaks and single-strand gaps in DNA, and the recovery of stalled or collapsed replication forks. Saccharomyces cerevisiae ATP-dependent DNA helicase Srs2 (a member of the highly conserved UvrD family of helicases) has multiple roles in regulating homologous recombination. A mutation (srs2K41A) resulting in a helicase-dead mutant of Srs2 was found to be lethal in diploid, but not in haploid, cells. In diploid cells, Srs2K41A caused the accumulation of inter-homolog joint molecule intermediates, increased the levels of spontaneous Rad52 foci, and induced gross chromosomal rearrangements. Srs2K41A lethality and accumulation of joint molecules were suppressed by inactivating Rad51 or deleting the Rad51-interaction domain of Srs2, whereas phosphorylation and sumoylation of Srs2 and its interaction with sumoylated proliferating cell nuclear antigen (PCNA) were not required for lethality. The structure-specific complex of crossover junction endonucleases Mus81 and Mms4 was also required for viability of diploid, but not haploid, SRS2 deletion mutants (srs2Δ), and diploid srs2Δ mus81Δ mutants accumulated joint molecule intermediates. Our data suggest that Srs2 and Mus81–Mms4 have critical roles in preventing the formation of (or in resolving) toxic inter-homolog joint molecules, which could otherwise interfere with chromosome segregation and lead to genetic instability. Homologous recombination (HR) is a DNA-repair mechanism that is generally considered error free because it uses an intact sister chromatid as a template. However, in diploid cells, HR can also occur between homologous chromosomes, which can lead to genomic instability through loss of heterozygosity. This alteration is often detected in genetic disorders and cancer, suggesting that tight control of this process is required to ensure genome stability. Yeast Srs2, conserved from bacteria to humans, plays multiple roles in the regulation of HR. We show here that a helicase-dead mutant of Srs2, srs2K41A, is lethal in diploid cells but not in haploid cells. Expression of Srs2K41A in diploid cells causes inter-homolog joint molecule intermediates to accumulate, and leads to gross chromosomal rearrangements. Moreover, srs2Δ mus81Δ double mutants have a severe diploid-specific growth defect with accumulation of inter-homolog joint molecules. These data demonstrate that Srs2 and Mus81-Mms4 participate in essential pathways preventing accumulation of inter-homolog recombination intermediates, thereby reducing the risk of genome instability.
Collapse
Affiliation(s)
- Kenji Keyamura
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Kota Arai
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Takashi Hishida
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
32
|
Abstract
Genome duplication is coupled with DNA damage tolerance (DDT) and chromatin structural changes. Recently we reported that mutations in Primase subunits or factors that bridge Polα/Primase with the replicative helicase, Ctf4, caused abnormal usage of DDT pathways, negatively influenced sister chromatid cohesion (SCC), and associated with increased fork reversal.1 We also found that cohesin, which is paradigmatic for SCC, facilitates recombination-mediated DDT. However, only the recombination defects of cohesin, but not of cohesion-defective Polα/Primase/Ctf4 mutants, were rescued by artificial tethering of sister chromatids. Genetic tests and electron microscopy analysis of replication intermediates made us propose that management of single-stranded DNA forming proximal to the fork is a critical determinant of chromosome and replication fork structure, and influences DDT pathway choice. Here we discuss the implications of our findings for understanding DDT regulation and cohesion establishment during replication, and outline directions to rationalize the relationship between these chromosome metabolism processes.
Collapse
Affiliation(s)
- Dana Branzei
- a IFOM, the FIRC Institute of Molecular Oncology , Milan , Italy
| | - Barnabas Szakal
- a IFOM, the FIRC Institute of Molecular Oncology , Milan , Italy
| |
Collapse
|
33
|
Vincenten N, Kuhl LM, Lam I, Oke A, Kerr AR, Hochwagen A, Fung J, Keeney S, Vader G, Marston AL. The kinetochore prevents centromere-proximal crossover recombination during meiosis. eLife 2015. [PMID: 26653857 DOI: 10.7554/elife.10850.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes.
Collapse
Affiliation(s)
- Nadine Vincenten
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa-Marie Kuhl
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Isabel Lam
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Alastair Rw Kerr
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Jennifer Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Scott Keeney
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Vincenten N, Kuhl LM, Lam I, Oke A, Kerr AR, Hochwagen A, Fung J, Keeney S, Vader G, Marston AL. The kinetochore prevents centromere-proximal crossover recombination during meiosis. eLife 2015; 4. [PMID: 26653857 PMCID: PMC4749563 DOI: 10.7554/elife.10850] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/13/2015] [Indexed: 11/13/2022] Open
Abstract
During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes.
Collapse
Affiliation(s)
- Nadine Vincenten
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa-Marie Kuhl
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Isabel Lam
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Alastair Rw Kerr
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Jennifer Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Scott Keeney
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Westmoreland JW, Resnick MA. Recombinational repair of radiation-induced double-strand breaks occurs in the absence of extensive resection. Nucleic Acids Res 2015; 44:695-704. [PMID: 26503252 PMCID: PMC4737140 DOI: 10.1093/nar/gkv1109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
Recombinational repair provides accurate chromosomal restitution after double-strand break (DSB) induction. While all DSB recombination repair models include 5′-3′ resection, there are no studies that directly assess the resection needed for repair between sister chromatids in G-2 arrested cells of random, radiation-induced ‘dirty’ DSBs. Using our Pulse Field Gel Electrophoresis-shift approach, we determined resection at IR-DSBs in WT and mutants lacking exonuclease1 or Sgs1 helicase. Lack of either reduced resection length by half, without decreased DSB repair or survival. In the exo1Δ sgs1Δ double mutant, resection was barely detectable, yet it only took an additional hour to achieve a level of repair comparable to WT and there was only a 2-fold dose-modifying effect on survival. Results with a Dnl4 deletion strain showed that remaining repair was not due to endjoining. Thus, similar to what has been shown for a single, clean HO-induced DSB, a severe reduction in resection tract length has only a modest effect on repair of multiple, dirty DSBs in G2-arrested cells. Significantly, this study provides the first opportunity to directly relate resection length at DSBs to the capability for global recombination repair between sister chromatids.
Collapse
Affiliation(s)
- James W Westmoreland
- Chromosome Stability Section, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Michael A Resnick
- Chromosome Stability Section, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
36
|
Percival SM, Thomas HR, Amsterdam A, Carroll AJ, Lees JA, Yost HJ, Parant JM. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome. Dis Model Mech 2015; 8:941-55. [PMID: 26044958 PMCID: PMC4527282 DOI: 10.1242/dmm.019059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/29/2015] [Indexed: 12/16/2022] Open
Abstract
Mutations in ESCO2, one of two establishment of cohesion factors necessary for proper sister chromatid cohesion (SCC), cause a spectrum of developmental defects in the autosomal-recessive disorder Roberts syndrome (RBS), warranting in vivo analysis of the consequence of cohesion dysfunction. Through a genetic screen in zebrafish targeting embryonic-lethal mutants that have increased genomic instability, we have identified an esco2 mutant zebrafish. Utilizing the natural transparency of zebrafish embryos, we have developed a novel technique to observe chromosome dynamics within a single cell during mitosis in a live vertebrate embryo. Within esco2 mutant embryos, we observed premature chromatid separation, a unique chromosome scattering, prolonged mitotic delay, and genomic instability in the form of anaphase bridges and micronuclei formation. Cytogenetic studies indicated complete chromatid separation and high levels of aneuploidy within mutant embryos. Amongst aneuploid spreads, we predominantly observed decreases in chromosome number, suggesting that either cells with micronuclei or micronuclei themselves are eliminated. We also demonstrated that the genomic instability leads to p53-dependent neural tube apoptosis. Surprisingly, although many cells required Esco2 to establish cohesion, 10-20% of cells had only weakened cohesion in the absence of Esco2, suggesting that compensatory cohesion mechanisms exist in these cells that undergo a normal mitotic division. These studies provide a unique in vivo vertebrate view of the mitotic defects and consequences of cohesion establishment loss, and they provide a compensation-based model to explain the RBS phenotypes.
Collapse
Affiliation(s)
- Stefanie M Percival
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly R Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam Amsterdam
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew J Carroll
- Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
37
|
Fumasoni M, Zwicky K, Vanoli F, Lopes M, Branzei D. Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/Primase/Ctf4 Complex. Mol Cell 2015; 57:812-823. [PMID: 25661486 PMCID: PMC4352764 DOI: 10.1016/j.molcel.2014.12.038] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/15/2014] [Accepted: 12/22/2014] [Indexed: 01/02/2023]
Abstract
Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4 mutants, proficient in bulk DNA replication, are defective in recombination-mediated damage-bypass by template switching (TS) and have reduced sister chromatid cohesion. The decrease in error-free DDT is accompanied by increased usage of mutagenic DDT, fork reversal, and higher rates of genome rearrangements mediated by faulty strand annealing. Notably, the DDT defects of Polα/Primase/Ctf4 mutants are not the consequence of increased sister chromatid distance, but are instead caused by altered single-stranded DNA metabolism and abnormal replication fork topology. We propose that error-free TS is driven by timely replicative helicase-coupled re-priming. Defects in this event impact on replication fork architecture and sister chromatid proximity, and represent a frequent source of chromosome lesions upon replication dysfunctions. Polα/Primase and cohesin support damage tolerance and sister chromatid proximity Artificial cohesion bypasses cohesin, but not Polα/Primase role in recombination Defects in Polα/Primase cause faulty strand annealing and reversed fork formation Altered ssDNA metabolism underlies Polα/Primase mutants damage tolerance defects
Collapse
Affiliation(s)
- Marco Fumasoni
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Katharina Zwicky
- Institute of Molecular Cancer Research, University of Zurich, CH-8057, Zurich, Switzerland
| | - Fabio Vanoli
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, CH-8057, Zurich, Switzerland
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
38
|
Covo S, Chiou E, Gordenin DA, Resnick MA. Suppression of allelic recombination and aneuploidy by cohesin is independent of Chk1 in Saccharomyces cerevisiae. PLoS One 2014; 9:e113435. [PMID: 25551702 PMCID: PMC4281242 DOI: 10.1371/journal.pone.0113435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022] Open
Abstract
Sister chromatid cohesion (SCC), which is established during DNA replication, ensures genome stability. Establishment of SCC is inhibited in G2. However, this inhibition is relived and SCC is established as a response to DNA damage, a process known as Damage Induced Cohesion (DIC). In yeast, Chk1, which is a kinase that functions in DNA damage signal transduction, is considered an activator of SCC through DIC. Nonetheless, here we show that, unlike SCC mutations, loss of CHK1 did not increase spontaneous or damage-induced allelic recombination or aneuploidy. We suggest that Chk1 has a redundant role in the control of DIC or that DIC is redundant for maintaining genome stability.
Collapse
Affiliation(s)
- Shay Covo
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Eric Chiou
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
39
|
da Costa-Nunes JA, Capitão C, Kozak J, Costa-Nunes P, Ducasa GM, Pontes O, Angelis KJ. The AtRAD21.1 and AtRAD21.3 Arabidopsis cohesins play a synergistic role in somatic DNA double strand break damage repair. BMC PLANT BIOLOGY 2014; 14:353. [PMID: 25511710 PMCID: PMC4273318 DOI: 10.1186/s12870-014-0353-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/26/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND The RAD21 cohesin plays, besides its well-recognised role in chromatid cohesion, a role in DNA double strand break (dsb) repair. In Arabidopsis there are three RAD21 paralog genes (AtRAD21.1, AtRAD21.2 and AtRAD21.3), yet only AtRAD21.1 has been shown to be required for DNA dsb damage repair. Further investigation of the role of cohesins in DNA dsb repair was carried out and is here reported. RESULTS We show for the first time that not only AtRAD21.1 but also AtRAD21.3 play a role in somatic DNA dsb repair. Comet data shows that the lack of either cohesins induces a similar high basal level of DNA dsb in the nuclei and a slower DNA dsb repair kinetics in both cohesin mutants. The observed AtRAD21.3 transcriptional response to DNA dsb induction reinforces further the role of this cohesin in DNA dsb repair. The importance of AtRAD21.3 in DNA dsb damage repair, after exposure to DNA dsb damage inducing agents, is notorious and recognisably evident at the phenotypical level, particularly when the AtRAD21.1 gene is also disrupted. CONCLUSIONS Our data demonstrates that both Arabidopsis cohesin (AtRAD21.1 and AtRAD21.3) play a role in somatic DNA dsb repair. Furthermore, the phenotypical data from the atrad21.1 atrad21.3 double mutant indicates that these two cohesins function synergistically in DNA dsb repair. The implications of this data are discussed.
Collapse
Affiliation(s)
- José A da Costa-Nunes
- />Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa (UNL), Av. República, Apartado 127, 2781-901 Oeiras, Portugal
| | - Cláudio Capitão
- />Laboratório de Biotecnologia de Células Vegetais, ITQB, UNL, Av. República, Apartado 127, 2781-901 Oeiras, Portugal
- />Current address: Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Jaroslav Kozak
- />Molecular Farming Lab., Institute of Experimental Botany AS CR, Na Karlovce 1, 160 00 Praha 6, Czech Republic
| | - Pedro Costa-Nunes
- />Department of Biology, University of New Mexico, 235 Castetter Hall, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001 New Mexico USA
- />Current address: Nuclear Organization and Epigenetics Lab., Shanghai Center for Plant Stress Biology (PSC), No. 3888 Chenhua Road, Shanghai, 201602 P. R. China
| | - Gloria M Ducasa
- />Department of Biology, University of New Mexico, 235 Castetter Hall, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001 New Mexico USA
| | - Olga Pontes
- />Department of Biology, University of New Mexico, 235 Castetter Hall, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001 New Mexico USA
- />Current address: Nuclear Organization and Epigenetics Lab., Shanghai Center for Plant Stress Biology (PSC), No. 3888 Chenhua Road, Shanghai, 201602 P. R. China
| | - Karel J Angelis
- />Molecular Farming Lab., Institute of Experimental Botany AS CR, Na Karlovce 1, 160 00 Praha 6, Czech Republic
| |
Collapse
|
40
|
Storchova Z. Ploidy changes and genome stability in yeast. Yeast 2014; 31:421-30. [DOI: 10.1002/yea.3037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Zuzana Storchova
- Group Maintenance of Genome Stability; Max Planck Institute of Biochemistry; Martinsried Germany
| |
Collapse
|
41
|
Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol 2014; 15:369-83. [PMID: 24824069 DOI: 10.1038/nrm3805] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination is crucial for genome stability and for genetic exchange. Although our knowledge of the principle steps in recombination and its machinery is well advanced, homology search, the critical step of exploring the genome for homologous sequences to enable recombination, has remained mostly enigmatic. However, recent methodological advances have provided considerable new insights into this fundamental step in recombination that can be integrated into a mechanistic model. These advances emphasize the importance of genomic proximity and nuclear organization for homology search and the critical role of homology search mediators in this process. They also aid our understanding of how homology search might lead to unwanted and potentially disease-promoting recombination events.
Collapse
Affiliation(s)
- Jörg Renkawitz
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria. [3]
| | - Claudio A Lademann
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2]
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
42
|
Abstract
Gene conversion (conversion), the unidirectional transfer of DNA sequence information, occurs as a byproduct of recombinational repair of broken or damaged DNA molecules. Whereas excision repair processes replace damaged DNA by copying the complementary sequence from the undamaged strand of duplex DNA, recombinational mechanisms copy similar sequence, usually in another molecule, to replace the damaged sequence. In mitotic cells the other molecule is usually a sister chromatid, and the repair does not lead to genetic change. Less often a homologous chromosome or homologous sequence in an ectopic position is used. Conversion results from repair in two ways. First, if there was a double-strand gap at the site of a break, homologous sequence will be used as the template for synthesis to fill the gap, thus transferring sequence information in both strands. Second, recombinational repair uses complementary base pairing, and the heteroduplex molecule so formed is a source of conversion, both as heteroduplex and when donor (undamaged template) information is retained after correction of mismatched bases in heteroduplex. There are mechanisms that favour the use of sister molecules that must fail before ectopic homology can be used. Meiotic recombination events lead to the formation of crossovers required in meiosis for orderly segregation of pairs of homologous chromosomes. These events result from recombinational repair of programmed double-strand breaks, but in contrast with mitotic recombination, meiotic recombinational events occur predominantly between homologous chromosomes, so that transfer of sequence differences by conversion is very frequent. Transient recombination events that do not form crossovers form both between homologous chromosomes and between regions of ectopic homology, and leave their mark in the occurrence of frequent non-crossover conversion, including ectopic conversion.
Collapse
|
43
|
Blaikley EJ, Tinline-Purvis H, Kasparek TR, Marguerat S, Sarkar S, Hulme L, Hussey S, Wee BY, Deegan RS, Walker CA, Pai CC, Bähler J, Nakagawa T, Humphrey TC. The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast. Nucleic Acids Res 2014; 42:5644-56. [PMID: 24623809 PMCID: PMC4027169 DOI: 10.1093/nar/gku190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3ATR, Rad26ATRIP, Crb253BP1 or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability.
Collapse
Affiliation(s)
- Elizabeth J Blaikley
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Helen Tinline-Purvis
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Torben R Kasparek
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Samuel Marguerat
- Department of Genetics, Evolution and Environment, and UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Sovan Sarkar
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Lydia Hulme
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Sharon Hussey
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Boon-Yu Wee
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Rachel S Deegan
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Carol A Walker
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Chen-Chun Pai
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, and UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Timothy C Humphrey
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| |
Collapse
|
44
|
Covo S, Puccia CM, Argueso JL, Gordenin DA, Resnick MA. The sister chromatid cohesion pathway suppresses multiple chromosome gain and chromosome amplification. Genetics 2014; 196:373-84. [PMID: 24298060 PMCID: PMC3914611 DOI: 10.1534/genetics.113.159202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
Gain or loss of chromosomes resulting in aneuploidy can be important factors in cancer and adaptive evolution. Although chromosome gain is a frequent event in eukaryotes, there is limited information on its genetic control. Here we measured the rates of chromosome gain in wild-type yeast and sister chromatid cohesion (SCC) compromised strains. SCC tethers the newly replicated chromatids until anaphase via the cohesin complex. Chromosome gain was measured by selecting and characterizing copper-resistant colonies that emerged due to increased copies of the metallothionein gene CUP1. Although all defective SCC diploid strains exhibited increased rates of chromosome gain, there were 15-fold differences between them. Of all mutants examined, a hypomorphic mutation at the cohesin complex caused the highest rate of chromosome gain while disruption of WPL1, an important regulator of SCC and chromosome condensation, resulted in the smallest increase in chromosome gain. In addition to defects in SCC, yeast cell type contributed significantly to chromosome gain, with the greatest rates observed for homozygous mating-type diploids, followed by heterozygous mating type, and smallest in haploids. In fact, wpl1-deficient haploids did not show any difference in chromosome gain rates compared to wild-type haploids. Genomic analysis of copper-resistant colonies revealed that the "driver" chromosome for which selection was applied could be amplified to over five copies per diploid cell. In addition, an increase in the expected driver chromosome was often accompanied by a gain of a small number of other chromosomes. We suggest that while chromosome gain due to SCC malfunction can have negative effects through gene imbalance, it could also facilitate opportunities for adaptive changes. In multicellular organisms, both factors could lead to somatic diseases including cancer.
Collapse
Affiliation(s)
- Shay Covo
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Christopher M. Puccia
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Dmitry A. Gordenin
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Michael A. Resnick
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
45
|
Abstract
Mitosis and meiosis are essential processes that occur during development. Throughout these processes, cohesion is required to keep the sister chromatids together until their separation at anaphase. Cohesion is created by multiprotein subunit complexes called cohesins. Although the subunits differ slightly in mitosis and meiosis, the canonical cohesin complex is composed of four subunits that are quite diverse. The cohesin complexes are also important for DNA repair, gene expression, development, and genome integrity. Here we provide an overview of the roles of cohesins during these different events as well as their roles in human health and disease, including the cohesinopathies. Although the exact roles and mechanisms of these proteins are still being elucidated, this review serves as a guide for the current knowledge of cohesins.
Collapse
Affiliation(s)
- Amanda S Brooker
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
46
|
Alcasabas AA, de Clare M, Pir P, Oliver SG. Control analysis of the eukaryotic cell cycle using gene copy-number series in yeast tetraploids. BMC Genomics 2013; 14:744. [PMID: 24176122 PMCID: PMC3826841 DOI: 10.1186/1471-2164-14-744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/18/2013] [Indexed: 11/29/2022] Open
Abstract
Background In the model eukaryote, Saccharomyces cerevisiae, previous experiments have identified those genes that exert the most significant control over cell growth rate. These genes are termed HFC for high flux control. Such genes are overrepresented within pathways controlling the mitotic cell cycle. Results We postulated that the increase/decrease in growth rate is due to a change in the rate of progression through specific cell cycle steps. We extended and further developed an existing logical model of the yeast cell cycle in order elucidate how the HFC genes modulated progress through the cycle. This model can simulate gene dosage-variation and calculate the cycle time, determine the order and relative speed at which events occur, and predict arrests and failures to correctly execute a step. To experimentally test our model’s predictions, we constructed a tetraploid series of deletion mutants for a set of eight genes that control the G2/M transition. This system allowed us to vary gene copy number through more intermediate levels than previous studies and examine the impact of copy-number variation on growth, cell-cycle phenotype, and response to different cellular stresses. Conclusions For the majority of strains, the predictions agreed with experimental observations, validating our model and its use for further predictions. Where simulation and experiment diverged, we uncovered both novel tetraploid-specific phenotypes and a switch in the determinative execution point of a key cell-cycle regulator, the Cdc28 kinase, from the G1/S to the S/G2 boundaries.
Collapse
Affiliation(s)
| | | | | | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
47
|
Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae. PLoS Genet 2013; 9:e1003894. [PMID: 24204306 PMCID: PMC3814309 DOI: 10.1371/journal.pgen.1003894] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/05/2013] [Indexed: 11/24/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR) events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers. Nearly every living organism has to cope with DNA damage caused by ultraviolet (UV) exposure from the sun. UV causes various types of DNA damage. Defects in the repair of these DNA lesions are associated with the human disease xeroderma pigmentosum, one symptom of which is predisposition to skin cancer. The DNA damage introduced by UV stimulates recombination and, in this study, we characterize the resulting recombination events at high resolution throughout the yeast genome. At high UV doses, we show that most recombination events reflect the repair of two sister chromatids broken at the same position, indicating that UV can cause double-stranded DNA breaks. At lower doses of UV, most events involve the repair of a single broken chromatid. Our mapping of events also demonstrates that certain regions of the yeast genome are relatively resistant to UV-induced recombination. Finally, we show that most UV-induced DNA lesions are repaired during the first cell cycle, and do not lead to recombination in subsequent cycles.
Collapse
|
48
|
Hong S, Sung Y, Yu M, Lee M, Kleckner N, Kim KP. The logic and mechanism of homologous recombination partner choice. Mol Cell 2013; 51:440-53. [PMID: 23973374 PMCID: PMC4049084 DOI: 10.1016/j.molcel.2013.08.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/09/2013] [Accepted: 07/17/2013] [Indexed: 11/23/2022]
Abstract
Recombinational repair of spontaneous double-strand breaks (DSBs) exhibits sister bias. DSB-initiated meiotic recombination exhibits homolog bias. Physical analysis in yeast reveals that, in both cases, the recombination reaction intrinsically gives homolog bias. From this baseline default, cohesin intervenes to confer sister bias, likely independent of cohesion. In meiosis, cohesin's sister-biasing effect is counteracted by RecA homolog Rad51 and its mediators, plus meiotic RecA homolog Dmc1, which thereby restore intrinsic homolog bias. Meiotic axis complex Red1/Mek1/Hop1 participates by cleanly switching recombination from mitotic to meiotic mode, concomitantly activating Dmc1. We propose that a Rad51/DNA filament at one DSB end captures the intact sister, creating an anchor pad. This filament extends across the DSB site on the intact partner, precluding intersister strand exchange, thus forcing use of the homolog. Cohesin and Dmc1 interactively modulate this extension, with program-appropriate effects. In accord with this model, Rad51-mediated recombination in vivo requires the presence of a sister.
Collapse
Affiliation(s)
- Soogil Hong
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Youngjin Sung
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Mi Yu
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Minsu Lee
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA02138, USA
| | - Keun P. Kim
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
49
|
Abstract
Genomes are transmitted faithfully from dividing cells to their offspring. Changes that occur during DNA repair, chromosome duplication, and transmission or via recombination provide a natural source of genetic variation. They occur at low frequency because of the intrinsic variable nature of genomes, which we refer to as genome instability. However, genome instability can be enhanced by exposure to external genotoxic agents or as the result of cellular pathologies. We review the causes of genome instability as well as how it results in hyper-recombination, genome rearrangements, and chromosome fragmentation and loss, which are mainly mediated by double-strand breaks or single-strand gaps. Such events are primarily associated with defects in DNA replication and the DNA damage response, and show high incidence at repetitive DNA, non-B DNA structures, DNA-protein barriers, and highly transcribed regions. Identifying the causes of genome instability is crucial to understanding genome dynamics during cell proliferation and its role in cancer, aging, and a number of rare genetic diseases.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain;
| | | |
Collapse
|
50
|
Yan R, McKee BD. The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila Meiosis. PLoS Genet 2013; 9:e1003637. [PMID: 23874232 PMCID: PMC3715423 DOI: 10.1371/journal.pgen.1003637] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/01/2013] [Indexed: 11/29/2022] Open
Abstract
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores. Sexual reproduction entails an intricate 2-step division called meiosis in which homologous chromosomes and sister chromatids are sequentially segregated to yield gametes (eggs and sperm) with exactly one copy of each chromosome. The Drosophila meiosis protein SOLO is essential for cohesion between sister chromatids. SOLO localizes to centromeres throughout meiosis where it collaborates with the conserved cohesin complex to enable sister centromeres to orient properly – to the same pole during the first division and to opposite poles during the second division. In solo mutants, sister chromatids become disconnected early in meiosis and segregate randomly through both meiotic divisions generating gametes with random (and mostly wrong) numbers of chromosomes. In this study we show that SOLO also localizes to chromosome arms where it is required to construct stable synaptonemal complexes that connect homologs while they recombine. In addition, SOLO is required to prevent crossovers between sister chromatids, as only homolog crossovers are useful for forming the interhomolog connections (chiasmata) needed for homolog segregation. SOLO collaborates with cohesin for these tasks as well. We propose that SOLO is a subunit of a specialized meiotic cohesin complex and a multi-purpose cohesion protein that regulates several meiotic processes needed for proper chromosome segregation.
Collapse
Affiliation(s)
- Rihui Yan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | | |
Collapse
|