1
|
El-Halwagi A, Agarwal SK. Insights into the genetic landscape of systemic sclerosis. Best Pract Res Clin Rheumatol 2024; 38:101981. [PMID: 39068103 DOI: 10.1016/j.berh.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease that clinically manifests as progressive fibrosis of the skin and internal organs. Autoimmunity and endothelial dysfunction play important roles in the development of SSc but the causes of SSc remain unknown. Accumulating evidence, first from familial aggregation studies and subsequently from candidate gene association studies and genome wide association studies underscore the crucial contributions of genetics to the development of SSc. The identification of polymorphisms in the HLA region as well as non-HLA loci is important for understanding the risks of developing SSc but can also provide important pathogenic insight in SSc. While not translating into clinic practice yet, understanding the genetic landscape of SSc will hopefully assist in the diagnosis and management of patients with and/or at risk of developing SSc in the future. Herein we review the studies that investigate genetic risks of SSc susceptibility.
Collapse
Affiliation(s)
- Ali El-Halwagi
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sandeep K Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Sachan N, Sharma V, Mutsuddi M, Mukherjee A. Notch signalling: multifaceted role in development and disease. FEBS J 2024; 291:3030-3059. [PMID: 37166442 DOI: 10.1111/febs.16815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. Notch signalling plays important roles in many developmental processes, making it difficult to name a tissue or a developing organ that does not depend on Notch function at one stage or another. Thus, dysregulation of Notch signalling is associated with many developmental defects and various pathological conditions, including cancer. Although many recent advances have been made to reveal different aspects of the Notch signalling mechanism and its intricate regulation, there are still many unanswered questions related to how the Notch signalling pathway functions in so many developmental events. The same pathway can be deployed in numerous cellular contexts to play varied and critical roles in an organism's development and this is only possible because of the complex regulatory mechanisms of the pathway. In this review, we provide an overview of the mechanism and regulation of the Notch signalling pathway along with its multifaceted functions in different aspects of development and disease.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Drougkas K, Skarlis C, Mavragani C. Type I Interferons in Systemic Autoimmune Rheumatic Diseases: Pathogenesis, Clinical Features and Treatment Options. Mediterr J Rheumatol 2024; 35:365-380. [PMID: 39193187 PMCID: PMC11345602 DOI: 10.31138/mjr.270324.tis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/29/2024] Open
Abstract
Type I interferon (IFN) pathway dysregulation plays a crucial role in the pathogenesis of several systemic autoimmune rheumatic diseases (SARDs), including systemic lupus erythematosus (SLE), Sjögren's disease (SjD), systemic sclerosis (SSc), dermatomyositis (DM) and rheumatoid arthritis (RA). Genetic and epigenetic alterations have been involved in dysregulated type I IFN responses in systemic autoimmune disorders. Aberrant type I IFN production and secretion have been associated with distinct clinical phenotypes, disease activity, and severity as well as differentiated treatment responses among SARDs. In this review, we provide an overview of the role of type I IFNs in systemic autoimmune diseases including SLE, RA, SjD, SSc, and DM focusing on pathophysiological, clinical, and therapeutical aspects.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Cao X, Zhang S, Sha Q. A novel method for multiple phenotype association studies based on genotype and phenotype network. PLoS Genet 2024; 20:e1011245. [PMID: 38728360 PMCID: PMC11111089 DOI: 10.1371/journal.pgen.1011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/22/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Joint analysis of multiple correlated phenotypes for genome-wide association studies (GWAS) can identify and interpret pleiotropic loci which are essential to understand pleiotropy in diseases and complex traits. Meanwhile, constructing a network based on associations between phenotypes and genotypes provides a new insight to analyze multiple phenotypes, which can explore whether phenotypes and genotypes might be related to each other at a higher level of cellular and organismal organization. In this paper, we first develop a bipartite signed network by linking phenotypes and genotypes into a Genotype and Phenotype Network (GPN). The GPN can be constructed by a mixture of quantitative and qualitative phenotypes and is applicable to binary phenotypes with extremely unbalanced case-control ratios in large-scale biobank datasets. We then apply a powerful community detection method to partition phenotypes into disjoint network modules based on GPN. Finally, we jointly test the association between multiple phenotypes in a network module and a single nucleotide polymorphism (SNP). Simulations and analyses of 72 complex traits in the UK Biobank show that multiple phenotype association tests based on network modules detected by GPN are much more powerful than those without considering network modules. The newly proposed GPN provides a new insight to investigate the genetic architecture among different types of phenotypes. Multiple phenotypes association studies based on GPN are improved by incorporating the genetic information into the phenotype clustering. Notably, it might broaden the understanding of genetic architecture that exists between diagnoses, genes, and pleiotropy.
Collapse
Affiliation(s)
- Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Shuanglin Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| |
Collapse
|
5
|
Ishikawa Y, Tanaka N, Asano Y, Kodera M, Shirai Y, Akahoshi M, Hasegawa M, Matsushita T, Saito K, Motegi SI, Yoshifuji H, Yoshizaki A, Kohmoto T, Takagi K, Oka A, Kanda M, Tanaka Y, Ito Y, Nakano K, Kasamatsu H, Utsunomiya A, Sekiguchi A, Niiro H, Jinnin M, Makino K, Makino T, Ihn H, Yamamoto M, Suzuki C, Takahashi H, Nishida E, Morita A, Yamamoto T, Fujimoto M, Kondo Y, Goto D, Sumida T, Ayuzawa N, Yanagida H, Horita T, Atsumi T, Endo H, Shima Y, Kumanogoh A, Hirata J, Otomo N, Suetsugu H, Koike Y, Tomizuka K, Yoshino S, Liu X, Ito S, Hikino K, Suzuki A, Momozawa Y, Ikegawa S, Tanaka Y, Ishikawa O, Takehara K, Torii T, Sato S, Okada Y, Mimori T, Matsuda F, Matsuda K, Amariuta T, Imoto I, Matsuo K, Kuwana M, Kawaguchi Y, Ohmura K, Terao C. GWAS for systemic sclerosis identifies six novel susceptibility loci including one in the Fcγ receptor region. Nat Commun 2024; 15:319. [PMID: 38296975 PMCID: PMC10830486 DOI: 10.1038/s41467-023-44541-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Here we report the largest Asian genome-wide association study (GWAS) for systemic sclerosis performed to date, based on data from Japanese subjects and comprising of 1428 cases and 112,599 controls. The lead SNP is in the FCGR/FCRL region, which shows a penetrating association in the Asian population, while a complete linkage disequilibrium SNP, rs10917688, is found in a cis-regulatory element for IRF8. IRF8 is also a significant locus in European GWAS for systemic sclerosis, but rs10917688 only shows an association in the presence of the risk allele of IRF8 in the Japanese population. Further analysis shows that rs10917688 is marked with H3K4me1 in primary B cells. A meta-analysis with a European GWAS detects 30 additional significant loci. Polygenic risk scores constructed with the effect sizes of the meta-analysis suggest the potential portability of genetic associations beyond populations. Prioritizing the top 5% of SNPs of IRF8 binding sites in B cells improves the fitting of the polygenic risk scores, underscoring the roles of B cells and IRF8 in the development of systemic sclerosis. The results also suggest that systemic sclerosis shares a common genetic architecture across populations.
Collapse
Affiliation(s)
- Yuki Ishikawa
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Nao Tanaka
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Dermatology, The University of Tokyo, Tokyo, Japan
| | - Masanari Kodera
- Department of Dermatology, Chukyo Hospital, Japan Community Health Care Organization, Nagoya, Japan
| | - Yuichiro Shirai
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Mitsuteru Akahoshi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Rheumatology, Saga University Hospital, Saga, Japan
| | - Minoru Hasegawa
- Faculty of Medical Sciences, Department of Dermatology, University of Fukui, Fukui, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Saito
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Kohmoto
- Aichi Cancer Center Research Institute, Division of Molecular Genetics, Nagoya, Japan
| | - Kae Takagi
- Tokyo Women's Medical University, Adachi Medical Center, Tokyo, Japan
| | - Akira Oka
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Miho Kanda
- Department of Dermatology, Chukyo Hospital, Japan Community Health Care Organization, Nagoya, Japan
| | - Yoshihito Tanaka
- Department of Dermatology, Chukyo Hospital, Japan Community Health Care Organization, Nagoya, Japan
| | - Yumi Ito
- Department of Dermatology, Chukyo Hospital, Japan Community Health Care Organization, Nagoya, Japan
| | - Kazuhisa Nakano
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Hiroshi Kasamatsu
- Faculty of Medical Sciences, Department of Dermatology, University of Fukui, Fukui, Japan
| | - Akira Utsunomiya
- Faculty of Medical Sciences, Department of Dermatology, University of Fukui, Fukui, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroaki Niiro
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamitsu Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohisa Yamamoto
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chisako Suzuki
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Takahashi
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Emi Nishida
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Dermatology, Okazaki City Hospital, Okazaki, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiyuki Yamamoto
- Department of Dermatology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Kondo
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Goto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naho Ayuzawa
- Department of Clinical Immunology, National Hospital Organization, Utano National Hospital, Kyoto, Japan
| | - Hidetoshi Yanagida
- Department of Clinical Immunology, National Hospital Organization, Utano National Hospital, Kyoto, Japan
| | - Tetsuya Horita
- Faculty of Medicine and Graduate School of Medicine, Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Faculty of Medicine and Graduate School of Medicine, Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University, Sapporo, Japan
| | - Hirahito Endo
- Omori Medical Center, Toho University, Rheumatic Disease Center, Tokyo, Japan
| | - Yoshihito Shima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Hirata
- Immunology Frontier Center, Osaka University, Statistical Immunology, Osaka, Japan
| | - Nao Otomo
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Hiroyuki Suetsugu
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Yoshinao Koike
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Kohei Tomizuka
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Soichiro Yoshino
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Xiaoxi Liu
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Shuji Ito
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Keiko Hikino
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Pharmacogenomics, Yokohama, Japan
| | - Akari Suzuki
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Autoimmune Diseases, Yokohama, Japan
| | - Yukihide Momozawa
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Genotyping Development, Yokohama, Japan
| | - Shiro Ikegawa
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Bone and Joint Diseases, Yokohama, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Shinichi Sato
- Department of Dermatology, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Immunology Frontier Center, Osaka University, Statistical Immunology, Osaka, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Ijinkai Takeada General Hospital, Kyoto, Japan
| | - Fumihiko Matsuda
- Graduate School of Medicine, Kyoto University, Center for Genomic Medicine, Kyoto, Japan
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Laboratory of Genome Technology, Human Genome Center, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tiffany Amariuta
- Center for Data Sciences, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Keitaro Matsuo
- Aichi Cancer Center Research Institute, Division of Cancer Epidemiology and Prevention, Nagoya, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Kawaguchi
- Tokyo Women's Medical University, Division of Rheumatology, Department of Internal Medicine, Tokyo, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan.
- Shizuoka General Hospital, The Clinical Research Center, Shizuoka, Japan.
- The Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
6
|
Machhua S, Sharma SK, Kumar Y, Singh S, Aggarwal R, Anand S, Kumar M, Singh H, Minz RW. Human leukocyte antigen association in systemic sclerosis patients: our experience at a tertiary care center in North India. Front Immunol 2023; 14:1179514. [PMID: 37781395 PMCID: PMC10533912 DOI: 10.3389/fimmu.2023.1179514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Systemic sclerosis (SSc) is a chronic multisystem autoimmune rheumatic disease of unknown etiology. Several studies have established that SSc is triggered by a dynamic interplay between genetic factors and environmental stimuli. In the present study, we aimed to study the association of human leukocyte antigen (HLA) with familial and non-familial SSc patients [limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc)] from North India. Methods The HLA-A, B, DRB1, and DQB1 genotyping of 150 (70 lcSSc and 80 dcSSc) adult-onset SSc patients and 150 age-gender-matched healthy controls were performed with sequence-specific oligonucleotide (SSO) typing kits using the luminex platform. HLA typing for HLA class I (A, B, and C) and II (DRB1, DQB1, and DPB1) in five North Indian families consisting of parent-child/sibling pairs affected with SSc or overlap syndrome was performed by Next Generation Sequencing (NGS) with Illumina MiniSeq. Rseults Among the non-familial SSc patients, HLA- DRB1*11 (P = 0.001, OR: 2.38, P c = 0.01) was identified as a risk allele, and DRB1*12 (P = .0001, OR: 0.00, P c = 0.001) as a protective allele. There was no statistical association found with HLA-DQB1*. Also, no significant association was observed between HLA antigens and different clinical subsets (lcSSc and dcSSc) of SSc. Two cases of familial SSc patients had the DRB1*11 allele. The DRB1*12 allele was absent in all the familial SSc patients. Discussion HLA DRB1*11 (risk allele) and DRB1*12 (protective allele) were found to be strongly associated with non-familial SSc patients and partially explain the disease's familial clustering, supporting the susceptible genetic background theory for SSc development. The study also indicates the HLA allele as a common genetic risk factor in distinct autoimmune diseases contributing to overlap syndrome or polyautoimmunity.
Collapse
Affiliation(s)
- Sanghamitra Machhua
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shefali Khanna Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritu Aggarwal
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shashi Anand
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Kumar
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Heera Singh
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Londe AC, Fernandez-Ruiz R, Julio PR, Appenzeller S, Niewold TB. Type I Interferons in Autoimmunity: Implications in Clinical Phenotypes and Treatment Response. J Rheumatol 2023; 50:1103-1113. [PMID: 37399470 DOI: 10.3899/jrheum.2022-0827] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 07/05/2023]
Abstract
Type I interferon (IFN-I) is thought to play a role in many systemic autoimmune diseases. IFN-I pathway activation is associated with pathogenic features, including the presence of autoantibodies and clinical phenotypes such as more severe disease with increased disease activity and damage. We will review the role and potential drivers of IFN-I dysregulation in 5 prototypic autoimmune diseases: systemic lupus erythematosus, dermatomyositis, rheumatoid arthritis, primary Sjögren syndrome, and systemic sclerosis. We will also discuss current therapeutic strategies that directly or indirectly target the IFN-I system.
Collapse
Affiliation(s)
- Ana Carolina Londe
- A.C. Londe, MSc, Autoimmunity Lab, and Graduate Program in Physiopathology, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ruth Fernandez-Ruiz
- R. Fernandez-Ruiz, MD, Department of Medicine, Hospital for Special Surgery, New York, New York, USA
| | - Paulo Rogério Julio
- P. Rogério Julio, MSc, Autoimmunity Lab, and Graduate Program of Child and Adolescent Health, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Simone Appenzeller
- S. Appenzeller, MD, PhD, Autoimmunity Lab, and Rheumatology Unit, Department of Medicine, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Timothy B Niewold
- T.B. Niewold, MD, Department of Medicine, Hospital for Special Surgery, New York, New York, USA.
| |
Collapse
|
8
|
Ma W, Huang G, Wang Z, Wang L, Gao Q. IRF7: role and regulation in immunity and autoimmunity. Front Immunol 2023; 14:1236923. [PMID: 37638030 PMCID: PMC10449649 DOI: 10.3389/fimmu.2023.1236923] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Interferon regulatory factor (IRF) 7 was originally identified as master transcriptional factor that produced IFN-I and regulated innate immune response, subsequent studies have revealed that IRF7 performs a multifaceted and versatile functions in multiple biological processes. In this review, we provide a comprehensive overview on the current knowledge of the role of IRF7 in immunity and autoimmunity. We focus on the latest regulatory mechanisms of IRF7 in IFN-I, including signaling pathways, transcription, translation, and post-translational levels, the dimerization and nuclear translocation, and the role of IRF7 in IFN-III and COVID-19. In addition to antiviral immunity, we also discuss the role and mechanism of IRF7 in autoimmunity, and the further research will expand our understanding of IRF7.
Collapse
Affiliation(s)
- Wei Ma
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
9
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
10
|
Karmon M, Kopel E, Barzilai A, Geva P, Eisenberg E, Levanon EY, Greenberger S. Altered RNA Editing in Atopic Dermatitis Highlights the Role of Double-Stranded RNA for Immune Surveillance. J Invest Dermatol 2022; 143:933-943.e8. [PMID: 36502941 DOI: 10.1016/j.jid.2022.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/03/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis (AD) is associated with dysregulated type 1 IFN‒mediated responses, in parallel with the dominant type 2 inflammation. However, the pathophysiology of this dysregulation is largely unknown. Adenosine-to-inosine RNA editing plays a critical role in immune regulation by preventing double-stranded RNA recognition by MDA5 and IFN activation. We studied global adenosine-to-inosine editing in AD to elucidate the role played by altered editing in the pathophysiology of this disease. Analysis of three RNA-sequencing datasets of AD skin samples revealed reduced levels of adenosine-to-inosine RNA editing in AD. This reduction was seen globally throughout Alu repeats as well as in coding genes and in specific pre-mRNA loci expected to create long double-stranded RNA, the main substrate of MDA5 leading to type I IFN activation. Consistently, IFN signature genes were upregulated. In contrast, global editing was not altered in systemic lupus erythematosus and systemic sclerosis, despite IFN activation. Our results indicate that altered editing leading to impairment of the innate immune response may be involved in the pathogenesis of AD. Possibly, it may be relevant for additional autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Miriam Karmon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Kopel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Aviv Barzilai
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Polina Geva
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| | - Eli Eisenberg
- Raymond & Beverly Sackler School of Physics & Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shoshana Greenberger
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Jiang M, Wang J, Shen Y, Zhu J, Liu Z, Gong W, Yu Y, Zhang S, Zhou X, He S, Song Y, Zhu Z, Jin L, Cong W. Ribosomal S6 Protein Kinase 2 Aggravates the Process of Systemic Scleroderma. J Invest Dermatol 2022; 142:3175-3183.e5. [PMID: 35853487 DOI: 10.1016/j.jid.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023]
Abstract
Systemic sclerosis is a complex process of pathogenesis, and the contributions of inherited genes, infections, and chemicals remain largely unknown. In this study, we showed that p90 ribosomal S6 protein kinase 2 (RSK2) was selectively upregulated in fibrotic skin and fibroblasts treated with the profibrotic cytokine TGF-β. Moreover, knockout of Rsk2 specifically in skin fibroblasts or pharmacological inhibition of RSK2 attenuated skin fibrosis in a mouse model. Mechanistically, RSK2 directly interacted with glycogen synthase kinase 3β in vivo and in vitro and thereby induced phosphorylation of glycogen synthase kinase 3β at Ser9 to inhibit ubiquitination and degradation of GLI1, which promoted fibroblast differentiation and skin fibrosis. Consequently, RSK2 plays an important role in the dermal skin of systemic sclerosis. These findings provided a potential therapeutic target for systemic sclerosis.
Collapse
Affiliation(s)
- Mengying Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jianan Wang
- Department of Pharmacy, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhili Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ying Yu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Siyi Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xuan Zhou
- Ningbo First Hospital, Ningbo, China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yonghuan Song
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
12
|
Kakkar V, Assassi S, Allanore Y, Kuwana M, Denton CP, Khanna D, Del Galdo F. Type 1 interferon activation in systemic sclerosis: a biomarker, a target or the culprit. Curr Opin Rheumatol 2022; 34:357-364. [PMID: 36125916 PMCID: PMC9594133 DOI: 10.1097/bor.0000000000000907] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
PURPOSE OF REVIEW Activation of the type 1 interferon (T1 IFN) pathway has been implicated in the pathogenesis of systemic sclerosis (SSc) by an increasing number of studies, most of which share key findings with similar studies in systemic lupus erythematosus (SLE). Here we will focus on the evidence for T1 IFN activation and dysregulation in SSc, and the rationale behind targeting the pathway going forward. RECENT FINDINGS An increased expression and activation of T1 IFN-regulated genes has been shown to be present in a significant proportion of SSc patients. TI IFN activation markers have been found to predict and correlate with response to immunosuppressive treatment as well as severity of organ involvement. As inhibition of the IFN-α receptor has been proven to be effective in active SLE, benefit may be seen in targeting the IFN pathway in SSc. SUMMARY The role played by T1 IFN and its regulatory genes in SSc is becoming increasingly evident and strikingly similar to the role observed in SLE. This observation, together with the benefit of type 1 IFN targeting in SLE, supports the notion of a potential therapeutic benefit in targeting T1 IFN in SSc.
Collapse
Affiliation(s)
- Vishal Kakkar
- Department of Rheumatology, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center at Houston, Texas, USA
| | - Yannick Allanore
- INSERM U1016 UMR 8104, Université Paris Cité, Hôpital Cochin, Paris, France
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| | | | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, Michigan, USA
| | - Francesco Del Galdo
- Department of Rheumatology, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
13
|
Ortíz-Fernández L, Martín J, Alarcón-Riquelme ME. A Summary on the Genetics of Systemic Lupus Erythematosus, Rheumatoid Arthritis, Systemic Sclerosis, and Sjögren's Syndrome. Clin Rev Allergy Immunol 2022; 64:392-411. [PMID: 35749015 DOI: 10.1007/s12016-022-08951-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
Systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, and Sjögren's syndrome are four major autoimmune rheumatic diseases characterized by the presence of autoantibodies, caused by a dysregulation of the immune system that leads to a wide variety of clinical manifestations. These conditions present complex etiologies strongly influenced by multiple environmental and genetic factors. The human leukocyte antigen (HLA) region was the first locus identified to be associated and still represents the strongest susceptibility factor for each of these conditions, particularly the HLA class II genes, including DQA1, DQB1, and DRB1, but class I genes have also been associated. Over the last two decades, the genetic component of these disorders has been extensively investigated and hundreds of non-HLA risk genetic variants have been uncovered. Furthermore, it is widely accepted that autoimmune rheumatic diseases share molecular disease pathways, such as the interferon (IFN) type I pathways, which are reflected in a common genetic background. Some examples of well-known pleiotropic loci for autoimmune rheumatic diseases are the HLA region, DNASEL13, TNIP1, and IRF5, among others. The identification of the causal molecular mechanisms behind the genetic associations is still a challenge. However, recent advances have been achieved through mouse models and functional studies of the loci. Here, we provide an updated overview of the genetic architecture underlying these four autoimmune rheumatic diseases, with a special focus on the HLA region.
Collapse
Affiliation(s)
- Lourdes Ortíz-Fernández
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Marta E Alarcón-Riquelme
- GENYO. Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av de la Ilustración 114, Parque Tecnológico de La Salud, 18016, Granada, Spain. .,Institute for Environmental Medicine, Karolinska Institutet, 171 77, Solna, Sweden.
| |
Collapse
|
14
|
Tu J, Jin J, Chen X, Sun L, Cai Z. Altered Cellular Immunity and Differentially Expressed Immune-Related Genes in Patients With Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Front Immunol 2022; 13:868983. [PMID: 35663995 PMCID: PMC9159786 DOI: 10.3389/fimmu.2022.868983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is the most common connective tissue disease causing pulmonary hypertension (PAH). However, the cause and potential immune molecular events associated with PAH are still unclear. Therefore, it is particularly essential to analyze the changes in SSc-PAH–related immune cells and their immune-related genes. Three microarray datasets (GSE22356, GSE33463, and GSE19617) were obtained by the Gene Expression Omnibus (GEO). Compared with SSc, we found neutrophils have a statistically higher abundance, while T-cell CD4 naive and T-cell CD4 memory resting have a statistically lower abundance in peripheral blood mononuclear cells (PBMCs). Moreover, the results of Gene Set Enrichment Analysis (GSEA) showed there is a differential enrichment of multiple pathways between SSc and SSc-PAH. By combining differentiated expressed genes (DEGs) and immune-related genes (IRGs), fifteen IRGs were selected. In addition, we also analyzed the first five rich Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and the most abundant Gene Ontology (GO)-molecular functional terms. Furthermore, interleukin-7 receptor (IL-7R), tyrosine–protein kinase (LCK), histone deacetylase 1 (HDAC1), and epidermal growth factor receptor (EGFR) genes were identified as hub genes via protein–protein interaction (PPI) network analysis. The Comparative Toxic Genomics Database (CTD) analysis result showed that LCK, HDAC1, and EGFR have a higher score with SSc. Coexpression network analysis confirmed that IL-7R, LCK, and HDAC1 are key genes related to immune regulation in SSc without PAH and are involved in T-cell immune regulation. Subsequently, using GSE22356 and GSE33463 as the test sets and GSE19617 as the verification set, it was verified that the mRNA expression levels of the three central genes of SSc-PAH were significantly lower than those of the SSc without PAH samples. Consistent with previous predictions, the expressions of IL-7R, LCK, and HDAC1 are positively correlated with the numbers of T-cell CD4 naive and T-cell CD4 memory, while the expressions of IL-7R and LCK are negatively correlated with the numbers of neutrophils in the peripheral blood. Therefore, this evidence may suggest that these three immune-related genes: IL-7R, LCK, and HDAC1, may be highly related to the immunological changes in SSc-PAH. These three molecules can reduce T cells in SSc-PAH PBMCs through the regulation of T-cell activation, which suggests that these three molecules may be involved in the development of SSc-PAH. Meanwhile, the low expression of IL-7R, LCK, and HDAC1 detected in the peripheral blood of SSc may indicate the possibility of PAH and hopefully become a biomarker for the early detection of SSc-PAH. Finally, 49 target miRNAs of 3 specifically expressed hub genes were obtained, and 49 mRNA–miRNA pairs were identified, which provided directions for our further research.
Collapse
Affiliation(s)
- Jianxin Tu
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Rheumatology, The First Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Jinji Jin
- Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Xiaowei Chen
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Li Sun
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Zou X, Wang R, Yang Z, Wang Q, Fu W, Huo Z, Ge F, Zhong R, Jiang Y, Li J, Xiong S, Hong W, Liang W. Family Socioeconomic Position and Lung Cancer Risk: A Meta-Analysis and a Mendelian Randomization Study. Front Public Health 2022; 10:780538. [PMID: 35734761 PMCID: PMC9207765 DOI: 10.3389/fpubh.2022.780538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFamily socioeconomic position (SEP) in childhood is an important factor to predict some chronic diseases. However, the association between family SEP in childhood and the risk of lung cancer is not clear.MethodsA systematic search was performed to explore their relationship. We selected education level, socioeconomic positions of parents and childhood housing conditions to represent an individual family SEP. Hazard ratios (HRs) of lung cancer specific-mortality were synthesized using a random effects model. Two-sample Mendelian randomization (MR) was carried out with summary data from published genome-wide association studies of SEP to assess the possible causal relationship of SEP and risk of lung cancer.ResultsThrough meta-analysis of 13 studies, we observed that to compared with the better SEP, the poorer SEP in the childhood was associated with the increased lung cancer risk in the adulthood (HR: 1.25, 95% CI: 1.10 to 1.43). In addition, the dose-response analysis revealed a positive correlation between the poorer SEP and increased lung cancer risk. Same conclusion was reached in MR [(education level) OR 0.50, 95% CI: 0.39 to 0.63; P < 0.001].ConclusionThis study indicates that poor family socioeconomic position in childhood is causally correlated with lung cancer risk in adulthood.Systematic Review Registrationidentifier: 159082.
Collapse
Affiliation(s)
- Xusen Zou
- South China University of Technology, School of Public Administration, Guangzhou, China
| | - Runchen Wang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Zhao Yang
- Peking University First Hospital, Beijing, China
| | - Qixia Wang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Wenhai Fu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Huo
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Fan Ge
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Jiang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jiangfu Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen Hong
- South China University of Technology, School of Public Administration, Guangzhou, China
- Wen Hong
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Wenhua Liang
| |
Collapse
|
16
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
17
|
Zhou T, Zhu X, Ye Z, Wang YF, Yao C, Xu N, Zhou M, Ma J, Qin Y, Shen Y, Tang Y, Yin Z, Xu H, Zhang Y, Zang X, Ding H, Yang W, Guo Y, Harley JB, Namjou B, Kaufman KM, Kottyan LC, Weirauch MT, Hou G, Shen N. Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery. Nat Commun 2022; 13:1855. [PMID: 35388006 PMCID: PMC8987079 DOI: 10.1038/s41467-022-29514-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite strong evidence that human genetic variants affect the expression of many key transcription factors involved in autoimmune diseases, establishing biological links between non-coding risk variants and the gene targets they regulate remains a considerable challenge. Here, we combine genetic, epigenomic, and CRISPR activation approaches to screen for functional variants that regulate IRF8 expression. We demonstrate that the locus containing rs2280381 is a cell-type-specific enhancer for IRF8 that spatially interacts with the IRF8 promoter. Further, rs2280381 mediates IRF8 expression through enhancer RNA AC092723.1, which recruits TET1 to the IRF8 promoter regulating IRF8 expression by affecting methylation levels. The alleles of rs2280381 modulate PU.1 binding and chromatin state to regulate AC092723.1 and IRF8 expression differentially. Our work illustrates an integrative strategy to define functional genetic variants that regulate the expression of critical genes in autoimmune diseases and decipher the mechanisms underlying the dysregulation of IRF8 expression mediated by lupus risk variants.
Collapse
Affiliation(s)
- Tian Zhou
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032 China ,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Xinyi Zhu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Yong-Fei Wang
- grid.194645.b0000000121742757Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, 999077 China
| | - Chao Yao
- grid.9227.e0000000119573309Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031 China
| | - Ning Xu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Mi Zhou
- grid.16821.3c0000 0004 0368 8293Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240 China
| | - Jianyang Ma
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Yuting Qin
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Yiwei Shen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Yuanjia Tang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Hong Xu
- grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200127 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200127 China
| | - Yutong Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Xiaoli Zang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Huihua Ding
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Wanling Yang
- grid.194645.b0000000121742757Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, 999077 China
| | - Ya Guo
- grid.16821.3c0000 0004 0368 8293Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240 China
| | - John B. Harley
- grid.413848.20000 0004 0420 2128US Department of Veterans Affairs Medical Center, Cincinnati, OH 45229 USA
| | - Bahram Namjou
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Kenneth M. Kaufman
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - Leah C. Kottyan
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Matthew T. Weirauch
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Guojun Hou
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032 China ,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Nan Shen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032 China ,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China ,grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| |
Collapse
|
18
|
Xia R, Cheng Y, Han X, Wei Y, Wei X. Ikaros Proteins in Tumor: Current Perspectives and New Developments. Front Mol Biosci 2021; 8:788440. [PMID: 34950704 PMCID: PMC8689071 DOI: 10.3389/fmolb.2021.788440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
Ikaros is a zinc finger transcription factor (TF) of the Krüppel family member, which significantly regulates normal lymphopoiesis and tumorigenesis. Ikaros can directly initiate or suppress tumor suppressors or oncogenes, consequently regulating the survival and proliferation of cancer cells. Over recent decades, a series of studies have been devoted to exploring and clarifying the relationship between Ikaros and associated tumors. Therapeutic strategies targeting Ikaros have shown promising therapeutic effects in both pre-clinical and clinical trials. Nevertheless, the increasingly prominent problem of drug resistance targeted to Ikaros and its analog is gradually appearing in our field of vision. This article reviews the role of Ikaros in tumorigenesis, the mechanism of drug resistance, the progress of targeting Ikaros in both pre-clinical and clinical trials, and the potential use of associated therapy in cancer therapy.
Collapse
Affiliation(s)
- Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Wu M, Assassi S. Dysregulation of Type 1 Interferon Signaling in Systemic Sclerosis: a Promising Therapeutic Target? CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021; 7:349-360. [PMID: 35694218 PMCID: PMC9187215 DOI: 10.1007/s40674-021-00188-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 01/06/2023]
Abstract
Purpose of review There are several lines of evidence at the genetic and gene expression levels linking type I interferon (IFN) activation to systemic sclerosis (SSc) pathogenesis. Herein, we summarize the potential role of type I IFN signaling components as therapeutic targets. Recent findings All type I IFN cytokines signal through the interferon-α/β receptor (IFNAR). Early phase studies indicate that anifrolumab (a human monoclonal antibody against IFNAR subunit 1) has an acceptable safety profile and can attenuate transforming growth factor beta (TGF-β)-mediated fibrosis in SSc skin, supporting its further clinical development. Janus kinase (JAK) signaling pathways are downstream from IFNAR. Building on their efficacy in hereditary interferonopathies, JAK inhibitors have the potential to block the deleterious IFN and other profibrotic cytokine activation in SSc and are promising drug targets. Moreover, interferon regulator factor (IRF) 5, 7, and 8 have been linked to the profibrotic response in SSc preclinical studies, underscoring their potential as therapeutic targets. Lastly, depletion of plasmacytoid dendritic cells (pDCs) attenuates the IFN activation and fibrotic response in vitro and murine model experiments and can be studied as a viable drug target in future clinical studies. Summary There is increasing evidence linking the prominent type I IFN activation to the observed exaggerated fibrotic response in SSc. Key components of type I IFN signaling are druggable therapeutic targets that can be pursued in future randomized clinical trials, in order to develop more effective therapeutic options for SSc.
Collapse
Affiliation(s)
- Minghua Wu
- Division of Rheumatology, Department of Internal medicine, The University of Texas McGovern Medical School at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Shervin Assassi
- Division of Rheumatology, Department of Internal medicine, The University of Texas McGovern Medical School at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
20
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
21
|
Nevskaya T, Pope JE, Turk MA, Shu J, Marquardt A, van den Hoogen F, Khanna D, Fransen J, Matucci-Cerinic M, Baron M, Denton CP, Johnson SR. Systematic Analysis of the Literature in Search of Defining Systemic Sclerosis Subsets. J Rheumatol 2021; 48:1698-1717. [PMID: 33993109 PMCID: PMC10613330 DOI: 10.3899/jrheum.201594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a multisystem disease with heterogeneity in presentation and prognosis.An international collaboration to develop new SSc subset criteria is underway. Our objectives were to identify systems of SSc subset classification and synthesize novel concepts to inform development of new criteria. METHODS Medline, Cochrane MEDLINE, the Cumulative Index to Nursing and Allied Health Literature, EMBASE, and Web of Science were searched from their inceptions to December 2019 for studies related to SSc subclassification, limited to humans and without language or sample size restrictions. RESULTS Of 5686 citations, 102 studies reported original data on SSc subsets. Subset classification systems relied on extent of skin involvement and/or SSc-specific autoantibodies (n = 61), nailfold capillary patterns (n = 29), and molecular, genomic, and cellular patterns (n = 12). While some systems of subset classification confer prognostic value for clinical phenotype, severity, and mortality, only subsetting by gene expression signatures in tissue samples has been associated with response to therapy. CONCLUSION Subsetting on extent of skin involvement remains important. Novel disease attributes including SSc-specific autoantibodies, nailfold capillary patterns, and tissue gene expression signatures have been proposed as innovative means of SSc subsetting.
Collapse
Affiliation(s)
- Tatiana Nevskaya
- T. Nevskaya, MD, PhD, J.E. Pope, MD, MPH, M.A. Turk, MSc, J. Shu, MD, HBSc, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Janet E Pope
- T. Nevskaya, MD, PhD, J.E. Pope, MD, MPH, M.A. Turk, MSc, J. Shu, MD, HBSc, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Matthew A Turk
- T. Nevskaya, MD, PhD, J.E. Pope, MD, MPH, M.A. Turk, MSc, J. Shu, MD, HBSc, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jenny Shu
- T. Nevskaya, MD, PhD, J.E. Pope, MD, MPH, M.A. Turk, MSc, J. Shu, MD, HBSc, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - April Marquardt
- A. Marquardt, DO, D. Khanna, MD, MS, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank van den Hoogen
- F. van den Hoogen, MD, PhD, St. Maartenskliniek and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Dinesh Khanna
- A. Marquardt, DO, D. Khanna, MD, MS, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaap Fransen
- J. Fransen, MSc, PhD, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Marco Matucci-Cerinic
- M. Matucci-Cerinic, MD, PhD, Department of Experimental and Clinical Medicine & Division of Rheumatology AOUC, Florence Italy University of Florence, Florence, Italy
| | - Murray Baron
- M. Baron, MD, McGill University, Division Head Rheumatology, Jewish General Hospital, Montreal, Quebec, Canada
| | - Christopher P Denton
- C.P. Denton, FRCP, PhD, University College London, Division of Medicine, London, UK
| | - Sindhu R Johnson
- S.R. Johnson, MD, PhD, Toronto Scleroderma Program, Toronto Western and Mount Sinai Hospitals, Department of Medicine, and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Diaz-Gallo LM, Oke V, Lundström E, Elvin K, Ling Wu Y, Eketjäll S, Zickert A, Gustafsson JT, Jönsen A, Leonard D, Birmingham DJ, Nordmark G, Bengtsson AA, Rönnblom L, Gunnarsson I, Yu CY, Padyukov L, Svenungsson E. Four Systemic Lupus Erythematosus Subgroups, Defined by Autoantibodies Status, Differ Regarding HLA-DRB1 Genotype Associations and Immunological and Clinical Manifestations. ACR Open Rheumatol 2021; 4:27-39. [PMID: 34658170 PMCID: PMC8754019 DOI: 10.1002/acr2.11343] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Objective The heterogeneity of systemic lupus erythematosus (SLE) constitutes clinical and therapeutical challenges. We therefore studied whether unrecognized disease subgroups can be identified by using autoantibody profiling together with HLA‐DRB1 alleles and immunological and clinical data. Methods An unsupervised cluster analysis was performed based on detection of 13 SLE‐associated autoantibodies (double‐stranded DNA, nucleosomes, ribosomal P, ribonucleoprotein [RNP] 68, RNPA, Smith [Sm], Sm/RNP, Sjögren's syndrome antigen A [SSA]/Ro52, SSA/Ro60, Sjögren's syndrome antigen B [SSB]/La, cardiolipin [CL]‐Immunoglobulin G [IgG], CL–Immunoglobulin M [IgM], and β2 glycoprotein I [β2GPI]–IgG) in 911 patients with SLE from two cohorts. We evaluated whether each SLE subgroup is associated with HLA‐DRB1 alleles, clinical manifestations (n = 743), and cytokine levels in circulation (n = 446). Results Our analysis identified four subgroups among the patients with SLE. Subgroup 1 (29.3%) was dominated by anti‐SSA/Ro60/Ro52/SSB autoantibodies and was strongly associated with HLA‐DRB1*03 (odds ratio [OR] = 4.73; 95% confidence interval [CI] = 4.52‐4.94). Discoid lesions were more common for this disease subgroup (OR = 1.71, 95% CI = 1.18‐2.47). Subgroup 2 (28.7%) was dominated by anti‐nucleosome/SmRNP/DNA/RNPA autoantibodies and associated with HLA‐DRB1*15 (OR = 1.62, 95% CI = 1.41‐1.84). Nephritis was most common in this subgroup (OR = 1.61, 95% CI = 1.14‐2.26). Subgroup 3 (23.8%) was characterized by anti‐ß2GPI‐IgG/anti‐CL–IgG/IgM autoantibodies and a higher frequency of HLA‐DRB1*04 compared with the other patients with SLE. Vascular events were more common in Subgroup 3 (OR = 1.74, 95% CI = 1.2‐2.5). Subgroup 4 (18.2%) was negative for the investigated autoantibodies, and this subgroup was not associated with HLA‐DRB1. Additionally, the levels of eight cytokines significantly differed among the disease subgroups. Conclusion Our findings suggest that four fairly distinct subgroups can be identified on the basis of the autoantibody profile in SLE. These four SLE subgroups differ regarding associations with HLA‐DRB1 alleles and immunological and clinical features, suggesting dissimilar disease pathways.
Collapse
Affiliation(s)
- Lina-Marcela Diaz-Gallo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vilija Oke
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Emeli Lundström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Elvin
- Department of Clinical Immunology and Transfusion Medicine, Unit of Clinical Immunology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yee Ling Wu
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Microbiology and Immunology, Loyola University Chicago, lk, Illinois
| | - Susanna Eketjäll
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Agneta Zickert
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden
| | - Johanna T Gustafsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | | | - Gunnel Nordmark
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden
| | - Chack-Yung Yu
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Papadopoulos VE, Skarlis C, Evangelopoulos ME, Mavragani CP. Type I interferon detection in autoimmune diseases: challenges and clinical applications. Expert Rev Clin Immunol 2021; 17:883-903. [PMID: 34096436 DOI: 10.1080/1744666x.2021.1939686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Accumulating data highlights that the dysregulation of type I interferon (IFN) pathways plays a central role in the pathogenesis of several systemic and organ-specific autoimmune diseases. Advances in understanding the role of type I IFNs in these disorders can lead to targeted drug development as well as establishing potential disease biomarkers. AREAS COVERED Here, we summarize current knowledge regarding the role of type I IFNs in the major systemic, as well as organ-specific, autoimmune disorders, including prominent inflammatory CNS disorders like multiple sclerosis. EXPERT OPINION Type I IFN involvement and its clinical associations in a wide spectrum of autoimmune diseases represents a promising area for research aiming to unveil common pathogenetic pathways in systemic and organ-specific autoimmunity.
Collapse
Affiliation(s)
- Vassilis E Papadopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Acosta-Herrera M, Kerick M, Lopéz-Isac E, Assassi S, Beretta L, Simeón-Aznar CP, Ortego-Centeno N, Proudman SM, Hunzelmann N, Moroncini G, de Vries-Bouwstra JK, Orozco G, Barton A, Herrick AL, Terao C, Allanore Y, Brown MA, Radstake TR, Fonseca C, Denton CP, Mayes MD, Martin J. Comprehensive analysis of the major histocompatibility complex in systemic sclerosis identifies differential HLA associations by clinical and serological subtypes. Ann Rheum Dis 2021; 80:1040-1047. [PMID: 34096881 PMCID: PMC8292594 DOI: 10.1136/annrheumdis-2021-219884] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The greatest genetic effect reported for systemic sclerosis (SSc) lies in the major histocompatibility complex (MHC) locus. Leveraging the largest SSc genome-wide association study, we aimed to fine-map this region to identify novel human leucocyte antigen (HLA) genetic variants associated with SSc susceptibility and its main clinical and serological subtypes. METHODS 9095 patients with SSc and 17 584 controls genome-wide genotyped were used to impute and test single-nucleotide polymorphisms (SNPs) across the MHC, classical HLA alleles and their composite amino acid residues. Additionally, patients were stratified according to their clinical and serological status, namely, limited cutaneous systemic sclerosis (lcSSc), diffuse cutaneous systemic sclerosis (dcSSc), anticentromere (ACA), antitopoisomerase (ATA) and anti-RNApolIII autoantibodies (ARA). RESULTS Sequential conditional analyses showed nine SNPs, nine classical alleles and seven amino acids that modelled the observed associations with SSc. This confirmed previously reported associations with HLA-DRB1*11:04 and HLA-DPB1*13:01, and revealed a novel association of HLA-B*08:01. Stratified analyses showed specific associations of HLA-DQA1*02:01 with lcSSc, and an exclusive association of HLA-DQA1*05:01 with dcSSc. Similarly, private associations were detected in HLA-DRB1*08:01 and confirmed the previously reported association of HLA-DRB1*07:01 with ACA-positive patients, as opposed to the HLA-DPA1*02:01 and HLA-DQB1*03:01 alleles associated with ATA presentation. CONCLUSIONS This study confirms the contribution of HLA class II and reveals a novel association of HLA class I with SSc, suggesting novel pathways of disease pathogenesis. Furthermore, we describe specific HLA associations with SSc clinical and serological subtypes that could serve as biomarkers of disease severity and progression.
Collapse
Affiliation(s)
- Marialbert Acosta-Herrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Andalucía, Spain
| | - Martin Kerick
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Andalucía, Spain
| | - Elena Lopéz-Isac
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Andalucía, Spain
| | - Shervin Assassi
- Rheumatology and Clinical Immunogenetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | | | | | - Susanna M Proudman
- Department of Rheumatology, Royal Adelaide Hospital, Adelaide, Victoria, Australia
| | | | - Gianluca Moroncini
- Department of Clinical and Molecular Science, Università Politecnica delle Marche and Ospedali Riuniti, Ancona, Italy
| | | | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yannick Allanore
- Department of Rheumatology A, Hospital Cochin, Paris, Île-de-France, France
| | - Matthew A Brown
- NIHR Biomedical Research Centre, Guy's and Saint Thomas' NHS Foundation Trust and King's College, London, UK
| | - Timothy Rdj Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carmen Fonseca
- Centre for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Christopher P Denton
- Centre for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Maureen D Mayes
- Rheumatology and Clinical Immunogenetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Andalucía, Spain
| |
Collapse
|
25
|
McArthur E, Rinker DC, Capra JA. Quantifying the contribution of Neanderthal introgression to the heritability of complex traits. Nat Commun 2021; 12:4481. [PMID: 34294692 PMCID: PMC8298587 DOI: 10.1038/s41467-021-24582-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/24/2021] [Indexed: 11/15/2022] Open
Abstract
Eurasians have ~2% Neanderthal ancestry, but we lack a comprehensive understanding of the genome-wide influence of Neanderthal introgression on modern human diseases and traits. Here, we quantify the contribution of introgressed alleles to the heritability of more than 400 diverse traits. We show that genomic regions in which detectable Neanderthal ancestry remains are depleted of heritability for all traits considered, except those related to skin and hair. Introgressed variants themselves are also depleted for contributions to the heritability of most traits. However, introgressed variants shared across multiple Neanderthal populations are enriched for heritability and have consistent directions of effect on several traits with potential relevance to human adaptation to non-African environments, including hair and skin traits, autoimmunity, chronotype, bone density, lung capacity, and menopause age. Integrating our results, we propose a model in which selection against introgressed functional variation was the dominant trend (especially for cognitive traits); however, for a few traits, introgressed variants provided beneficial variation via uni-directional (e.g., lightening skin color) or bi-directional (e.g., modulating immune response) effects.
Collapse
Affiliation(s)
- Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Statistics, University of California San Francisco, San Francisco, CA, 94107, USA.
| |
Collapse
|
26
|
Assar S, Khazaei H, Naseri M, El-Senduny F, Momtaz S, Farzaei MH, Echeverría J. Natural Formulations: Novel Viewpoint for Scleroderma Adjunct Treatment. J Immunol Res 2021; 2021:9920416. [PMID: 34258301 PMCID: PMC8253639 DOI: 10.1155/2021/9920416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Scleroderma is a complex disease involving autoimmune, vascular, and connective tissues, with unknown etiology that can progress through any organ systems. OBJECTIVE Yet, no cure is available; the thorough treatment of scleroderma and current treatments are based on controlling inflammation. Nowadays, medicinal plants/natural-based formulations are emerging as important regulators of many diseases, including autoimmune diseases. Here, we provided an overview of scleroderma, also focused on recent studies on medicinal plants/natural-based formulations that are beneficial in scleroderma treatment/prevention. METHODS This study is the result of a search in PubMed, Scopus, and Cochrane Library with "scleroderma", "systemic sclerosis", "plant", "herb", and "phytochemical" keywords. Finally, 22 articles were selected from a total of 1513 results entered in this study. RESULTS Natural products can modulate the inflammatory and/or oxidative mediators, regulate the production or function of the immune cells, and control the collagen synthesis, thereby attenuating the experimental and clinical manifestation of the disease. CONCLUSION Natural compounds can be considered an adjunct treatment for scleroderma to improve the quality of life of patients suffering from this disease.
Collapse
Affiliation(s)
- Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Maryam Naseri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fardous El-Senduny
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
27
|
Ota Y, Kuwana M. Updates on genetics in systemic sclerosis. Inflamm Regen 2021; 41:17. [PMID: 34130729 PMCID: PMC8204536 DOI: 10.1186/s41232-021-00167-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disease, in which an interaction of genetic and environmental factors plays an important role in its development and pathogenesis. A number of genetic studies, including candidate gene analysis and genome-wide association study, have found that the associated genetic variants are mainly localized in noncoding regions in the expression quantitative trait locus and influence corresponding gene expression. The gene variants identified as a risk for SSc susceptibility include those associated with innate immunity, adaptive immune response, and cell death, while there are only few SSc-associated genes involved in the fibrotic process or vascular homeostasis. Human leukocyte antigen class II genes are associated with SSc-related autoantibodies rather than SSc itself. Since the pathways between the associated genotype and phenotype are still poorly understood, further investigations using multi-omics technologies are necessary to characterize the complex molecular architecture of SSc, identify biomarkers useful to predict future outcomes and treatment responses, and discover effective drug targets.
Collapse
Affiliation(s)
- Yuko Ota
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603-8582, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603-8582, Japan.
| |
Collapse
|
28
|
Shao T, Shi X, Yang S, Zhang W, Li X, Shu J, Alqalyoobi S, Zeki AA, Leung PS, Shuai Z. Interstitial Lung Disease in Connective Tissue Disease: A Common Lesion With Heterogeneous Mechanisms and Treatment Considerations. Front Immunol 2021; 12:684699. [PMID: 34163483 PMCID: PMC8215654 DOI: 10.3389/fimmu.2021.684699] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
Connective tissue disease (CTD) related interstitial lung disease (CTD-ILD) is one of the leading causes of morbidity and mortality of CTD. Clinically, CTD-ILD is highly heterogenous and involves rheumatic immunity and multiple manifestations of respiratory complications affecting the airways, vessels, lung parenchyma, pleura, and respiratory muscles. The major pathological features of CTD are chronic inflammation of blood vessels and connective tissues, which can affect any organ leading to multi-system damage. The human lung is particularly vulnerable to such damage because anatomically it is abundant with collagen and blood vessels. The complex etiology of CTD-ILD includes genetic risks, epigenetic changes, and dysregulated immunity, which interact leading to disease under various ill-defined environmental triggers. CTD-ILD exhibits a broad spectra of clinical manifestations: from asymptomatic to severe dyspnea; from single-organ respiratory system involvement to multi-organ involvement. The disease course is also featured by remissions and relapses. It can range from stability or slow progression over several years to rapid deterioration. It can also present clinically as highly progressive from the initial onset of disease. Currently, the diagnosis of CTD-ILD is primarily based on distinct pathology subtype(s), imaging, as well as related CTD and autoantibodies profiles. Meticulous comprehensive clinical and laboratory assessment to improve the diagnostic process and management strategies are much needed. In this review, we focus on examining the pathogenesis of CTD-ILD with respect to genetics, environmental factors, and immunological factors. We also discuss the current state of knowledge and elaborate on the clinical characteristics of CTD-ILD, distinct pathohistological subtypes, imaging features, and related autoantibodies. Furthermore, we comment on the identification of high-risk patients and address how to stratify patients for precision medicine management approaches.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Xiaodong Shi
- Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Shanpeng Yang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingwei Shu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shehabaldin Alqalyoobi
- Internal Medicine - Pulmonary, Critical Care, and Sleep Medicine, Brody School of Medicine, Greenville, NC, United States
| | - Amir A. Zeki
- University of California (U.C.), Davis, Lung Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis School of Medicine, University of California, Davis, Davis, CA, United States
| | - Patrick S. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Kerick M, González-Serna D, Carnero-Montoro E, Teruel M, Acosta-Herrera M, Makowska Z, Buttgereit A, Babaei S, Barturen G, López-Isac E, Lesche R, Beretta L, Alarcon-Riquelme ME, Martin J. Expression Quantitative Trait Locus Analysis in Systemic Sclerosis Identifies New Candidate Genes Associated With Multiple Aspects of Disease Pathology. Arthritis Rheumatol 2021; 73:1288-1300. [PMID: 33455083 DOI: 10.1002/art.41657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/12/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To identify the genetic variants that affect gene expression (expression quantitative trait loci [eQTLs]) in systemic sclerosis (SSc) and to investigate their role in the pathogenesis of the disease. METHODS We performed an eQTL analysis using whole-blood sequencing data from 333 SSc patients and 524 controls and integrated them with SSc genome-wide association study (GWAS) data. We integrated our findings from expression modeling, differential expression analysis, and transcription factor binding site enrichment with key clinical features of SSc. RESULTS We detected 49,123 validated cis-eQTLs from 4,539 SSc-associated single-nucleotide polymorphisms (SNPs) (PGWAS < 10-5 ). A total of 1,436 genes were within 1 Mb of the 4,539 SSc-associated SNPs. Of those 1,436 genes, 565 were detected as having ≥1 eQTL with an SSc-associated SNP. We developed a strategy to prioritize disease-associated genes based on their expression variance explained by SSc eQTLs (r2 > 0.05). As a result, 233 candidates were identified, 134 (58%) of them associated with hallmarks of SSc and 105 (45%) of them differentially expressed in the blood cells, skin, or lung tissue of SSc patients. Transcription factor binding site analysis revealed enriched motifs of 24 transcription factors (5%) among SSc eQTLs, 5 of which were found to be differentially regulated in the blood cells (ELF1 and MGA), skin (KLF4 and ID4), and lungs (TBX4) of SSc patients. Ten candidate genes (4%) can be targeted by approved medications for immune-mediated diseases, of which only 3 have been tested in clinical trials in patients with SSc. CONCLUSION The findings of the present study indicate a new layer to the molecular complexity of SSc, contributing to a better understanding of the pathogenesis of the disease.
Collapse
Affiliation(s)
- Martin Kerick
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | | | - Elena Carnero-Montoro
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research, Granada, Spain
| | - Maria Teruel
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research, Granada, Spain
| | | | | | | | | | - Guillermo Barturen
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research, Granada, Spain
| | - Elena López-Isac
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | | | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Marta E Alarcon-Riquelme
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research, Granada, Spain
| | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| |
Collapse
|
30
|
Leylek R, Alcántara-Hernández M, Granja JM, Chavez M, Perez K, Diaz OR, Li R, Satpathy AT, Chang HY, Idoyaga J. Chromatin Landscape Underpinning Human Dendritic Cell Heterogeneity. Cell Rep 2021; 32:108180. [PMID: 32966789 PMCID: PMC7546547 DOI: 10.1016/j.celrep.2020.108180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Human dendritic cells (DCs) comprise subsets with distinct phenotypic and functional characteristics, but the transcriptional programs that dictate their identity remain elusive. Here, we analyze global chromatin accessibility profiles across resting and stimulated human DC subsets by means of the assay for transposase-accessible chromatin using sequencing (ATAC-seq). We uncover specific regions of chromatin accessibility for each subset and transcriptional regulators of DC function. By comparing plasmacytoid DC responses to IFN-I-producing and non-IFN-I-producing conditions, we identify genetic programs related to their function. Finally, by intersecting chromatin accessibility with genome-wide association studies, we recognize DC subset-specific enrichment of heritability in autoimmune diseases. Our results unravel the basis of human DC subset heterogeneity and provide a framework for their analysis in disease pathogenesis. Human dendritic cells (DCs) orchestrate immune responses by a division of labor between functionally specialized subsets; however, the transcriptional basis of this heterogeneity is poorly understood. Using ATAC-seq, Leylek et al. profile the chromatin landscape of human DC subsets, providing insight into the underlying regulatory mechanisms that modulate their function.
Collapse
Affiliation(s)
- Rebecca Leylek
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marcela Alcántara-Hernández
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey M Granja
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kimberly Perez
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar R Diaz
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana Idoyaga
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To review susceptibility genes and how they could integrate in systemic sclerosis (SSc) pathophysiology providing insight and perspectives for innovative therapies. RECENT FINDINGS SSc is a rare disease characterized by vasculopathy, dysregulated immunity and fibrosis. Genome-Wide association studies and ImmunoChip studies performed in recent years revealed associated genetic variants mainly localized in noncoding regions and mostly affecting the immune system of SSc patients. Gene variants were described in innate immunity (IRF5, IRF7 and TLR2), T and B cells activation (CD247, TNFAIP3, STAT4 and BLK) and NF-κB pathway (TNFAIP3 and TNIP1) confirming previous biological data. In addition to impacting immune response, CSK, DDX6, DNASE1L3 and GSDMA/B could also act in the vascular and fibrotic components of SSc. SUMMARY Although genetic studies highlighted the dysregulated immune response in SSc, future research must focus on a deeper characterization of these variants with determination of their functional effects. Moreover, the role of these genes or others on specific vasculopathy and fibrosis would provide insight. Establishment of polygenic score or integrated genome approaches could identify new targets specific of SSc clinical features. This will allow physicians to propose new therapies to SSc patients.
Collapse
|
32
|
Mehta BK, Espinoza ME, Hinchcliff M, Whitfield ML. Molecular "omic" signatures in systemic sclerosis. Eur J Rheumatol 2020; 7:S173-S180. [PMID: 33164732 DOI: 10.5152/eurjrheum.2020.19192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/05/2020] [Indexed: 01/15/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by immunologic, vascular, and extracellular matrix abnormalities. Variation in the proportion and/or timing of activation in the deregulated molecular pathways that underlie SSc may explain the observed clinical heterogeneity in terms of disease phenotype and treatment response. In recent years, SSc research has generated massive amounts of "omics" level data. In this review, we discuss the body of "omics" level work in SSc and how each layer provides unique insight to our understanding of SSc. We posit that effective integration of genomic, transcriptomic, metagenomic, and epigenomic data is an important step toward precision medicine and is vital to the identification of effective therapeutic options for patients with SSc.
Collapse
Affiliation(s)
- Bhaven K Mehta
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Monica E Espinoza
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Monique Hinchcliff
- Department of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Michael L Whitfield
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
33
|
Two Variants in the NOTCH4 and HLA-C Genes Contribute to Familial Clustering of Psoriasis. Int J Genomics 2020; 2020:6907378. [PMID: 33134369 PMCID: PMC7593743 DOI: 10.1155/2020/6907378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/05/2022] Open
Abstract
Psoriasis is a multifactorial immune-mediated skin disease with a strong genetic background. Previous studies reported that psoriasis with a family history (PFH) and sporadic psoriasis (SP) have a distinct manifestation and genetic predisposition. However, the genetic heterogeneity of PFH and SP in the major histocompatibility complex (MHC) region has not been fully elucidated. To explore genetic variants in the MHC region that drive family aggregation of psoriasis, we included a total of 8,127 psoriasis cases and 9,906 healthy controls from Han Chinese and divided psoriasis into two subtypes, PFH (n = 1,538) and SP (n = 5,262). Then, we calculated the heritability of PFH and SP and performed a large-scale stratified association analysis. We confirmed that variants in the MHC region collectively explained a higher heritability of PFH (16.8%) than SP (13.3%). Further stratified association analysis illustrated that HLA-C∗06:02 and NOTCH4:G511S contribute to the family aggregation of psoriasis, and BTNL2:R281K specifically confers risk for SP. HLA-C∗06:02 and NOTCH4:G511S could partially explain why patients with PFH have a stronger genetic predisposition, more complex phenotypes, and more frequent other autoimmune diseases. The identification of the SP-specific variant BTNL2:R281K revealed that the genetic architecture of SP is not just a subset of PFH.
Collapse
|
34
|
Ishikawa Y, Terao C. Genetics of systemic sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:192-201. [PMID: 35382527 PMCID: PMC8922623 DOI: 10.1177/2397198320913695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/23/2020] [Indexed: 01/05/2024]
Abstract
Systemic sclerosis is an autoimmune disease characterized by generalized fibrosis in connective tissues and internal organs as consequences of microvascular dysfunction and immune dysfunctions, which leads to premature death in affected individuals. The etiology of systemic sclerosis is complex and poorly understood, but as with most autoimmune diseases, it is widely accepted that both environmental and genetic factors contribute to disease risk. During the last decade, the number of genetic markers convincingly associated with systemic sclerosis has exponentially increased. In this article, we briefly mention the genetic components of systemic sclerosis. Then, we review the classical and novel genetic associations with systemic sclerosis, analyzing the firmest and replicated signals within non-human leukocyte antigen genes, identified by both candidate gene approach and genome-wide association studies. We also provide an insight into the future perspectives that will shed more light into the complex genetic background of the disease. Despite the remarkable advance of systemic sclerosis genetics during the last decade, the use of the new genetic technologies such as next-generation sequencing, as well as the deep phenotyping of the study cohorts, to fully characterize the genetic component of this disease is imperative to identify causal variants, which leads to more targeted and effective treatment of systemic sclerosis.
Collapse
Affiliation(s)
- Yuki Ishikawa
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
35
|
Li T, Ortiz-Fernández L, Andrés-León E, Ciudad L, Javierre BM, López-Isac E, Guillén-Del-Castillo A, Simeón-Aznar CP, Ballestar E, Martin J. Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci. Genome Med 2020; 12:81. [PMID: 32977850 PMCID: PMC7519528 DOI: 10.1186/s13073-020-00779-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a genetically complex autoimmune disease mediated by the interplay between genetic and epigenetic factors in a multitude of immune cells, with CD4+ T lymphocytes as one of the principle drivers of pathogenesis. METHODS DNA samples exacted from CD4+ T cells of 48 SSc patients and 16 healthy controls were hybridized on MethylationEPIC BeadChip array. In parallel, gene expression was interrogated by hybridizing total RNA on Clariom™ S array. Downstream bioinformatics analyses were performed to identify correlating differentially methylated CpG positions (DMPs) and differentially expressed genes (DEGs), which were then confirmed utilizing previously published promoter capture Hi-C (PCHi-C) data. RESULTS We identified 9112 and 3929 DMPs and DEGs, respectively. These DMPs and DEGs are enriched in functional categories related to inflammation and T cell biology. Furthermore, correlation analysis identified 17,500 possible DMP-DEG interaction pairs within a window of 5 Mb, and utilizing PCHi-C data, we observed that 212 CD4+ T cell-specific pairs of DMP-DEG also formed part of three-dimensional promoter-enhancer networks, potentially involving CTCF. Finally, combining PCHi-C data with SSc GWAS data, we identified four important SSc-associated susceptibility loci, TNIP1 (rs3792783), GSDMB (rs9303277), IL12RB1 (rs2305743), and CSK (rs1378942), that could potentially interact with DMP-DEG pairs cg17239269-ANXA6, cg19458020-CCR7, cg10808810-JUND, and cg11062629-ULK3, respectively. CONCLUSION Our study unveils a potential link between genetic, epigenetic, and transcriptional deregulation in CD4+ T cells of SSc patients, providing a novel integrated view of molecular components driving SSc pathogenesis.
Collapse
Affiliation(s)
- Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Lourdes Ortiz-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Biola M Javierre
- 3D Chromatin Organization, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Elena López-Isac
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Guillén-Del-Castillo
- Unit of Systemic Autoimmunity Diseases, Department of Internal Medicine, Vall d'Hebron Hospital, Barcelona, Spain
| | - Carmen Pilar Simeón-Aznar
- Unit of Systemic Autoimmunity Diseases, Department of Internal Medicine, Vall d'Hebron Hospital, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain.
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain.
| |
Collapse
|
36
|
Peng H, Wu X, Wen Y, Li C, Lin J, Li J, Xiong S, Zhong R, Liang H, Cheng B, Liu J, He J, Liang W. Association between systemic sclerosis and risk of lung cancer: results from a pool of cohort studies and Mendelian randomization analysis. Autoimmun Rev 2020; 19:102633. [PMID: 32801043 DOI: 10.1016/j.autrev.2020.102633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Population-based cohort studies have indicated that systemic sclerosis (SSc) may be associated with an increased risk of lung cancer. However, there are few studies that comprehensively investigate their correlation and the causal effect remains unknown. METHODS A systematic search of PubMed, Web of Science, Cochrane Library and Embase from the inception dates to December 1, 2019 was carried out. Meta-analysis was performed to calculate odds ratio (OR) and corresponding 95% confidence interval (CI) using random-effects models. Subgroup analyses were performed regarding gender. Two-sample Mendelian randomization (MR) was carried out with summary data from published genome-wide association studies of SSc (Neale Lab, 3871 individuals; UK Biobank, 463,315 individuals) and lung cancer (International Lung Cancer Consortium, 27,209 individuals; UK Biobank, 508,977 individuals). Study-specific estimates were summarized using inverse variance-weighted, weighted median, and MR-Egger method. RESULTS Through meta-analysis of 10 population-based cohort studies involving 12,218 patients, we observed a significantly increased risk of lung cancer among patients with SSc (OR 2.80, 95% CI 1.55-5.03). In accordance with subgroup analysis, male patients (OR 4.11, 95% CI 1.92-8.79) had a 1.5-fold higher lung cancer risk compared with female patients (OR 2.73, 95% CI 1.41-5.27). However, using a score of 11 SSc-related single nucleotide polymorphisms (p < 5*10-8) as instrumental variables, the MR study did not support a causality between SSc and lung cancer (OR 1.001, 95% CI 0.929-1.100, p = 0.800). Specifically, subgroup MR analyses indicated that SSc was not associated with increased risks of non-small-cell lung cancer (OR 1.000, 95% CI 0.999-1.000, p = 0.974), including lung adenocarcinoma (OR 0.996, 95% CI 0.906-1.094, p = 0.927), squamous cell lung carcinoma (OR 1.034, 95% CI 0.937-1.140, p = 0.507), nor small-cell lung cancer (OR 1.000, 95% CI 0.999-1.000, p = 0.837). CONCLUSIONS This study indicated an increased risk of lung cancer among patients with SSc by meta-analysis, whereas the MR study did not support a causality between the two diseases. Further studies are warranted to investigate the factors underlying the attribution of SSc to lung cancer risk.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou 511436, China
| | - Xiangrong Wu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou 511436, China
| | - Yaokai Wen
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou 511436, China
| | - Caichen Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinsheng Lin
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou 511436, China
| | - Jianfu Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengrui Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bo Cheng
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Jaeger VK, Tikly M, Xu D, Siegert E, Hachulla E, Airò P, Valentini G, Matucci Cerinic M, Distler O, Cozzi F, Carreira P, Allanore Y, Müller-Ladner U, Ananieva LP, Balbir-Gurman A, Distler JHW, Czirják L, Li M, Henes J, Jimenez SA, Smith V, Damjanov N, Denton CP, DelGaldo F, Saketkoo LA, Walker UA. Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study. Rheumatology (Oxford) 2020; 59:1684-1694. [PMID: 31680161 DOI: 10.1093/rheumatology/kez486] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/19/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations. METHODS SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses. RESULTS The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP. AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001]. CONCLUSION Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality.
Collapse
Affiliation(s)
- Veronika K Jaeger
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Mohammed Tikly
- Division of Rheumatology, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Dong Xu
- Department of Rheumatology, Peking Union Medical College Hospital, Beijing, China
| | - Elise Siegert
- Department of Rheumatology and Immunology, University Hospital Charité, Berlin, Germany
| | - Eric Hachulla
- Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Systémiques et Auto-Immunes Rares du Nord et Nord-Ouest (CERAINO), LIRIC, INSERM, Univ. Lille, CHU Lille, Lille, France
| | - Paolo Airò
- UO Reumatologia ed Immunologia Clinica, Spedali Civili, Brescia, Italy
| | | | - Marco Matucci Cerinic
- Department of Experimental and Clinical Rheumatology, Division of Rheumatology AOUC, University of Florence, Florence, Italy
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Franco Cozzi
- Rheumatology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Patricia Carreira
- Servicio de Reumatologia, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Yannick Allanore
- Department of Rheumatology A, Paris Descartes University, Cochin Hospital, Paris, France
| | - Ulf Müller-Ladner
- Justus-Liebig-University of Giessen, Kerckhoff-Klinik, Germany, Bad Nauheim
| | - Lidia P Ananieva
- VA Nasonova Institute of Rheumatology, Moscow, Russian Federation
| | - Alexandra Balbir-Gurman
- B. Shine Rheumatology Institute, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel
| | - Jörg H W Distler
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Laszlo Czirják
- Department of Rheumatology and Immunology, University of Pécs, Pécs, Hungary
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Beijing, China
| | - Jörg Henes
- Department of Internal Medicine II, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Sergio A Jimenez
- Scleroderma Centre, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vanessa Smith
- Faculty of Internal Medicine, Ghent University, Ghent, Belgium
| | - Nemanja Damjanov
- Institute of Rheumatology, University of Belgrade Medical School, Belgrade, Serbia
| | - Christopher P Denton
- Department of Rheumatology, University College London, Royal Free Hospital, London, UK
| | - Francesco DelGaldo
- Leeds Musculoskeletal Biomedical Research Unit (LMBRU), University of Leeds, Leeds, UK
| | - Lesley Ann Saketkoo
- Tulane University Lung Centre, University Medical Centre Scleroderma and Sarcoidosis Patient Care and Research Centre, New Orleans, LA, USA
| | - Ulrich A Walker
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
38
|
Chairta P, Nicolaou P, Sokratous K, Galant C, Houssiau F, Oulas A, Spyrou GM, Alarcon-Riquelme ME, Lauwerys BR, Christodoulou K. Comparative analysis of affected and unaffected areas of systemic sclerosis skin biopsies by high-throughput proteomic approaches. Arthritis Res Ther 2020; 22:107. [PMID: 32381114 PMCID: PMC7206756 DOI: 10.1186/s13075-020-02196-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background Pathogenesis and aetiology of systemic sclerosis (SSc) are currently unclear, thus rendering disease prognosis, diagnosis and treatment challenging. The aim of this study was to use paired skin biopsy samples from affected and unaffected areas of the same patient, in order to compare the proteomes and identify biomarkers and pathways which are associated with SSc pathogenesis. Methods Biopsies were obtained from affected and unaffected skin areas of SSc patients. Samples were cryo-pulverised and proteins were extracted and analysed using mass spectrometry (MS) discovery analysis. Differentially expressed proteins were revealed after analysis with the Progenesis QIp software. Pathway analysis was performed using the Enrichr Web server. Using specific criteria, fifteen proteins were selected for further validation with targeted-MS analysis. Results Proteomic analysis led to the identification and quantification of approximately 2000 non-redundant proteins. Statistical analysis showed that 169 of these proteins were significantly differentially expressed in affected versus unaffected tissues. Pathway analyses showed that these proteins are involved in multiple pathways that are associated with autoimmune diseases (AIDs) and fibrosis. Fifteen of these proteins were further investigated using targeted-MS approaches, and five of them were confirmed to be significantly differentially expressed in SSc affected versus unaffected skin biopsies. Conclusion Using MS-based proteomics analysis of human skin biopsies from patients with SSc, we identified a number of proteins and pathways that might be involved in SSc progression and pathogenesis. Fifteen of these proteins were further validated, and results suggest that five of them may serve as potential biomarkers for SSc.
Collapse
Affiliation(s)
- Paraskevi Chairta
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Neurogenetics Department, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Paschalis Nicolaou
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Neurogenetics Department, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Kleitos Sokratous
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Bioinformatics ERA Chair, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Present Address: OMass Therapeutics, The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Christine Galant
- Department of Pathology, Université catholique de Louvain, Bruxelles, Belgium
| | - Frédéric Houssiau
- Rheumatology Department, Cliniques Universitaires Saint-Luc, Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Université catholique de Louvain, Bruxelles, Belgium
| | - Anastasis Oulas
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Bioinformatics ERA Chair, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - George M Spyrou
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Bioinformatics ERA Chair, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Marta E Alarcon-Riquelme
- Area of Medical Genomics, Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENyO), Parque Tenológico de la Salud Fundación (PTS) Granada, Spain; Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Bernard R Lauwerys
- Department of Pathology, Université catholique de Louvain, Bruxelles, Belgium
| | - Kyproula Christodoulou
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus. .,Neurogenetics Department, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus.
| |
Collapse
|
39
|
Role of IRF8 in immune cells functions, protection against infections, and susceptibility to inflammatory diseases. Hum Genet 2020; 139:707-721. [DOI: 10.1007/s00439-020-02154-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
|
40
|
Takagi K, Kawamoto M, Higuchi T, Tochimoto A, Harigai M, Kawaguchi Y. Single nucleotide polymorphisms of the
HIF1A
gene are associated with susceptibility to pulmonary arterial hypertension in systemic sclerosis and contribute to SSc‐PAH disease severity. Int J Rheum Dis 2020; 23:674-680. [DOI: 10.1111/1756-185x.13822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Kae Takagi
- Department of Medicine Tokyo Women's Medical University Medical Center East Tokyo Japan
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | - Manabu Kawamoto
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | - Tomoaki Higuchi
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | - Akiko Tochimoto
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | - Masayoshi Harigai
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | - Yasushi Kawaguchi
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| |
Collapse
|
41
|
Nihtyanova SI, Denton CP. Pathogenesis of systemic sclerosis associated interstitial lung disease. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:6-16. [PMID: 35382227 PMCID: PMC8922569 DOI: 10.1177/2397198320903867] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
Systemic sclerosis is an autoimmune disease leading to vasculopathy and fibrosis
of skin and internal organs. Despite likely shared pathogenic mechanisms, the
patterns of skin and lung fibrosis differ. Pathogenesis of interstitial lung
disease, a major cause of death in systemic sclerosis, reflects the intrinsic
disease pathobiology and is associated with distinct clinical phenotypes and
laboratory characteristics. The commonest histological pattern of systemic
sclerosis–interstitial lung disease is non-specific interstitial pneumonia.
Systemic sclerosis–interstitial lung disease pathogenesis involves multiple
components, including susceptibility and triggering factors, which could be
genetic or environmental. The process is amplified likely through ongoing
inflammation and the link between inflammatory activity and fibrosis with IL6
emerging as a key mediator. The disease is driven by epithelial injury,
reflected by markers in the serum, such as surfactant proteins and KL-6. In
addition, mediators that are produced by epithelial cells and that regulate
inflammatory cell trafficking may be important, especially CCL2. Other factors,
such as CXCL4 and CCL18, point towards immune-mediated damage or injury
response. Monocytes and alternatively activated macrophages appear to be
important. Transforming growth factor beta appears central to pathogenesis and
regulates epithelial repair and fibroblast activation. Understanding
pathogenesis may help to unravel the stages of systemic sclerosis–interstitial
lung disease, risks of progression and determinants of outcome. With this
article, we set out to review the multiple factors, including genetic,
environmental, cellular and molecular, that may be involved in the pathogenesis
of systemic sclerosis–interstitial lung disease and the mechanisms leading to
sustained fibrosis. We propose a model for the pathogenesis of systemic
sclerosis–interstitial lung disease, based on the available literature.
Collapse
Affiliation(s)
- Svetlana I Nihtyanova
- Centre for Rheumatology and Connective Tissue Diseases, University College London, London, UK
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, University College London, London, UK
| |
Collapse
|
42
|
Matana A, Boutin T, Torlak V, Brdar D, Gunjača I, Kolčić I, Boraska Perica V, Punda A, Polašek O, Barbalić M, Hayward C, Zemunik T. Genome-Wide Analysis Identifies Two Susceptibility Loci for Positive Thyroid Peroxidase and Thyroglobulin Antibodies. J Clin Endocrinol Metab 2020; 105:5651166. [PMID: 31794020 DOI: 10.1210/clinem/dgz239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Thyroid peroxidase (TPO) and thyroglobulin (Tg) are main components of the thyroid gland and play an essential role in thyroid hormone synthesis. The development of antibodies to thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) is the major diagnostic hallmark and early indicator of autoimmune thyroid disease. TPOAb and TgAb are under strong genetic influence; however, genetic factors that determine thyroid antibody positivity are largely unknown. MATERIALS AND METHODS To identify novel loci associated with TPOAb and/or TgAb positivity, we performed a genome-wide meta-analysis in a total of 2613 individuals from Croatia. Participants with elevated plasma TPOAb and/or TgAb were defined as cases (N = 619) and those with TPOAb and TgAb within reference values were defined as controls (N = 1994). RESULTS We identified 2 novel loci, of which 1 is located within the YES1 gene (rs77284350, P = 1.50 × 10-8), and the other resides within the IRF8 gene (rs16939945, P = 5.04 × 10-8). CONCLUSIONS Although the observed variants were associated with TPOAb and TgAb positivity for the first time, both YES1 and IRF8 were previously linked to susceptibility to other autoimmune diseases, and represent plausible biological candidates. This study adds to the knowledge of genetics underlying thyroid antibodies and provides a good basis for further research.
Collapse
Affiliation(s)
- Antonela Matana
- Department of Medical Biology, University of Split, School of Medicine, Split, Croatia
- Department of Mathematics, University of Split, Faculty of Science, Split, Croatia
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, United Kingdom
| | - Vesela Torlak
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - Dubravka Brdar
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - Ivana Gunjača
- Department of Medical Biology, University of Split, School of Medicine, Split, Croatia
| | - Ivana Kolčić
- Department of Public Health, University of Split, School of Medicine Split, Split, Croatia
| | - Vesna Boraska Perica
- Department of Medical Biology, University of Split, School of Medicine, Split, Croatia
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split, School of Medicine Split, Split, Croatia
- University Hospital Split, Split, Croatia
- Psychiatric hospital Sveti Ivan, Zagreb, Croatia
| | - Maja Barbalić
- Department of Medical Biology, University of Split, School of Medicine, Split, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, United Kingdom
| | - Tatijana Zemunik
- Department of Medical Biology, University of Split, School of Medicine, Split, Croatia
| |
Collapse
|
43
|
Han HS, Ahn GR, Kim HJ, Park KY, Li K, Seo SJ. Diffuse Systemic Sclerosis in a Patient with Primary Biliary Cirrhosis and Autoimmune Hepatitis Overlap Syndrome: A Case Report. Ann Dermatol 2020; 32:69-73. [PMID: 33911712 PMCID: PMC7992632 DOI: 10.5021/ad.2020.32.1.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/05/2019] [Accepted: 02/26/2019] [Indexed: 11/08/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic systemic disease of unknown etiology characterized by vasculopathy, excessive accumulation of extracellular matrix, and fibrosis of the skin and other internal organs. Although its etiology remains elusive, approximately one third of SSc patients presents with additional autoimmune disease, which suggests that an autoimmune mechanism is a major component of the underlying pathophysiology. On the other hand, primary biliary cirrhosis (PBC) and autoimmune hepatitis (AIH) are two main autoimmune liver diseases. A 41-year-old female previously diagnosed with PBC/AIH overlap syndrome presented with multiple, painful brownish to erythematous firm patches on the hands, arms, axillae, neck, abdomen, and thighs. Laboratory work-up yielded positive results for anti-nuclear antibody, anti-Ro/Sjögren's-syndrome-related antigen A autoantibodies, and perinuclear anti-neutrophil cytoplasmic antibodies while punch biopsy of her left hand showed characteristics that are consistent with scleroderma. Herein, we report the first case of a patient with diffuse cutaneous SSc and concurrent PBC/AIH overlap syndrome and suggest that this coexistence of multiple autoimmune diseases is not a coincidence but rather that a common autoimmune pathogenesis may exist.
Collapse
Affiliation(s)
- Hye Sung Han
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ga Ram Ahn
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyung Joon Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kapsok Li
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Genetic Interactions Affect Lung Function in Patients with Systemic Sclerosis. G3-GENES GENOMES GENETICS 2020; 10:151-163. [PMID: 31694854 PMCID: PMC6945038 DOI: 10.1534/g3.119.400775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Scleroderma, or systemic sclerosis (SSc), is an autoimmune disease characterized by progressive fibrosis of the skin and internal organs. The most common cause of death in people with SSc is lung disease, but the pathogenesis of lung disease in SSc is insufficiently understood to devise specific treatment strategies. Developing targeted treatments requires not only the identification of molecular processes involved in SSc-associated lung disease, but also understanding of how these processes interact to drive pathology. One potentially powerful approach is to identify alleles that interact genetically to influence lung outcomes in patients with SSc. Analysis of interactions, rather than individual allele effects, has the potential to delineate molecular interactions that are important in SSc-related lung pathology. However, detecting genetic interactions, or epistasis, in human cohorts is challenging. Large numbers of variants with low minor allele frequencies, paired with heterogeneous disease presentation, reduce power to detect epistasis. Here we present an analysis that increases power to detect epistasis in human genome-wide association studies (GWAS). We tested for genetic interactions influencing lung function and autoantibody status in a cohort of 416 SSc patients. Using Matrix Epistasis to filter SNPs followed by the Combined Analysis of Pleiotropy and Epistasis (CAPE), we identified a network of interacting alleles influencing lung function in patients with SSc. In particular, we identified a three-gene network comprising WNT5A, RBMS3, and MSI2, which in combination influenced multiple pulmonary pathology measures. The associations of these genes with lung outcomes in SSc are novel and high-confidence. Furthermore, gene coexpression analysis suggested that the interactions we identified are tissue-specific, thus differentiating SSc-related pathogenic processes in lung from those in skin.
Collapse
|
45
|
HLA and autoantibodies define scleroderma subtypes and risk in African and European Americans and suggest a role for molecular mimicry. Proc Natl Acad Sci U S A 2019; 117:552-562. [PMID: 31871193 PMCID: PMC6955366 DOI: 10.1073/pnas.1906593116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Systemic sclerosis (SSc) is a clinically heterogeneous autoimmune disease characterized by mutually exclusive autoantibodies directed against distinct nuclear antigens. We examined HLA associations in SSc and its autoantibody subsets in a large, newly recruited African American (AA) cohort and among European Americans (EA). In the AA population, the African ancestry-predominant HLA-DRB1*08:04 and HLA-DRB1*11:02 alleles were associated with overall SSc risk, and the HLA-DRB1*08:04 allele was strongly associated with the severe antifibrillarin (AFA) antibody subset of SSc (odds ratio = 7.4). These African ancestry-predominant alleles may help explain the increased frequency and severity of SSc among the AA population. In the EA population, the HLA-DPB1*13:01 and HLA-DRB1*07:01 alleles were more strongly associated with antitopoisomerase (ATA) and anticentromere antibody-positive subsets of SSc, respectively, than with overall SSc risk, emphasizing the importance of HLA in defining autoantibody subtypes. The association of the HLA-DPB1*13:01 allele with the ATA+ subset of SSc in both AA and EA patients demonstrated a transancestry effect. A direct correlation between SSc prevalence and HLA-DPB1*13:01 allele frequency in multiple populations was observed (r = 0.98, P = 3 × 10-6). Conditional analysis in the autoantibody subsets of SSc revealed several associated amino acid residues, mostly in the peptide-binding groove of the class II HLA molecules. Using HLA α/β allelic heterodimers, we bioinformatically predicted immunodominant peptides of topoisomerase 1, fibrillarin, and centromere protein A and discovered that they are homologous to viral protein sequences from the Mimiviridae and Phycodnaviridae families. Taken together, these data suggest a possible link between HLA alleles, autoantibodies, and environmental triggers in the pathogenesis of SSc.
Collapse
|
46
|
López-Isac E, Acosta-Herrera M, Kerick M, Assassi S, Satpathy AT, Granja J, Mumbach MR, Beretta L, Simeón CP, Carreira P, Ortego-Centeno N, Castellvi I, Bossini-Castillo L, Carmona FD, Orozco G, Hunzelmann N, Distler JHW, Franke A, Lunardi C, Moroncini G, Gabrielli A, de Vries-Bouwstra J, Wijmenga C, Koeleman BPC, Nordin A, Padyukov L, Hoffmann-Vold AM, Lie B, Proudman S, Stevens W, Nikpour M, Vyse T, Herrick AL, Worthington J, Denton CP, Allanore Y, Brown MA, Radstake TRDJ, Fonseca C, Chang HY, Mayes MD, Martin J. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat Commun 2019; 10:4955. [PMID: 31672989 PMCID: PMC6823490 DOI: 10.1038/s41467-019-12760-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.
Collapse
Affiliation(s)
- Elena López-Isac
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain.
| | | | - Martin Kerick
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain
| | - Shervin Assassi
- The University of Texas Health Science Center-Houston, Houston, USA
| | - Ansuman T Satpathy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jeffrey Granja
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Carmen P Simeón
- Department of Internal Medicine, Valle de Hebrón Hospital, Barcelona, Spain
| | - Patricia Carreira
- Department of Rheumatology, 12 de Octubre University Hospital, Madrid, Spain
| | | | - Ivan Castellvi
- Department of Rheumatology, Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | | | - F David Carmona
- Department of Genetics and Institute of Biotechnology, University of Granada, Granada, Spain
| | - Gisela Orozco
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
| | | | - Jörg H W Distler
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Claudio Lunardi
- Department of Medicine, Università degli Studi di Verona, Verona, Italy
| | - Gianluca Moroncini
- Clinica Medica, Department of Clinical and Molecular Science, Università Politecnica delle Marche and Ospedali Riuniti, Ancona, Italy
| | - Armando Gabrielli
- Clinica Medica, Department of Clinical and Molecular Science, Università Politecnica delle Marche and Ospedali Riuniti, Ancona, Italy
| | | | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Annika Nordin
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | | | - Benedicte Lie
- Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Susanna Proudman
- Royal Adelaide Hospital and University of Adelaide, Adelaide, SA, Australia
| | | | - Mandana Nikpour
- The University of Melbourne at St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Timothy Vyse
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Ariane L Herrick
- Centre for Musculoskeletal Research, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
| | - Christopher P Denton
- Centre for Rheumatology, Royal Free and University College Medical School, London, United Kingdom
| | - Yannick Allanore
- Department of Rheumatology A, Cochin Hospital, INSERM U1016, Paris Descartes University, Paris, France
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Timothy R D J Radstake
- Department of Rheumatology & Clinical Immunology, Laboratory of Translational Immunology, department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carmen Fonseca
- Centre for Rheumatology, Royal Free and University College Medical School, London, United Kingdom
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maureen D Mayes
- The University of Texas Health Science Center-Houston, Houston, USA
| | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain.
| |
Collapse
|
47
|
Imgenberg-Kreuz J, Almlöf JC, Leonard D, Sjöwall C, Syvänen AC, Rönnblom L, Sandling JK, Nordmark G. Shared and Unique Patterns of DNA Methylation in Systemic Lupus Erythematosus and Primary Sjögren's Syndrome. Front Immunol 2019; 10:1686. [PMID: 31428085 PMCID: PMC6688520 DOI: 10.3389/fimmu.2019.01686] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives: To perform a cross-comparative analysis of DNA methylation in patients with systemic lupus erythematosus (SLE), patients with primary Sjögren's syndrome (pSS), and healthy controls addressing the question of epigenetic sharing and aiming to detect disease-specific alterations. Methods: DNA extracted from peripheral blood from 347 cases with SLE, 100 cases with pSS, and 400 healthy controls were analyzed on the Human Methylation 450k array, targeting 485,000 CpG sites across the genome. A linear regression model including age, sex, and blood cell type distribution as covariates was fitted, and association p-values were Bonferroni corrected. A random forest machine learning classifier was designed for prediction of disease status based on DNA methylation data. Results: We established a combined set of 4,945 shared differentially methylated CpG sites (DMCs) in SLE and pSS compared to controls. In pSS, hypomethylation at type I interferon induced genes was mainly driven by patients who were positive for Ro/SSA and/or La/SSB autoantibodies. Analysis of differential methylation between SLE and pSS identified 2,244 DMCs with a majority of sites showing decreased methylation in SLE compared to pSS. The random forest classifier demonstrated good performance in discerning between disease status with an area under the curve (AUC) between 0.83 and 0.96. Conclusions: The majority of differential DNA methylation is shared between SLE and pSS, however, important quantitative differences exist. Our data highlight neutrophil dysregulation as a shared mechanism, emphasizing the role of neutrophils in the pathogenesis of systemic autoimmune diseases. The current study provides evidence for genes and molecular pathways driving common and disease-specific pathogenic mechanisms.
Collapse
Affiliation(s)
- Juliana Imgenberg-Kreuz
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Carlsson Almlöf
- Molecular Medicine and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Christopher Sjöwall
- Rheumatology, Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ann-Christine Syvänen
- Molecular Medicine and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Johanna K Sandling
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnel Nordmark
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Towards a Better Classification and Novel Therapies Based on the Genetics of Systemic Sclerosis. Curr Rheumatol Rep 2019; 21:44. [PMID: 31304568 DOI: 10.1007/s11926-019-0845-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Nowadays, important advances have occurred in our understanding of the pathogenesis of systemic sclerosis (SSc), which is a rare immune-mediated inflammatory disease (IMID) characterized by vascular damage, immune imbalance, and fibrosis. Its etiology remains unknown; nevertheless, both environmental and genetic factors play a major role in the disease. This review will focus on the main advances made in the field of genetics of SSc. RECENT FINDINGS The assessment of how interindividual genetic variability affects disease onset and progression has enhanced our knowledge of disease biology, and this will eventually translate in the development of new diagnostic and therapeutic tools, which is the final goal of personalized medicine. We will provide an overview of the most relevant achievements in the genetics of SSc, its shared genetics among IMIDs with special attention on drug repurposing, current challenges for the functional characterization of risk variants, and future directions.
Collapse
|
49
|
Wang C, Zheng X, Jiang P, Tang R, Gong Y, Dai Y, Wang L, Xu P, Sun W, Wang L, Han C, Jiang Y, Wei Y, Zhang K, Wu J, Shao Y, Gao Y, Yu J, Hu Z, Zang Z, Zhao Y, Wu X, Dai N, Liu L, Nie J, Jiang B, Lin M, Li L, Li Y, Chen S, Shu L, Qiu F, Wu Q, Zhang M, Chen R, Jawed R, Zhang Y, Shi X, Zhu Z, Pei H, Huang L, Zhao W, Tian Y, Zhu X, Qiu H, Gershwin ME, Chen W, Seldin MF, Liu X, Sun L, Ma X. Genome-wide Association Studies of Specific Antinuclear Autoantibody Subphenotypes in Primary Biliary Cholangitis. Hepatology 2019; 70:294-307. [PMID: 30854688 PMCID: PMC6618054 DOI: 10.1002/hep.30604] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/03/2019] [Indexed: 02/05/2023]
Abstract
Anti-nuclear antibodies to speckled 100 kDa (sp100) and glycoprotein 210 (gp210) are specific serologic markers of primary biliary cholangitis (PBC) of uncertain/controversial clinical or prognostic significance. To study the genetic determinants associated with sp100 and gp210 autoantibody subphenotypes, we performed a genome-wide association analysis of 930 PBC cases based on their autoantibody status, followed by a replication study in 1,252 PBC cases. We confirmed single-nucleotide polymorphisms rs492899 (P = 3.27 × 10-22 ; odds ratio [OR], 2.90; 95% confidence interval [CI], 2.34-3.66) and rs1794280 (P = 5.78 × 10-28 ; OR, 3.89; 95% CI, 3.05-4.96) in the human major histocompatibility complex (MHC) region associated with the sp100 autoantibody. However, no genetic variant was identified as being associated with the gp210 autoantibody. To further define specific classical human leukocyte antigen (HLA) alleles or amino acids associated with the sp100 autoantibody, we imputed 922 PBC cases (211 anti-sp100-positive versus 711 negative cases) using a Han Chinese MHC reference database. Conditional analysis identified that HLA-DRβ1-Asn77/Arg74, DRβ1-Ser37, and DPβ1-Lys65 were major determinants for sp100 production. For the classical HLA alleles, the strongest association was with DRB1*03:01 (P = 1.51 × 10-9 ; OR, 2.97; 95% CI, 2.06-4.29). Regression analysis with classical HLA alleles identified DRB1*03:01, DRB1*15:01, DRB1*01, and DPB1*03:01 alleles can explain most of the HLA association with sp100 autoantibody. Conclusion: This study indicated significant genetic predisposition to the sp100 autoantibody, but not the gp210 autoantibody, subphenotype in PBC patients. Additional studies will be necessary to determine if these findings have clinical significance to PBC pathogenesis and/or therapeutics.
Collapse
Affiliation(s)
- Chan Wang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Xiaodong Zheng
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical University, and Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China & Key Laboratory of Major Autoimmune Diseases, Anhui ProvinceHefeiChina
| | - Peng Jiang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Ruqi Tang
- Department of Gastroenterology and HepatologyShanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji HospitalShanghaiChina
| | - Yuhua Gong
- Department of Laboratory MedicineThe Third People's Hospital of ZhenjiangZhenjiangJiangsuChina
| | - Yaping Dai
- Department of Laboratory MedicineThe Fifth People's Hospital of WuxiWuxiJiangsuChina
| | - Lan Wang
- Department of Laboratory MedicineThe 81st Hospital of PLANanjingJiangsuChina
| | - Ping Xu
- Department of Laboratory MedicineThe Fifth People's Hospital of Suzhou, Soochow UniversitySuzhouJiangsuChina
| | - Wenjuan Sun
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Lu Wang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Chongxu Han
- Department of Laboratory MedicineSubei People's Hospital, Clinical Medical College, Yangzhou UniversityYangzhouJiangsuChina
| | - Yuzhang Jiang
- Department of Laboratory MedicineHuai'an First People's Hospital, Nanjing Medical UniversityHuai'anJiangsuChina
| | - Yiran Wei
- Department of Gastroenterology and HepatologyShanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji HospitalShanghaiChina
| | - Kui Zhang
- Department of Laboratory MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Jian Wu
- Department of RheumatologyFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Youlin Shao
- Department of HepatologyThe Third People's Hospital of ChangzhouChangzhouJiangsuChina
| | - Yueqiu Gao
- Department of Liver DiseasesShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jianjiang Yu
- Department of Laboratory MedicineJiangyin People's Hospital, Southeast UniversityJiangyinJiangsuChina
| | - Zhigang Hu
- Department of Laboratory MedicineAffiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| | - Zhidong Zang
- Department of HepatologyThe Second Hospital of Nanjing, Southeast UniversityNanjingJiangsuChina
| | - Yi Zhao
- Department of Gastrointestinal EndoscopyEastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Xudong Wu
- Department of GastroenterologyYancheng First People's HospitalYanchengJiangsuChina
| | - Na Dai
- Department of GastroenterologyJiangsu University Affiliated Kunshan HospitalKunshanJiangsuChina
| | - Lei Liu
- Department of GastroenterologyYixing People's HospitalYixinJiangsuChina
| | - Jinshan Nie
- Department of GastroenterologyTaicang First People's Hospital, Soochow UniversityTaicangJiangsuChina
| | - Bo Jiang
- Department of HepatologyJingjiang Second People's HospitalJingjiangJiangsuChina
| | - Maosong Lin
- Department of GastroenterologyTaizhou People's HospitalTaizhouJiangsuChina
| | - Li Li
- Department of Laboratory MedicineZhongda Hospital, Southeast UniversityNanjingJiangsuChina
| | - You Li
- Department of Gastroenterology and HepatologyShanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji HospitalShanghaiChina
| | - Sufang Chen
- Department of Laboratory MedicineThe Fifth People's Hospital of Suzhou, Soochow UniversitySuzhouJiangsuChina
| | - Lixin Shu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Fang Qiu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Qiuyuan Wu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Mingming Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Ru Chen
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Rohil Jawed
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Yu Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Zhen Zhu
- Department of HepatologyThe Third People's Hospital of ChangzhouChangzhouJiangsuChina
| | - Hao Pei
- Department of Laboratory MedicineThe Fifth People's Hospital of WuxiWuxiJiangsuChina
| | - Lihua Huang
- Department of Laboratory MedicineThe Fifth People's Hospital of WuxiWuxiJiangsuChina
| | - Weifeng Zhao
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ye Tian
- Department of RadiologyThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Xiang Zhu
- Department of Laboratory MedicineThe Fifth People's Hospital of Suzhou, Soochow UniversitySuzhouJiangsuChina
| | - Hong Qiu
- Department of Laboratory MedicineThe 81st Hospital of PLANanjingJiangsuChina
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California at Davis School of MedicineDavisCA
| | - Weichang Chen
- Department of GastroenterologyFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Michael F. Seldin
- Department of Biochemistry and Molecular MedicineUniversity of California at Davis School of MedicineDavisCA
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life SciencesSoutheast UniversityNanjingJiangsuChina
| | - Liangdan Sun
- Department of DermatologyThe First Affiliated Hospital of Anhui Medical University, and Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China & Key Laboratory of Major Autoimmune Diseases, Anhui ProvinceHefeiChina
| | - Xiong Ma
- Department of Gastroenterology and HepatologyShanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji HospitalShanghaiChina
| |
Collapse
|
50
|
Jeng MY, Mumbach MR, Granja JM, Satpathy AT, Chang HY, Chang ALS. Enhancer Connectome Nominates Target Genes of Inherited Risk Variants from Inflammatory Skin Disorders. J Invest Dermatol 2019; 139:605-614. [DOI: 10.1016/j.jid.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
|