1
|
Ceballos A, Esse R, Grishok A. The proline-rich domain of MML-1 is biologically important but not required for localization to target promoters. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34778725 PMCID: PMC8579147 DOI: 10.17912/micropub.biology.000498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
The only representative of the MYC superfamily transcription factors in C. elegans, MML-1 (Myc and Mondo-like 1), was shown to promote extended lifespan in a variety of models and to regulate some aspects of C. elegans development. This previous research did not involve molecular characterization of MML-1. Here we use available mml-1 mutant alleles and other reagents to demonstrate that MML-1 is modified by O-GlcNAc, binds to promoters of some genes directly regulated by the DOT-1.1 histone methyltransferase complex, and has a role in promoting neuronal migration. Surprisingly, we found that the deletion allele mml-1(ok849), which was considered a null, produces an internally truncated protein resulting from an in-frame deletion. Localization of this truncated product to MML-1 target promoters was not impaired. The deleted region of MML-1 is proline-rich, and its function is poorly understood in mammalian homologs of MML-1. Based on our work and previously published data we conclude that the internal proline-rich region of MML-1 is dispensable for DNA binding but is biologically important.
Collapse
Affiliation(s)
- Ainhoa Ceballos
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Present affiliation: Oncology Genomics Department, Diagnostica Longwood S.L. 50011 Zaragoza, Spain
| | - Ruben Esse
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Present affiliation: Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Alla Grishok
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Present affiliation: Boston University School of Medicine, Department of Biochemistry, Genome Science Institute, Boston, MA 02118, USA
| |
Collapse
|
2
|
Choh LC, Ong GH, Chua EG, Vellasamy KM, Mariappan V, Khan AM, Wise MJ, Wong KT, Vadivelu J. Absence of BapA type III effector protein affects Burkholderia pseudomallei intracellular lifecycle in human host cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Wasson JA, Harris G, Keppler-Ross S, Brock TJ, Dar AR, Butcher RA, Fischer SEJ, Kagias K, Clardy J, Zhang Y, Mango SE. Neuronal control of maternal provisioning in response to social cues. SCIENCE ADVANCES 2021; 7:7/34/eabf8782. [PMID: 34417172 PMCID: PMC8378817 DOI: 10.1126/sciadv.abf8782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/30/2021] [Indexed: 05/03/2023]
Abstract
Mothers contribute cytoplasmic components to their progeny in a process called maternal provisioning. Provisioning is influenced by the parental environment, but the molecular pathways that transmit environmental cues between generations are not well understood. Here, we show that, in Caenorhabditis elegans, social cues modulate maternal provisioning to regulate gene silencing in offspring. Intergenerational signal transmission depends on a pheromone-sensing neuron and neuronal FMRFamide (Phe-Met-Arg-Phe)-like peptides. Parental FMRFamide-like peptide signaling dampens oxidative stress resistance and promotes the deposition of mRNAs for translational components in progeny, which, in turn, reduces gene silencing. This study identifies a previously unknown pathway for intergenerational communication that links neuronal responses to maternal provisioning. We suggest that loss of social cues in the parental environment represents an adverse environment that stimulates stress responses across generations.
Collapse
Affiliation(s)
| | - Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Biology, California State University Channel Islands, Camarillo, CA, USA
| | | | | | - Abdul R Dar
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Sylvia E J Fischer
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Konstantinos Kagias
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Cambridge, MA, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Susan E Mango
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Lascarez-Lagunas LI, Herruzo E, Grishok A, San-Segundo PA, Colaiácovo MP. DOT-1.1-dependent H3K79 methylation promotes normal meiotic progression and meiotic checkpoint function in C. elegans. PLoS Genet 2020; 16:e1009171. [PMID: 33104701 PMCID: PMC7644094 DOI: 10.1371/journal.pgen.1009171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/05/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
Epigenetic modifiers are emerging as important regulators of the genome. However, how they regulate specific processes during meiosis is not well understood. Methylation of H3K79 by the histone methyltransferase Dot1 has been shown to be involved in the maintenance of genomic stability in various organisms. In S. cerevisiae, Dot1 modulates the meiotic checkpoint response triggered by synapsis and/or recombination defects by promoting Hop1-dependent Mek1 activation and Hop1 distribution along unsynapsed meiotic chromosomes, at least in part, by regulating Pch2 localization. However, how this protein regulates meiosis in metazoans is unknown. Here, we describe the effects of H3K79me depletion via analysis of dot-1.1 or zfp-1 mutants during meiosis in Caenorhabditis elegans. We observed decreased fertility and increased embryonic lethality in dot-1.1 mutants suggesting meiotic dysfunction. We show that DOT-1.1 plays a role in the regulation of pairing, synapsis and recombination in the worm. Furthermore, we demonstrate that DOT-1.1 is an important regulator of mechanisms surveilling chromosome synapsis during meiosis. In sum, our results reveal that regulation of H3K79me plays an important role in coordinating events during meiosis in C. elegans.
Collapse
Affiliation(s)
- Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States of America
| | - Esther Herruzo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and University of Salamanca, Salamanca, Spain
| | - Alla Grishok
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States of America
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Pedro A. San-Segundo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and University of Salamanca, Salamanca, Spain
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
5
|
Esse R, Grishok A. Caenorhabditis elegans Deficient in DOT-1.1 Exhibit Increases in H3K9me2 at Enhancer and Certain RNAi-Regulated Regions. Cells 2020; 9:cells9081846. [PMID: 32781660 PMCID: PMC7464606 DOI: 10.3390/cells9081846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/06/2023] Open
Abstract
The methylation of histone H3 at lysine 79 is a feature of open chromatin. It is deposited by the conserved histone methyltransferase DOT1. Recently, DOT1 localization and H3K79 methylation (H3K79me) have been correlated with enhancers in C. elegans and mammalian cells. Since earlier research implicated H3K79me in preventing heterochromatin formation both in yeast and leukemic cells, we sought to inquire whether a H3K79me deficiency would lead to higher levels of heterochromatic histone modifications, specifically H3K9me2, at developmental enhancers in C. elegans. Therefore, we used H3K9me2 ChIP-seq to compare its abundance in control and dot-1.1 loss-of-function mutant worms, as well as in rde-4; dot-1.1 and rde-1; dot-1.1 double mutants. The rde-1 and rde-4 genes are components of the RNAi pathway in C. elegans, and RNAi is known to initiate H3K9 methylation in many organisms, including C. elegans. We have previously shown that dot-1.1(-) lethality is rescued by rde-1 and rde-4 loss-of-function. Here we found that H3K9me2 was elevated in enhancer, but not promoter, regions bound by the DOT-1.1/ZFP-1 complex in dot-1.1(-) worms. We also found increased H3K9me2 at genes targeted by the ALG-3/4-dependent small RNAs and repeat regions. Our results suggest that ectopic H3K9me2 in dot-1.1(-) could, in some cases, be induced by small RNAs.
Collapse
|
6
|
Karunanithi S, Oruganti V, Marker S, Rodriguez-Viana AM, Drews F, Pirritano M, Nordström K, Simon M, Schulz MH. Exogenous RNAi mechanisms contribute to transcriptome adaptation by phased siRNA clusters in Paramecium. Nucleic Acids Res 2019; 47:8036-8049. [PMID: 31251800 PMCID: PMC6735861 DOI: 10.1093/nar/gkz553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023] Open
Abstract
Extensive research has characterized distinct exogenous RNAi pathways interfering in gene expression during vegetative growth of the unicellular model ciliate Paramecium. However, role of RNAi in endogenous transcriptome regulation, and environmental adaptation is unknown. Here, we describe the first genome-wide profiling of endogenous sRNAs in context of different transcriptomic states (serotypes). We developed a pipeline to identify, and characterize 2602 siRNA producing clusters (SRCs). Our data show no evidence that SRCs produce miRNAs, and in contrast to other species, no preference for strand specificity of siRNAs. Interestingly, most SRCs overlap coding genes and a separate group show siRNA phasing along the entire open reading frame, suggesting that the mRNA transcript serves as a source for siRNAs. Integrative analysis of siRNA abundance and gene expression levels revealed surprisingly that mRNA and siRNA show negative as well as positive associations. Two RNA-dependent RNA Polymerase mutants, RDR1 and RDR2, show a drastic loss of siRNAs especially in phased SRCs accompanied with increased mRNA levels. Importantly, most SRCs depend on both RDRs, reminiscent to primary siRNAs in the RNAi against exogenous RNA, indicating mechanistic overlaps between exogenous and endogenous RNAi contributing to flexible transcriptome adaptation.
Collapse
Affiliation(s)
- Sivarajan Karunanithi
- Cluster of Excellence, Multimodal Computing and Interaction, Saarland University and Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany.,Graduate School of Computer Science, Saarland Informatics Campus, 66123 Saarbrücken, Germany.,Institute for Cardiovascular Regeneration, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Vidya Oruganti
- Cluster of Excellence, Multimodal Computing and Interaction, Saarland University and Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Simone Marker
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, 66123 Saarbrücken, Germany
| | - Angela M Rodriguez-Viana
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, 66123 Saarbrücken, Germany
| | - Franziska Drews
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, 66123 Saarbrücken, Germany.,Molecular Cell Biology and Microbiology, Wuppertal University, 42097 Wuppertal, Germany
| | - Marcello Pirritano
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, 66123 Saarbrücken, Germany.,Molecular Cell Biology and Microbiology, Wuppertal University, 42097 Wuppertal, Germany
| | - Karl Nordström
- Genetics/Epigenetics, Centre for Human and Molecular Biology, Saarland University, 66123 Saarbrücken, Germany
| | - Martin Simon
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, 66123 Saarbrücken, Germany.,Molecular Cell Biology and Microbiology, Wuppertal University, 42097 Wuppertal, Germany
| | - Marcel H Schulz
- Cluster of Excellence, Multimodal Computing and Interaction, Saarland University and Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany.,Institute for Cardiovascular Regeneration, Goethe-University Hospital, 60590 Frankfurt, Germany
| |
Collapse
|
7
|
Esse R, Gushchanskaia ES, Lord A, Grishok A. DOT1L complex suppresses transcription from enhancer elements and ectopic RNAi in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2019; 25:1259-1273. [PMID: 31300558 PMCID: PMC6800474 DOI: 10.1261/rna.070292.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/10/2019] [Indexed: 05/14/2023]
Abstract
Methylation of histone H3 on lysine 79 (H3K79) by DOT1L is associated with actively transcribed genes. Earlier, we described that DOT-1.1, the Caenorhabditis elegans homolog of mammalian DOT1L, cooperates with the chromatin-binding protein ZFP-1 (AF10 homolog) to negatively modulate transcription of highly and widely expressed target genes. Also, the reduction of ZFP-1 levels has consistently been associated with lower efficiency of RNA interference (RNAi) triggered by exogenous double-stranded RNA (dsRNA), but the reason for this is not clear. Here, we demonstrate that the DOT1L complex suppresses transcription originating from enhancer elements and antisense transcription, thus potentiating the expression of enhancer-regulated genes. We also show that worms lacking H3K79 methylation do not survive, and this lethality is suppressed by a loss of caspase-3 or Dicer complex components that initiate gene silencing response to exogenous dsRNA. Our results suggest that ectopic elevation of endogenous dsRNA directly or indirectly resulting from global misregulation of transcription in DOT1L complex mutants may engage the Dicer complex and, therefore, limit the efficiency of exogenous RNAi.
Collapse
Affiliation(s)
- Ruben Esse
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Avery Lord
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Alla Grishok
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Genome Science Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
8
|
Singh A, Kumar N, Matai L, Jain V, Garg A, Mukhopadhyay A. A chromatin modifier integrates insulin/IGF-1 signalling and dietary restriction to regulate longevity. Aging Cell 2016; 15:694-705. [PMID: 27039057 PMCID: PMC4933660 DOI: 10.1111/acel.12477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 02/04/2023] Open
Abstract
Insulin/IGF‐1‐like signalling (IIS) and dietary restriction (DR) are the two major modulatory pathways controlling longevity across species. Here, we show that both pathways license a common chromatin modifier, ZFP‐1/AF10. The downstream transcription factors of the IIS and select DR pathways, DAF‐16/FOXO or PHA‐4/FOXA, respectively, both transcriptionally regulate the expression of zfp‐1. ZFP‐1, in turn, negatively regulates the expression of DAF‐16/FOXO and PHA‐4/FOXA target genes, apparently forming feed‐forward loops that control the amplitude as well as the duration of gene expression. We show that ZFP‐1 mediates this regulation by negatively influencing the recruitment of DAF‐16/FOXO and PHA‐4/FOXA to their target promoters. Consequently, zfp‐1 is required for the enhanced longevity observed during DR and on knockdown of IIS. Our data reveal how two distinct sensor pathways control an overlapping set of genes, using different downstream transcription factors, integrating potentially diverse and temporally distinct nutritional situations.
Collapse
Affiliation(s)
- Anupama Singh
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Neeraj Kumar
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Latika Matai
- CSIR‐Institute of Genomics & Integrative Biology South Campus Mathura Road New Delhi 110020 India
- Academy of Scientific and Innovative Research CSIR‐IGIB, Mathura Road Campus New Delhi India
| | - Vaibhav Jain
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Amit Garg
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| |
Collapse
|
9
|
Zugasti O, Thakur N, Belougne J, Squiban B, Kurz CL, Soulé J, Omi S, Tichit L, Pujol N, Ewbank JJ. A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes. BMC Biol 2016; 14:35. [PMID: 27129311 PMCID: PMC4850687 DOI: 10.1186/s12915-016-0256-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Caenorhabditis elegans has emerged over the last decade as a useful model for the study of innate immunity. Its infection with the pathogenic fungus Drechmeria coniospora leads to the rapid up-regulation in the epidermis of genes encoding antimicrobial peptides. The molecular basis of antimicrobial peptide gene regulation has been previously characterized through forward genetic screens. Reverse genetics, based on RNAi, provide a complementary approach to dissect the worm's immune defenses. RESULTS We report here the full results of a quantitative whole-genome RNAi screen in C. elegans for genes involved in regulating antimicrobial peptide gene expression. The results will be a valuable resource for those contemplating similar RNAi-based screens and also reveal the limitations of such an approach. We present several strategies, including a comprehensive class clustering method, to overcome these limitations and which allowed us to characterize the different steps of the interaction between C. elegans and the fungus D. coniospora, leading to a complete description of the MAPK pathway central to innate immunity in C. elegans. The results further revealed a cross-tissue signaling, triggered by mitochondrial dysfunction in the intestine, that suppresses antimicrobial peptide gene expression in the nematode epidermis. CONCLUSIONS Overall, our results provide an unprecedented system's level insight into the regulation of C. elegans innate immunity. They represent a significant contribution to our understanding of host defenses and will lead to a better comprehension of the function and evolution of animal innate immunity.
Collapse
Affiliation(s)
- Olivier Zugasti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Nishant Thakur
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Jérôme Belougne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Barbara Squiban
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Section of Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C Léopold Kurz
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Julien Soulé
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Genomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Shizue Omi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Tichit
- Institut de Mathématiques de Marseille, Aix Marseille Université, I2M Centrale Marseille, CNRS UMR 7373, 13453, Marseille, France
| | - Nathalie Pujol
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| | - Jonathan J Ewbank
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| |
Collapse
|
10
|
The insulin/IGF signaling regulators cytohesin/GRP-1 and PIP5K/PPK-1 modulate susceptibility to excitotoxicity in C. elegans. PLoS One 2014; 9:e113060. [PMID: 25422944 PMCID: PMC4244091 DOI: 10.1371/journal.pone.0113060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 10/17/2014] [Indexed: 12/24/2022] Open
Abstract
During ischemic stroke, malfunction of excitatory amino acid transporters and reduced synaptic clearance causes accumulation of Glutamate (Glu) and excessive stimulation of postsynaptic neurons, which can lead to their degeneration by excitotoxicity. The balance between cell death-promoting (neurotoxic) and survival-promoting (neuroprotective) signaling cascades determines the fate of neurons exposed to the excitotoxic insult. The evolutionary conserved Insulin/IGF Signaling (IIS) cascade can participate in this balance, as it controls cell stress resistance in nematodes and mammals. Blocking the IIS cascade allows the transcription factor FoxO3/DAF-16 to accumulate in the nucleus and activate a transcriptional program that protects cells from a range of insults. We study the effect of IIS cascade on neurodegeneration in a C. elegans model of excitotoxicity, where a mutation in a central Glu transporter (glt-3) in a sensitizing background causes Glu-Receptor -dependent neuronal necrosis. We expand our studies on the role of the IIS cascade in determining susceptibility to excitotoxic necrosis by either blocking IIS at the level of PI3K/AGE-1 or stimulating it by removing the inhibitory effect of ZFP-1 on the expression of PDK-1. We further show that the components of the Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex, known to regulate PIP2 production and the IIS cascade, modulate nematode excitotoxicity: mutations that are expected to reduce the complex's ability to produce PIP2 and inhibit the IIS cascade protect from excitotoxicity, while overstimulation of PIP2 production enhances neurodegeneration. Our observations therefore affirm the importance of the IIS cascade in determining the susceptibility to necrotic neurodegeneration in nematode excitotoxicity, and demonstrate the ability of Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex to modulate neuroprotection.
Collapse
|
11
|
Rechavi O, Houri-Ze'evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 2014; 158:277-287. [PMID: 25018105 PMCID: PMC4377509 DOI: 10.1016/j.cell.2014.06.020] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/30/2014] [Accepted: 06/11/2014] [Indexed: 01/03/2023]
Abstract
Evidence from animal studies and human famines suggests that starvation may affect the health of the progeny of famished individuals. However, it is not clear whether starvation affects only immediate offspring or has lasting effects; it is also unclear how such epigenetic information is inherited. Small RNA-induced gene silencing can persist over several generations via transgenerationally inherited small RNA molecules in C. elegans, but all known transgenerational silencing responses are directed against foreign DNA introduced into the organism. We found that starvation-induced developmental arrest, a natural and drastic environmental change, leads to the generation of small RNAs that are inherited through at least three consecutive generations. These small, endogenous, transgenerationally transmitted RNAs target genes with roles in nutrition. We defined genes that are essential for this multigenerational effect. Moreover, we show that the F3 offspring of starved animals show an increased lifespan, corroborating the notion of a transgenerational memory of past conditions.
Collapse
Affiliation(s)
- Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA.
| | - Leah Houri-Ze'evi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wee Siong Sho Goh
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Sze Yen Kerk
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Oliver Hobert
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| |
Collapse
|
12
|
Kennedy LM, Grishok A. Neuronal migration is regulated by endogenous RNAi and chromatin-binding factor ZFP-1/AF10 in Caenorhabditis elegans. Genetics 2014; 197:207-20. [PMID: 24558261 PMCID: PMC4012481 DOI: 10.1534/genetics.114.162917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/13/2014] [Indexed: 01/05/2023] Open
Abstract
Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning.
Collapse
Affiliation(s)
- Lisa M. Kennedy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | - Alla Grishok
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| |
Collapse
|
13
|
Cecere G, Hoersch S, Jensen MB, Dixit S, Grishok A. The ZFP-1(AF10)/DOT-1 complex opposes H2B ubiquitination to reduce Pol II transcription. Mol Cell 2013; 50:894-907. [PMID: 23806335 DOI: 10.1016/j.molcel.2013.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 03/04/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
The inhibition of transcriptional elongation plays an important role in gene regulation in metazoans, including C. elegans. Here, we combine genomic and biochemical approaches to dissect a role of ZFP-1, the C. elegans AF10 homolog, in transcriptional control. We show that ZFP-1 and its interacting partner DOT-1.1 have a global role in negatively modulating the level of polymerase II (Pol II) transcription on essential widely expressed genes. Moreover, the ZFP-1/DOT-1.1 complex contributes to progressive Pol II pausing on essential genes during development and to rapid Pol II pausing during stress response. The slowing down of Pol II transcription by ZFP-1/DOT-1.1 is associated with an increase in H3K79 methylation and a decrease in H2B monoubiquitination, which promotes transcription. We propose a model wherein the recruitment of ZFP-1/DOT-1.1 and deposition of H3K79 methylation at highly expressed genes initiates a negative feedback mechanism for the modulation of their expression.
Collapse
Affiliation(s)
- Germano Cecere
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
14
|
Hall SE, Chirn GW, Lau NC, Sengupta P. RNAi pathways contribute to developmental history-dependent phenotypic plasticity in C. elegans. RNA (NEW YORK, N.Y.) 2013; 19:306-319. [PMID: 23329696 PMCID: PMC3677242 DOI: 10.1261/rna.036418.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/26/2012] [Indexed: 05/30/2023]
Abstract
Early environmental experiences profoundly influence adult phenotypes through complex mechanisms that are poorly understood. We previously showed that adult Caenorhabditis elegans that transiently passed through the stress-induced dauer larval stage (post-dauer adults) exhibit significant changes in gene expression profiles, chromatin states, and life history traits when compared with adults that bypassed the dauer stage (control adults). These wild-type, isogenic animals of equivalent developmental stages exhibit different signatures of molecular marks that reflect their distinct developmental trajectories. To gain insight into the mechanisms that contribute to these developmental history-dependent phenotypes, we profiled small RNAs from post-dauer and control adults by deep sequencing. RNA interference (RNAi) pathways are known to regulate genome-wide gene expression both at the chromatin and post-transcriptional level. By quantifying changes in endogenous small interfering RNA (endo-siRNA) levels in post-dauer as compared with control animals, our analyses identified a subset of genes that are likely targets of developmental history-dependent reprogramming through a complex RNAi-mediated mechanism. Mutations in specific endo-siRNA pathways affect expected gene expression and chromatin state changes for a subset of genes in post-dauer animals, as well as disrupt their increased brood size phenotype. We also find that both chromatin state and endo-siRNA distribution in dauers are unique, and suggest that remodeling in dauers provides a template for the subsequent establishment of adult post-dauer profiles. Our results indicate a role for endo-siRNA pathways as a contributing mechanism to early experience-dependent phenotypic plasticity in adults, and describe how developmental history can program adult physiology and behavior via epigenetic mechanisms.
Collapse
Affiliation(s)
- Sarah E. Hall
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
15
|
Claycomb JM. Caenorhabditis elegans small RNA pathways make their mark on chromatin. DNA Cell Biol 2013; 31 Suppl 1:S17-33. [PMID: 23046453 DOI: 10.1089/dna.2012.1611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endogenous small-RNA-mediated gene silencing pathways are generally recognized for their functions in halting gene expression by the degradation of a transcript or by translational inhibition. However, another important mode of gene regulation by small RNAs is mediated at the level of chromatin modulation. Over the past decade a great deal of progress on understanding the molecular mechanisms by which small RNAs can influence chromatin has been made for fungi, ciliated protozoans, and plants, while less is known about the functions and consequences of such chromatin-directed small RNA pathways in animals. Several recent studies in the nematode Caenorhabditis elegans have provided mechanistic insights into small RNA pathways that impact chromatin throughout development. The "worm" has been instrumental in uncovering the mechanisms of RNA interference and remains a powerful system for dissecting the molecular means by which small RNA pathways impact chromatin in animals. This review summarizes our current knowledge of the various chromatin-directed small RNA pathways in C. elegans and provides insights for future study.
Collapse
Affiliation(s)
- Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Hirani N, Westenberg M, Gami MS, Davis P, Hope IA, Dolphin CT. A simplified counter-selection recombineering protocol for creating fluorescent protein reporter constructs directly from C. elegans fosmid genomic clones. BMC Biotechnol 2013; 13:1. [PMID: 23281894 PMCID: PMC3561212 DOI: 10.1186/1472-6750-13-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/07/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recombineering is a genetic engineering tool that enables facile modification of large episomal clones, e.g. BACs, fosmids. We have previously adapted this technology to generate, directly from fosmid-based genomic clones, fusion gene reporter constructs designed to investigate gene expression patterns in C. elegans. In our adaptation a rpsL-tet(A) positive/negative-selection cassette (RT-cassette) is first inserted and then, under negative selection, seamlessly replaced with the desired sequence. We report here on the generation and application of a resource comprising two sets of constructs designed to facilitate this particular recombineering approach. RESULTS Two complementary sets of constructs were generated. The first contains different fluorescent protein reporter coding sequences and derivatives while the second set of constructs, based in the copy-number inducible vector pCC1Fos, provide a resource designed to simplify RT-cassette-based recombineering. These latter constructs are used in pairs the first member of which provides a template for PCR-amplification of an RT-cassette while the second provides, as an excised restriction fragment, the desired fluorescent protein reporter sequence. As the RT-cassette is flanked by approximately 200 bp from the ends of the reporter sequence the subsequent negative selection replacement step is highly efficient. Furthermore, use of a restriction fragment minimizes artefacts negating the need for final clone sequencing. Utilizing this resource we generated single-, double- and triple-tagged fosmid-based reporters to investigate expression patterns of three C. elegans genes located on a single genomic clone. CONCLUSIONS We describe the generation and application of a resource designed to facilitate counter-selection recombineering of fosmid-based C. elegans genomic clones. By choosing the appropriate pair of 'insertion' and 'replacement' constructs recombineered products, devoid of artefacts, are generated at high efficiency. Gene expression patterns for three genes located on the same genomic clone were investigated via a set of fosmid-based reporter constructs generated with the modified protocol.
Collapse
Affiliation(s)
- Nisha Hirani
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The significance of noncoding RNAs in animal biology is being increasingly recognized. The nematode Caenorhabditis elegans has an extensive system of short RNAs that includes microRNAs, piRNAs, and endogenous siRNAs, which regulate development, control life span, provide resistance to viruses and transposons, and monitor gene duplications. Progress in our understanding of short RNAs was stimulated by the discovery of RNA interference, a phenomenon of sequence-specific gene silencing induced by exogenous double-stranded RNA, at the turn of the twenty-first century. This chapter provides a broad overview of the exogenous and endogenous RNAi processes in C. elegans and describes recent advances in genetic, genomic, and molecular analyses of nematode's short RNAs and proteins involved in the RNAi-related pathways.
Collapse
Affiliation(s)
- Alla Grishok
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
18
|
The conserved PHD1-PHD2 domain of ZFP-1/AF10 is a discrete functional module essential for viability in Caenorhabditis elegans. Mol Cell Biol 2012; 33:999-1015. [PMID: 23263989 DOI: 10.1128/mcb.01462-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant homeodomain (PHD)-type zinc fingers play an important role in recognizing chromatin modifications and recruiting regulatory proteins to specific genes. A specific module containing a conventional PHD finger followed by an extended PHD finger exists in the mammalian AF10 protein, among a few others. AF10 has mostly been studied in the context of the leukemic MLL-AF10 fusion protein, which lacks the N-terminal PHD fingers of AF10. Although this domain of AF10 is the most conserved region of the protein, its biological significance has not been elucidated. In this study, we used genetic and biochemical approaches to examine the PHD1-PHD2 region of the Caenorhabditis elegans ortholog of AF10, zinc finger protein 1 (ZFP-1). We demonstrate that the PHD1-PHD2 region is essential for viability and that the first PHD finger contributes to the preferred binding of PHD1-PHD2 to lysine 4-methylated histone H3 tails. Moreover, we show that ZFP-1 localization peaks overlap with H3K4 methylation-enriched promoters of actively expressed genes genomewide and that H3K4 methylation is important for ZFP-1 localization to promoters in the embryo. We predict that the essential biological role of the PHD1-PHD2 module of ZFP-1/AF10 is connected to the regulation of actively expressed genes during early development.
Collapse
|
19
|
Cecere G, Zheng GXY, Mansisidor AR, Klymko KE, Grishok A. Promoters recognized by forkhead proteins exist for individual 21U-RNAs. Mol Cell 2012; 47:734-45. [PMID: 22819322 DOI: 10.1016/j.molcel.2012.06.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/09/2012] [Accepted: 06/01/2012] [Indexed: 12/29/2022]
Abstract
C. elegans 21U-RNAs are equivalent to the piRNAs discovered in other metazoans and have important roles in gametogenesis and transposon control. The biogenesis and molecular function of 21U-RNAs and piRNAs are poorly understood. Here, we demonstrate that transcription of each 21U-RNA is regulated separately through a conserved upstream DNA motif. We use genomic analysis to show that this motif is associated with low nucleosome occupancy, a characteristic of many promoters that drive expression of protein-coding genes, and that RNA polymerase II is localized to this nucleosome-depleted region. We establish that the most conserved 8-mer sequence in the upstream region of 21U-RNAs, CTGTTTCA, is absolutely required for their individual expression. Furthermore, we demonstrate that the 8-mer is specifically recognized by Forkhead family (FKH) transcription factors and that 21U-RNA expression is diminished in several FKH mutants. Our results suggest that thousands of small noncoding transcription units are regulated by FKH proteins.
Collapse
Affiliation(s)
- Germano Cecere
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
The contributions of short RNAs to the control of repetitive elements are well documented in animals and plants. Here, the role of endogenous RNAi and AF10 homolog ZFP-1 in the adaptation of C. elegans to the environment is discussed. First, modulation of insulin signaling through regulation of transcription of the PDK-1 kinase (Mansisidor et al., PLoS Genetics, 2011) is reviewed. Second, an siRNA-based natural selection model is proposed in which variation in endogenous siRNA pools between individuals is subject to natural selection similarly to DNA-based genetic variation. The value of C. elegans for the research of siRNA-based epigenetic variation and adaptation is highlighted.
Collapse
Affiliation(s)
- Alla Grishok
- Department of Biochemistry and Molecular Biophysics; Columbia University; New York, NY USA
| |
Collapse
|