1
|
Yan X, Tao R, Zhou H, Zhang Y, Chen D, Ma L, Bai Y. Sublethal sanitizers exposure differentially affects biofilm formation in three adapted Salmonella strains: A phenotypic-transcriptomic analysis of increased biofilm formed by ATCC 14028. Int J Food Microbiol 2025; 436:111189. [PMID: 40222328 DOI: 10.1016/j.ijfoodmicro.2025.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
PURPOSE Using sanitizer in food industry is an important mean of sterilization and biofilm eradication, but inappropriate operation may lead to resistance, posing a concealed risk to food safety. The purpose of this study was to assess the impact of sub-lethal sanitizers on the biofilm formed by adaptive Salmonella and to explore the variations in transcription within adaptive Salmonella biofilms when co-incubated with sublethal concentrations of sanitizers. METHODS The microbroth dilution method was determined to measure the MIC of three sanitizers on Salmonella, and adaptation induction was conducted with steadily increasing sanitizer concentrations. The effect of sub-MIC sanitizers on the biofilm of Salmonella was investigated by crystal violet method, confocal laser scanning microscopy and transcriptomics. RESULTS The results indicated that the maximum growth concentration of the adapted strains was 1.69-43.25 times that of the original MIC, and the number of bacteria and matrix content were increased when re-exposed to sub-MIC benzalkonium chloride (BZK), and the expression of regulatory factors and various amino acid biosynthesis and metabolism-related genes showed an up-regulation trend. SIGNIFICANCE This will be beneficial to clarify the correlation and mechanism between the sanitizer adaptation of salmonellae caused by improper sanitization and increased biofilm formation resulting from this adaptation. And it helps to adjust the appropriate dosage of sanitizer and optimize sanitation standard operating procedures (SSOP) in the foodstuff industry, thereby effectively promoting the bactericidal effect and eliminating foodborne pathogens' biofilm.
Collapse
Affiliation(s)
- Xiaoxue Yan
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, PR China.
| | - Rongfeng Tao
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, PR China.
| | - Hongyuan Zhou
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China.
| | - Dong Chen
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, PR China.
| | - Liang Ma
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China.
| | - Yamin Bai
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China; Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| |
Collapse
|
2
|
Jones K, de Brito CB, Byndloss MX. Metabolic tug-of-war: Microbial metabolism shapes colonization resistance against enteric pathogens. Cell Chem Biol 2025; 32:46-60. [PMID: 39824157 PMCID: PMC12021424 DOI: 10.1016/j.chembiol.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
A widely recognized benefit of gut microbiota is that it provides colonization resistance against enteric pathogens. The gut microbiota and their products can protect the host from invading microbes directly via microbe-pathogen interactions and indirectly by host-microbiota interactions, which regulate immune system function. In contrast, enteric pathogens have evolved mechanisms to utilize microbiota-derived metabolites to overcome colonization resistance and increase their pathogenic potential. This review will focus on recent studies of metabolism-mediated mechanisms of colonization resistance and virulence strategies enteric pathogens use to overcome them, along with how induction of inflammation by pathogenic bacteria changes the landscape of the gut and enables alternative metabolic pathways. We will focus on how intestinal pathogens counteract the protective effects of microbiota-derived metabolites to illustrate the growing appreciation of how metabolic factors may serve as crucial virulence determinants and overcome colonization resistance.
Collapse
Affiliation(s)
- Katerina Jones
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Camila Bernardo de Brito
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariana Xavier Byndloss
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
4
|
Kubosawa Y, Sujino T, Miyamoto K, Kayashima A, Minezaki D, Morioka K, Iwata K, Miyazaki K, Masunaga T, Mizutani M, Akimoto T, Takatori Y, Matsuura N, Nakayama A, Takabayashi K, Nakamoto N, Honda A, Kato M, Yahagi N, Kanai T. Distinctive duodenal microbiomes and bile acid profiles in duodenal tumor patients revealed by prospective observational study. Sci Rep 2024; 14:18705. [PMID: 39134638 PMCID: PMC11319767 DOI: 10.1038/s41598-024-69820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
The incidence of duodenal tumors (DTs) is increasing. However, the mechanisms underlying its development remain unclear. Environmental factors, including the microbiome and bile acids (BAs), are believed to influence tumor development. Therefore, we conducted a single-center, prospective, observational study to investigate the potential differences between patients with DTs and healthy controls (HCs) based on these factors. In addition, the BAs in the duodenal fluid were measured using liquid chromatography-tandem mass spectrometry. We recruited 41 patients and performed 16S rRNA-seq. There was no difference in the observed ASVs or PCoA plot of Bray-Curtis dissimilarity between the DTs and HCs. The lithocholic acid concentration was significantly lower in the DT group than in the control group. The ratio of CDCA to LCA was significantly higher in patients with DTs. No significant differences in microbiota were observed between DTs and HCs. In patients with DTs, the lithocholic acid concentration in duodenal was significantly lower than in HCs.
Collapse
Affiliation(s)
- Yoko Kubosawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Keio Global Research Institute, Keio Univerisy, Mita, Tokyo, 108-0073, Japan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., 2-22-9, Torocho, Kita-ku, Saitama-shi, Saitama, 331-0804, Japan
| | - Atsuto Kayashima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Daisuke Minezaki
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kohei Morioka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Iwata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kurato Miyazaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Teppei Masunaga
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mari Mizutani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Teppei Akimoto
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yusaku Takatori
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noriko Matsuura
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsushi Nakayama
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 chuo, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Motohiko Kato
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Singh S, Koo OK. A Comprehensive Review Exploring the Protective Role of Specific Commensal Gut Bacteria against Salmonella. Pathogens 2024; 13:642. [PMID: 39204243 PMCID: PMC11356920 DOI: 10.3390/pathogens13080642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Gut microbiota is a diverse community of microorganisms that constantly work to protect the gut against pathogens. Salmonella stands out as a notorious foodborne pathogen that interacts with gut microbes, causing an imbalance in the overall composition of microbiota and leading to dysbiosis. This review focuses on the interactions between Salmonella and the key commensal bacteria such as E. coli, Lactobacillus, Clostridium, Akkermansia, and Bacteroides. The review highlights the role of these gut bacteria and their synergy in combating Salmonella through several mechanistic interactions. These include the production of siderophores, which compete with Salmonella for essential iron; the synthesis of short-chain fatty acids (SCFAs), which exert antimicrobial effects and modulate the gut environment; the secretion of bacteriocins, which directly inhibit Salmonella growth; and the modulation of cytokine responses, which influences the host's immune reaction to infection. While much research has explored Salmonella, this review aims to better understand how specific gut bacteria engage with the pathogen, revealing distinct defense mechanisms tailored to each species and how their synergy may lead to enhanced protection against Salmonella. Furthermore, the combination of these commensal bacteria could offer promising avenues for bacteria-mediated therapy during Salmonella-induced gut infections in the future.
Collapse
Affiliation(s)
| | - Ok Kyung Koo
- Department of Food Science & Technology, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
6
|
Singh M, Chandra D, Jagdish S, Nandi D. Global transcriptome analysis reveals Salmonella Typhimurium employs nitrate metabolism to combat bile stress. FEBS Lett 2024; 598:1605-1619. [PMID: 38503554 DOI: 10.1002/1873-3468.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Salmonella Typhimurium is an enteric pathogen that is highly tolerant to bile. Next-generation mRNA sequencing was performed to analyze the adaptive responses to bile in two S. Typhimurium strains: wild type (WT) and a mutant lacking cold shock protein E (ΔcspE). CspE is an RNA chaperone which is crucial for survival of S. Typhimurium during bile stress. This study identifies transcriptional responses in bile-tolerant WT and bile-sensitive ΔcspE. Upregulation of several genes involved in nitrate metabolism was observed, including fnr, a global regulator of nitrate metabolism. Notably, Δfnr was susceptible to bile stress. Also, complementation with fnr lowered reactive oxygen species and enhanced the survival of bile-sensitive ΔcspE. Importantly, intracellular nitrite amounts were highly induced in bile-treated WT compared to ΔcspE. Also, the WT strain pre-treated with nitrate displayed better growth with bile. These results demonstrate that nitrate-dependent metabolism promotes adaptation of S. Typhimurium to bile.
Collapse
Affiliation(s)
- Madhulika Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Deepti Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sirisha Jagdish
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Dong Q, Chen M, Yu C, Zhang Y, Zha L, Kakumyan P, Yang H, Zhao Y. Combined Proteomic and Metabolomic Analyses Reveal the Comprehensive Regulation of Stropharia rugosoannulata Mycelia Exposed to Cadmium Stress. J Fungi (Basel) 2024; 10:134. [PMID: 38392806 PMCID: PMC10890358 DOI: 10.3390/jof10020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The potential of Stropharia rugosoannulata as a microbial remediation material for cadmium (Cd)-contaminated soil lies in its capacity to absorb and accumulate Cd in its mycelia. This study utilized the TMT and LC-MS techniques to conduct integrated proteomic and metabolomic analyses with the aim of investigating the mycelial response mechanisms of S. rugosoannulata under low- and high-Cd stresses. The results revealed that mycelia employed a proactive defense mechanism to maintain their physiological functions, leading to reduced sensitivity to low-Cd stress. The ability of mycelia to withstand high levels of Cd stress was influenced primarily by the comprehensive regulation of six metabolic pathways, which led to a harmonious balance between nitrogen and carbohydrate metabolism and to reductions in oxidative stress and growth inhibition caused by Cd. The results provide valuable insights into the molecular mechanisms involved in the response of S. rugosoannulata mycelia to Cd stress.
Collapse
Affiliation(s)
- Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yaru Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Huanling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
8
|
Chowdhury AR, Mukherjee D, Chatterjee R, Chakravortty D. Defying the odds: Determinants of the antimicrobial response of Salmonella Typhi and their interplay. Mol Microbiol 2024; 121:213-229. [PMID: 38071466 DOI: 10.1111/mmi.15209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
Salmonella Typhi, the invasive serovar of S. enterica subspecies enterica, causes typhoid fever in healthy human hosts. The emergence of antibiotic-resistant strains has consistently challenged the successful treatment of typhoid fever with conventional antibiotics. Antimicrobial resistance (AMR) in Salmonella is acquired either by mutations in the genomic DNA or by acquiring extrachromosomal DNA via horizontal gene transfer. In addition, Salmonella can form a subpopulation of antibiotic persistent (AP) cells that can survive at high concentrations of antibiotics. These have reduced the effectiveness of the first and second lines of antibiotics used to treat Salmonella infection. The recurrent and chronic carriage of S. Typhi in human hosts further complicates the treatment process, as a remarkable shift in the immune response from pro-inflammatory Th1 to anti-inflammatory Th2 is observed. Recent studies have also highlighted the overlap between AP, persistent infection (PI) and AMR. These incidents have revealed several areas of research. In this review, we have put forward a timeline for the evolution of antibiotic resistance in Salmonella and discussed the different mechanisms of the same availed by the pathogen at the genotypic and phenotypic levels. Further, we have presented a detailed discussion on Salmonella antibiotic persistence (AP), PI, the host and bacterial virulence factors that can influence PI, and how both AP and PI can lead to AMR.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| |
Collapse
|
9
|
Cao X, van Putten JP, Wösten MM. Campylobacter jejuni benefits from the bile salt deoxycholate under low-oxygen condition in a PldA dependent manner. Gut Microbes 2023; 15:2262592. [PMID: 37768138 PMCID: PMC10540661 DOI: 10.1080/19490976.2023.2262592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Enteric bacteria need to adapt to endure the antibacterial activities of bile salts in the gut. Phospholipase A (PldA) is a key enzyme in the maintenance of bacterial membrane homeostasis. Bacteria respond to stress by modulating their membrane composition. Campylobacter jejuni is the most common cause of human worldwide. However, the mechanism by which C. jejuni adapts and survives in the gut environment is not fully understood. In this study, we investigated the roles of PldA, bile salt sodium deoxycholate (DOC), and oxygen availability in C. jejuni biology, mimicking an in vivo situation. Growth curves were used to determine the adaptation of C. jejuni to bile salts. RNA-seq and functional assays were employed to investigate the PldA-dependent and DOC-induced changes in gene expression that influence bacterial physiology. Survival studies were performed to address oxidative stress defense in C. jejuni. Here, we discovered that PldA of C. jejuni is required for optimal growth in the presence of bile salt DOC. Under high oxygen conditions, DOC is toxic to C. jejuni, but under low oxygen conditions, as is present in the lumen of the gut, C. jejuni benefits from DOC. C. jejuni PldA seems to enable the use of iron needed for optimal growth in the presence of DOC but makes the bacterium more vulnerable to oxidative stress. In conclusion, DOC stimulates C. jejuni growth under low oxygen conditions and alters colony morphology in a PldA-dependent manner. C. jejuni benefits from DOC by upregulating iron metabolism in a PldA-dependent manner.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P.M. van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M.S.M. Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Azimirad M, Sadeghi A, Hosseinkhan N, Mirbagheri SZ, Alebouyeh M. Microbiome analysis of bile samples in patients with choledocholithiasis and hepatobiliary disorders. Germs 2023; 13:238-253. [PMID: 38146380 PMCID: PMC10748839 DOI: 10.18683/germs.2023.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/18/2023] [Accepted: 08/15/2023] [Indexed: 12/27/2023]
Abstract
Introduction The involvement of bacteria in the pathogenesis of biliary tract disease is largely unknown. In this study, we investigated the microbiota of the biliary tissue among adult patients with choledocholithiasis during endoscopic retrograde cholangiography (ERCP). Methods 16S rDNA sequencing of bile samples, culture, and data of the medication history, underlying diseases, and liver function tests were used for the interpretation of differences in the composition of detected bacterial taxa. Results The four most common phyla in the bile samples included Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Infection with anaerobic and microaerophilic bacteria showed host specificity, where Fusobacterium, Prevotella, Veillonella, Propionibacterium, Gemella, and Helicobacter coexist in the same patients. Clostridium and Peptoclostridium spp. were detected in 80% and 86% of the patients, where the highest relative abundance rates were detected in patients with elevated alkaline phosphatase (ALP) levels and leukocytosis, respectively. Higher diversity in the bacterial population was detected in patients with common bile duct (CBD) stone, in which the richness of an unclassified member of Alphaproteobacteria plus Helicobacter, Enterobacter/Cronobacter spp., Sphingomonas, Prevotella, Fusobacterium and Aeromonas were detected. Conclusions Our findings suggested correlations between the presence and relative abundance of several bacterial taxa and CBD stone formation and the effect of medication and underlying diseases on the bile microbial communities. A study on a higher number of bile samples from patients compared with the control group could reveal the role of these bacteria in the pathogenesis of biliary tract disease.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- MSc, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, postal code: 1985717411, Iran
| | - Amir Sadeghi
- MD, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, postal code: 1985717413, Iran
| | - Nazanin Hosseinkhan
- PhD, Endocrine Research Center, Institute of Endocrinology & Metabolism, Iran University of Medical Sciences, Tehran, postal code: 1411713119, Iran
| | - Seyedeh Zohre Mirbagheri
- PhD, Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, postal code: 141761315, Iran
| | - Masoud Alebouyeh
- PhD, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, postal code: 1985717411, Iran
| |
Collapse
|
11
|
Singh M, Penmatsa A, Nandi D. Functional Characterization of Salmonella Typhimurium Encoded YciF, a Domain of Unknown Function (DUF892) Family Protein, and Its Role in Protection during Bile and Oxidative Stress. J Bacteriol 2023; 205:e0005923. [PMID: 37367303 PMCID: PMC10367587 DOI: 10.1128/jb.00059-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
YciF (STM14_2092) is a member of the domain of unknown function (DUF892) family. It is an uncharacterized protein involved in stress responses in Salmonella Typhimurium. In this study, we investigated the significance of YciF and its DUF892 domain during bile and oxidative stress responses of S. Typhimurium. Purified wild-type YciF forms higher order oligomers, binds to iron, and displays ferroxidase activity. Studies on the site-specific mutants revealed that the ferroxidase activity of YciF is dependent on the two metal binding sites present within the DUF892 domain. Transcriptional analysis displayed that the ΔcspE strain, which has compromised expression of YciF, encounters iron toxicity due to dysregulation of iron homeostasis in the presence of bile. Utilizing this observation, we demonstrate that the bile mediated iron toxicity in ΔcspE causes lethality, primarily through the generation of reactive oxygen species (ROS). Expression of wild-type YciF, but not the three mutants of the DUF892 domain, in ΔcspE alleviate ROS in the presence of bile. Our results establish the role of YciF as a ferroxidase that can sequester excess iron in the cellular milieu to counter ROS-associated cell death. This is the first report of biochemical and functional characterization of a member of the DUF892 family. IMPORTANCE The DUF892 domain has a wide taxonomic distribution encompassing several bacterial pathogens. This domain belongs to the ferritin-like superfamily; however, it has not been biochemically and functionally characterized. This is the first report of characterization of a member of this family. In this study, we demonstrate that S. Typhimurium YciF is an iron binding protein with ferroxidase activity, which is dependent on the metal binding sites present within the DUF892 domain. YciF combats iron toxicity and oxidative damage caused due to exposure to bile. The functional characterization of YciF delineates the significance of the DUF892 domain in bacteria. In addition, our studies on S. Typhimurium bile stress response divulged the importance of comprehensive iron homeostasis and ROS in bacteria.
Collapse
Affiliation(s)
- Madhulika Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Carroll LM, Piacenza N, Cheng RA, Wiedmann M, Guldimann C. A multidrug-resistant Salmonella enterica Typhimurium DT104 complex lineage circulating among humans and cattle in the USA lost the ability to produce pertussis-like toxin ArtAB. Microb Genom 2023; 9:mgen001050. [PMID: 37402177 PMCID: PMC10438809 DOI: 10.1099/mgen.0.001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Salmonella enterica subsp. enterica serotype Typhimurium definitive type 104 (DT104) can infect both humans and animals and is often multidrug-resistant (MDR). Previous studies have indicated that, unlike most S . Typhimurium, the overwhelming majority of DT104 strains produce pertussis-like toxin ArtAB via prophage-encoded genes artAB . However, DT104 that lack artAB have been described on occasion. Here, we identify an MDR DT104 complex lineage circulating among humans and cattle in the USA, which lacks artAB (i.e. the ‘U.S. artAB -negative major clade’; n =42 genomes). Unlike most other bovine- and human-associated DT104 complex strains from the USA (n =230 total genomes), which harbour artAB on prophage Gifsy-1 (n =177), members of the U.S. artAB -negative major clade lack Gifsy-1, as well as anti-inflammatory effector gogB . The U.S. artAB -negative major clade encompasses human- and cattle-associated strains isolated from ≥11 USA states over a 20-year period. The clade was predicted to have lost artAB , Gifsy-1 and gogB circa 1985–1987 (95 % highest posterior density interval 1979.0–1992.1). When compared to DT104 genomes from other regions of the world (n =752 total genomes), several additional, sporadic artAB , Gifsy-1 and/or gogB loss events among clades encompassing five or fewer genomes were observed. Using phenotypic assays that simulate conditions encountered during human and/or bovine digestion, members of the U.S. artAB -negative major clade did not differ from closely related Gifsy-1/artAB /gogB -harbouring U.S. DT104 complex strains (ANOVA raw P >0.05); thus, future research is needed to elucidate the roles that artAB , gogB and Gifsy-1 play in DT104 virulence in humans and animals.
Collapse
Affiliation(s)
- Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Nicolo Piacenza
- Chair for Food Safety and Analytics, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Rachel A. Cheng
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Claudia Guldimann
- Chair for Food Safety and Analytics, Ludwig-Maximillians-University Munich, Munich, Germany
| |
Collapse
|
13
|
Kong J, Li M, Chen Y, Li Y, Liu M, Zhang Q, Xuan H, Liu J. Hydrophobic interaction of four bile salts with hemoglobin induces unfolding of protein and evades protein degeneration induced by urea. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Larabi AB, Masson HLP, Bäumler AJ. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 2023; 15:2172671. [PMID: 36740850 PMCID: PMC9904317 DOI: 10.1080/19490976.2023.2172671] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Changes in the composition of gut-associated microbial communities are associated with many human illnesses, but the factors driving dysbiosis remain incompletely understood. One factor governing the microbiota composition in the gut is bile. Bile acids shape the microbiota composition through their antimicrobial activity and by activating host signaling pathways that maintain gut homeostasis. Although bile acids are host-derived, their functions are integrally linked to bacterial metabolism, which shapes the composition of the intestinal bile acid pool. Conditions that change the size or composition of the bile acid pool can trigger alterations in the microbiota composition that exacerbate inflammation or favor infection with opportunistic pathogens. Therefore, manipulating the composition or size of the bile acid pool might be a promising strategy to remediate dysbiosis.
Collapse
Affiliation(s)
- Anaïs B. Larabi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Hugo L. P. Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| |
Collapse
|
15
|
Talukdar PK, Crockett TM, Gloss LM, Huynh S, Roberts SA, Turner KL, Lewis STE, Herup-Wheeler TL, Parker CT, Konkel ME. The bile salt deoxycholate induces Campylobacter jejuni genetic point mutations that promote increased antibiotic resistance and fitness. Front Microbiol 2022; 13:1062464. [PMID: 36619995 PMCID: PMC9812494 DOI: 10.3389/fmicb.2022.1062464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative damage to DNA is a significant source of mutations in living organisms. While DNA damage must be repaired to maintain the integrity of the genome and cell survival, errors made during DNA repair may contribute to evolution. Previous work has revealed that Campylobacter jejuni growth in the presence of bile salt deoxycholate (DOC) causes an increase in reactive oxygen species and the occurrence of 8-oxo-deoxyguanosine (8-oxo-dG) DNA lesions. The fundamental goal of this project was to determine if C. jejuni growth in a medium containing DOC contributes to DNA mutations that provide a fitness advantage to the bacterium. Co-culture experiments revealed that C. jejuni growth in a DOC-supplemented medium increases the total number of ciprofloxacin-resistant isolates compared to C. jejuni grown in the absence of DOC. We recovered two individual isolates grown in a medium with DOC that had a point mutation in the gene encoding the EptC phosphoethanolamine transferase. Transformants harboring the EptC variant protein showed enhanced resistance to the antimicrobial agent polymyxin B and DOC when compared to an eptC deletion mutant or the isolate complemented with a wild-type copy of the gene. Finally, we found that the base excision repair (BER), homologous recombination repair (HRR), and nucleotide excision repair (NER) are involved in general oxidative damage repair in C. jejuni but that the BER pathway plays the primary role in the repair of the 8-oxo-dG lesion. We postulate that bile salts drive C. jejuni mutations (adaptations) and enhance bacterial fitness in animals.
Collapse
Affiliation(s)
- Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Torin M. Crockett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Steven Huynh
- Produce Safety and Microbiology, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Steven A. Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Kyrah L. Turner
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sebastien T. E. Lewis
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Tristin L. Herup-Wheeler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Craig T. Parker
- Produce Safety and Microbiology, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States,*Correspondence: Craig T. Parker, ✉
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,Michael E. Konkel, ✉
| |
Collapse
|
16
|
Gibbons E, Tamanna M, Cherayil BJ. The rpoS gene confers resistance to low osmolarity conditions in Salmonella enterica serovar Typhi. PLoS One 2022; 17:e0279372. [PMID: 36525423 PMCID: PMC9757558 DOI: 10.1371/journal.pone.0279372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Salmonella enterica serovars Typhimurium and Typhi are enteropathogens that differ in host range and the diseases that they cause. We found that exposure to a combination of hypotonicity and the detergent Triton X-100 significantly reduced the viability of the S. Typhi strain Ty2 but had no effect on the S. Typhimurium strain SL1344. Further analysis revealed that hypotonicity was the critical factor: incubation in distilled water alone was sufficient to kill Ty2, while the addition of sodium chloride inhibited killing in a dose-dependent manner. Ty2's loss of viability in water was modified by culture conditions: bacteria grown in well-aerated shaking cultures were more susceptible than bacteria grown under less aerated static conditions. Ty2, like many S. Typhi clinical isolates, has an inactivating mutation in the rpoS gene, a transcriptional regulator of stress responses, whereas most S. Typhimurium strains, including SL1344, have the wild-type gene. Transformation of Ty2 with a plasmid expressing wild-type rpoS, but not the empty vector, significantly increased survival in distilled water. Moreover, an S. Typhi strain with wild-type rpoS had unimpaired survival in water. Inactivation of the wild-type gene in this strain significantly reduced survival, while replacement with an arabinose-inducible allele of rpoS restored viability in water under inducing conditions. Our observations on rpoS-dependent differences in susceptibility to hypotonic conditions may be relevant to the ability of S. Typhi and S. Typhimurium to tolerate the various environments they encounter during the infectious cycle. They also have implications for the handling of these organisms during experimental manipulations.
Collapse
Affiliation(s)
- Eamon Gibbons
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Mehbooba Tamanna
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Medical Sciences Program, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
17
|
González JF, Hitt R, Laipply B, Gunn JS. The Effect of the Gallbladder Environment during Chronic Infection on Salmonella Persister Cell Formation. Microorganisms 2022; 10:microorganisms10112276. [PMID: 36422346 PMCID: PMC9698170 DOI: 10.3390/microorganisms10112276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Typhoid fever is caused by Salmonella enterica serovar Typhi (S. Typhi). Around 3-5% of individuals infected become chronic carriers, with the gallbladder (GB) as the predominant site of persistence. Gallstones (GS) aid in the development and maintenance of GB carriage, serving as a substrate to which Salmonellae attach and form a biofilm. This biofilm matrix protects bacteria from the host immune system and environmental stress. This shielded environment is an ideal place for the development of persister cells, a transient phenotype of a subset of cells within a population that allows survival after antibiotic treatment. Persisters can also arise in response to harsh environments such as the GB. Here we investigate if GB conditions affect the number of persisters in a Salmonella population. To simulate the chronic GB environment, we cultured biofilms in cholesterol-coated 96-well plates in the presence of ox or human bile. We then treated planktonic or biofilm Salmonella cultures with high concentrations of different antibiotics. This study suggests that biofilms provide a niche for persister cells, but GB conditions either play no role or have a negative influence on persister formation, especially after kanamycin treatment. The antibiotic target was important, as antimicrobials directed against DNA replication or the cell wall had no effect on persister cell formation. Interestingly, repeated treatment with ciprofloxacin increased the percentage of S. Typhimurium persisters in a biofilm, but this increase was abolished by GB conditions. On the other hand, repeated ciprofloxacin treatment of S. Typhi biofilms in GB conditions slightly increased the fraction of persisters. Thus, while the harsh conditions in the GB would be thought to give rise to increased persisters, therefore contributing to the development of chronic carriage, these data suggest persister cell formation is dampened in this environment.
Collapse
Affiliation(s)
- Juan F. González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Regan Hitt
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Baileigh Laipply
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-(614)-355-3403
| |
Collapse
|
18
|
Clinton NA, Hameed SA, Agyei EK, Jacob JC, Oyebanji VO, Jabea CE. Crosstalk between the Intestinal Virome and Other Components of the Microbiota, and Its Effect on Intestinal Mucosal Response and Diseases. J Immunol Res 2022; 2022:7883945. [PMID: 36203793 PMCID: PMC9532165 DOI: 10.1155/2022/7883945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been ample evidence illustrating the effect of microbiota on gut immunity, homeostasis, and disease. Most of these studies have engaged more efforts in understanding the role of the bacteriome in gut mucosal immunity and disease. However, studies on the virome and its influence on gut mucosal immunity and pathology are still at infancy owing to limited metagenomic tools. Nonetheless, the existing studies on the virome have largely been focused on the bacteriophages as these represent the main component of the virome with little information on endogenous retroviruses (ERVs) and eukaryotic viruses. In this review, we describe the gut virome, and its role in gut mucosal response and disease progression. We also explore the crosstalk between the virome and other microorganisms in the gut mucosa and elaborate on how these interactions shape the gut mucosal immunity going from bacteriophages through ERVs to eukaryotic viruses. Finally, we elucidate the potential contribution of this crosstalk in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Njinju Asaba Clinton
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| | | | - Eugene Kusi Agyei
- Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | | | | | - Cyril Ekabe Jabea
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| |
Collapse
|
19
|
An C, Chon H, Ku W, Eom S, Seok M, Kim S, Lee J, Kim D, Lee S, Koo H, Cho H, Han S, Moon J, Kang M, Ryu K. Bile Acids: Major Regulator of the Gut Microbiome. Microorganisms 2022; 10:microorganisms10091792. [PMID: 36144395 PMCID: PMC9502002 DOI: 10.3390/microorganisms10091792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bile acids are synthesized from cholesterol and play an important role in regulating intestinal microflora. The different degrees of hydrophobicity and acidity of individual bile acids may affect their antimicrobial properties. We examined the antimicrobial effects of different bile acids on various microorganisms in vitro and confirmed whether these remain consistent in vivo. Using human bile acids, including ursodeoxycholic acid, cholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid, a disc diffusion test was performed, and a rodent model was created to determine the antimicrobial effects of each bile acid. The fecal bacterial population was analyzed using a real-time polymerase chain reaction. Each bile acid showed different microbial inhibitory properties. The inhibitory activity of bile acids against microbiota which normally resides in the gastrointestinal tract and biliary system, was low; however, normal flora of other organs was significantly inhibited. Changes in microbial counts after bile acid administration in a rodent model differed in the colon and cecum. The in vivo and in vitro results show that the antimicrobial effects of bile acids against intestinal microbiota were similar. In conclusion, bile acids could be a novel treatment strategy to regulate gut microbiota.
Collapse
Affiliation(s)
- Chihyeok An
- Department of Gastroenterology, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Hyeyeon Chon
- Department of Gastroenterology, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Wanrim Ku
- Department of Gastroenterology, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Sunho Eom
- Department of Gastroenterology, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Mingyu Seok
- Department of Gastroenterology, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Sangha Kim
- Department of Laboratory Medicine, Konyang University College of Medicine, Daejeon 35365, Korea
| | - Jaesun Lee
- Department of Gastroenterology, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Daesung Kim
- Department of Gastroenterology, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Sanghyuk Lee
- Department of Gastroenterology, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Hoonsup Koo
- Department of Gastroenterology, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Hyunjung Cho
- Department of Laboratory Medicine, Konyang University College of Medicine, Daejeon 35365, Korea
| | - Seungyun Han
- Department of Anatomy, Konyang University College of Medicine, Daejeon 35365, Korea
| | - Juik Moon
- Department of Surgery, Konyang University College of Medicine, Daejeon 35365, Korea
| | - Miil Kang
- Department of Rheumatology and Clinical Immunology, Dankook University Hospital, Cheonan 31116, Korea
- Correspondence: (M.K.); (K.R.); Tel.: +82-10-3440-7428 (M.K.); +82-10-7464-0620 (K.R.); Fax: +82-41-550-7006 (M.K.); +82-42-600-9090 (K.R.)
| | - Kihyun Ryu
- Department of Gastroenterology, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
- Correspondence: (M.K.); (K.R.); Tel.: +82-10-3440-7428 (M.K.); +82-10-7464-0620 (K.R.); Fax: +82-41-550-7006 (M.K.); +82-42-600-9090 (K.R.)
| |
Collapse
|
20
|
Role of RpoS in Regulating Stationary Phase Salmonella Typhimurium Pathogenesis-Related Stress Responses under Physiological Low Fluid Shear Force Conditions. mSphere 2022; 7:e0021022. [PMID: 35913142 PMCID: PMC9429890 DOI: 10.1128/msphere.00210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The discovery that biomechanical forces regulate microbial virulence was established with the finding that physiological low fluid shear (LFS) forces altered gene expression, stress responses, and virulence of the enteric pathogen Salmonella enterica serovar Typhimurium during the log phase. These log phase LFS-induced phenotypes were independent of the master stress response regulator, RpoS (σS). Given the central importance of RpoS in regulating stationary-phase stress responses of S. Typhimurium cultured under conventional shake flask and static conditions, we examined its role in stationary-phase cultures grown under physiological LFS. We constructed an isogenic rpoS mutant derivative of wild-type S. Typhimurium and compared the ability of these strains to survive in vitro pathogenesis-related stresses that mimic those encountered in the infected host and environment. We also compared the ability of these strains to colonize (adhere, invade, and survive within) human intestinal epithelial cell cultures. Unexpectedly, LFS-induced resistance of stationary-phase S. Typhimurium cultures to acid and bile salts stresses did not rely on RpoS. Likewise, RpoS was dispensable for stationary-phase LFS cultures to adhere to and survive within intestinal epithelial cells. In contrast, the resistance of these cultures to challenges of oxidative and thermal stresses, and their invasion into intestinal epithelial cells was influenced by RpoS. These findings expand our mechanistic understanding of how physiological fluid shear forces modulate stationary-phase S. Typhimurium physiology in unexpected ways and provide clues into microbial mechanobiology and nuances of Salmonella responses to microenvironmental niches in the infected host. IMPORTANCE Bacterial pathogens respond dynamically to a variety of stresses in the infected host, including physical forces of fluid flow (fluid shear) across their surfaces. While pathogens experience wide fluctuations in fluid shear during infection, little is known about how these forces regulate microbial pathogenesis. This is especially important for stationary-phase bacterial growth, which is a critical period to understand microbial resistance, survival, and infection potential, and is regulated in many bacteria by the general stationary-phase stress response protein RpoS. Here, we showed that, unlike conventional culture conditions, several stationary-phase Salmonella pathogenic stress responses were not impacted by RpoS when bacteria were cultured under fluid shear conditions relevant to those encountered in the intestine of the infected host. These findings offer new insight into how physiological fluid shear forces encountered by Salmonella during infection might impact pathogenic responses in unexpected ways that are relevant to their disease-causing ability.
Collapse
|
21
|
Hsu CL, Zhang X, Jiang L, Lang S, Hartmann P, Pride D, Fouts DE, Stärkel P, Schnabl B. Intestinal virome in patients with alcohol use disorder and after abstinence. Hepatol Commun 2022; 6:2058-2069. [PMID: 35368152 PMCID: PMC9315129 DOI: 10.1002/hep4.1947] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Alcohol use is a leading cause of chronic liver disease worldwide, and changes in the microbiome associated with alcohol use contribute to patients' risk for liver disease progression. Less is known about the effects of alcohol use on the intestinal viral microbiome (virome) and interactions between bacteriophages and their target bacteria. We studied changes in the intestinal virome of 62 clinically well-characterized patients with alcohol use disorder (AUD) during active alcohol use and after 2 weeks of alcohol abstinence, by extracting virus-like particles and performing metagenomic sequencing. We observed decreased abundance of Propionibacterium, Lactobacillus, and Leuconostoc phages in patients with active AUD when compared with controls, whereas after 2 weeks of alcohol abstinence, patients with AUD demonstrated an increase in the abundance of Propionibacterium, Lactobacillus, and Leuconostoc phages. The intestinal virome signature was also significantly different in patients with AUD with progressive liver disease, with increased abundance of phages targeting Enterobacteria and Lactococcus species phages compared with patients with AUD with nonprogressive liver disease. By performing moderation analyses, we found that progressive liver disease is associated with changes in interactions between some bacteriophages and their respective target bacteria. In summary, active alcohol use and alcohol-associated progressive liver disease are associated with changes in the fecal virome, some of which are partially reversible after a short period of abstinence. Progression of alcohol-associated liver disease is associated with changes in bacteriophage-bacteria interactions.
Collapse
Affiliation(s)
- Cynthia L Hsu
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Xinlian Zhang
- Division of Biostatistics and BioinformaticsDepartment of Family Medicine and Public HealthUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Lu Jiang
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA.,Department of MedicineVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Sonja Lang
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA.,Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of CologneUniversity Hospital CologneCologneGermany
| | - Phillipp Hartmann
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA.,Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - David Pride
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA.,Department of PathologyUniversity of California San DiegoLa JollaCaliforniaUSA.,Center for Innovative Phage Applications and TherapeuticsUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Peter Stärkel
- St. Luc University HospitalCatholic University of LouvainBrusselsBelgium
| | - Bernd Schnabl
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA.,Department of MedicineVA San Diego Healthcare SystemSan DiegoCaliforniaUSA.,Center for Innovative Phage Applications and TherapeuticsUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
22
|
Salmonella enterica Serovar Typhimurium and Enteritidis Isolated from Raw Shrimp in Bangladesh: An Investigation Based on Molecular Characteristics, Survival, Virulence, Antibiotic Resistance, and Biofilm Formation Attributes. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3420364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shrimp is the white gold of Bangladesh, with the second-highest income source from exporting to foreign countries. Contamination with Salmonella spp. is now one of the significant issues for Bangladesh to export. Proper characterization of the salmonella pathogen is thus necessary to avoid undesirable losses due to the rejection of exported shrimp. In Bangladesh, the present condition of raw shrimp contamination with pathogenic Salmonella serovars and their survival/virulence properties was not adequately characterized. In this study, we collected 43 raw shrimps as samples from different farms in Jashore, Khulna, and Sathkhira regions. We then maintained standard cultural and biochemical protocols for isolating Salmonella strains, followed by the molecular identification of particular Salmonella serovars. The standard method for checking its credibility to form biofilm in 0–10% NaCl, tolerate acid/bile stress likewise in the gastrointestinal tract, and resist antimicrobial pressure was performed individually with the particular pathogenic strains. Our results successfully identified eleven Salmonella strains with three typhimurium serovars and three enteritidis serovars, which have biofilm-forming capability up to 4–8% NaCl, acid/bile habituation alike stomach/small intestine of humans, and resistance against necessary antibiotics generally used in treating human and poultry infection signifying the impending danger in the shrimp industry. While previous studies of Bangladesh successfully isolated Salmonella only presumptively, our research focused mainly on molecular characterization of the human Salmonella pathogen along with important survival and virulent attributes, such as biofilm formation, acid/bile tolerance, and antibiotic resistance of selected S. typhimurium and S. enteritidis strains. Further study with more sampling will be necessary to confer the transmission route of the pathogen from the natural reservoir to the shrimp industry.
Collapse
|
23
|
Sithole TR, Ma YX, Qin Z, Wang XD, Liu HM. Peanut Butter Food Safety Concerns-Prevalence, Mitigation and Control of Salmonella spp., and Aflatoxins in Peanut Butter. Foods 2022; 11:1874. [PMID: 35804689 PMCID: PMC9265579 DOI: 10.3390/foods11131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Peanut butter has a very large and continuously increasing global market. The food safety risks associated with its consumption are also likely to have impacts on a correspondingly large global population. In terms of prevalence and potential magnitude of impact, contamination by Salmonella spp., and aflatoxins, are the major food safety risks associated with peanut butter consumption. The inherent nature of the Salmonella spp., coupled with the unique chemical composition and structure of peanut butter, present serious technical challenges when inactivating Salmonella spp. in contaminated peanut butter. Thermal treatment, microwave, radiofrequency, irradiation, and high-pressure processing all are of limited efficacy in inactivating Salmonella spp. in contaminated peanut butter. The removal of aflatoxins in contaminated peanut butter is equally problematic and for all practical purposes almost impossible at the moment. Adopting good manufacturing hygiene practices from farm to table and avoiding the processing of contaminated peanuts are probably some of the few practically viable strategies for minimising these peanut butter food safety risks. The purpose of this review is to highlight the nature of food safety risks associated with peanut butter and to discuss the effectiveness of the initiatives that are aimed at minimising these risks.
Collapse
Affiliation(s)
| | | | | | - Xue-De Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (T.R.S.); (Y.-X.M.); (Z.Q.); (H.-M.L.)
| | | |
Collapse
|
24
|
Jahan F, Chinni SV, Samuggam S, Reddy LV, Solayappan M, Su Yin L. The Complex Mechanism of the Salmonella typhi Biofilm Formation That Facilitates Pathogenicity: A Review. Int J Mol Sci 2022; 23:6462. [PMID: 35742906 PMCID: PMC9223757 DOI: 10.3390/ijms23126462] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. typhi) is an intracellular pathogen belonging to the Enterobacteriaceae family, where biofilm (aggregation and colonization of cells) formation is one of their advantageous traits. Salmonella typhi is the causative agent of typhoid fever in the human body and is exceptionally host specific. It is transmitted through the fecal-oral route by consuming contaminated food or water. This subspecies is quite intelligent to evade the innate detection and immune response of the host body, leading to systemic dissemination. Consequently, during the period of illness, the gallbladder becomes a harbor and may develop antibiotic resistance. Afterwards, they start contributing to the continuous damage of epithelium cells and make the host asymptomatic and potential carriers of this pathogen for an extended period. Statistically, almost 5% of infected people with Salmonella typhi become chronic carriers and are ready to contribute to future transmission by biofilm formation. Biofilm development is already recognized to link with pathogenicity and plays a crucial role in persistency within the human body. This review seeks to discuss some of the crucial factors related to biofilm development and its mechanism of interaction causing pathogenicity. Understanding the connections between these things will open up a new avenue for finding therapeutic approaches to combat pathogenicity.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | - Suresh V. Chinni
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
- Biochemistry Unit, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Sumitha Samuggam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | | | - Maheswaran Solayappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | - Lee Su Yin
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| |
Collapse
|
25
|
Liu Y, Zhang S, Zhou W, Hu D, Xu H, Ji G. Secondary Bile Acids and Tumorigenesis in Colorectal Cancer. Front Oncol 2022; 12:813745. [PMID: 35574393 PMCID: PMC9097900 DOI: 10.3389/fonc.2022.813745] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and deadly cancers in the world and is a typical inflammatory tumor. In recent years, the incidence of CRC has been increasing year by year. There is evidence that the intake of high-fat diet and overweight are associated with the incidence of CRC, among which bile acids play a key role in the pathogenesis of the disease. Studies on the relationship between bile acid metabolism and the occurrence of CRC have gradually become a hot topic, improving the understanding of metabolic factors in the etiology of colorectal cancer. Meanwhile, intestinal flora also plays an important role in the occurrence and development of CRC In this review, the classification of bile acids and their role in promoting the occurrence of CRC are discussed, and we highlights how a high-fat diet affects bile acid metabolism and destroys the integrity of the intestinal barrier and the effects of gut bacteria.
Collapse
Affiliation(s)
- Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengan Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- Department of Internal Medicine of Chinese Medicine, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Baaziz H, Baker ZR, Franklin HC, Hsu BB. Rehabilitation of a misbehaving microbiome: phages for the remodeling of bacterial composition and function. iScience 2022; 25:104146. [PMID: 35402871 PMCID: PMC8991392 DOI: 10.1016/j.isci.2022.104146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The human gut microbiota is considered an adjunct metabolic organ owing to its health impact. Recent studies have shown correlations between gut phage composition and host health. Whereas phage therapy has popularized virulent phages as antimicrobials, both virulent and temperate phages have a natural ecological relationship with their cognate bacteria. Characterization of this evolutionary coadaptation has led to other emergent therapeutic phage applications that do not necessarily rely on bacterial eradication or target pathogens. Here, we present an overview of the tripartite relationship between phages, bacteria, and the mammalian host, and highlight applications of the wildtype and genetically engineered phage for gut microbiome remodeling. In light of new and varied strategies, we propose to categorize phage applications aiming to modulate bacterial composition or function as "phage rehabilitation." By delineating phage rehab from phage therapy, we believe it will enable greater nuance and understanding of these new phage-based technologies.
Collapse
Affiliation(s)
- Hiba Baaziz
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zachary Robert Baker
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hollyn Claire Franklin
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bryan Boen Hsu
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
27
|
Sobota M, Rodilla Ramirez PN, Cambré A, Rocker A, Mortier J, Gervais T, Haas T, Cornillet D, Chauvin D, Hug I, Julou T, Aertsen A, Diard M. The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium. PLoS Biol 2022; 20:e3001608. [PMID: 35389980 PMCID: PMC9017878 DOI: 10.1371/journal.pbio.3001608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/19/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
Virulence gene expression can represent a substantial fitness cost to pathogenic bacteria. In the model entero-pathogen Salmonella Typhimurium (S.Tm), such cost favors emergence of attenuated variants during infections that harbor mutations in transcriptional activators of virulence genes (e.g., hilD and hilC). Therefore, understanding the cost of virulence and how it relates to virulence regulation could allow the identification and modulation of ecological factors to drive the evolution of S.Tm toward attenuation. In this study, investigations of membrane status and stress resistance demonstrate that the wild-type (WT) expression level of virulence factors embedded in the envelope increases membrane permeability and sensitizes S.Tm to membrane stress. This is independent from a previously described growth defect associated with virulence gene expression in S.Tm. Pretreating the bacteria with sublethal stress inhibited virulence expression and increased stress resistance. This trade-off between virulence and stress resistance could explain the repression of virulence expression in response to harsh environments in S.Tm. Moreover, we show that virulence-associated stress sensitivity is a burden during infection in mice, contributing to the inherent instability of S.Tm virulence. As most bacterial pathogens critically rely on deploying virulence factors in their membrane, our findings could have a broad impact toward the development of antivirulence strategies.
Collapse
Affiliation(s)
| | | | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Théo Gervais
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | | | - Dany Chauvin
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Isabelle Hug
- Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Julou
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
28
|
Olivar-Casique IB, Medina-Aparicio L, Mayo S, Gama-Martínez Y, Rebollar-Flores JE, Martínez-Batallar G, Encarnación S, Calva E, Hernández-Lucas I. The human bile salt sodium deoxycholate induces metabolic and cell envelope changes in Salmonella Typhi leading to bile resistance. J Med Microbiol 2022; 71. [PMID: 35006066 DOI: 10.1099/jmm.0.001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of typhoid fever. To establish an infection in the human host, this pathogen must survive the presence of bile salts in the gut and gallbladder.Hypothesis. S. Typhi uses multiple genetic elements to resist the presence of human bile.Aims. To determine the genetic elements that S. Typhi utilizes to tolerate the human bile salt sodium deoxycholate.Methodology. A collection of S. Typhi mutant strains was evaluated for their ability to growth in the presence of sodium deoxycholate and ox-bile. Additionally, transcriptomic and proteomic responses elicited by sodium deoxycholate on S. Typhi cultures were also analysed.Results. Multiple transcriptional factors and some of their dependent genes involved in central metabolism, as well as in cell envelope, are required for deoxycholate resistance.Conclusion. These findings suggest that metabolic adaptation to bile is focused on enhancing energy production to sustain synthesis of cell envelope components exposed to damage by bile salts.
Collapse
Affiliation(s)
- Isaac B Olivar-Casique
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Selena Mayo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Yitzel Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Gabriel Martínez-Batallar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
29
|
Pharmacodynamics of Moxifloxacin, Meropenem, Caspofungin and their Combinations Against In Vitro Polymicrobial Inter-kingdom Biofilms. Antimicrob Agents Chemother 2021; 66:e0214921. [PMID: 34930026 DOI: 10.1128/aac.02149-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms colonize medical devices and are often recalcitrant to antibiotics. Inter-kingdom biofilms, when at least a bacterium and a fungus are co-isolated, increase the likelihood of therapeutic failures. In this work, a three-species in vitro biofilm model including S. aureus, E. coli and C. albicans was used to study the activity of the antibiotics moxifloxacin and meropenem, the antifungal caspofungin, and combinations of them against inter-kingdom biofilms. The culturable cells and total biomass were evaluated to determine the pharmacodynamic parameters of the drug response for the incubation with the drugs alone. The synergic or antagonistic effects (increased/decreased effects) of the combination of drugs were analysed with the highest single agent method. Biofilms were imaged in confocal microscopy after live/dead staining. The drugs had limited activity when used alone against single-, dual- or three-species biofilms. When used in combination, additive effects were observed against single- or dual-species biofilms, and increased effects (synergy) against biomass of three-species biofilms. In addition, the two antibiotics showed different patterns, moxifloxacin being more active when targeting S. aureus and meropenem when targeting E. coli. All these observations were confirmed by confocal microscopy images. Our findings highlight the interest in combining caspofungin with antibiotics against inter-kingdom biofilms.
Collapse
|
30
|
Hu J, Ye H, Wang S, Wang J, Han D. Prophage Activation in the Intestine: Insights Into Functions and Possible Applications. Front Microbiol 2021; 12:785634. [PMID: 34966370 PMCID: PMC8710666 DOI: 10.3389/fmicb.2021.785634] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Prophage activation in intestinal environments has been frequently reported to affect host adaptability, pathogen virulence, gut bacterial community composition, and intestinal health. Prophage activation is mostly caused by various stimulators, such as diet, antibiotics, some bacterial metabolites, gastrointestinal transit, inflammatory environment, oxidative stress, and quorum sensing. Moreover, with advancements in biotechnology and the deepening cognition of prophages, prophage activation regulation therapy is currently applied to the treatment of some bacterial intestinal diseases such as Shiga toxin-producing Escherichia coli infection. This review aims to make headway on prophage induction in the intestine, in order to make a better understanding of dynamic changes of prophages, effects of prophage activation on physiological characteristics of bacteria and intestinal health, and subsequently provide guidance on prophage activation regulation therapy.
Collapse
Affiliation(s)
| | | | | | | | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Makky S, Dawoud A, Safwat A, Abdelsattar AS, Rezk N, El-Shibiny A. The bacteriophage decides own tracks: When they are with or against the bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100050. [PMID: 34841341 PMCID: PMC8610337 DOI: 10.1016/j.crmicr.2021.100050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages, bacteria-infecting viruses, are considered by many researchers a promising solution for antimicrobial resistance. On the other hand, some phages have shown contribution to bacterial resistance phenomenon by transducing antimicrobial resistance genes to their bacterial hosts. Contradictory consequences of infections are correlated to different phage lifecycles. Out of four known lifecycles, lysogenic and lytic pathways have been riddles since the uncontrolled conversion between them could negatively affect the intended use of phages. However, phages still can be engineered for applications against bacterial and viral infections to ensure high efficiency. This review highlights two main aspects: (1) the different lifecycles as well as the different factors that affect lytic-lysogenic switch are discussed, including the intracellular and molecular factors control this decision. In addition, different models which describe the effect of phages on the ecosystem are compared, besides the approaches to study the switch. (2) An overview on the contribution of the phage in the evolution of the bacteria, instead of eating them, as a consequence of different mode of actions. As well, how phage display has helped in restricting phage cheating and how it could open new gates for immunization and pandemics control will be tacked.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, 16482, Egypt
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| |
Collapse
|
32
|
Cavestri C, Savard P, Fliss I, Emond-Rhéault JG, Hamel J, Kukavica-Ibrulj I, Boyle B, Daigle F, Malo D, Bekal S, Harris LJ, Levesque RC, Goodridge L, LaPointe G. Salmonella enterica subsp. enterica virulence potential can be linked to higher survival within a dynamic in vitro human gastrointestinal model. Food Microbiol 2021; 101:103877. [PMID: 34579845 DOI: 10.1016/j.fm.2021.103877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/04/2022]
Abstract
Salmonella enterica subsp. enterica is one of the leading causes of human foodborne infections and several outbreaks are now associated with the consumption of fresh fruit and vegetables. This study aims at evaluating whether Salmonella virulence can be linked to an enhanced ability to survive successive digestive environments. Thirteen S. enterica strains were selected according to high and low virulence phenotypes. Lettuce inoculated separately with each S. enterica strain was used as food matrix in the TNO gastrointestinal model (TIM-1) of the human upper gastrointestinal tract. During the passage in the stomach, counts determined using PMA-qPCR were 2-5 logs higher than the cultivable counts for all strains indicating the presence of viable but non-cultivable cells. Bacterial growth was observed in the duodenum compartment after 180 min for all but one strain and growth continued into the ileal compartment. After passage through the simulated gastrointestinal tract, both virulent and avirulent S. enterica strains survived but high virulence strains had a significantly (p = 0.004) better average survival rate (1003 %-3753 %) than low virulence strains (from 25 % to 3730%). The survival rates of S. enterica strains could be linked to the presence of genes associated with acid and bile resistance and their predicted products. The presence of single nucleotide polymorphisms may also impact the function of virulence associated genes and play a role in the resulting phenotype. These data provide an understanding of the relationship between measured virulence potential and survival of S. enterica during dynamic simulated gastrointestinal transit.
Collapse
Affiliation(s)
- Camille Cavestri
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Patricia Savard
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada
| | | | - Jérémie Hamel
- Institute for Integrative and Systems Biology, Université Laval, Québec, Canada
| | | | - Brian Boyle
- Institute for Integrative and Systems Biology, Université Laval, Québec, Canada
| | - France Daigle
- Département de Microbiologie Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
| | - Danielle Malo
- Department of Medicine, McGill University, Montreal, Canada
| | - Sadjia Bekal
- Laboratoire de Santé Publique Du Québec, Ste-Anne de Bellevue, Canada
| | - Linda J Harris
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Roger C Levesque
- Institute for Integrative and Systems Biology, Université Laval, Québec, Canada
| | | | - Gisèle LaPointe
- Department of Food Science, University of Guelph, Guelph, Canada.
| |
Collapse
|
33
|
New Adapted In Vitro Technology to Evaluate Biofilm Formation and Antibiotic Activity Using Live Imaging under Flow Conditions. Diagnostics (Basel) 2021; 11:diagnostics11101746. [PMID: 34679444 PMCID: PMC8535051 DOI: 10.3390/diagnostics11101746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022] Open
Abstract
The polymicrobial nature of biofilms and bacterial interactions inside chronic wounds are keys for the understanding of bacterial cooperation. The aim of this present study was to develop a technique to study and visualize biofilm in live imaging under flow conditions (Bioflux™ 200, Fluxion Biosciences). The BiofluxTM system was adapted using an in vitro chronic wound-like medium (CWM) that mimics the environment encountered in ulcers. Two reference strains of Staphylococcus aureus (Newman) and Pseudomonas aeruginosa (PAO1) were injected in the BiofluxTM during 24 h to 72 h in mono and coculture (ratio 1:1, bacteria added simultaneously) in the CWM vs. a control medium (BHI). The quantification of biofilm formation at each time was evaluated by inverted microscopy. After 72 h, different antibiotics (ceftazidime, imipenem, linezolid, oxacillin and vancomycin) at 1x MIC, 10x MIC and 100x MIC were administrated to the system after an automatic increase of the flow that mimicked a debridement of the wound surface. Biofilm studies highlighted that the two species, alone or associated, constituted a faster and thicker biofilm in the CWM compared to the BHI medium. The effect of antibiotics on mature or “debrided” biofilm indicated that some of the most clinically used antibiotic such as vancomycin or imipenem were not able to disrupt and reduce the biofilm biomass. The use of a life cell imaging with an in vitro CWM represents a promising tool to study bacterial biofilm and investigate microbial cooperation in a chronic wound context.
Collapse
|
34
|
Arunima A, Suar M. Glucose Starvation, Magnesium Ion Starvation, and Bile Stress Assays. Bio Protoc 2021; 11:e4157. [PMID: 34692907 DOI: 10.21769/bioprotoc.4157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/02/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a leading causative pathogen for food-borne gastroenteritis. During its course of infection, it confronts myriads of physiological barriers inside the host, such as nutrient deprivation, low micronutrient availability, and toxicity from bile salts, to promote bacterial survival and infection inside the host. The ability of the pathogen to overcome these stressful conditions determines the degree of virulence in the host. Therefore, assessment of the survival of a pathogen during different stress conditions, like glucose starvation, magnesium starvation, and bile stress, are important parameters to assess the virulence of the pathogen. Here, we describe protocols for estimating the survival of the pathogen during the above-mentioned stress conditions. We culture S. Enteritidis in an appropriate growth medium to a required O.D.600 and treat it with glucose starvation (M9 minimal culture medium containing 0.03% glucose), magnesium starvation (M9 minimal culture medium containing 20 µM MgSO4), and bile stress (bacterial cells treated with 15% bile salts in Luria Bertani (LB) culture medium) conditions. The number of surviving bacteria is obtained after the treatment by calculating the colony-forming units (CFU) of the surviving pathogen obtained on LB agar plates at relevant time intervals. The experiments are performed in biological replicates, and statistical analysis is performed to validate the experimental findings. The methodology of these stress response assays is simple and can be adapted to study the pathogenesis and stress response in other relevant and culturable enteric pathogens.
Collapse
Affiliation(s)
- Aryashree Arunima
- School of Biotechnology, Kalinga Institute of Industrial Technology-(KIIT) University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology-(KIIT) University, Bhubaneswar, India
| |
Collapse
|
35
|
Arvizu IS, Murray SR. A simple, quantitative assay for the detection of viable but non-culturable (VBNC) bacteria. STAR Protoc 2021; 2:100738. [PMID: 34430913 PMCID: PMC8365524 DOI: 10.1016/j.xpro.2021.100738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This protocol determines the fraction of a bacterial population that is viable and culturable, viable and non-culturable, or non-viable (dead). Each population is detected by isolating colonies on agar plates, performing direct counts, and staining for live or dead cells. Its application is limited to bacteria that are stainable and when permissible growth conditions are known. The quantitative data extracted allow for the detection of a viable but non-culturable (alive and non-dividing) population from a liquid culture. For complete details on the use and execution of this protocol, please refer to Stott et al. (2015). Liquid cultures are spread onto agar plates to quantify CFU/mL Direct counting is performed to determine the total number of bacteria per mL Fluorescence microscopy is used to distinguish between live and dead bacteria In sum, the protocol can reveal VBNC populations in a culture
Collapse
Affiliation(s)
- Ignacio Servando Arvizu
- Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Sean Richard Murray
- Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| |
Collapse
|
36
|
The Abundance and Organization of Salmonella Extracellular Polymeric Substances in Gallbladder-Mimicking Environments and In Vivo. Infect Immun 2021; 89:e0031021. [PMID: 34398679 DOI: 10.1128/iai.00310-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) causes chronic infections by establishing biofilms on cholesterol gallstones. Production of extracellular polymeric substances (EPSs) is key to biofilm development and biofilm architecture depends on which EPSs are made. The presence and spatial distribution of Salmonella EPSs produced in vitro and in vivo were investigated in S. Typhimurium and S. Typhi biofilms by confocal microscopy. Comparisons between serovars and EPS-mutant bacteria were examined by growth on cholesterol-coated surfaces, with human gallstones in ox or human bile, and in mice with gallstones. On cholesterol-coated surfaces, major differences in EPS biomass were not found between serovars. Co-culture biofilms containing wild-type (WT) and EPS-mutant bacteria demonstrated WT compensation for EPS mutations. Biofilm EPS analysis from gallbladder-mimicking conditions found that culture in human bile more consistently replicated the relative abundance and spatial organization of each EPS on gallstones from the chronic mouse model than culture in ox bile. S. Typhimurium biofilms cultured in vitro on gallstones in ox bile exhibited co-localized pairings of curli fimbriae/lipopolysaccharide and O antigen capsule/cellulose while these associations were not present in S. Typhi biofilms or in mouse gallstone biofilms. In general, inclusion of human bile with gallstones in vitro replicated biofilm development on gallstones in vivo, demonstrating its strength as a model for studying biofilm parameters or EPS-directed therapeutic treatments.
Collapse
|
37
|
Molecular determinants of peaceful coexistence versus invasiveness of non-Typhoidal Salmonella: Implications in long-term side-effects. Mol Aspects Med 2021; 81:100997. [PMID: 34311996 DOI: 10.1016/j.mam.2021.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
The genus Salmonella represents a wide range of strains including Typhoidal and Non-Typhoidal Salmonella (NTS) isolates that exhibit illnesses of varied pathophysiologies. The more frequent NTS ensues a self-limiting enterocolitis with rare occasions of bacteremia or systemic infections. These self-limiting Salmonella strains are capable of subverting and dampening the host immune system to achieve a more prolonged survival inside the host system thus leading to chronic manifestations. Notably, emergence of new invasive NTS isolates known as invasive Non-Typhoidal Salmonella (iNTS) have worsened the disease burden significantly in some parts of the world. NTS strains adapt to attain persister phenotype intracellularly and cause relapsing infections. These chronic infections, in susceptible hosts, are also capable of causing diseases like IBS, IBD, reactive arthritis, gallbladder cancer and colorectal cancer. The present understanding of molecular mechanism of how these chronic infections are manifested is quite limited. The current work is an effort to review the prevailing knowledge emanating from a large volume of research focusing on various forms of NTS infections including those that cause localized, systemic and persistent disease. The review will further dwell into the understanding of how this pathogen contributes to the associated long term sequelae.
Collapse
|
38
|
Sánchez-Romero MA, Casadesús J. Waddington's Landscapes in the Bacterial World. Front Microbiol 2021; 12:685080. [PMID: 34149674 PMCID: PMC8212987 DOI: 10.3389/fmicb.2021.685080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Conrad Waddington’s epigenetic landscape, a visual metaphor for the development of multicellular organisms, is appropriate to depict the formation of phenotypic variants of bacterial cells. Examples of bacterial differentiation that result in morphological change have been known for decades. In addition, bacterial populations contain phenotypic cell variants that lack morphological change, and the advent of fluorescent protein technology and single-cell analysis has unveiled scores of examples. Cell-specific gene expression patterns can have a random origin or arise as a programmed event. When phenotypic cell-to-cell differences are heritable, bacterial lineages are formed. The mechanisms that transmit epigenetic states to daughter cells can have strikingly different levels of complexity, from the propagation of simple feedback loops to the formation of complex DNA methylation patterns. Game theory predicts that phenotypic heterogeneity can facilitate bacterial adaptation to hostile or unpredictable environments, serving either as a division of labor or as a bet hedging that anticipates future challenges. Experimental observation confirms the existence of both types of strategies in the bacterial world.
Collapse
Affiliation(s)
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
39
|
Wahlig TA, Stanton E, Godfrey JJ, Stasic AJ, Wong ACL, Kaspar CW. A Single Nucleotide Polymorphism in lptG Increases Tolerance to Bile Salts, Acid, and Staining of Calcofluor-Binding Polysaccharides in Salmonella enterica Serovar Typhimurium E40. Front Microbiol 2021; 12:671453. [PMID: 34149657 PMCID: PMC8208086 DOI: 10.3389/fmicb.2021.671453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
The outer membrane of Salmonella enterica plays an important role in combating stress encountered in the environment and hosts. The transport and insertion of lipopolysaccharides (LPS) into the outer membrane involves lipopolysaccharide transport proteins (LptA-F) and mutations in the genes encoding for these proteins are often lethal or result in the transport of atypical LPS that can alter stress tolerance in bacteria. During studies of heterogeneity in bile salts tolerance, S. enterica serovar Typhimurium E40 was segregated into bile salts tolerant and sensitive cells by screening for growth in TSB with 10% bile salts. An isolate (E40V) with a bile salts MIC >20% was selected for further characterization. Whole-genome sequencing of E40 and E40V using Illumina and PacBio SMRT technologies revealed a non-synonymous single nucleotide polymorphism (SNP) in lptG. Leucine at residue 26 in E40 was substituted with proline in E40V. In addition to growth in the presence of 10% bile salts, E40V was susceptible to novobiocin while E40 was not. Transcriptional analysis of E40 and E40V, in the absence of bile salts, revealed significantly greater (p < 0.05) levels of transcript in three genes in E40V; yjbE (encoding for an extracellular polymeric substance production protein), yciE (encoding for a putative stress response protein), and an uncharacterized gene annotated as an acid shock protein precursor (ASPP). No transcripts of genes were present at a greater level in E40 compared to E40V. Corresponding with the greater level of these transcripts, E40V had greater survival at pH 3.35 and staining of Calcofluor-binding polysaccharide (CBPS). To confirm the SNP in lptG was associated with these phenotypes, strain E40E was engineered from E40 to encode for the variant form of LptG (L26P). E40E exhibited the same differences in gene transcripts and phenotypes as E40V, including susceptibility to novobiocin, confirming the SNP was responsible for these differences.
Collapse
Affiliation(s)
- Taylor A Wahlig
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Eliot Stanton
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Jared J Godfrey
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Andrew J Stasic
- U. S. Food and Drug Administration, Center for Biologics Evaluation and Research, Washington, DC, United States
| | - Amy C L Wong
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Charles W Kaspar
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
40
|
Hahn MM, González JF, Gunn JS. Salmonella Biofilms Tolerate Hydrogen Peroxide by a Combination of Extracellular Polymeric Substance Barrier Function and Catalase Enzymes. Front Cell Infect Microbiol 2021; 11:683081. [PMID: 34095002 PMCID: PMC8171120 DOI: 10.3389/fcimb.2021.683081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) to cause chronic gallbladder infections is dependent on biofilm growth on cholesterol gallstones. Non-typhoidal Salmonella (e.g. S. Typhimurium) also utilize the biofilm state to persist in the host and the environment. How the pathogen maintains recalcitrance to the host response, and oxidative stress in particular, during chronic infection is poorly understood. Previous experiments demonstrated that S. Typhi and S. Typhimurium biofilms are tolerant to hydrogen peroxide (H2O2), but that mutations in the biofilm extracellular polymeric substances (EPSs) O antigen capsule, colanic acid, or Vi antigen reduce tolerance. Here, biofilm-mediated tolerance to oxidative stress was investigated using a combination of EPS and catalase mutants, as catalases are important detoxifiers of H2O2. Using co-cultured biofilms of wild-type (WT) bacteria with EPS mutants, it was demonstrated that colanic acid in S. Typhimurium and Vi antigen in S. Typhi have a community function and protect all biofilm-resident bacteria rather than to only protect the individual cells producing the EPSs. However, the H2O2 tolerance deficiency of a O antigen capsule mutant was unable to be compensated for by co-culture with WT bacteria. For curli fimbriae, both WT and mutant strains are tolerant to H2O2 though unexpectedly, co-cultured WT/mutant biofilms challenged with H2O2 resulted in sensitization of both strains, suggesting a more nuanced oxidative resistance alteration in these co-cultures. Three catalase mutant (katE, katG and a putative catalase) biofilms were also examined, demonstrating significant reductions in biofilm H2O2 tolerance for the katE and katG mutants. Biofilm co-culture experiments demonstrated that catalases exhibit a community function. We further hypothesized that biofilms are tolerant to H2O2 because the physical barrier formed by EPSs slows penetration of H2O2 into the biofilm to a rate that can be mitigated by intra-biofilm catalases. Compared to WT, EPS-deficient biofilms have a heighted response even to low-dose (2.5 mM) H2O2 challenge, confirming that resident bacteria of EPS-deficient biofilms are under greater stress and have limited protection from H2O2. Thus, these data provide an explanation for how Salmonella achieves tolerance to H2O2 by a combination of an EPS-mediated barrier and enzymatic detoxification.
Collapse
Affiliation(s)
- Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Juan F González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
41
|
Du J, Zayed AA, Kigerl KA, Zane K, Sullivan MB, Popovich PG. Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. mSystems 2021; 6:e01356-20. [PMID: 33975974 PMCID: PMC8125080 DOI: 10.1128/msystems.01356-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 01/11/2023] Open
Abstract
Emerging data indicate that gut dysbiosis contributes to many human diseases, including several comorbidities that develop after traumatic spinal cord injury (SCI). To date, all analyses of SCI-induced gut dysbiosis have used 16S rRNA amplicon sequencing. This technique has several limitations, including being susceptible to taxonomic "blind spots," primer bias, and an inability to profile microbiota functions or identify viruses. Here, SCI-induced gut dysbiosis was assessed by applying genome- and gene-resolved metagenomic analysis of murine stool samples collected 21 days after an experimental SCI at the 4th thoracic spine (T4) or 10th thoracic spine (T10) spinal level. These distinct injuries partially (T10) or completely (T4) abolish sympathetic tone in the gut. Among bacteria, 105 medium- to high-quality metagenome-assembled genomes (MAGs) were recovered, with most (n = 96) representing new bacterial species. Read mapping revealed that after SCI, the relative abundance of beneficial commensals (Lactobacillus johnsonii and CAG-1031 spp.) decreased, while potentially pathogenic bacteria (Weissella cibaria, Lactococcus lactis _A, Bacteroides thetaiotaomicron) increased. Functionally, microbial genes encoding proteins for tryptophan, vitamin B6, and folate biosynthesis, essential pathways for central nervous system function, were reduced after SCI. Among viruses, 1,028 mostly novel viral populations were recovered, expanding known murine gut viral species sequence space ∼3-fold compared to that of public databases. Phages of beneficial commensal hosts (CAG-1031, Lactobacillus, and Turicibacter) decreased, while phages of pathogenic hosts (Weissella, Lactococcus, and class Clostridia) increased after SCI. Although the microbiomes and viromes were changed in all SCI mice, some of these changes varied as a function of spinal injury level, implicating loss of sympathetic tone as a mechanism underlying gut dysbiosis.IMPORTANCE To our knowledge, this is the first article to apply metagenomics to characterize changes in gut microbial population dynamics caused by a clinically relevant model of central nervous system (CNS) trauma. It also utilizes the most current approaches in genome-resolved metagenomics and viromics to maximize the biological inferences that can be made from these data. Overall, this article highlights the importance of autonomic nervous system regulation of a distal organ (gut) and its microbiome inhabitants after traumatic spinal cord injury (SCI). By providing information on taxonomy, function, and viruses, metagenomic data may better predict how SCI-induced gut dysbiosis influences systemic and neurological outcomes after SCI.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kristina A Kigerl
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kylie Zane
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
42
|
Kim H, Wu K, Lee C. Stress-Responsive Periplasmic Chaperones in Bacteria. Front Mol Biosci 2021; 8:678697. [PMID: 34046432 PMCID: PMC8144458 DOI: 10.3389/fmolb.2021.678697] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 01/14/2023] Open
Abstract
Periplasmic proteins are involved in a wide range of bacterial functions, including motility, biofilm formation, sensing environmental cues, and small-molecule transport. In addition, a wide range of outer membrane proteins and proteins that are secreted into the media must travel through the periplasm to reach their final destinations. Since the porous outer membrane allows for the free diffusion of small molecules, periplasmic proteins and those that travel through this compartment are more vulnerable to external environmental changes, including those that result in protein unfolding, than cytoplasmic proteins are. To enable bacterial survival under various stress conditions, a robust protein quality control system is required in the periplasm. In this review, we focus on several periplasmic chaperones that are stress responsive, including Spy, which responds to envelope-stress, DegP, which responds to temperature to modulate chaperone/protease activity, HdeA and HdeB, which respond to acid stress, and UgpB, which functions as a bile-responsive chaperone.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, South Korea
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kevin Wu
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| |
Collapse
|
43
|
Mérida-Floriano A, Rowe WPM, Casadesús J. Genome-Wide Identification and Expression Analysis of SOS Response Genes in Salmonella enterica Serovar Typhimurium. Cells 2021; 10:cells10040943. [PMID: 33921732 PMCID: PMC8072944 DOI: 10.3390/cells10040943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
A bioinformatic search for LexA boxes, combined with transcriptomic detection of loci responsive to DNA damage, identified 48 members of the SOS regulon in the genome of Salmonella enterica serovar Typhimurium. Single cell analysis using fluorescent fusions revealed that heterogeneous expression is a common trait of SOS response genes, with formation of SOSOFF and SOSON subpopulations. Phenotypic cell variants formed in the absence of external DNA damage show gene expression patterns that are mainly determined by the position and the heterology index of the LexA box. SOS induction upon DNA damage produces SOSOFF and SOSON subpopulations that contain live and dead cells. The nature and concentration of the DNA damaging agent and the time of exposure are major factors that influence the population structure upon SOS induction. An analogy can thus be drawn between the SOS response and other bacterial stress responses that produce phenotypic cell variants.
Collapse
Affiliation(s)
- Angela Mérida-Floriano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain;
| | - Will P. M. Rowe
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK;
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain;
- Correspondence: ; Tel.: +34-95-455-7105
| |
Collapse
|
44
|
Fernández-Fernández R, Hernández SB, Puerta-Fernández E, Sánchez-Romero MA, Urdaneta V, Casadesús J. Evidence for Involvement of the Salmonella enterica Z-Ring Assembly Factors ZapA and ZapB in Resistance to Bile. Front Microbiol 2021; 12:647305. [PMID: 33717045 PMCID: PMC7947894 DOI: 10.3389/fmicb.2021.647305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Genes annotated as ygfE and yiiU in the genome of Salmonella enterica serovar Typhimurium encode proteins homologous to Escherichia coli cell division factors ZapA and ZapB, respectively. ZapA- and ZapB- mutants of S. enterica are bile-sensitive. The amount of zapB mRNA increases in the presence of a sublethal concentration of sodium deoxycholate (DOC) while zapA mRNA remains unaffected. Increased zapB mRNA level in the presence of DOC is not caused by upregulation of zapB transcription but by increased stability of zapB mRNA. This increase is suppressed by an hfq mutation, suggesting the involvement of a small regulatory RNA. We provide evidence that such sRNA is MicA. The ZapB protein is degraded in the presence of DOC, and degradation appears to involve the Lon protease. We propose that increased stability of zapB mRNA in the presence of DOC may counter degradation of bile-damaged ZapB, thereby providing sufficient level of functional ZapB protein to permit Z-ring assembly in the presence of bile.
Collapse
Affiliation(s)
| | - Sara B Hernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
45
|
Wesener F, Szymczak A, Rillig MC, Tietjen B. Stress priming affects fungal competition - evidence from a combined experimental and modelling study. Environ Microbiol 2021; 23:5934-5945. [PMID: 33538387 DOI: 10.1111/1462-2920.15418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/01/2022]
Abstract
Priming, an inducible stress defence strategy that prepares an organism for an impending stress event, is common in microbes and has been studied mostly in isolated organisms or populations. How the benefits of priming change in the microbial community context and, vice versa, whether priming influences competition between organisms, remain largely unknown. In this study, we grew different isolates of soil fungi that experienced heat stress in isolation and pairwise competition experiments and assessed colony extension rate as a measure of fitness under priming and non-priming conditions. Based on this data, we developed a cellular automaton model simulating the growth of the ascomycete Chaetomium angustispirale competing against other fungi and systematically varied fungal response traits to explain similarities and differences observed in the experimental data. We showed that competition changes the priming benefit compared with isolated growth and that it can even be reversed depending on the competitor's traits such as growth rate, primeability and stress susceptibility. With this study, we transfer insights on priming from studies in isolation to competition between species. This is an important step towards understanding the role of inducible defences in microbial community assembly and composition.
Collapse
Affiliation(s)
- Felix Wesener
- Institute of Biology, Theoretical Ecology, Freie Universität Berlin, Königin-Luise-Str. 2/4, Gartenhaus, Berlin, 14195, Germany
| | - Aleksandra Szymczak
- Institute of Biology, Ecology of Plants, Freie Universität Berlin, Altensteinstraße 6, Berlin, 14195, Germany
| | - Matthias C Rillig
- Institute of Biology, Ecology of Plants, Freie Universität Berlin, Altensteinstraße 6, Berlin, 14195, Germany.,Berlin Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Britta Tietjen
- Institute of Biology, Theoretical Ecology, Freie Universität Berlin, Königin-Luise-Str. 2/4, Gartenhaus, Berlin, 14195, Germany.,Berlin Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| |
Collapse
|
46
|
Grüner N, Mattner J. Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver-Gut Axis. Int J Mol Sci 2021; 22:1397. [PMID: 33573273 PMCID: PMC7866539 DOI: 10.3390/ijms22031397] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
After their synthesis from cholesterol in hepatic tissues, bile acids (BAs) are secreted into the intestinal lumen. Most BAs are subsequently re-absorbed in the terminal ileum and are transported back for recycling to the liver. Some of them, however, reach the colon and change their physicochemical properties upon modification by gut bacteria, and vice versa, BAs also shape the composition and function of the intestinal microbiota. This mutual interplay of both BAs and gut microbiota regulates many physiological processes, including the lipid, carbohydrate and energy metabolism of the host. Emerging evidence also implies an important role of this enterohepatic BA circuit in shaping mucosal colonization resistance as well as local and distant immune responses, tissue physiology and carcinogenesis. Subsequently, disrupted interactions of gut bacteria and BAs are associated with many disorders as diverse as Clostridioides difficile or Salmonella Typhimurium infection, inflammatory bowel disease, type 1 diabetes, asthma, metabolic syndrome, obesity, Parkinson's disease, schizophrenia and epilepsy. As we cannot address all of these interesting underlying pathophysiologic mechanisms here, we summarize the current knowledge about the physiologic and pathogenic interplay of local site microbiota and the enterohepatic BA metabolism using a few selected examples of liver and gut diseases.
Collapse
Affiliation(s)
- Niklas Grüner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
47
|
Olivera C, Le VVH, Davenport C, Rakonjac J. In vitro synergy of 5-nitrofurans, vancomycin and sodium deoxycholate against Gram-negative pathogens. J Med Microbiol 2021; 70. [PMID: 33448923 PMCID: PMC8346734 DOI: 10.1099/jmm.0.001304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction There is an urgent need for effective therapies against bacterial infections, especially those caused by antibiotic-resistant Gram-negative pathogens. Hypothesis Synergistic combinations of existing antimicrobials show promise due to their enhanced efficacies and reduced dosages which can mitigate adverse effects, and therefore can be used as potential antibacterial therapy. Aim In this study, we sought to characterize the in vitro interaction of 5-nitrofurans, vancomycin and sodium deoxycholate (NVD) against pathogenic bacteria. Methodology The synergy of the NVD combination was investigated in terms of growth inhibition and bacterial killing using checkerboard and time-kill assays, respectively. Results Using a three-dimensional checkerboard assay, we showed that 5-nitrofurans, sodium deoxycholate and vancomycin interact synergistically in the growth inhibition of 15 out of 20 Gram-negative strains tested, including clinically significant pathogens such as carbapenemase-producing Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii, and interact indifferently against the Gram-positive strains tested. The time-kill assay further confirmed that the triple combination was bactericidal in a synergistic manner. Conclusion This study demonstrates the synergistic effect of 5-nitrofurans, sodium deoxycholate and vancomycin against Gram-negative pathogens and highlights the potential of the combination as a treatment for Gram-negative and Gram-positive infections.
Collapse
Affiliation(s)
- Catrina Olivera
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Vuong Van Hung Le
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Catherine Davenport
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Białucha A, Gospodarek-Komkowska E, Kwiecińska-Piróg J, Skowron K. Influence of Selected Factors on Biofilm Formation by Salmonella enterica Strains. Microorganisms 2020; 9:microorganisms9010043. [PMID: 33375734 PMCID: PMC7824446 DOI: 10.3390/microorganisms9010043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Biofilm formed by S. enterica on the surface of gallstones or biomaterials promotes the development and spread of chronic infection. The aim of the study was to assess biofilm formation on the surface of polystyrene depending on nutritional conditions and the effect of 0.5, 1.0, and 2.0% glucose and 3.0% bile and sub-inhibitory concentrations of ampicillin on biofilm formation of S. enterica. Sixty-nine clinical strains of S. enterica isolated from feces (92.8%) and blood (7.2%) collected from patients (66.7%) and carriers (33.3%) were used in the study. Assessment of forming 24-h biofilm by these strains was performed on the surface of polystyrene 96-well plates at 37 °C. In this study, it was indicated that 1.0% glucose and 3.0% bovine bile inhibit biofilm formation. Biofilm formation was inhibited in all examined sub-MIC of ampicillin. Biofilm formation is varied in different conditions, depending on the serovar.
Collapse
|
49
|
Role of OB-Fold Protein YdeI in Stress Response and Virulence of Salmonella enterica Serovar Enteritidis. J Bacteriol 2020; 203:JB.00237-20. [PMID: 33106344 DOI: 10.1128/jb.00237-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023] Open
Abstract
An essential feature of the pathogenesis of the Salmonella enterica serovar Enteritidis wild type (WT) is its ability to survive under diverse microenvironmental stress conditions, such as encountering antimicrobial peptides (AMPs) or glucose and micronutrient starvation. These stress factors trigger virulence genes carried on Salmonella pathogenicity islands (SPIs) and determine the efficiency of enteric infection. Although the oligosaccharide/oligonucleotide binding-fold (OB-fold) family of proteins has been identified as an important stress response and virulence determinant, functional information on members of this family is currently limited. In this study, we decipher the role of YdeI, which belongs to OB-fold family of proteins, in stress response and virulence of S Enteritidis. When ydeI was deleted, the ΔydeI mutant showed reduced survival during exposure to AMPs or glucose and Mg2+ starvation stress compared to the WT. Green fluorescent protein (GFP) reporter and quantitative real-time PCR (qRT-PCR) assays showed ydeI was transcriptionally regulated by PhoP, which is a major regulator of stress and virulence. Furthermore, the ΔydeI mutant displayed ∼89% reduced invasion into HCT116 cells, ∼15-fold-reduced intramacrophage survival, and downregulation of several SPI-1 and SPI-2 genes encoding the type 3 secretion system apparatus and effector proteins. The mutant showed attenuated virulence compared to the WT, confirmed by its reduced bacterial counts in feces, mesenteric lymph node (mLN), spleen, and liver of C57BL/6 mice. qRT-PCR analyses of the ΔydeI mutant displayed differential expression of 45 PhoP-regulated genes, which were majorly involved in metabolism, transport, membrane remodeling, and drug resistance under different stress conditions. YdeI is, therefore, an important protein that modulates S Enteritidis virulence and adaptation to stress during infection.IMPORTANCE S Enteritidis during its life cycle encounters diverse stress factors inside the host. These intracellular conditions allow activation of specialized secretion systems to cause infection. We report a conserved membrane protein, YdeI, and elucidate its role in protection against various intracellular stress conditions. A key aspect of the study of a pathogen's stress response mechanism is its clinical relevance during host-pathogen interaction. Bacterial adaptation to stress plays a vital role in evolution of a pathogen's resistance to therapeutic agents. Therefore, investigation of the role of YdeI is vital for understanding the molecular basis of regulation of Salmonella pathogenesis. In conclusion, our findings may contribute to finding potential targets to develop new intervention strategies for treatment and prevention of enteric diseases.
Collapse
|
50
|
Arunima A, Swain SK, Ray S, Prusty BK, Suar M. RpoS-regulated SEN1538 gene promotes resistance to stress and influences Salmonella enterica serovar enteritidis virulence. Virulence 2020; 11:295-314. [PMID: 32193977 PMCID: PMC7161692 DOI: 10.1080/21505594.2020.1743540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis; wild type (WT)) is a major cause of foodborne illness globally. The ability of this pathogen to survive stress inside and outside the host, such as encountering antimicrobial peptides and heat stress, determines the efficiency of enteric infection. These stressors concertedly trigger virulence factors encoded on Salmonella pathogenicity islands (SPIs). Although RpoS is a well-known central transcriptional stress and virulence regulator, functional information regarding the genes of the regulon is currently limited. Here, we identified SEN1538 as a conserved RpoS-regulated gene belonging to the KGG protein superfamily. We further assessed its role in pathogenic stress responses and virulence. When SEN1538 was deleted (Δ1538), the pathogen showed reduced survival during antimicrobial peptide introduction and heat stress at 55°C compared to WT. The mutant displayed 70% reduced invasion in the HCT116 colon epithelial cell line, 5-fold attenuated phagocytic survival in RAW264.7 cells, and downregulation of several SPI-1 and SPI-2 genes encoding the three secretion system apparatus and effector proteins. Δ1538 also showed decreased virulence compared to WT, demonstrated by its reduced bacterial counts in the feces, mLN, spleen, and cecum of C57BL/6 mice. Comparative transcriptomic analysis of Δ1538 against WT revealed 111 differentially regulated genes, 103 of which were downregulated (fold change ≤ -1.5, P < 0.05). The majority of these genes were in clusters for metabolism, transporters, and pathogenesis, driving pathogenic stress responses and virulence. SEN1538 is, therefore, an important virulence determinant contributing to the resilience of S. Enteritidis to stress factors during infection.
Collapse
Affiliation(s)
- Aryashree Arunima
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Sunil Kumar Swain
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Shilpa Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|