1
|
Eugen-Olsen RB, Hariprakash J, Oestergaard V, Regenberg B. Molecular mechanisms of extrachromosomal circular DNA formation. Nucleic Acids Res 2025; 53:gkaf122. [PMID: 40037708 PMCID: PMC11879418 DOI: 10.1093/nar/gkaf122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Recent research reveals that eukaryotic genomes form circular DNA from all parts of their genome, some large enough to carry whole genes. In organisms like yeast and in human cancers, it is often observed that extrachromosomal circular DNA (eccDNA) benefits the individual cell by providing resources for rapid cellular growth. However, our comprehension of eccDNA remains incomplete, primarily due to their transient nature. Early studies suggest they arise when DNA breaks and is subsequently repaired incorrectly. In this review, we provide an overview of the evidence for molecular mechanisms that lead to eccDNA formation in human cancers and yeast, focusing on nonhomologous end joining, alternative end joining, and homologous recombination repair pathways. Furthermore, we present hypotheses in the form of molecular eccDNA formation models and consider cellular conditions which may affect eccDNA generation. Finally, we discuss the framework for future experimental evidence.
Collapse
Affiliation(s)
- Rasmus A B Eugen-Olsen
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Judith M Hariprakash
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Birgitte Regenberg
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
2
|
Spealman P, de Santana C, De T, Gresham D. Multilevel Gene Expression Changes in Lineages Containing Adaptive Copy Number Variants. Mol Biol Evol 2025; 42:msaf005. [PMID: 39847535 PMCID: PMC11789944 DOI: 10.1093/molbev/msaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025] Open
Abstract
Copy number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas, CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus. To understand the role that gene expression plays in adaptation, both in relation to the adaptation of the organism to the selective condition and as a consequence of the CNV, we measured the transcriptome, translatome, and proteome of 4 strains of evolved yeast, each with a unique CNV, and their ancestor in Gln- chemostats. We find CNV-amplified genes correlate with higher mRNA abundance; however, this effect is reduced at the level of the proteome, consistent with post-transcriptional dosage compensation. By normalizing each level of gene expression by the abundance of the preceding step we were able to identify widespread differences in the efficiency of each level of gene expression. Genes with significantly different translational efficiency were enriched for potential regulatory mechanisms including either upstream open reading frames, RNA-binding sites for Ssd1, or both. Genes with lower protein expression efficiency were enriched for genes encoding proteins in protein complexes. Taken together, our study reveals widespread changes in gene expression at multiple regulatory levels in lineages containing adaptive CNVs highlighting the diverse ways in which genome evolution shapes gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| | - Carolina de Santana
- Laboratório de Microbiologia Ambiental e Saúde Pública—Universidade Estadual de Feira de Santana (UEFS), Bahia, Brazil
| | - Titir De
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| |
Collapse
|
3
|
Chuong JN, Ben Nun N, Suresh I, Matthews JC, De T, Avecilla G, Abdul-Rahman F, Brandt N, Ram Y, Gresham D. Template switching during DNA replication is a prevalent source of adaptive gene amplification. eLife 2025; 13:RP98934. [PMID: 39899365 PMCID: PMC11790251 DOI: 10.7554/elife.98934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Copy number variants (CNVs) are an important source of genetic variation underlying rapid adaptation and genome evolution. Whereas point mutation rates vary with genomic location and local DNA features, the role of genome architecture in the formation and evolutionary dynamics of CNVs is poorly understood. Previously, we found the GAP1 gene in Saccharomyces cerevisiae undergoes frequent amplification and selection in glutamine-limitation. The gene is flanked by two long terminal repeats (LTRs) and proximate to an origin of DNA replication (autonomously replicating sequence, ARS), which likely promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we evolved engineered strains lacking either the adjacent LTRs, ARS, or all elements in glutamine-limited chemostats. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. Removal of local DNA elements significantly impacts the fitness effect of GAP1 CNVs and the rate of adaptation. In 177 CNV lineages, across all four strains, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, distal ones mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination can mediate gene amplification following de novo retrotransposon events. Our study reveals that template switching during DNA replication is a prevalent source of adaptive CNVs.
Collapse
Affiliation(s)
- Julie N Chuong
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Nadav Ben Nun
- School of Zoology, Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
- Edmond J. Safra Center for Bioinformatics, Tel Aviv UniversityTel AvivIsrael
| | - Ina Suresh
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Julia Cano Matthews
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Titir De
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Grace Avecilla
- Department of Natural Sciences, Baruch College CUNYNew YorkUnited States
| | - Farah Abdul-Rahman
- Department of Ecology and Evolutionary Biology, Yale UniversityNew HavenUnited States
- Microbial Sciences Institute, Yale UniversityNew HavenUnited States
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State UniversityRaleighUnited States
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
- Edmond J. Safra Center for Bioinformatics, Tel Aviv UniversityTel AvivIsrael
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
4
|
Chuong JN, Nun NB, Suresh I, Matthews JC, De T, Avecilla G, Abdul-Rahman F, Brandt N, Ram Y, Gresham D. Template switching during DNA replication is a prevalent source of adaptive gene amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.589936. [PMID: 39464144 PMCID: PMC11507740 DOI: 10.1101/2024.05.03.589936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Copy number variants (CNVs)-gains and losses of genomic sequences-are an important source of genetic variation underlying rapid adaptation and genome evolution. However, despite their central role in evolution little is known about the factors that contribute to the structure, size, formation rate, and fitness effects of adaptive CNVs. Local genomic sequences are likely to be an important determinant of these properties. Whereas it is known that point mutation rates vary with genomic location and local DNA sequence features, the role of genome architecture in the formation, selection, and the resulting evolutionary dynamics of CNVs is poorly understood. Previously, we have found that the GAP1 gene in Saccharomyces cerevisiae undergoes frequent and repeated amplification and selection under long-term experimental evolution in glutamine-limiting conditions. The GAP1 gene has a unique genomic architecture consisting of two flanking long terminal repeats (LTRs) and a proximate origin of DNA replication (autonomously replicating sequence, ARS), which are likely to promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we performed experimental evolution in glutamine-limited chemostats using engineered strains lacking either the adjacent LTRs, ARS, or all elements. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. We find that although GAP1 CNVs repeatedly form and sweep to high frequency in strains with modified genome architecture, removal of local DNA elements significantly impacts the rate and fitness effect of CNVs and the rate of adaptation. We performed genome sequence analysis to define the molecular mechanisms of CNV formation for 177 CNV lineages. We find that across all four strain backgrounds, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, a distal ARS can mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination mechanisms still mediate gene amplification following de novo insertion of retrotransposon elements at the locus. Our study demonstrates the remarkable plasticity of the genome and reveals that template switching during DNA replication is a frequent source of adaptive CNVs.
Collapse
Affiliation(s)
- Julie N Chuong
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Nadav Ben Nun
- School of Zoology, Faculty of Life Sciences, Tel Aviv University
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University
| | - Ina Suresh
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Julia Cano Matthews
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Titir De
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | | | - Farah Abdul-Rahman
- Department of Ecology and Evolutionary Biology, Yale University
- Microbial Sciences Institute, Yale University
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University
- Correspondence:
| |
Collapse
|
5
|
Longan ER, Fay JC. The distribution of beneficial mutational effects between two sister yeast species poorly explains natural outcomes of vineyard adaptation. Genetics 2024; 228:iyae160. [PMID: 39373582 PMCID: PMC11631397 DOI: 10.1093/genetics/iyae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024] Open
Abstract
Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus has not adapted to these chemicals despite being consistently present in sympatry with S. cerevisiae in vineyards. This contrast could be driven by a number of factors including niche differences or differential access to resistance mutations between species. In this study, we used a comparative mutagenesis approach to test whether S. paradoxus is mutationally constrained with respect to acquiring greater copper and sulfite resistance. For both species, we assayed the rate, effect size, and pleiotropic costs of resistance mutations and sequenced a subset of 150 mutants. We found that the distributions of mutational effects displayed by the two species were similar and poorly explained the natural pattern. We also found that chromosome VIII aneuploidy and loss of function mutations in PMA1 confer copper resistance in both species, whereas loss of function mutations in REG1 were only a viable route to copper resistance in S. cerevisiae. We also observed a de novo duplication of the CUP1 gene in S. paradoxus but not in S. cerevisiae. For sulfite, loss of function mutations in RTS1 and KSP1 confer resistance in both species, but mutations in RTS1 have larger effects in S. paradoxus. Our results show that even when available mutations are largely similar, species can differ in the adaptive paths available to them. They also demonstrate that assays of the distribution of mutational effects may lack predictive insight concerning adaptive outcomes.
Collapse
Affiliation(s)
- Emery R Longan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
6
|
Longan ER, Fay JC. The distribution of beneficial mutational effects between two sister yeast species poorly explains natural outcomes of vineyard adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597243. [PMID: 38895255 PMCID: PMC11185594 DOI: 10.1101/2024.06.03.597243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus, has not adapted to these chemicals despite being consistently present in sympatry with S. cerevisiae in vineyards. This contrast represents a case of apparent evolutionary constraints favoring greater adaptive capacity in S. cerevisiae. In this study, we used a comparative mutagenesis approach to test whether S. paradoxus is mutationally constrained with respect to acquiring greater copper and sulfite resistance. For both species, we assayed the rate, effect size, and pleiotropic costs of resistance mutations and sequenced a subset of 150 mutants isolated from our screen. We found that the distributions of mutational effects displayed by the two species were very similar and poorly explained the natural pattern. We also found that chromosome VIII aneuploidy and loss of function mutations in PMA1 confer copper resistance in both species, whereas loss of function mutations in REG1 were only a viable route to copper resistance in S. cerevisiae. We also observed a single de novo duplication of the CUP1 gene in S. paradoxus but none in S. cerevisiae. For sulfite, loss of function mutations in RTS1 and KSP1 confer resistance in both species, but mutations in RTS1 have larger average effects in S. paradoxus. Our results show that even when the distributions of mutational effects are largely similar, species can differ in the adaptive paths available to them. They also demonstrate that assays of the distribution of mutational effects may lack predictive insight concerning adaptive outcomes.
Collapse
Affiliation(s)
- Emery R. Longan
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| | - Justin C. Fay
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| |
Collapse
|
7
|
Brewer BJ, Dunham MJ, Raghuraman MK. A unifying model that explains the origins of human inverted copy number variants. PLoS Genet 2024; 20:e1011091. [PMID: 38175827 PMCID: PMC10766186 DOI: 10.1371/journal.pgen.1011091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
With the release of the telomere-to-telomere human genome sequence and the availability of both long-read sequencing and optical genome mapping techniques, the identification of copy number variants (CNVs) and other structural variants is providing new insights into human genetic disease. Different mechanisms have been proposed to account for the novel junctions in these complex architectures, including aberrant forms of DNA replication, non-allelic homologous recombination, and various pathways that repair DNA breaks. Here, we have focused on a set of structural variants that include an inverted segment and propose that they share a common initiating event: an inverted triplication with long, unstable palindromic junctions. The secondary rearrangement of these palindromes gives rise to the various forms of inverted structural variants. We postulate that this same mechanism (ODIRA: origin-dependent inverted-repeat amplification) that creates the inverted CNVs in inherited syndromes also generates the palindromes found in cancers.
Collapse
Affiliation(s)
- Bonita J. Brewer
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - M. K. Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Martin R, Espinoza CY, Large CRL, Rosswork J, Van Bruinisse C, Miller AW, Sanchez JC, Miller M, Paskvan S, Alvino GM, Dunham MJ, Raghuraman MK, Brewer BJ. Template switching between the leading and lagging strands at replication forks generates inverted copy number variants through hairpin-capped extrachromosomal DNA. PLoS Genet 2024; 20:e1010850. [PMID: 38175823 PMCID: PMC10766183 DOI: 10.1371/journal.pgen.1010850] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 01/06/2024] Open
Abstract
Inherited and germ-line de novo copy number variants (CNVs) are increasingly found to be correlated with human developmental and cancerous phenotypes. Several models for template switching during replication have been proposed to explain the generation of these gross chromosomal rearrangements. We proposed a model of template switching (ODIRA-origin dependent inverted repeat amplification) in which simultaneous ligation of the leading and lagging strands at diverging replication forks could generate segmental inverted triplications through an extrachromosomal inverted circular intermediate. Here, we created a genetic assay using split-ura3 cassettes to trap the proposed inverted intermediate. However, instead of recovering circular inverted intermediates, we found inverted linear chromosomal fragments ending in native telomeres-suggesting that a template switch had occurred at the centromere-proximal fork of a replication bubble. As telomeric inverted hairpin fragments can also be created through double strand breaks we tested whether replication errors or repair of double stranded DNA breaks were the most likely initiating event. The results from CRISPR/Cas9 cleavage experiments and growth in the replication inhibitor hydroxyurea indicate that it is a replication error, not a double stranded break that creates the inverted junctions. Since inverted amplicons of the SUL1 gene occur during long-term growth in sulfate-limited chemostats, we sequenced evolved populations to look for evidence of linear intermediates formed by an error in replication. All of the data are compatible with a two-step version of the ODIRA model in which sequential template switching at short inverted repeats between the leading and lagging strands at a replication fork, followed by integration via homologous recombination, generates inverted interstitial triplications.
Collapse
Affiliation(s)
- Rebecca Martin
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Claudia Y. Espinoza
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Christopher R. L. Large
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Joshua Rosswork
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Cole Van Bruinisse
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Aaron W. Miller
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Joseph C. Sanchez
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Madison Miller
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Samantha Paskvan
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gina M. Alvino
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - M. K. Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Bonita J. Brewer
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Selmecki A. Recurrent copy number variations in the human fungal pathogen Candida parapsilosis. mBio 2023; 14:e0071323. [PMID: 37787545 PMCID: PMC10653803 DOI: 10.1128/mbio.00713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Candida parapsilosis is an opportunistic fungal pathogen with increasing incidence in hospital settings worldwide; however, we lack a comprehensive understanding of the mechanisms promoting its virulence and drug resistance. Bergin et al. systematically quantify the frequency and effect of copy number variation (CNV) across 170 diverse clinical and environmental isolates of C. parapsilosis (Bergin SA, Zhao F, Ryan AP, Müller CA, Nieduszynski CA, Zhai B, Rolling T, Hohl TM, Morio F, Scully J, Wolfe KH, Butler G, 2022, mBio, https://doi.org/10.1128/mbio.01777-22). Using a combination of both short- and long-read whole genome sequencing techniques, they determine the structure and copy number of two CNVs that arose recurrently throughout the evolution of these isolates. Each CNV predominantly amplifies one coding sequence (ARR3 or RTA3); however, the amplitude and recombination breakpoints are variable across the isolates. Amplification of RTA3 correlates with drug resistance and deletion causes drug susceptibility. This study highlights the need for further research into the mechanisms and dynamics of CNV formation and the impact of these CNVs on virulence and drug resistance across diverse fungal pathogens.
Collapse
Affiliation(s)
- Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Hoerr RE, Eng A, Payen C, Di Rienzi SC, Raghuraman MK, Dunham MJ, Brewer BJ, Friedman KL. Hotspot of de novo telomere addition stabilizes linear amplicons in yeast grown in sulfate-limiting conditions. Genetics 2023; 224:iyad010. [PMID: 36702776 PMCID: PMC10213492 DOI: 10.1093/genetics/iyad010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/10/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Evolution is driven by the accumulation of competing mutations that influence survival. A broad form of genetic variation is the amplification or deletion of DNA (≥50 bp) referred to as copy number variation (CNV). In humans, CNV may be inconsequential, contribute to minor phenotypic differences, or cause conditions such as birth defects, neurodevelopmental disorders, and cancers. To identify mechanisms that drive CNV, we monitored the experimental evolution of Saccharomyces cerevisiae populations grown under sulfate-limiting conditions. Cells with increased copy number of the gene SUL1, which encodes a primary sulfate transporter, exhibit a fitness advantage. Previously, we reported interstitial inverted triplications of SUL1 as the dominant rearrangement in a haploid population. Here, in a diploid population, we find instead that small linear fragments containing SUL1 form and are sustained over several generations. Many of the linear fragments are stabilized by de novo telomere addition within a telomere-like sequence near SUL1 (within the SNF5 gene). Using an assay that monitors telomerase action following an induced chromosome break, we show that this region acts as a hotspot of de novo telomere addition and that required sequences map to a region of <250 base pairs. Consistent with previous work showing that association of the telomere-binding protein Cdc13 with internal sequences stimulates telomerase recruitment, mutation of a four-nucleotide motif predicted to associate with Cdc13 abolishes de novo telomere addition. Our study suggests that internal telomere-like sequences that stimulate de novo telomere addition can contribute to adaptation by promoting genomic plasticity.
Collapse
Affiliation(s)
- Remington E Hoerr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Alex Eng
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Celia Payen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- IFF, Wilmington, DE 19803, USA
| | - Sara C Di Rienzi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - M K Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Bonita J Brewer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katherine L Friedman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
11
|
Nunn CJ, Goyal S. Contingency and selection in mitochondrial genome dynamics. eLife 2022; 11:76557. [PMID: 35404229 PMCID: PMC9054137 DOI: 10.7554/elife.76557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
High frequencies of mutant mitochondrial DNA (mtDNA) in human cells lead to cellular defects that are associated with aging and disease. Yet much remains to be understood about the dynamics of the generation of mutant mtDNAs and their relative replicative fitness that informs their fate within cells and tissues. To address this, we utilize long-read single-molecule sequencing to track mutational trajectories of mtDNA in the model organism Saccharomyces cerevisiae. This model has numerous advantages over mammalian systems due to its much larger mtDNA and ease of artificially competing mutant and wild-type mtDNA copies in cells. We show a previously unseen pattern that constrains subsequent excision events in mtDNA fragmentation in yeast. We also provide evidence for the generation of rare and contentious non-periodic mtDNA structures that lead to persistent diversity within individual cells. Finally, we show that measurements of relative fitness of mtDNA fit a phenomenological model that highlights important biophysical parameters governing mtDNA fitness. Altogether, our study provides techniques and insights into the dynamics of large structural changes in genomes that we show are applicable to more complex organisms like humans.
Collapse
Affiliation(s)
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Gorkovskiy A, Verstrepen KJ. The Role of Structural Variation in Adaptation and Evolution of Yeast and Other Fungi. Genes (Basel) 2021; 12:699. [PMID: 34066718 PMCID: PMC8150848 DOI: 10.3390/genes12050699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Mutations in DNA can be limited to one or a few nucleotides, or encompass larger deletions, insertions, duplications, inversions and translocations that span long stretches of DNA or even full chromosomes. These so-called structural variations (SVs) can alter the gene copy number, modify open reading frames, change regulatory sequences or chromatin structure and thus result in major phenotypic changes. As some of the best-known examples of SV are linked to severe genetic disorders, this type of mutation has traditionally been regarded as negative and of little importance for adaptive evolution. However, the advent of genomic technologies uncovered the ubiquity of SVs even in healthy organisms. Moreover, experimental evolution studies suggest that SV is an important driver of evolution and adaptation to new environments. Here, we provide an overview of the causes and consequences of SV and their role in adaptation, with specific emphasis on fungi since these have proven to be excellent models to study SV.
Collapse
Affiliation(s)
- Anton Gorkovskiy
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Doi G, Okada S, Yasukawa T, Sugiyama Y, Bala S, Miyazaki S, Kang D, Ito T. Catalytically inactive Cas9 impairs DNA replication fork progression to induce focal genomic instability. Nucleic Acids Res 2021; 49:954-968. [PMID: 33398345 PMCID: PMC7826275 DOI: 10.1093/nar/gkaa1241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Catalytically inactive Cas9 (dCas9) has become an increasingly popular tool for targeted gene activation/inactivation, live-cell imaging, and base editing. While dCas9 was reported to induce base substitutions and indels, it has not been associated with structural variations. Here, we show that dCas9 impedes replication fork progression to destabilize tandem repeats in budding yeast. When targeted to the CUP1 array comprising ∼16 repeat units, dCas9 induced its contraction in most cells, especially in the presence of nicotinamide. Replication intermediate analysis demonstrated replication fork stalling in the vicinity of dCas9-bound sites. Genetic analysis indicated that while destabilization is counteracted by the replisome progression complex components Ctf4 and Mrc1 and the accessory helicase Rrm3, it involves single-strand annealing by the recombination proteins Rad52 and Rad59. Although dCas9-mediated replication fork stalling is a potential risk in conventional applications, it may serve as a novel tool for both mechanistic studies and manipulation of genomic instability.
Collapse
Affiliation(s)
- Goro Doi
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Okada
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuki Sugiyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Siqin Bala
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shintaro Miyazaki
- Kyushu University School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Liang X, Chen H, Li L, An R, Komiyama M. Ring-Structured DNA and RNA as Key Players In Vivoand In Vitro. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
15
|
Spealman P, Burrell J, Gresham D. Inverted duplicate DNA sequences increase translocation rates through sequencing nanopores resulting in reduced base calling accuracy. Nucleic Acids Res 2020; 48:4940-4945. [PMID: 32255181 PMCID: PMC7229812 DOI: 10.1093/nar/gkaa206] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Inverted duplicated DNA sequences are a common feature of structural variants (SVs) and copy number variants (CNVs). Analysis of CNVs containing inverted duplicated DNA sequences using nanopore sequencing identified recurrent aberrant behavior characterized by low confidence, incorrect and missed base calls. Inverted duplicate DNA sequences in both yeast and human samples were observed to have systematic elevation in the electrical current detected at the nanopore, increased translocation rates and decreased sampling rates. The coincidence of inverted duplicated DNA sequences with dramatically reduced sequencing accuracy and an increased translocation rate suggests that secondary DNA structures may interfere with the dynamics of transit of the DNA through the nanopore.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Jaden Burrell
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
16
|
Todd RT, Selmecki A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 2020; 9:e58349. [PMID: 32687060 PMCID: PMC7371428 DOI: 10.7554/elife.58349] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, we identified long repeat sequences that are frequently associated with genome rearrangements, including copy number variation (CNV), in many diverse isolates of the human fungal pathogen Candida albicans (Todd et al., 2019). Here, we describe the rapid acquisition of novel, high copy number CNVs during adaptation to azole antifungal drugs. Single-cell karyotype analysis indicates that these CNVs appear to arise via a dicentric chromosome intermediate and breakage-fusion-bridge cycles that are repaired using multiple distinct long inverted repeat sequences. Subsequent removal of the antifungal drug can lead to a dramatic loss of the CNV and reversion to the progenitor genotype and drug susceptibility phenotype. These findings support a novel mechanism for the rapid acquisition of antifungal drug resistance and provide genomic evidence for the heterogeneity frequently observed in clinical settings.
Collapse
Affiliation(s)
- Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| |
Collapse
|
17
|
Todd RT, Wikoff TD, Forche A, Selmecki A. Genome plasticity in Candida albicans is driven by long repeat sequences. eLife 2019; 8:45954. [PMID: 31172944 PMCID: PMC6591007 DOI: 10.7554/elife.45954] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Genome rearrangements resulting in copy number variation (CNV) and loss of heterozygosity (LOH) are frequently observed during the somatic evolution of cancer and promote rapid adaptation of fungi to novel environments. In the human fungal pathogen Candida albicans, CNV and LOH confer increased virulence and antifungal drug resistance, yet the mechanisms driving these rearrangements are not completely understood. Here, we unveil an extensive array of long repeat sequences (65-6499 bp) that are associated with CNV, LOH, and chromosomal inversions. Many of these long repeat sequences are uncharacterized and encompass one or more coding sequences that are actively transcribed. Repeats associated with genome rearrangements are predominantly inverted and separated by up to ~1.6 Mb, an extraordinary distance for homology-based DNA repair/recombination in yeast. These repeat sequences are a significant source of genome plasticity across diverse strain backgrounds including clinical, environmental, and experimentally evolved isolates, and represent previously uncharacterized variation in the reference genome.
Collapse
Affiliation(s)
- Robert T Todd
- Creighton University Medical School, Omaha, United States
| | - Tyler D Wikoff
- Creighton University Medical School, Omaha, United States
| | | | - Anna Selmecki
- Creighton University Medical School, Omaha, United States
| |
Collapse
|
18
|
Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet 2019; 65:1287-1295. [PMID: 31076843 DOI: 10.1007/s00294-019-00980-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 01/08/2023]
Abstract
Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics, New York University Langone Health, New York, NY, USA
| | - David Gresham
- Center for Genomics and System Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
19
|
Palacios-Flores K, Castillo A, Uribe C, García Sotelo J, Boege M, Dávila G, Flores M, Palacios R, Morales L. Prediction and identification of recurrent genomic rearrangements that generate chimeric chromosomes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2019; 116:8445-8450. [PMID: 30962378 PMCID: PMC6486755 DOI: 10.1073/pnas.1819585116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genomes are dynamic structures. Different mechanisms participate in the generation of genomic rearrangements. One of them is nonallelic homologous recombination (NAHR). This rearrangement is generated by recombination between pairs of repeated sequences with high identity. We analyzed rearrangements mediated by repeated sequences located in different chromosomes. Such rearrangements generate chimeric chromosomes. Potential rearrangements were predicted by localizing interchromosomal identical repeated sequences along the nuclear genome of the Saccharomyces cerevisiae S288C strain. Rearrangements were identified by a PCR-based experimental strategy. PCR primers are located in the unique regions bordering each repeated region of interest. When the PCR is performed using forward primers from one chromosome and reverse primers from another chromosome, the break point of the chimeric chromosome structure is revealed. In all cases analyzed, the corresponding chimeric structures were found. Furthermore, the nucleotide sequence of chimeric structures was obtained, and the origin of the unique regions bordering the repeated sequence was located in the expected chromosomes, using the perfect-match genomic landscape strategy (PMGL). Several chimeric structures were searched in colonies derived from single cells. All of the structures were found in DNA isolated from each of the colonies. Our findings indicate that interchromosomal rearrangements that generate chimeric chromosomes are recurrent and occur, at a relatively high frequency, in cell populations of S. cerevisiae.
Collapse
Affiliation(s)
- Kim Palacios-Flores
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Alejandra Castillo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Carina Uribe
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Jair García Sotelo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Margareta Boege
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Guillermo Dávila
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Margarita Flores
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Rafael Palacios
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Lucia Morales
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| |
Collapse
|
20
|
Lu S. De novo origination of MIRNAs through generation of short inverted repeats in target genes. RNA Biol 2019; 16:846-859. [PMID: 30870071 DOI: 10.1080/15476286.2019.1593744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
MIRNA (MIR) gene origin and early evolutionary processes, such as hairpin precursor sequence origination, promoter activity acquirement and the sequence of these two processes, are fundamental and fascinating subjects. Three models, including inverted gene duplication, spontaneous evolution and transposon transposition, have been proposed for de novo origination of hairpin precursor sequence. However, these models still open to discussion. In addition, de novo origination of MIR gene promoters has not been well investigated. Here, I systematically investigated the origin of evolutionarily young polyphenol oxidase gene (PPO)-targeting MIRs, including MIR1444, MIR058 and MIR12112, and a genomic region termed AasPPO-as-hp, which contained a hairpin-forming sequence. I found that MIR058 precursors and the hairpin-forming sequence of AasPPO-as-hp originated in an ancient PPO gene through forming short inverted repeats. Palindromic-like sequences and imperfect inverted repeats in the ancient PPO gene contributed to initiate the generation of short inverted repeats probably by causing errors during DNA duplication. Analysis of MIR058 and AasPPO-as-hp promoters showed that they originated in the 3'-flanking region of the ancient PPO gene. Promoter activities were gained by insertion of a CAAT-box and multiple-copper-response element (CuRE)-containing miniature inverted-repeat transposable element (MITE) in the upstream of AT-rich TATA-box-like sequence. Gain of promoter activities occurred before hairpin-forming sequence origination. Sequence comparison of MIR1444, MIR058 and MIR12112 promoters showed frequent birth and death of CuREs, indicating copper could be vital for the origination and evolution of PPO-targeting MIRs. Based on the evidence obtained, a novel model for plant MIR origination and evolution is proposed.
Collapse
Affiliation(s)
- Shanfa Lu
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China
| |
Collapse
|
21
|
Lauer S, Avecilla G, Spealman P, Sethia G, Brandt N, Levy SF, Gresham D. Single-cell copy number variant detection reveals the dynamics and diversity of adaptation. PLoS Biol 2018; 16:e3000069. [PMID: 30562346 PMCID: PMC6298651 DOI: 10.1371/journal.pbio.3000069] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Copy number variants (CNVs) are a pervasive source of genetic variation and evolutionary potential, but the dynamics and diversity of CNVs within evolving populations remain unclear. Long-term evolution experiments in chemostats provide an ideal system for studying the molecular processes underlying CNV formation and the temporal dynamics with which they are generated, selected, and maintained. Here, we developed a fluorescent CNV reporter to detect de novo gene amplifications and deletions in individual cells. We used the CNV reporter in Saccharomyces cerevisiae to study CNV formation at the GAP1 locus, which encodes the general amino acid permease, in different nutrient-limited chemostat conditions. We find that under strong selection, GAP1 CNVs are repeatedly generated and selected during the early stages of adaptive evolution, resulting in predictable dynamics. Molecular characterization of CNV-containing lineages shows that the CNV reporter detects different classes of CNVs, including aneuploidies, nonreciprocal translocations, tandem duplications, and complex CNVs. Despite GAP1's proximity to repeat sequences that facilitate intrachromosomal recombination, breakpoint analysis revealed that short inverted repeat sequences mediate formation of at least 50% of GAP1 CNVs. Inverted repeat sequences are also found at breakpoints at the DUR3 locus, where CNVs are selected in urea-limited chemostats. Analysis of 28 CNV breakpoints indicates that inverted repeats are typically 8 nucleotides in length and separated by 40 bases. The features of these CNVs are consistent with origin-dependent inverted-repeat amplification (ODIRA), suggesting that replication-based mechanisms of CNV formation may be a common source of gene amplification. We combined the CNV reporter with barcode lineage tracking and found that 102-104 independent CNV-containing lineages initially compete within populations, resulting in extreme clonal interference. However, only a small number (18-21) of CNV lineages ever constitute more than 1% of the CNV subpopulation, and as selection progresses, the diversity of CNV lineages declines. Our study introduces a novel means of studying CNVs in heterogeneous cell populations and provides insight into their dynamics, diversity, and formation mechanisms in the context of adaptive evolution.
Collapse
Affiliation(s)
- Stephanie Lauer
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Grace Avecilla
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Gunjan Sethia
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Sasha F. Levy
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford University, Stanford, California, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
22
|
Lavi B, Levy Karin E, Pupko T, Hazkani-Covo E. The Prevalence and Evolutionary Conservation of Inverted Repeats in Proteobacteria. Genome Biol Evol 2018; 10:918-927. [PMID: 29608719 PMCID: PMC5941160 DOI: 10.1093/gbe/evy044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Perfect short inverted repeats (IRs) are known to be enriched in a variety of bacterial and eukaryotic genomes. Currently, it is unclear whether perfect IRs are conserved over evolutionary time scales. In this study, we aimed to characterize the prevalence and evolutionary conservation of IRs across 20 proteobacterial strains. We first identified IRs in Escherichia coli K-12 substr MG1655 and showed that they are overabundant. We next aimed to test whether this overabundance is reflected in the conservation of IRs over evolutionary time scales. To this end, for each perfect IR identified in E. coli MG1655, we collected orthologous sequences from related proteobacterial genomes. We next quantified the evolutionary conservation of these IRs, that is, the presence of the exact same IR across orthologous regions. We observed high conservation of perfect IRs: out of the 234 examined orthologous regions, 145 were more conserved than expected, which is statistically significant even after correcting for multiple testing. Our results together with previous experimental findings support a model in which imperfect IRs are corrected to perfect IRs in a preferential manner via a template switching mechanism.
Collapse
Affiliation(s)
- Bar Lavi
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- Department of Molecular Biology & Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| |
Collapse
|
23
|
Whole Genome Sequence Analysis of Mutations Accumulated in rad27Δ Yeast Strains with Defects in the Processing of Okazaki Fragments Indicates Template-Switching Events. G3-GENES GENOMES GENETICS 2017; 7:3775-3787. [PMID: 28974572 PMCID: PMC5677150 DOI: 10.1534/g3.117.300262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Okazaki fragments that are formed during lagging strand DNA synthesis include an initiating primer consisting of both RNA and DNA. The RNA fragment must be removed before the fragments are joined. In Saccharomyces cerevisiae, a key player in this process is the structure-specific flap endonuclease, Rad27p (human homolog FEN1). To obtain a genomic view of the mutational consequence of loss of RAD27, a S. cerevisiae rad27Δ strain was subcultured for 25 generations and sequenced using Illumina paired-end sequencing. Out of the 455 changes observed in 10 colonies isolated the two most common types of events were insertions or deletions (INDELs) in simple sequence repeats (SSRs) and INDELs mediated by short direct repeats. Surprisingly, we also detected a previously neglected class of 21 template-switching events. These events were presumably generated by quasi-palindrome to palindrome correction, as well as palindrome elongation. The formation of these events is best explained by folding back of the stalled nascent strand and resumption of DNA synthesis using the same nascent strand as a template. Evidence of quasi-palindrome to palindrome correction that could be generated by template switching appears also in yeast genome evolution. Out of the 455 events, 55 events appeared in multiple isolates; further analysis indicates that these loci are mutational hotspots. Since Rad27 acts on the lagging strand when the leading strand should not contain any gaps, we propose a mechanism favoring intramolecular strand switching over an intermolecular mechanism. We note that our results open new ways of understanding template switching that occurs during genome instability and evolution.
Collapse
|
24
|
Ohsaki K, Ohgaki Y, Shimizu N. Amplification of a transgene within a long array of replication origins favors higher gene expression in animal cells. PLoS One 2017; 12:e0175585. [PMID: 28403180 PMCID: PMC5389822 DOI: 10.1371/journal.pone.0175585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
Plasmids with both a mammalian replication initiation region (IR) and a matrix attachment region (MAR) are spontaneously amplified in transfected cells, and generate extrachromosomal double minute (DM) or chromosomal homogeneously staining region (HSR). We previously isolated the shortest core IR (G5) required for gene amplification. In this study, we ligated the G5 DNA to create direct or inverted repeats, mixed the repeats with an expression plasmid, and transfected the mixture into human COLO 320DM or hamster CHO DG44 cells. Consequently, we found that the transfected sequence generated DMs or HSR where, surprisingly, the plasmid sequence was embedded within a long stretch of G5 sequences. The amplified structure from the direct G5 repeats was stable, whereas that from the inverted repeats was not. The amplification might be explained by the efficient replication/multimerization of the G5 repeat and recombination with the co-transfected plasmid in an extrachromosomal context. The product might then be integrated into a chromosome arm to generate a HSR. The expression from the plasmid within the long G5 array was much higher than that from a simple plasmid repeat. Because G5 is a core IR that favors gene expression, a long array of G5 provides an excellent environment for gene expression from the embedded plasmid.
Collapse
Affiliation(s)
- Kiwamu Ohsaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Yusuke Ohgaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
25
|
Chen ZX, Oliver B, Zhang YE, Gao G, Long M. Expressed Structurally Stable Inverted Duplicates in Mammalian Genomes as Functional Noncoding Elements. Genome Biol Evol 2017; 9:981-992. [PMID: 28338961 PMCID: PMC5398296 DOI: 10.1093/gbe/evx054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2017] [Indexed: 12/24/2022] Open
Abstract
Inverted duplicates are a type of repetitive DNA motifs consist of two copies of reverse complementary sequences separated by a spacer sequence. They can lead to genome instability and many may have no function, but some functional small RNAs are processed from hairpins transcribed from these elements. It is not clear whether the pervasive numbers of such elements in genomes, especially those of mammals, is the result of high generation rates of neutral or slightly deleterious duplication events or positive selection for functionality. To test the functionality of intergenic inverted duplicates without known functions, we used mirror duplicates, a type of repetitive DNA motifs with few reported functions and little potential to form hairpins when transcribed, as a nonfunctional control. We identified large numbers of inverted duplicates within intergenic regions of human and mouse genomes, as well as 19 other vertebrate genomes. Structure characterization of these inverted duplicates revealed higher proportion to form stable hairpins compared with converted mirror duplicates, suggesting that inverted duplicates may produce hairpin RNAs. Expression profiling across tissues demonstrated that 7.8% of human and 5.7% of mouse inverted duplicates were expressed even under strict criteria. We found that expressed inverted duplicates were more likely to be structurally stable than both unexpressed inverted duplicates and expressed converted mirror duplicates. By dating inverted duplicates in the vertebrate phylogenetic tree, we observed higher conservation of inverted duplicates than mirror duplicates. These observations support the notion that expressed inverted duplicates may be functional through forming hairpin RNAs.
Collapse
Affiliation(s)
- Zhen-Xia Chen
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, P.R. China.,National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.,Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, P.R. China
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Ge Gao
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, P.R. China
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
26
|
Differential paralog divergence modulates genome evolution across yeast species. PLoS Genet 2017; 13:e1006585. [PMID: 28196070 PMCID: PMC5308817 DOI: 10.1371/journal.pgen.1006585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/13/2017] [Indexed: 11/24/2022] Open
Abstract
Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200–500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution. Both comparative genomics and experimental evolution are powerful tools that can be used to make inferences about evolutionary processes. Together, these approaches provide the opportunity to observe evolutionary adaptation over millions of years where selective history is largely unknown, and over short timescales under controlled selective pressures in the laboratory. We have used comparative experimental evolution to observe the evolutionary fate of an adaptive mutation, and determined to what degree the outcome is conditional on the genetic background. We evolved several populations of different yeast species for over 200 generations in sulfate-limited conditions to determine how the differences in genomic context can alter evolutionary routes when challenged with a nutrient limitation selection pressure. We find that the gene encoding a high affinity sulfur transporter becomes amplified in most species of Saccharomyces, except in S. uvarum, in which the amplification of the paralogous sulfate transporter gene SUL2 is recovered. We attribute this change in amplification preference to mutations in the non-coding region of SUL1, likely due to reduced expression of this gene in S. uvarum. We conclude that the adaptive mutations selected for in each organism depend on the genomic context, even when faced with the same environmental condition.
Collapse
|
27
|
Beyer T, Weinert T. Ontogeny of Unstable Chromosomes Generated by Telomere Error in Budding Yeast. PLoS Genet 2016; 12:e1006345. [PMID: 27716774 PMCID: PMC5065131 DOI: 10.1371/journal.pgen.1006345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
DNA replication errors at certain sites in the genome initiate chromosome instability that ultimately leads to stable genomic rearrangements. Where instability begins is often unclear. And, early instability may form unstable chromosome intermediates whose transient nature also hinders mechanistic understanding. We report here a budding yeast model that reveals the genetic ontogeny of genome rearrangements, from initial replication error to unstable chromosome formation to their resolution. Remarkably, the initial error often arises in or near the telomere, and frequently forms unstable chromosomes. Early unstable chromosomes may then resolve to an internal "collection site" where a dicentric forms and resolves to an isochromosome (other outcomes are possible at each step). The initial telomere-proximal unstable chromosome is increased in mutants in telomerase subunits, Tel1, and even Rad9, with no known telomere-specific function. Defects in Tel1 and in Rrm3, a checkpoint protein kinase with a role in telomere maintenance and a DNA helicase, respectively, synergize dramatically to generate unstable chromosomes, further illustrating the consequence of replication error in the telomere. Collectively, our results suggest telomeric replication errors may be a common cause of seemingly unrelated genomic rearrangements located hundreds of kilobases away.
Collapse
Affiliation(s)
- Tracey Beyer
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Ted Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
As the ratio of the copy number of the most replicated to the unreplicated regions in the same chromosome, the definition of chromosomal replication complexity (CRC) appears to leave little room for variation, being either two during S-phase or one otherwise. However, bacteria dividing faster than they replicate their chromosome spike CRC to four and even eight. A recent experimental inquiry about the limits of CRC in Escherichia coli revealed two major reasons to avoid elevating it further: (i) increased chromosomal fragmentation and (ii) complications with subsequent double-strand break repair. Remarkably, examples of stable elevated CRC in eukaryotic chromosomes are well known under various terms like "differential replication," "underreplication," "DNA puffs," "onion-skin replication," or "re-replication" and highlight the phenomenon of static replication fork (sRF). To accurately describe the resulting "amplification by overinitiation," I propose a new term: "replification" (subchromosomal overreplication). In both prokaryotes and eukaryotes, replification, via sRF processing, causes double-strand DNA breaks and, with their repair elevating chromosomal rearrangements, represents a novel genome instability factor. I suggest how static replication bubbles could be stabilized and speculate that some tandem duplications represent such persistent static bubbles. Moreover, I propose how static replication bubbles could be transformed into tandem duplications, double minutes, or inverted triplications. Possible experimental tests of these models are discussed.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Telomere Dysfunction Triggers Palindrome Formation Independently of Double-Strand Break Repair Mechanisms. Genetics 2016; 203:1659-68. [PMID: 27334270 PMCID: PMC4981268 DOI: 10.1534/genetics.115.183020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 06/06/2016] [Indexed: 11/18/2022] Open
Abstract
Inverted chromosome duplications or palindromes are linked with genetic disorders and malignant transformation. They are considered by-products of DNA double-strand break (DSB) repair: the homologous recombination (HR) and the nonhomologous end joining (NHEJ). Palindromes near chromosome ends are often triggered by telomere losses. An important question is to what extent their formation depends upon DSB repair mechanisms. Here we addressed this question using yeast genetics and comparative genomic hybridization. We induced palindrome formation by passaging cells lacking any form of telomere maintenance (telomerase and telomere recombination). Surprisingly, we found that DNA ligase 4, essential for NHEJ, did not make a significant contribution to palindrome formation induced by telomere losses. Moreover RAD51, important for certain HR-derived mechanisms, had little effect. Furthermore RAD52, which is essential for HR in yeast, appeared to decrease the number of palindromes in cells proliferating without telomeres. This study also uncovered an important role for Rev3 and Rev7 (but not for Pol32) subunits of polymerase ζ in the survival of cells undergoing telomere losses and forming palindromes. We propose a model called short-inverted repeat-induced synthesis in which DNA synthesis, rather than DSB repair, drives the inverted duplication triggered by telomere dysfunction.
Collapse
|
30
|
Thierry A, Khanna V, Dujon B. Massive Amplification at an Unselected Locus Accompanies Complex Chromosomal Rearrangements in Yeast. G3 (BETHESDA, MD.) 2016; 6:1201-15. [PMID: 26945028 PMCID: PMC4856073 DOI: 10.1534/g3.115.024547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/20/2016] [Indexed: 12/13/2022]
Abstract
Gene amplification has been observed in different organisms in response to environmental constraints, such as limited nutrients or exposure to a variety of toxic compounds, conferring them with specific phenotypic adaptations via increased expression levels. However, the presence of multiple gene copies in natural genomes has generally not been found in the absence of specific functional selection. Here, we show that the massive amplification of a chromosomal locus (up to 880 copies per cell) occurs in the absence of any direct selection, and is associated with low-order amplifications of flanking segments in complex chromosomal alterations. These results were obtained from mutants with restored phenotypes that spontaneously appeared from genetically engineered strains of the yeast Saccharomyces cerevisiae suffering from severe fitness reduction. Grossly extended chromosomes (macrotene) were formed, with complex structural alterations but sufficient stability to propagate unchanged over successive generations. Their detailed molecular analysis, including complete genome sequencing, identification of sequence breakpoints, and comparisons between mutants, revealed novel mechanisms causing their formation, whose combined action underlies the astonishing dynamics of eukaryotic chromosomes and their consequences.
Collapse
Affiliation(s)
- Agnès Thierry
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| | - Varun Khanna
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| |
Collapse
|
31
|
Deng SK, Yin Y, Petes TD, Symington LS. Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification. Mol Cell 2016; 60:500-8. [PMID: 26545079 DOI: 10.1016/j.molcel.2015.09.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/20/2015] [Accepted: 09/28/2015] [Indexed: 12/17/2022]
Abstract
Foldback priming at DNA double-stranded breaks is one mechanism proposed to initiate palindromic gene amplification, a common feature of cancer cells. Here, we show that small (5-9 bp) inverted repeats drive the formation of large palindromic duplications, the major class of chromosomal rearrangements recovered from yeast cells lacking Sae2 or the Mre11 nuclease. RPA dysfunction increased the frequency of palindromic duplications in Sae2 or Mre11 nuclease-deficient cells by ∼ 1,000-fold, consistent with intra-strand annealing to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. The palindromic duplications were frequently associated with duplication of a second chromosome region bounded by a repeated sequence and a telomere, suggesting the dicentric chromosome breaks and repairs by recombination between dispersed repeats to acquire a telomere. We propose secondary structures within single-stranded DNA are potent instigators of genome instability, and RPA and Mre11-Sae2 play important roles in preventing their formation and propagation, respectively.
Collapse
Affiliation(s)
- Sarah K Deng
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
32
|
Brewer BJ, Payen C, Di Rienzi SC, Higgins MM, Ong G, Dunham MJ, Raghuraman MK. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification. PLoS Genet 2015; 11:e1005699. [PMID: 26700858 PMCID: PMC4689423 DOI: 10.1371/journal.pgen.1005699] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/03/2015] [Indexed: 01/20/2023] Open
Abstract
DNA replication errors are a major driver of evolution—from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model—Origin-Dependent Inverted-Repeat Amplification (ODIRA)—proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error—the ligation of leading and lagging nascent strands to create “closed” forks—can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent—a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution. Chromosomal aberration such as gene amplification is a common event in human diseases and is often selected during adaptation of microorganism to stress. We proposed a replication-based model to explain the formation of a particular type of genomic aberration: internal inverted DNA amplification with retention of the distal end of the chromosome. In this study, using yeast as a model, we test the feasibility of several of these steps for the formation of an inverted amplification: a specific DNA replication anomaly (1) leading to the formation of a palindromic extrachromosomal circular molecule (2) followed by the homologous reintegration of this molecule into the genome (3). A significant feature of this mode of amplification is that the amplified sequences contain one or more replication origins. The instability of the inverted junctions can lead, through homology driven processes, to more complex genomic structures that contain a partial triplication within a duplicated segment, a structure commonly found associated with human disease.
Collapse
Affiliation(s)
- Bonita J. Brewer
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Celia Payen
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Sara C. Di Rienzi
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Megan M. Higgins
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giang Ong
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - M. K. Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
33
|
Abstract
Examples of extrachromosomal circular DNAs (eccDNAs) are found in many organisms, but their impact on genetic variation at the genome scale has not been investigated. We mapped 1,756 eccDNAs in the Saccharomyces cerevisiae genome using Circle-Seq, a highly sensitive eccDNA purification method. Yeast eccDNAs ranged from an arbitrary lower limit of 1 kb up to 38 kb and covered 23% of the genome, representing thousands of genes. EccDNA arose both from genomic regions with repetitive sequences ≥ 15 bases long and from regions with short or no repetitive sequences. Some eccDNAs were identified in several yeast populations. These eccDNAs contained ribosomal genes, transposon remnants, and tandemly repeated genes (HXT6/7, ENA1/2/5, and CUP1-1/-2) that were generally enriched on eccDNAs. EccDNAs seemed to be replicated and 80% contained consensus sequences for autonomous replication origins that could explain their maintenance. Our data suggest that eccDNAs are common in S. cerevisiae, where they might contribute substantially to genetic variation and evolution.
Collapse
|
34
|
Sunshine AB, Payen C, Ong GT, Liachko I, Tan KM, Dunham MJ. The fitness consequences of aneuploidy are driven by condition-dependent gene effects. PLoS Biol 2015; 13:e1002155. [PMID: 26011532 PMCID: PMC4444335 DOI: 10.1371/journal.pbio.1002155] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/15/2015] [Indexed: 11/30/2022] Open
Abstract
Aneuploidy is a hallmark of tumor cells, and yet the precise relationship between aneuploidy and a cell's proliferative ability, or cellular fitness, has remained elusive. In this study, we have combined a detailed analysis of aneuploid clones isolated from laboratory-evolved populations of Saccharomyces cerevisiae with a systematic, genome-wide screen for the fitness effects of telomeric amplifications to address the relationship between aneuploidy and cellular fitness. We found that aneuploid clones rise to high population frequencies in nutrient-limited evolution experiments and show increased fitness relative to wild type. Direct competition experiments confirmed that three out of four aneuploid events isolated from evolved populations were themselves sufficient to improve fitness. To expand the scope beyond this small number of exemplars, we created a genome-wide collection of >1,800 diploid yeast strains, each containing a different telomeric amplicon (Tamp), ranging in size from 0.4 to 1,000 kb. Using pooled competition experiments in nutrient-limited chemostats followed by high-throughput sequencing of strain-identifying barcodes, we determined the fitness effects of these >1,800 Tamps under three different conditions. Our data revealed that the fitness landscape explored by telomeric amplifications is much broader than that explored by single-gene amplifications. As also observed in the evolved clones, we found the fitness effects of most Tamps to be condition specific, with a minority showing common effects in all three conditions. By integrating our data with previous work that examined the fitness effects of single-gene amplifications genome-wide, we found that a small number of genes within each Tamp are centrally responsible for each Tamp's fitness effects. Our genome-wide Tamp screen confirmed that telomeric amplifications identified in laboratory-evolved populations generally increased fitness. Our results show that Tamps are mutations that produce large, typically condition-dependent changes in fitness that are important drivers of increased fitness in asexually evolving populations.
Collapse
Affiliation(s)
- Anna B. Sunshine
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Celia Payen
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giang T. Ong
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kean Ming Tan
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Abstract
Changes in gene copy number are among the most frequent mutational events in all genomes and were among the mutations for which a physical basis was first known. Yet mechanisms of gene duplication remain uncertain because formation rates are difficult to measure and mechanisms may vary with position in a genome. Duplications are compared here to deletions, which seem formally similar but can arise at very different rates by distinct mechanisms. Methods of assessing duplication rates and dependencies are described with several proposed formation mechanisms. Emphasis is placed on duplications formed in extensively studied experimental situations. Duplications studied in microbes are compared with those observed in metazoan cells, specifically those in genomes of cancer cells. Duplications, and especially their derived amplifications, are suggested to form by multistep processes often under positive selection for increased copy number.
Collapse
Affiliation(s)
- Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, California 95819-6077
| | - John R Roth
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| |
Collapse
|
36
|
Thierry A, Khanna V, Créno S, Lafontaine I, Ma L, Bouchier C, Dujon B. Macrotene chromosomes provide insights to a new mechanism of high-order gene amplification in eukaryotes. Nat Commun 2015; 6:6154. [PMID: 25635677 PMCID: PMC4317496 DOI: 10.1038/ncomms7154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/15/2014] [Indexed: 12/30/2022] Open
Abstract
Copy number variation of chromosomal segments is now recognized as a major source of genetic polymorphism within natural populations of eukaryotes, as well as a possible cause of genetic diseases in humans, including cancer, but its molecular bases remain incompletely understood. In the baker's yeast Saccharomyces cerevisiae, a variety of low-order amplifications (segmental duplications) were observed after adaptation to limiting environmental conditions or recovery from gene dosage imbalance, and interpreted in terms of replication-based mechanisms associated or not with homologous recombination. Here we show the emergence of novel high-order amplification structures, with corresponding overexpression of embedded genes, during evolution under favourable growth conditions of severely unfit yeast cells bearing genetically disabled genomes. Such events form massively extended chromosomes, which we propose to call macrotene, whose characteristics suggest the products of intrachromosomal rolling-circle type of replication structures, probably initiated by increased accidental template switches under important cellular stress conditions.
Collapse
Affiliation(s)
- Agnès Thierry
- Institut Pasteur, Unité de Génétique moléculaire des levures, CNRS UMR3525, Sorbonne Universités, UPMC, Univ. Paris 06 UFR927, 25, rue du Docteur Roux, F-75724 Paris, France
| | - Varun Khanna
- Institut Pasteur, Unité de Génétique moléculaire des levures, CNRS UMR3525, Sorbonne Universités, UPMC, Univ. Paris 06 UFR927, 25, rue du Docteur Roux, F-75724 Paris, France
| | - Sophie Créno
- Institut Pasteur, Genomic platform, 28, rue du Docteur Roux, F-75724 Paris, France
| | - Ingrid Lafontaine
- Institut Pasteur, Unité de Génétique moléculaire des levures, CNRS UMR3525, Sorbonne Universités, UPMC, Univ. Paris 06 UFR927, 25, rue du Docteur Roux, F-75724 Paris, France
| | - Laurence Ma
- Institut Pasteur, Genomic platform, 28, rue du Docteur Roux, F-75724 Paris, France
| | - Christiane Bouchier
- Institut Pasteur, Genomic platform, 28, rue du Docteur Roux, F-75724 Paris, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique moléculaire des levures, CNRS UMR3525, Sorbonne Universités, UPMC, Univ. Paris 06 UFR927, 25, rue du Docteur Roux, F-75724 Paris, France
| |
Collapse
|
37
|
Laffitte MCN, Genois MM, Mukherjee A, Légaré D, Masson JY, Ouellette M. Formation of linear amplicons with inverted duplications in Leishmania requires the MRE11 nuclease. PLoS Genet 2014; 10:e1004805. [PMID: 25474106 PMCID: PMC4256157 DOI: 10.1371/journal.pgen.1004805] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022] Open
Abstract
Extrachromosomal DNA amplification is frequent in the protozoan parasite Leishmania selected for drug resistance. The extrachromosomal amplified DNA is either circular or linear, and is formed at the level of direct or inverted homologous repeated sequences that abound in the Leishmania genome. The RAD51 recombinase plays an important role in circular amplicons formation, but the mechanism by which linear amplicons are formed is unknown. We hypothesized that the Leishmania infantum DNA repair protein MRE11 is required for linear amplicons following rearrangements at the level of inverted repeats. The purified LiMRE11 protein showed both DNA binding and exonuclease activities. Inactivation of the LiMRE11 gene led to parasites with enhanced sensitivity to DNA damaging agents. The MRE11−/− parasites had a reduced capacity to form linear amplicons after drug selection, and the reintroduction of an MRE11 allele led to parasites regaining their capacity to generate linear amplicons, but only when MRE11 had an active nuclease activity. These results highlight a novel MRE11-dependent pathway used by Leishmania to amplify portions of its genome to respond to a changing environment. Extrachromosomal DNA amplification is frequent in the human protozoan parasite Leishmania when challenged with drug or other stressful conditions. DNA amplicons, either circular or linear, are formed by recombination between direct or inverted repeats spread throughout the genome of the parasite. The recombinase RAD51 is involved in the formation of circular amplicons, but the mechanism by which linear amplicons are formed is still unknown in this parasite. Studies in other organisms have provided some evidence that a DNA break is required for linear amplifications, and that the DNA repair protein MRE11 can be involved in this process. In this work, we present our biochemical, cellular and molecular characterization of the Leishmania infantum MRE11 orthologue and provide evidence that this nuclease is involved in the formation of linear amplicons in Leishmania. Our results highlight a novel MRE11-dependent pathway used by Leishmania to amplify portions of its genome to respond to a changing environment.
Collapse
Affiliation(s)
| | - Marie-Michelle Genois
- Centre de Recherche en Infectiologie du CHU de Québec, Quebec City, Québec, Canada
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavillon, Oncology Axis, Quebec City, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Québec, Canada
| | - Angana Mukherjee
- Centre de Recherche en Infectiologie du CHU de Québec, Quebec City, Québec, Canada
| | - Danielle Légaré
- Centre de Recherche en Infectiologie du CHU de Québec, Quebec City, Québec, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavillon, Oncology Axis, Quebec City, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du CHU de Québec, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
38
|
Rizvi AZ, Bhattacharya C. Detection of Replication Origin Sites in Herpesvirus Genomes by Clustering and Scoring of Palindromes with Quadratic Entropy Measures. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:1108-1118. [PMID: 26357048 DOI: 10.1109/tcbb.2014.2330622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Replication in herpesvirus genomes is a major concern of public health as they multiply rapidly during the lytic phase of infection that cause maximum damage to the host cells. Earlier research has established that sites of replication origin are dominated by high concentration of rare palindrome sequences of DNA. Computational methods are devised based on scoring to determine the concentration of palindromes. In this paper, we propose both extraction and localization of rare palindromes in an automated manner. Discrete Cosine Transform (DCT-II), a widely recognized image compression algorithm is utilized here to extract palindromic sequences based on their reverse complimentary symmetry property of existence. We formulate a novel approach to localize the rare palindrome clusters by devising a Minimum Quadratic Entropy (MQE) measure based on the Renyi's Quadratic Entropy (RQE) function. Experimental results over a large number of herpesvirus genomes show that the RQE based scoring of rare palindromes have higher order of sensitivity, and lesser false alarm in detecting concentration of rare palindromes and thereby sites of replication origin.
Collapse
|
39
|
The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection. G3-GENES GENOMES GENETICS 2014; 4:399-409. [PMID: 24368781 PMCID: PMC3962480 DOI: 10.1534/g3.113.009365] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.
Collapse
|
40
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
41
|
Beri S, Bonaglia MC, Giorda R. Low-copy repeats at the human VIPR2 gene predispose to recurrent and nonrecurrent rearrangements. Eur J Hum Genet 2013; 21:757-61. [PMID: 23073313 PMCID: PMC3722940 DOI: 10.1038/ejhg.2012.235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 08/07/2012] [Accepted: 09/12/2012] [Indexed: 01/30/2023] Open
Abstract
Submicroscopic structural variations, including deletions, duplications, inversions and more complex rearrangements, are widespread in normal human genomes. Inverted segmental duplications or highly identical low-copy repeat (LCR) sequences can mediate the formation of inversions and more complex structural rearrangements through non-allelic homologous recombination. In a patient with 7q36 inverted duplication/terminal deletion, we demonstrated the central role of a pair of short inverted LCRs in the vasoactive intestinal peptide receptor gene (VIPR2)-LCRs in generating the rearrangement. We also revealed a relatively common VIPR2-LCR-associated inversion polymorphism disrupting the gene in almost 1% of healthy subjects, and a small number of complex duplications/triplications. In genome-wide studies of several thousand patients, a significant association of rare microduplications with variable size, all involving VIPR2, with schizophrenia was recently described, suggesting that altered vasoactive intestinal peptide signaling is likely implicated in the pathogenesis of schizophrenia. Genetic testing for VIPR2-LCR-associated inversions should be performed on available cohorts of psychiatric patients to evaluate their potential pathogenic role.
Collapse
Affiliation(s)
- Silvana Beri
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
42
|
Gene copy-number variation in haploid and diploid strains of the yeast Saccharomyces cerevisiae. Genetics 2013; 193:785-801. [PMID: 23307895 DOI: 10.1534/genetics.112.146522] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The increasing ability to sequence and compare multiple individual genomes within a species has highlighted the fact that copy-number variation (CNV) is a substantial and underappreciated source of genetic diversity. Chromosome-scale mutations occur at rates orders of magnitude higher than base substitutions, yet our understanding of the mechanisms leading to CNVs has been lagging. We examined CNV in a region of chromosome 5 (chr5) in haploid and diploid strains of Saccharomyces cerevisiae. We optimized a CNV detection assay based on a reporter cassette containing the SFA1 and CUP1 genes that confer gene dosage-dependent tolerance to formaldehyde and copper, respectively. This optimized reporter allowed the selection of low-order gene amplification events, going from one copy to two copies in haploids and from two to three copies in diploids. In haploid strains, most events involved tandem segmental duplications mediated by nonallelic homologous recombination between flanking direct repeats, primarily Ty1 elements. In diploids, most events involved the formation of a recurrent nonreciprocal translocation between a chr5 Ty1 element and another Ty1 repeat on chr13. In addition to amplification events, a subset of clones displaying elevated resistance to formaldehyde had point mutations within the SFA1 coding sequence. These mutations were all dominant and are proposed to result in hyperactive forms of the formaldehyde dehydrogenase enzyme.
Collapse
|
43
|
Marotta M, Chen X, Inoshita A, Stephens R, Budd GT, Crowe JP, Lyons J, Kondratova A, Tubbs R, Tanaka H. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications. Breast Cancer Res 2012. [PMID: 23181561 PMCID: PMC4053137 DOI: 10.1186/bcr3362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Segmental duplications (low-copy repeats) are the recently duplicated genomic segments in the human genome that display nearly identical (> 90%) sequences and account for about 5% of euchromatic regions. In germline, duplicated segments mediate nonallelic homologous recombination and thus cause both non-disease-causing copy-number variants and genomic disorders. To what extent duplicated segments play a role in somatic DNA rearrangements in cancer remains elusive. Duplicated segments often cluster and form genomic blocks enriched with both direct and inverted repeats (complex genomic regions). Such complex regions could be fragile and play a mechanistic role in the amplification of the ERBB2 gene in breast tumors, because repeated sequences are known to initiate gene amplification in model systems. Methods We conducted polymerase chain reaction (PCR)-based assays for primary breast tumors and analyzed publically available array-comparative genomic hybridization data to map a common copy-number breakpoint in ERBB2-amplified primary breast tumors. We further used molecular, bioinformatics, and population-genetics approaches to define duplication contents, structural variants, and haplotypes within the common breakpoint. Results We found a large (> 300-kb) block of duplicated segments that was colocalized with a common-copy number breakpoint for ERBB2 amplification. The breakpoint that potentially initiated ERBB2 amplification localized in a region 1.5 megabases (Mb) on the telomeric side of ERBB2. The region is very complex, with extensive duplications of KRTAP genes, structural variants, and, as a result, a paucity of single-nucleotide polymorphism (SNP) markers. Duplicated segments are varied in size and degree of sequence homology, indicating that duplications have occurred recurrently during genome evolution. Conclusions Amplification of the ERBB2 gene in breast tumors is potentially initiated by a complex region that has unusual genomic features and thus requires rigorous, labor-intensive investigation. The haplotypes we provide could be useful to identify the potential association between the complex region and ERBB2 amplification.
Collapse
|
44
|
Reams AB, Kofoid E, Kugelberg E, Roth JR. Multiple pathways of duplication formation with and without recombination (RecA) in Salmonella enterica. Genetics 2012; 192:397-415. [PMID: 22865732 PMCID: PMC3454872 DOI: 10.1534/genetics.112.142570] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022] Open
Abstract
Duplications are often attributed to "unequal recombination" between separated, directly repeated sequence elements (>100 bp), events that leave a recombinant element at the duplication junction. However, in the bacterial chromosome, duplications form at high rates (10(-3)-10(-5)/cell/division) even without recombination (RecA). Here we describe 1800 spontaneous lac duplications trapped nonselectively on the low-copy F'(128) plasmid, where lac is flanked by direct repeats of the transposable element IS3 (1258 bp) and by numerous quasipalindromic REP elements (30 bp). Duplications form at a high rate (10(-4)/cell/division) that is reduced only about 11-fold in the absence of RecA. With and without RecA, most duplications arise by recombination between IS3 elements (97%). Formation of these duplications is stimulated by IS3 transposase (Tnp) and plasmid transfer functions (TraI). Three duplication pathways are proposed. First, plasmid dimers form at a high rate stimulated by RecA and are then modified by deletions between IS3 elements (resolution) that leave a monomeric plasmid with an IS3-flanked lac duplication. Second, without RecA, duplications occur by single-strand annealing of DNA ends generated in different sister chromosomes after transposase nicks DNA near participating IS3 elements. The absence of RecA may stimulate annealing by allowing chromosome breaks to persist. Third, a minority of lac duplications (3%) have short (0-36 bp) junction sequences (SJ), some of which are located within REP elements. These duplication types form without RecA, Tnp, or Tra by a pathway in which the palindromic junctions of a tandem inversion duplication (TID) may stimulate deletions that leave the final duplication.
Collapse
Affiliation(s)
- Andrew B. Reams
- Department of Microbiology, University of California, Davis, California 95616
| | - Eric Kofoid
- Department of Microbiology, University of California, Davis, California 95616
| | - Elisabeth Kugelberg
- Department of Microbiology, University of California, Davis, California 95616
| | - John R. Roth
- Department of Microbiology, University of California, Davis, California 95616
| |
Collapse
|
45
|
Di Rienzi SC, Lindstrom KC, Mann T, Noble WS, Raghuraman MK, Brewer BJ. Maintaining replication origins in the face of genomic change. Genome Res 2012; 22:1940-52. [PMID: 22665441 PMCID: PMC3460189 DOI: 10.1101/gr.138248.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Origins of replication present a paradox to evolutionary biologists. As a collection, they are absolutely essential genomic features, but individually are highly redundant and nonessential. It is therefore difficult to predict to what extent and in what regard origins are conserved over evolutionary time. Here, through a comparative genomic analysis of replication origins and chromosomal replication patterns in the budding yeasts Saccharomyces cerevisiae and Lachancea waltii, we assess to what extent replication origins survived genomic change produced from 150 million years of evolution. We find that L. waltii origins exhibit a core consensus sequence and nucleosome occupancy pattern highly similar to those of S. cerevisiae origins. We further observe that the overall progression of chromosomal replication is similar between L. waltii and S. cerevisiae. Nevertheless, few origins show evidence of being conserved in location between the two species. Among the conserved origins are those surrounding centromeres and adjacent to histone genes, suggesting that proximity to an origin may be important for their regulation. We conclude that, over evolutionary time, origins maintain sequence, structure, and regulation, but are continually being created and destroyed, with the result that their locations are generally not conserved.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
46
|
Carr AM, Paek AL, Weinert T. DNA replication: failures and inverted fusions. Semin Cell Dev Biol 2011; 22:866-74. [PMID: 22020070 DOI: 10.1016/j.semcdb.2011.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/12/2011] [Indexed: 11/16/2022]
Abstract
DNA replication normally follows the rules passed down from Watson and Crick: the chromosome duplicates as dictated by its antiparallel strands, base-pairing and leading and lagging strand differences. Real-life replication is more complicated, fraught with perils posed by chromosome damage for one, and by transcription of genes and by other perils that disrupt progress of the DNA replication machinery. Understanding the replication fork, including DNA structures, associated replisome and its regulators, is key to understanding how cells overcome perils and minimize error. Replication fork error leads to genome rearrangements and, potentially, cell death. Interest in the replication fork and its errors has recently gained added interest by the results of deep sequencing studies of human genomes. Several pathologies are associated with sometimes-bizarre genome rearrangements suggestive of elaborate replication fork failures. To try and understand the links between the replication fork, its failure and genome rearrangements, we discuss here phases of fork behavior (stall, collapse, restart and fork failures leading to rearrangements) and analyze two examples of instability from our own studies; one in fission yeast and the other in budding yeast.
Collapse
Affiliation(s)
- Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, Sussex, UK.
| | | | | |
Collapse
|