1
|
Jiang H, Zhang W, Xu X, Yu X, Ji S. Decoding the genetic puzzle: Mutations in key driver genes of pancreatic neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189305. [PMID: 40158667 DOI: 10.1016/j.bbcan.2025.189305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Although pancreatic neuroendocrine tumors (PanNETs) are less common than other pancreatic tumors, they show significant differences in clinical behavior, genetics, and treatment responses. The understanding of the molecular pathways of PanNETs has gradually improved with advances in sequencing technology. Mutations in MEN1 (the most frequently varied gene) may result in the deletion of the tumor suppressor menin, affecting gene regulation, DNA repair, and chromatin modification. Changes in ATRX and DAXX involve chromatin remodeling, telomere stability and are associated with the alternative lengthening of telomeres (ALT) pathway and aggressive tumors. VHL mutations emphasize the roles of hypoxia and angiogenesis. Mutations in PTEN, TSC1/TSC2, and AKT1-3 often disrupt the mTOR pathway, complicating the genetic landscape of PanNETs. Understanding these genetic alterations and their impact on the PI3K/AKT/mTOR axis help to investigate new targeted therapies, which in turn can improve patient prognosis. This review aims to clarify PanNET pathogenesis through key mutations and their clinical relevance.
Collapse
Affiliation(s)
- Huanchang Jiang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Pierpoint M, Floyd W, Wisdom AJ, Luo L, Ma Y, Dickson BC, Waitkus MS, Kirsch DG. Loss of function of Atrx recapitulates phenotypes of alternative lengthening of telomeres in a primary mouse model of sarcoma. iScience 2025; 28:112357. [PMID: 40292316 PMCID: PMC12033954 DOI: 10.1016/j.isci.2025.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
The development of a telomere maintenance mechanism is essential for immortalization in human cancer. While most cancers elongate their telomeres by expression of telomerase, 10-15% of human cancers utilize a pathway known as alternative lengthening of telomeres (ALT). ALT is commonly associated with loss-of-function mutations in ATRX. Here, we developed a genetically engineered primary mouse model of sarcoma in CAST/EiJ mice to investigate the extent to which telomerase deficiency and Atrx-inactivation lead to ALT induction. We observed increases in multiple ALT-associated phenotypic indicators in tumors with loss of function mutations of Atrx. Furthermore, we found that loss of Atrx leads to an increase in telomeric instability and telomere sister chromatid exchange. However, Atrx-deficient tumors did not show productive telomere length maintenance in the absence of telomerase. This primary mouse model of sarcoma could facilitate future investigations into the molecular features of ALT in vivo.
Collapse
Affiliation(s)
- Matthew Pierpoint
- Duke Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Warren Floyd
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy J. Wisdom
- Harvard Radiation Oncology Program, Boston, MA 02115, USA
| | - Lixia Luo
- Duke Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yan Ma
- Duke Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brendan C. Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Matthew S. Waitkus
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC 27710, USA
| | - David G. Kirsch
- Duke Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
- Duke Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
3
|
Xu F, Yu D, Guo J, Hu J, Zhao Y, Jiang C, Meng X, Cai J, Zhao Y. From pathology to therapy: A comprehensive review of ATRX mutation related molecular functions and disorders. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108537. [PMID: 40250797 DOI: 10.1016/j.mrrev.2025.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
ATRX (alpha-thalassemia/mental retardation, X-linked), a chromatin remodeler, is one of the most commonly mutated genes in human cancer. The ATRX protein functions as a histone chaperone, facilitating the proper folding and assembly of histone proteins into nucleosome cores. Investigations into its molecular mechanisms have significantly advanced our understanding of its roles in diseases associated with chromosomal instability and defective DNA repair. In this comprehensive review, we delineate ATRX's critical function in maintaining heterochromatin integrity and genomic stability under physiological conditions. We further explore the pathogenesis of ATRX-deficient tumors and ATRX syndrome, systematically evaluate current therapeutic strategies for these conditions, and propose novel perspectives on potential targeted therapies for ATRX-mutated malignancies. This review provides useful resource for regarding the etiology and treatment of ATRX deficiency-related diseases.
Collapse
Affiliation(s)
- Fan Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Jiazheng Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Jingze Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Yunlei Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China; The Sixth Affiliated Hospital of Harbin Medical University, #998 AiYing Street, Harbin, Heilongjiang Province 150023, PR China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China.
| | - Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China.
| |
Collapse
|
4
|
Udroiu I, Marinaccio J, Goffi RS, Micheli E, Sgura A. Specificity and sensitivity of ALT-associated markers in cancer cells. FEBS Lett 2025; 599:989-1005. [PMID: 39743493 DOI: 10.1002/1873-3468.15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
Some tumors employ a mechanism called alternative lengthening of telomeres (ALT) to counteract telomere shortening-induced replicative senescence. Several hallmarks are used to identify cell lines and tumors as ALT-positive. Here, we analyzed a panel of ALT-positive and -negative cancer cell lines to investigate the specificity and sensibility of ALT-associated markers. We found that all the markers showed high sensitivity, indicating that cells not showing ALT markers are not ALT cells. Conversely, specificity varied significantly, i.e., many markers yield false positives. Detection of false positives may have influenced previous estimations of ALT incidence among tumors. Moreover, claims on the 'coexistence' of ALT and telomerase perhaps should be reconsidered. The findings prompt further study into the nature of these markers and their roles as either part of the ALT machinery or as by-products.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università degli Studi "Roma Tre", Italy
| | | | | | - Emanuela Micheli
- Dipartimento di Scienze, Università degli Studi "Roma Tre", Italy
| | - Antonella Sgura
- Dipartimento di Scienze, Università degli Studi "Roma Tre", Italy
| |
Collapse
|
5
|
Mai J, Nazari M, Stamminger T, Schreiner S. Daxx and HIRA go viral - How chromatin remodeling complexes affect DNA virus infection. Tumour Virus Res 2025; 19:200317. [PMID: 40120981 DOI: 10.1016/j.tvr.2025.200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Daxx and HIRA are key proteins in the host response to DNA virus infections. Daxx is involved in apoptosis, transcription regulation, and stress responses. During DNA virus infections, Daxx helps modulate the immune response and viral progression. Viruses like adenoviruses and herpesviruses can exploit Daxx to evade immune detection, either by targeting it for degradation or inhibiting its function. Daxx also interacts with chromatin to regulate transcription, which viruses can manipulate to enhance their own gene expression and replication. HIRA is a histone chaperone and reported to be essential for chromatin assembly and gene regulation. It plays a critical role in maintaining chromatin structure and modulating gene accessibility. During DNA virus infection, HIRA influences chromatin remodeling, affecting both viral and host DNA accessibility, which impacts viral replication and gene expression. Additionally, the histone variant H3.3 is crucial for maintaining active chromatin states. It is incorporated into chromatin independently of DNA replication and is associated with active gene regions. During viral infections, H3.3 dynamics can be altered, affecting viral genome accessibility and replication efficiency. Overall, Daxx and HIRA are integral to orchestrating viral infection programs, maintaining latency and/or persistence, and influencing virus-induced transformation by modulating chromatin dynamics and host immune responses, making them significant targets for therapeutic strategies once fully understood. Here, we summarize various DNA viruses and their crosstalk with Daxx and HIRA.
Collapse
Affiliation(s)
- Julia Mai
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Masih Nazari
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Sabrina Schreiner
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Laemmerer A, Lehmann C, Mayr L, Bruckner K, Gabler L, Senfter D, Meyer P, Balber T, Pirker C, Jaunecker CN, Kirchhofer D, Vician P, Griesser M, Spiegl-Kreinecker S, Schmook MT, Traub-Weidinger T, Kuess P, Eckert F, Federico A, Madlener S, Stepien N, Robl B, Baumgartner A, Hainfellner JA, Dieckmann K, Dorfer C, Roessler K, Corsini NS, Holzmann K, Schmidt WM, Peyrl A, Azizi AA, Haberler C, Beck A, Pfister SM, Schueler J, Lötsch-Gojo D, Knoblich JA, Berger W, Gojo J. Alternative lengthening of telomere-based immortalization renders H3G34R-mutant diffuse hemispheric glioma hypersensitive to PARP inhibitor combination regimens. Neuro Oncol 2025; 27:811-827. [PMID: 39556024 PMCID: PMC11889718 DOI: 10.1093/neuonc/noae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Diffuse hemispheric glioma, H3 G34R/V-mutant (DHG-H3G34) is characterized by poor prognosis and lack of effective treatment options. DHG-H3G34R further harbor deactivation of alpha-thalassemia/mental retardation syndrome X-linked protein (ATRX; DHG-H3G34R_ATRX) suggesting a unique interaction of these 2 oncogenic alterations. In this study, we dissect their cell biological interplay, investigate the impact on telomere stabilization, and consequently validate a targeted therapy approach. METHODS We characterized patient-derived primary pediatric high-grade glioma (pHGG) models for telomere-maintenance mechanisms, DNA damage stress (including protein expression, pH2AX/Rad51 foci, cell-cycle arrest) and their sensitivity towards poly-ADP ribose polymerase inhibitor (PARPi) combinations. Human induced pluripotent stem cells (iPSCs) were used for modeling the disease. The anticancer activity of PARPi combinations in vivo was studied in Chorioallantoic Membrane (CAM) and orthotopic in vivo experiments. Finally, we treated a DHG-H3G34R_ATRX patient with PARPi combination therapy. RESULTS We elaborate that alternative lengthening of telomeres (ALT) is a key characteristic of DHG-H3G34R_ATRX. A dominant cooperative effect between H3G34R and ATRX loss in ALT activation also became apparent in iPSCs, which endogenously exert telomerase activity. In both, patient-derived DHG-H3G34R_ATRX models and H3G34R+/ATRX- iPSCs, the ALT-phenotype was associated with increased basal DNA damage stress, mediating synergistic susceptibility towards PARPi (talazoparib, niraparib) combinations with topoisomerase-I inhibitors (topotecan, irinotecan). In a first-of-its-kind case, treatment of a DHG-H3G34R_ATRX patient with the brain-penetrant PARP inhibitor niraparib and topotecan resulted in significant tumor reduction. CONCLUSIONS Our preclinical and clinical data strongly support the further development of PARPi together with DNA damage stress-inducing treatment regimens for DHG-H3G34R_ATRX.
Collapse
Affiliation(s)
- Anna Laemmerer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian Lehmann
- Vienna BioCenter (VBC), PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katharina Bruckner
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Philipp Meyer
- Charles River Laboratories Germany GmbH, Freiburg, Germany
| | - Theresa Balber
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Carola N Jaunecker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Michelle Griesser
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Maria T Schmook
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Aniello Federico
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Bernhard Robl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Alicia Baumgartner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Karl Roessler
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nina S Corsini
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Klaus Holzmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Schmidt
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Alexander Beck
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan M Pfister
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
| | - Julia Schueler
- Charles River Laboratories Germany GmbH, Freiburg, Germany
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jürgen A Knoblich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Heaphy CM, Patel S, Smith K, Wondisford AR, Lynskey ML, O'Sullivan RJ, Fuhrer K, Han X, Seethala RR, Liu TC, Cao D, Ertunc O, Zheng Q, Stojanova M, Zureikat AH, Paniccia A, Lee K, Ongchin MC, Pingpank JF, Zeh HJ, Hogg ME, Geller D, Marsh JW, Brand RE, Chennat JS, Das R, Fasanella KE, Gabbert C, Khalid A, McGrath K, Lennon AM, Sarkaria S, Singh H, Slivka A, Hsu D, Zhang JY, Nacev BA, Nikiforova MN, Wald AI, Vaddi N, De Marzo AM, Singhi AH, Bell PD, Singhi AD. Detection of Alternative Lengthening of Telomeres via Chromogenic In Situ Hybridization for the Prognostication of PanNETs and Other Neoplasms. Mod Pathol 2025; 38:100651. [PMID: 39522643 DOI: 10.1016/j.modpat.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Molecular studies have shown alternative lengthening to telomeres (ALT) to be an important prognostic biomarker of shorter relapse-free survival (RFS) for patients with pancreatic neuroendocrine tumors (PanNETs) and other neoplasms. However, the preferred method of detecting ALT in tissue is by fluorescence in situ hybridization (FISH), which has several clinical limitations. These issues necessitate the creation of a chromogenic ALT assay that can be easily implemented into routine practice. A chromogenic in situ hybridization (CISH) assay was developed using genetically modified osteosarcoma cell lines, 20 normal pancreata, 20 ALT-positive PanNETs, and 20 ALT-negative PanNETs. Thereafter, it was validated on a multiinstitutional cohort of 360 surgically resected PanNETs and correlated with multiple clinicopathologic features, RFS, and FISH results. Separately, 109 leiomyosarcomas (LMS) were evaluated by both CISH and FISH, and, similarly, the prognostic significance of ALT status was assessed. Upon optimization, ALT-CISH was identified in 112 of 360 (31%) primary PanNETs and was 100% concordant with FISH testing. ALT correlated with several adverse prognostic findings and distant metastasis (all P < .004). The 5-year RFS for patients with ALT-positive PanNETs was 35% as compared with 94% for ALT-negative PanNETs. By multivariate analysis, ALT was an independent prognostic factor for shorter RFS. Similarly, ALT was associated with shorter RFS in patients with LMS and, analogous to PanNETs, a negative, independent prognostic factor. ALT-CISH was developed and validated in not only PanNETs but also sarcomas, specifically LMS. CISH testing has multiple advantages over FISH that facilitate its widespread clinical use in the detection of ALT and prognostication of patients with diverse neoplasms.
Collapse
Affiliation(s)
- Christopher M Heaphy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
| | - Simmi Patel
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Katelyn Smith
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michelle L Lynskey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kimberly Fuhrer
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Xiaoli Han
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Raja R Seethala
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Onur Ertunc
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marija Stojanova
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Melanie C Ongchin
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James F Pingpank
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Herbert J Zeh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melissa E Hogg
- Department of Surgery, NorthShore University Health System, Evanston, Illinois
| | - David Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James Wallis Marsh
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jennifer S Chennat
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rohit Das
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Charles Gabbert
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Asif Khalid
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anne Marie Lennon
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Savreet Sarkaria
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Harkirat Singh
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Dennis Hsu
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Janie Y Zhang
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Benjamin A Nacev
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Abigail I Wald
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Neel Vaddi
- Drexel University, Philadelphia, Pennsylvania
| | - Angelo M De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anju H Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Phoenix D Bell
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
Chang S, Tan J, Bao R, Zhang Y, Tong J, Jia T, Liu J, Dan J, Jia S. Multiple functions of the ALT favorite helicase, BLM. Cell Biosci 2025; 15:31. [PMID: 40025590 PMCID: PMC11871798 DOI: 10.1186/s13578-025-01372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/23/2025] [Indexed: 03/04/2025] Open
Abstract
Eukaryotic somatic cells undergo continuous telomere shortening because of end-replication problems. Approximately 10%~15% of human cancers rely on alternative lengthening of telomeres (ALT) to overcome telomere shortening. ALT cells are characterized by persistent telomere DNA replication stress and rely on recombination-based DNA repair pathways for telomere elongation. The Bloom syndrome (BLM) helicase is a member of the RecQ family, which has been implicated as a key regulator of the ALT mechanism as it is required for either telomere length maintenance or telomere clustering in ALT-associated promyelocytic leukemia bodies (APBs). Here, we summarize recent evidence detailing the role of BLM in the activation and maintenance of ALT. We propose that the role of BLM-dependent recombination and its interacting proteins remains a crucial question for future research in dissecting the molecular mechanisms of ALT.
Collapse
Affiliation(s)
- Shun Chang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming, Yunnan, 650500, China.
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, 650032, China.
| | - Jiang Tan
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Ren Bao
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Yanduo Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming, Yunnan, 650500, China
| | - Jinkai Tong
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming, Yunnan, 650500, China
| | - Tongxin Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming, Yunnan, 650500, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming, Yunnan, 650500, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming, Yunnan, 650500, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming, Yunnan, 650500, China.
| |
Collapse
|
9
|
Yu X, Zhang H. Biomolecular Condensates in Telomere Maintenance of ALT Cancer Cells. J Mol Biol 2025; 437:168951. [PMID: 39826712 DOI: 10.1016/j.jmb.2025.168951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent mechanism that utilizes homology-directed repair (HDR) to sustain telomere length in specific cancers. Biomolecular condensates, such as ALT-associated promyelocytic leukemia nuclear bodies (APBs), have emerged as critical players in the ALT pathway, supporting telomere maintenance in ALT-positive cells. These condensates bring together DNA repair proteins, telomeric repeats, and other regulatory elements. By regulating replication stress and promoting DNA synthesis, ALT condensates create an environment conducive to HDR-based telomere extension. This review explores recent advancements in ALT, focusing on understanding the role of biomolecular condensates in ALT and how they impact telomere dynamics and stability.
Collapse
Affiliation(s)
- Xiaoyang Yu
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Huaiying Zhang
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Levesque MG, Picketts DJ. It Takes a Village of Chromatin Remodelers to Regulate rDNA Expression. Int J Mol Sci 2025; 26:1772. [PMID: 40004235 PMCID: PMC11855044 DOI: 10.3390/ijms26041772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Ribosome biogenesis is one of the most fundamental and energetically demanding cellular processes. In humans, the ribosomal DNA (rDNA) repeats span a large region of DNA and comprise 200 to 600 copies of a ~43 kb unit spread over five different chromosomes. Control over ribosome biogenesis is closely tied to the regulation of the chromatin environment of this large genomic region. The proportion of rDNA loci which are active or silent is altered depending on the proliferative or metabolic state of the cell. Repeat silencing is driven by epigenetic changes culminating in a repressive heterochromatin environment. One group of proteins facilitating these epigenetic changes in response to growth or metabolic demands are ATP-dependent chromatin remodeling protein complexes that use ATP hydrolysis to reposition nucleosomes. Indeed, some chromatin remodelers are known to have indispensable roles in regulating the chromatin environment of rDNA. In this review, we highlight these proteins and their complexes and describe their mechanistic roles at rDNA. We also introduce the developmental disorders arising from the dysfunction of these proteins and discuss how the consequent dysregulation of rDNA loci may be reflected in the phenotypes observed.
Collapse
Affiliation(s)
- Mathieu G. Levesque
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
Goncalves T, Cunniffe S, Ma T, Mattis N, Rose A, Kent T, Mole D, Geiller HB, van Bijsterveldt L, Humphrey T, Hammond E, Gibbons R, Clynes D, Rose A. Elevated reactive oxygen species can drive the alternative lengthening of telomeres pathway in ATRX-null cancers. Nucleic Acids Res 2025; 53:gkaf061. [PMID: 39921567 PMCID: PMC11806356 DOI: 10.1093/nar/gkaf061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
The alternative lengthening of telomeres (ALT) pathway is a telomerase-independent mechanism for immortalization in cancer cells and is commonly activated in low-grade and high-grade glioma, as well as osteosarcoma. The ALT pathway can be activated under various conditions and has often been shown to include mutational loss of ATRX. However, this is insufficient in isolation and so other cellular event must also be implicated. It has been shown that excessive accumulation of DNA:RNA hybrid structures (R-loops) and/or formation of DNA-protein crosslinks (DPCs) can be other important driving factors. The underlying cellular events leading to R-loop and DPC formation in ALT cancer cells to date remain unclear. Here, we demonstrate that excessive cellular reactive oxygen species (ROS) is an important causative factor in the evolution of ALT-telomere maintenance in ATRX-deficient glioma. We identified three sources of elevated ROS in ALT-positive gliomas: co-mutation of SETD2, downregulation of DRG2, and hypoxic tumour microenvironment. We demonstrate that elevated ROS leads to accumulation of R-loops and, crucially, resolution of R-loops by the enzyme RNase H1 prevents ALT pathway activity in cells exposed to elevated ROS. Further, we found a possible causal link between the formation of R-loops and the accumulation of DPCs, in particular, formation of TOP1 complexes covalently linked to DNA (Top1cc). We also demonstrate that elevation of ROS can trigger over-activity of the ALT pathway in osteosarcoma and glioma cell lines, resulting in excessive DNA damage and cell death. This work presents important mechanistic insights into the endogenous origin of excessive R-loops and DPCs in ALT-positive cancers, as well as highlighting potential novel therapeutic approaches in these difficult-to-treat cancer types.
Collapse
Affiliation(s)
- Tomas Goncalves
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Siobhan Cunniffe
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Tiffany S Ma
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Natalie Mattis
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Andrew W Rose
- Department of Physics, Faculty of Natural Sciences, Imperial College, London, SW7 2BW, UK
| | - Thomas Kent
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - David R Mole
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | | | - Ester M Hammond
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - David Clynes
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Anna M Rose
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
12
|
Azeroglu B, Khurana S, Wang SC, Tricola GM, Sharma S, Jubelin C, Cortolezzis Y, Pegoraro G, Miller KM, Stracker TH, Lazzerini Denchi E. Identification of modulators of the ALT pathway through a native FISH-based optical screen. Cell Rep 2025; 44:115114. [PMID: 39729394 PMCID: PMC11844024 DOI: 10.1016/j.celrep.2024.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators. Here, we present the validation of factors that promote ALT, such as the nucleosome-remodeling factor CHD4 and the chromatin reader SGF29, as well as factors that suppress ALT, including the RNA helicases DExD-box helicase 39A/B (DDX39A/B), the replication factor TIMELESS, and components of the chromatin assembly factor CAF1. Our data indicate that defects in histone deposition significantly contribute to ALT-associated phenotypes. Based on these findings, we demonstrate that pharmacological treatments can be employed to either exacerbate or suppress ALT-associated phenotypes.
Collapse
Affiliation(s)
- Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simran Khurana
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shih-Chun Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gianna M Tricola
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shalu Sharma
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Camille Jubelin
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ylenia Cortolezzis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Department of Medicine, Università degli Studi di Udine, 33100 Udine, Italy
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Travis H Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
14
|
Dubois JC, Bonnell E, Filion A, Frion J, Zimmer S, Riaz Khan M, Teplitz GM, Casimir L, Méthot É, Marois I, Idrissou M, Jacques PÉ, Wellinger RJ, Maréchal A. The single-stranded DNA-binding factor SUB1/PC4 alleviates replication stress at telomeres and is a vulnerability of ALT cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2419712122. [PMID: 39772744 PMCID: PMC11745411 DOI: 10.1073/pnas.2419712122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies. ALT cells also have high telomeric replication stress (RS) enhanced by fork-stalling structures (R-loops and G4s) and altered chromatin states. In ALT cells, telomeric RS promotes telomere elongation but above a certain threshold becomes detrimental to cell survival. Manipulating RS at telomeres has thus been proposed as a therapeutic strategy against ALT cancers. Through analysis of genome-wide CRISPR fitness screens, we identified ALT-specific vulnerabilities and describe here our characterization of the roles of SUB1, a ssDNA-binding protein, in telomere stability. SUB1 depletion increases RS at ALT telomeres, profoundly impairing ALT cell growth without impacting telomerase-positive cells. During RS, SUB1 is recruited to stalled forks and ALT telomeres via its ssDNA-binding domain. This recruitment is potentiated by RPA depletion, suggesting that these factors may compete for ssDNA. The viability of ALT cells and their resilience toward RS also requires ssDNA binding by SUB1. SUB1 depletion accelerates cell death induced by FANCM depletion, triggering unsustainable levels of telomeric damage in ALT cells. Finally, combining SUB1 depletion with RS-inducing drugs rapidly induces replication catastrophe in ALT cells. Altogether, our work identifies SUB1 as an ALT susceptibility with roles in the mitigation of RS at ALT telomeres and suggests advanced therapeutic strategies for a host of still poorly managed cancers.
Collapse
Affiliation(s)
- Jean-Christophe Dubois
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Erin Bonnell
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Amélie Filion
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Julie Frion
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Samuel Zimmer
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Muhammad Riaz Khan
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Gabriela M. Teplitz
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Lisa Casimir
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Élie Méthot
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Isabelle Marois
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Mouhamed Idrissou
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Raymund J. Wellinger
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
| |
Collapse
|
15
|
Abstract
In recent years, significant advances have been made in understanding the intricate details of the mechanisms underlying alternative lengthening of telomeres (ALT). Studies of a specialized DNA strand break repair mechanism, known as break-induced replication, and the advent of telomere-specific DNA damaging strategies and proteomic methodologies to profile the ribonucleoprotein composition of telomeres enabled the discovery of networks of proteins that coordinate the stepwise homology-directed DNA repair and DNA synthesis processes of ALT. These networks couple mediators of homologous recombination, DNA template-switching, long-range template-directed DNA synthesis, and DNA strand resolution with SUMO-dependent liquid condensate formation to create discrete nuclear bodies where telomere extension occurs. This review will discuss the recent findings of how these networks may cooperate to mediate telomere extension by the ALT mechanism and their impact on telomere function and integrity in ALT cancer cells.
Collapse
Affiliation(s)
- Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Azzalin CM. TERRA and the alternative lengthening of telomeres: a dangerous affair. FEBS Lett 2025; 599:157-165. [PMID: 38445359 PMCID: PMC11771730 DOI: 10.1002/1873-3468.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Eukaryotic telomeres are transcribed into the long noncoding RNA TERRA. A fraction of TERRA remains associated with telomeres by forming RNA:DNA hybrids dubbed telR-loops. TERRA and telR-loops are essential to promote telomere elongation in human cancer cells that maintain telomeres through a homology-directed repair pathway known as alternative lengthening of telomeres or ALT. However, TERRA and telR-loops compromise telomere integrity and cell viability if their levels are not finely tuned. The study of telomere transcription in ALT cells will enormously expand our understanding of the ALT mechanism and of how genome integrity is maintained. Moreover, telomere transcription, TERRA and telR-loops are likely to become exceptionally suited targets for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Claus M. Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM)Faculdade de Medicina da Universidade de LisboaPortugal
| |
Collapse
|
17
|
Goncalves T, Bhatnagar H, Cunniffe S, Gibbons RJ, Rose AM, Clynes D. Phosphorylation of 'SDT-like' motifs in ATRX mediates its interaction with the MRN complex and is important for ALT pathway suppression. Open Biol 2024; 14:240205. [PMID: 39657822 PMCID: PMC11631451 DOI: 10.1098/rsob.240205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Approximately 10-15% of human cancers are telomerase-negative and maintain their telomeres through a recombination-based process known as the alternative lengthening of telomeres (ALT) pathway. Loss of the alpha-thalassemia/mental retardation, X-linked (ATRX) chromatin remodeller is a common event in ALT-positive cancers, but is generally insufficient to drive ALT induction in isolation. We previously demonstrated that ATRX binds to the MRN complex, which is also known to be important in the ALT pathway, but the molecular basis of this interaction remained elusive. Here, we demonstrate that the interaction between ATRX and MRN is dependent on the N-terminal forkhead-associated and BRCA1 C-terminal domains of NBS1, analogous to the previously reported NBS1-MDC1 interaction. A number of conserved 'SDT-like' motifs (serine and threonine residues with aspartic/glutamic acid residues at proximal positions) in the central unstructured region of ATRX were found to be crucial for the ATRX-MRN interaction. Furthermore, treatment with a casein kinase 2 inhibitor prevented the ability of ATRX to bind MRN, suggesting that phosphorylation of these residues by casein kinase 2 is also important for the interaction. Finally, we show that a functional ATRX-MRN interaction is important for the ability of ATRX to prevent induction of ALT hallmarks in the presence of chemotherapeutically induced DNA-protein crosslinks, and might also have implications for individuals with ATR-X syndrome.
Collapse
Affiliation(s)
- Tomas Goncalves
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, UK
- Department of Paediatrics, University of Oxford, OxfordOX3 9DU, UK
| | | | | | - Richard J. Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, UK
| | - Anna M. Rose
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, UK
- Department of Paediatrics, University of Oxford, OxfordOX3 9DU, UK
| | - David Clynes
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, UK
| |
Collapse
|
18
|
Salgado S, Abreu PL, Moleirinho B, Guedes DS, Larcombe L, Azzalin CM. Human PC4 supports telomere stability and viability in cells utilizing the alternative lengthening of telomeres mechanism. EMBO Rep 2024; 25:5294-5315. [PMID: 39468351 PMCID: PMC11624207 DOI: 10.1038/s44319-024-00295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Cancer cells with an activated Alternative Lengthening of Telomeres (ALT) mechanism elongate telomeres via homology-directed repair. Sustained telomeric replication stress is an essential trigger of ALT activity; however, it can lead to cell death if not properly restricted. By analyzing publicly available data from genome-wide CRISPR KO screenings, we have identified the multifunctional protein PC4 as a novel factor essential for ALT cell viability. Depletion of PC4 results in rapid ALT cell death, while telomerase-positive cells show minimal effects. PC4 depletion induces replication stress and telomere fragility primarily in ALT cells, and increases ALT activity. PC4 binds to telomeric DNA in cells, and its binding can be enhanced by telomeric replication stress. Finally, a mutant PC4 with partly impaired single stranded DNA binding activity is capable to localize to telomeres and suppress ALT activity and telomeric replication stress. We propose that PC4 supports ALT cell viability, at least partly, by averting telomere dysfunction. Further studies of PC4 interactions at ALT telomeres may hold promise for innovative therapies to eradicate ALT cancers.
Collapse
Affiliation(s)
- Sara Salgado
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Patricia L Abreu
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Beatriz Moleirinho
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Daniela S Guedes
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Lee Larcombe
- Apexomic, Stevenage Bioscience Catalyst, Hertfordshire, SG1 2FX, UK
- TessellateBio Ltd, Stevenage Bioscience Catalyst, Hertfordshire, SG1 2FX, UK
| | - Claus M Azzalin
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal.
- Faculty of Medicine, University of Lisbon, 1649-028, Lisbon, Portugal.
| |
Collapse
|
19
|
Azeroglu B, Khurana S, Wang SC, Tricola GM, Sharma S, Jubelin C, Cortolezzis Y, Pegoraro G, Miller KM, Stracker TH, Denchi EL. Identification of Novel Modulators of the ALT Pathway Through a Native FISH-Based Optical Screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623791. [PMID: 39605432 PMCID: PMC11601530 DOI: 10.1101/2024.11.15.623791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A significant portion of human cancers utilize a recombination-based pathway, Alternative Lengthening of Telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (Telomeric ALT In situ Localization Screen), to identify genes that either promote or inhibit ALT activity. Screening over 1000 genes implicated in DNA transactions, TAILS revealed both well-established and novel ALT modulators. We have identified new factors that promote ALT, such as the nucleosome-remodeling factor CHD4 and the chromatin reader SGF29, as well as factors that suppress ALT, including the RNA helicases DDX39A/B, the replication factor TIMELESS, and components of the chromatin assembly factor CAF1. Our data indicate that defects in histone deposition significantly contribute to ALT-associated phenotypes. Based on these findings, we demonstrate that pharmacological treatments can be employed to either exacerbate or suppress ALT-associated phenotypes.
Collapse
Affiliation(s)
- Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Simran Khurana
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shih-Chun Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Gianna M. Tricola
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shalu Sharma
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camille Jubelin
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ylenia Cortolezzis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Wang B, Kou H, Wang Y, Zhang Q, Jiang D, Wang J, Zhao Z, Zhou Y, Zhang M, Sui L, Zhao M, Liu Y, Liu Y, Shi L, Wang F. LAP2α orchestrates alternative lengthening of telomeres suppression through telomeric heterochromatin regulation with HDAC1: unveiling a potential therapeutic target. Cell Death Dis 2024; 15:761. [PMID: 39426946 PMCID: PMC11490576 DOI: 10.1038/s41419-024-07116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
In response to the challenge of telomere attrition during DNA replication, cancer cells predominantly employ telomerase or, in 10-15% of cases, the alternative lengthening of telomeres (ALT). The intricate details of ALT, however, remain elusive. In this study, we unveil that the knockdown of lamina-associated polypeptide 2 alpha (LAP2α) in ALT cells results in telomere dysfunction, triggering a notable increase in ALT-associated hallmarks, including high frequencies of PML bodies (APBs), C-rich extrachromosomal circles (C-circles), and telomere sister chromatid exchange (T-SCE). Furthermore, LAP2α emerges as a crucial player in break-induced telomere replication for telomerase-positive cells following telomeric double-strand breaks. Mechanistically, our investigation suggests that LAP2α may influence the regulation of the heterochromatic state of telomeres, thereby affecting telomeric accessibility. In line with our findings, LAP2α expression is markedly reduced in ALT-positive osteosarcoma. And the use of methotrexate (MTX) can restore the heterochromatin state altered by LAP2α depletion. This is evidenced by a significant inhibition of tumor proliferation in ALT-positive patient-derived xenograft (PDX) mouse models. These results indicate the important role of LAP2α in regulating ALT activity and offer insights into the interplay between lamina-associated proteins and telomeres in maintaining telomere length. Importantly, our findings may help identify a more appropriate target population for the osteosarcoma therapeutic drug, MTX.
Collapse
Grants
- 32170762 National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by the grant from the National Natural Science Foundation of China (No. 32170762, 3217050514, 31771520, 31471293, 91649102, 92149302, 81772243, 81771135, 81970958, 82303619), Tianjin Health Research Project (No. 19YFZCSY00600), Science and Technology Project of Tianjin Municipal Health Committee (No. TJWJ2022XK018, TJWJ2022QN030) and the Natural Science Foundation of Tianjin City (No. 19JCJQJC63500)
Collapse
Affiliation(s)
- Bing Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
- Department of Hematology, Tianjin First Central Hospital, 300192, Tianjin, P. R. China
| | - Haomeng Kou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Yuwen Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Qi Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, P. R. China
| | - Duo Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Juan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Ziqin Zhao
- Department of Pathology, Tianjin Hospital, 300221, Tianjin, P. R. China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Miaomiao Zhang
- Department of Pathology, Jining No.1 People's Hospital, 272000, Jining, Shandong, P. R. China
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, 300192, Tianjin, P. R. China
| | - Yancheng Liu
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, 300221, Tianjin, P. R. China.
| | - Yang Liu
- Department of Radiobiology, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, P. R. China.
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P. R. China.
| | - Feng Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China.
| |
Collapse
|
21
|
Qiu Y, Man C, Zhu L, Zhang S, Wang X, Gong D, Fan Y. R-loops' m6A modification and its roles in cancers. Mol Cancer 2024; 23:232. [PMID: 39425197 PMCID: PMC11487993 DOI: 10.1186/s12943-024-02148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
R-loops are three-stranded nucleic acid structures composed of an RNA-DNA hybrid and a displaced DNA strand. They are widespread and play crucial roles in regulating gene expression, DNA replication, and DNA and histone modifications. However, their regulatory mechanisms remain unclear. As R-loop detection technology advances, changes in R-loop levels have been observed in cancer models, often associated with transcription-replication conflicts and genomic instability. N6-methyladenosine (m6A) is an RNA epigenetic modification that regulates gene expression by affecting RNA localization, splicing, translation, and degradation. Upon reviewing the literature, we found that R-loops with m6A modifications are implicated in tumor development and progression. This article summarizes the molecular mechanisms and detection methods of R-loops and m6A modifications in gene regulation, and reviews recent research on m6A-modified R-loops in oncology. Our goal is to provide new insights into the origins of genomic instability in cancer and potential strategies for targeted therapy.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Luyu Zhu
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China.
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| |
Collapse
|
22
|
Yuan K, Tang Y, Ding Z, Peng L, Zeng J, Wu H, Yi Q. Mutant ATRX: pathogenesis of ATRX syndrome and cancer. Front Mol Biosci 2024; 11:1434398. [PMID: 39479502 PMCID: PMC11521912 DOI: 10.3389/fmolb.2024.1434398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
The transcriptional regulator ATRX, a genetic factor, is associated with a range of disabilities, including intellectual, hematopoietic, skeletal, facial, and urogenital disabilities. ATRX mutations substantially contribute to the pathogenesis of ATRX syndrome and are frequently detected in gliomas and many other cancers. These mutations disrupt the organization, subcellular localization, and transcriptional activity of ATRX, leading to chromosomal instability and affecting interactions with key regulatory proteins such as DAXX, EZH2, and TERRA. ATRX also functions as a transcriptional regulator involved in the pathogenesis of neuronal disorders and various diseases. In conclusion, ATRX is a central protein whose abnormalities lead to multiple diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaying Wu
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
23
|
McMurry HS, Rivero JD, Chen EY, Kardosh A, Lopez CD, Pegna GJ. Gastroenteropancreatic neuroendocrine tumors: Epigenetic landscape and clinical implications. Curr Probl Cancer 2024; 52:101131. [PMID: 39173542 DOI: 10.1016/j.currproblcancer.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 08/24/2024]
Abstract
Neuroendocrine tumors (NETs) are a rare, heterogenous group of neoplasms arising from cells of the neuroendocrine system. Amongst solid tumor malignancies, NETs are notable for overall genetic stability and recent data supports the notion that epigenetic changes may drive NET pathogenesis. In this review, major epigenetic mechanisms of NET pathogenesis are reviewed, including changes in DNA methylation, histone modification, chromatin remodeling, and microRNA. Prognostic implications of the above are discussed, as well as the expanding diagnostic utility of epigenetic markers in NETs. Lastly, preclinical and clinical evaluations of epigenetically targeted therapies in NETs and are reviewed, with a focus on future directions in therapeutic advancement.
Collapse
Affiliation(s)
- Hannah S McMurry
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emerson Y Chen
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Adel Kardosh
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Charles D Lopez
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Guillaume J Pegna
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
24
|
Froney MM, Cook CR, Cadiz AM, Flinter KA, Ledeboer ST, Chan B, Burris LE, Hardy BP, Pearce KH, Wardell AC, Golitz BT, Jarstfer MB, Pattenden SG. A First-in-Class High-Throughput Screen to Discover Modulators of the Alternative Lengthening of Telomeres (ALT) Pathway. ACS Pharmacol Transl Sci 2024; 7:2799-2819. [PMID: 39296266 PMCID: PMC11406699 DOI: 10.1021/acsptsci.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Telomeres are a protective cap that prevents chromosome ends from being recognized as double-stranded breaks. In somatic cells, telomeres shorten with each cell division due to the end replication problem, which eventually leads to senescence, a checkpoint proposed to prevent uncontrolled cell growth. Tumor cells avoid telomere shortening by activating one of two telomere maintenance mechanisms (TMMs): telomerase reactivation or alternative lengthening of telomeres (ALT). TMMs are a viable target for cancer treatment as they are not active in normal, differentiated cells. Whereas there is a telomerase inhibitor currently undergoing clinical trials, there are no known ALT inhibitors in development, partially because the complex ALT pathway is still poorly understood. For cancers such as neuroblastoma and osteosarcoma, the ALT-positive status is associated with an aggressive phenotype and few therapeutic options. Thus, methods that characterize the key biological pathways driving ALT will provide important mechanistic insight. We have developed a first-in-class phenotypic high-throughput screen to identify small-molecule inhibitors of ALT. Our screen measures relative C-circle level, an ALT-specific biomarker, to detect changes in ALT activity induced by compound treatment. To investigate epigenetic mechanisms that contribute to ALT, we screened osteosarcoma and neuroblastoma cells against an epigenetic-targeted compound library. Hits included compounds that target chromatin-regulating proteins and DNA damage repair pathways. Overall, the high-throughput C-circle assay will help expand the repertoire of potential ALT-specific therapeutic targets and increase our understanding of ALT biology.
Collapse
Affiliation(s)
- Merrill M Froney
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christian R Cook
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alyssa M Cadiz
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Katherine A Flinter
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sara T Ledeboer
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bianca Chan
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren E Burris
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian P Hardy
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Medicinal Chemistry, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Medicinal Chemistry, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexis C Wardell
- UNC Lineberger Comprehensive Cancer Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian T Golitz
- UNC Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael B Jarstfer
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha G Pattenden
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
25
|
Arakawa Y, Elloumi F, Varma S, Khandagale P, Jo U, Kumar S, Roper N, Reinhold WC, Robey RW, Takebe N, Gottesman MM, Thomas CJ, Boeva V, Berruti A, Abate A, Tamburello M, Sigala S, Hantel C, Weigand I, Wierman ME, Kiseljak-Vassiliades K, Del Rivero J, Pommier Y. A Database Tool Integrating Genomic and Pharmacologic Data from Adrenocortical Carcinoma Cell Lines, PDX, and Patient Samples. CANCER RESEARCH COMMUNICATIONS 2024; 4:2384-2398. [PMID: 39162009 PMCID: PMC11389377 DOI: 10.1158/2767-9764.crc-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare and highly heterogeneous disease with a notably poor prognosis due to significant challenges in diagnosis and treatment. Emphasizing on the importance of precision medicine, there is an increasing need for comprehensive genomic resources alongside well-developed experimental models to devise personalized therapeutic strategies. We present ACC_CellMinerCDB, a substantive genomic and drug sensitivity database (available at https://discover.nci.nih.gov/acc_cellminercdb) comprising ACC cell lines, patient-derived xenografts, surgical samples, and responses to more than 2,400 drugs examined by the NCI and National Center for Advancing Translational Sciences. This database exposes shared genomic pathways among ACC cell lines and surgical samples, thus authenticating the cell lines as research models. It also allows exploration of pertinent treatment markers such as MDR-1, SOAT1, MGMT, MMR, and SLFN11 and introduces the potential to repurpose agents like temozolomide for ACC therapy. ACC_CellMinerCDB provides the foundation for exploring larger preclinical ACC models. SIGNIFICANCE ACC_CellMinerCDB, a comprehensive database of cell lines, patient-derived xenografts, surgical samples, and drug responses, reveals shared genomic pathways and treatment-relevant markers in ACC. This resource offers insights into potential therapeutic targets and the opportunity to repurpose existing drugs for ACC therapy.
Collapse
Affiliation(s)
- Yasuhiro Arakawa
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Prashant Khandagale
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ukhyun Jo
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert W. Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Naoko Takebe
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Valentina Boeva
- Department of Computer Science, Institute for Machine Learning, ETH Zurich, Zurich, Switzerland
| | - Alfredo Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, and University of Zurich, Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Isabel Weigand
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Margaret E. Wierman
- Department of Medicine-Endocrinology/Metabolism/Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Katja Kiseljak-Vassiliades
- Department of Medicine-Endocrinology/Metabolism/Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Walter RM, Majumder K, Kalejta RF. ATRX restricts Human Cytomegalovirus (HCMV) viral DNA replication through heterochromatinization and minimizes unpackaged viral genomes. PLoS Pathog 2024; 20:e1012516. [PMID: 39236084 PMCID: PMC11407672 DOI: 10.1371/journal.ppat.1012516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/17/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
ATRX limits the accumulation of human cytomegalovirus (HCMV) Immediate Early (IE) proteins at the start of productive, lytic infections, and thus is a part of the cell-intrinsic defenses against infecting viruses. ATRX is a chromatin remodeler and a component of a histone chaperone complex. Therefore, we hypothesized ATRX would inhibit the transcription of HCMV IE genes by increasing viral genome heterochromatinization and decreasing its accessibility. To test this hypothesis, we quantitated viral transcription and genome structure in cells replete with or depleted of ATRX. We found ATRX did indeed limit viral IE transcription, increase viral genome chromatinization, and decrease viral genome accessibility. The inhibitory effects of ATRX extended to Early (E) and Late (L) viral protein accumulation, viral DNA replication, and progeny virion output. However, we found the negative effects of ATRX on HCMV viral DNA replication were independent of its effects on viral IE and E protein accumulation but correlated with viral genome heterochromatinization. Interestingly, the increased number of viral genomes synthesized in ATRX-depleted cells were not efficiently packaged, indicating the ATRX-mediated restriction to HCMV viral DNA replication may benefit productive infection by increasing viral fitness. Our work mechanistically describes the antiviral function of ATRX and introduces a novel, pro-viral role for this protein, perhaps explaining why, unlike during infections with other herpesviruses, it is not directly targeted by a viral countermeasure in HCMV infected cells.
Collapse
Affiliation(s)
- Ryan M. Walter
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert F. Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
27
|
Rodrigues J, Alfieri R, Bione S, Azzalin CM. TERRA ONTseq: a long-read-based sequencing pipeline to study the human telomeric transcriptome. RNA (NEW YORK, N.Y.) 2024; 30:955-966. [PMID: 38777382 PMCID: PMC11251519 DOI: 10.1261/rna.079906.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
The long noncoding RNA TERRA is transcribed from telomeres in virtually all eukaryotes with linear chromosomes. In humans, TERRA transcription is driven in part by promoters comprising CpG dinucleotide-rich repeats of 29 bp repeats, believed to be present in half of the subtelomeres. Thus far, TERRA expression has been analyzed mainly using molecular biology-based approaches that only generate partial and somehow biased results. Here, we present a novel experimental pipeline to study human TERRA based on long-read sequencing (TERRA ONTseq). By applying TERRA ONTseq to different cell lines, we show that the vast majority of human telomeres produce TERRA and that the cellular levels of TERRA transcripts vary according to their chromosomes of origin. Using TERRA ONTseq, we also identified regions containing TERRA transcription start sites (TSSs) in more than half of human subtelomeres. TERRA TSS regions are generally found immediately downstream from 29 bp repeat-related sequences, which appear to be more widespread than previously estimated. Finally, we isolated a novel TERRA promoter from the highly expressed subtelomere of the long arm of Chromosome 7. With the development of TERRA ONTseq, we provide a refined picture of human TERRA biogenesis and expression and we equip the scientific community with an invaluable tool for future studies.
Collapse
Affiliation(s)
- Joana Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Roberta Alfieri
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate (MI) 20054, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon 1649-028, Portugal
| |
Collapse
|
28
|
Rudà R, Horbinski C, van den Bent M, Preusser M, Soffietti R. IDH inhibition in gliomas: from preclinical models to clinical trials. Nat Rev Neurol 2024; 20:395-407. [PMID: 38760442 DOI: 10.1038/s41582-024-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Gliomas are the most common malignant primary brain tumours in adults and cannot usually be cured with standard cancer treatments. Gliomas show intratumoural and intertumoural heterogeneity at the histological and molecular levels, and they frequently contain mutations in the isocitrate dehydrogenase 1 (IDH1) or IDH2 gene. IDH-mutant adult-type diffuse gliomas are subdivided into grade 2, 3 or 4 IDH-mutant astrocytomas and grade 2 or 3 IDH-mutant, 1p19q-codeleted oligodendrogliomas. The product of the mutated IDH genes, D-2-hydroxyglutarate (D-2-HG), induces global DNA hypermethylation and interferes with immunity, leading to stimulation of tumour growth. Selective inhibitors of mutant IDH, such as ivosidenib and vorasidenib, have been shown to reduce D-2-HG levels and induce cellular differentiation in preclinical models and to induce MRI-detectable responses in early clinical trials. The phase III INDIGO trial has demonstrated superiority of vorasidenib, a brain-penetrant pan-mutant IDH inhibitor, over placebo in people with non-enhancing grade 2 IDH-mutant gliomas following surgery. In this Review, we describe the pathway of development of IDH inhibitors in IDH-mutant low-grade gliomas from preclinical models to clinical trials. We discuss the practice-changing implications of the INDIGO trial and consider new avenues of investigation in the field of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy.
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin van den Bent
- Brain Tumour Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| |
Collapse
|
29
|
Gaela VM, Hsia HY, Joseph NA, Tzeng WY, Ting PC, Shen YL, Tsai CT, Boudier T, Chen LY. Orphan nuclear receptors-induced ALT-associated PML bodies are targets for ALT inhibition. Nucleic Acids Res 2024; 52:6472-6489. [PMID: 38752489 PMCID: PMC11194075 DOI: 10.1093/nar/gkae389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Orphan nuclear receptors (NRs), such as COUP-TF1, COUP-TF2, EAR2, TR2 and TR4, are implicated in telomerase-negative cancers that maintain their telomeres through the alternative lengthening of telomeres (ALT) mechanism. However, how telomere association of orphan NRs is involved in ALT activation remains unclear. Here, we demonstrate that telomeric tethering of orphan NRs in human fibroblasts initiates formation of ALT-associated PML bodies (APBs) and features of ALT activity, including ALT telomere DNA synthesis, telomere sister chromatid exchange, and telomeric C-circle generation, suggesting de novo ALT induction. Overexpression of orphan NRs exacerbates ALT phenotypes in ALT cells, while their depletion limits ALT. Orphan NRs initiate ALT via the zinc finger protein 827, suggesting the involvement of chromatin structure alterations for ALT activation. Furthermore, we found that orphan NRs and deficiency of the ALT suppressor ATRX-DAXX complex operate in concert to promote ALT activation. Moreover, PML depletion by gene knockout or arsenic trioxide treatment inhibited ALT induction in fibroblasts and ALT cancer cells, suggesting that APB formation underlies the orphan NR-induced ALT activation. Importantly, arsenic trioxide administration abolished APB formation and features of ALT activity in ALT cancer cell line-derived mouse xenografts, suggesting its potential for further therapeutic development to treat ALT cancers.
Collapse
Affiliation(s)
- Venus Marie Gaela
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Yu Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Nithila A Joseph
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Yi Tzeng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Insitute of Molecular and Cellular Biology, National Taiwan University, Taipei 106319, Taiwan
| | - Pin-Chao Ting
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Ling Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Tsen Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Thomas Boudier
- CENTURI multi-engineering platform, Aix-Marseille Université, Marseille 13288, France
| | - Liuh-Yow Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
30
|
Sanchez SE, Gu Y, Wang Y, Golla A, Martin A, Shomali W, Hockemeyer D, Savage SA, Artandi SE. Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease. Nat Commun 2024; 15:5148. [PMID: 38890274 PMCID: PMC11189511 DOI: 10.1038/s41467-024-49007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Telomere length is an important biomarker of organismal aging and cellular replicative potential, but existing measurement methods are limited in resolution and accuracy. Here, we deploy digital telomere measurement (DTM) by nanopore sequencing to understand how distributions of human telomere length change with age and disease. We measure telomere attrition and de novo elongation with up to 30 bp resolution in genetically defined populations of human cells, in blood cells from healthy donors and in blood cells from patients with genetic defects in telomere maintenance. We find that human aging is accompanied by a progressive loss of long telomeres and an accumulation of shorter telomeres. In patients with defects in telomere maintenance, the accumulation of short telomeres is more pronounced and correlates with phenotypic severity. We apply machine learning to train a binary classification model that distinguishes healthy individuals from those with telomere biology disorders. This sequencing and bioinformatic pipeline will advance our understanding of telomere maintenance mechanisms and the use of telomere length as a clinical biomarker of aging and disease.
Collapse
Affiliation(s)
- Santiago E Sanchez
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuchao Gu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan Wang
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Anudeep Golla
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Annika Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - William Shomali
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Schmidt TT, Tyer C, Rughani P, Haggblom C, Jones JR, Dai X, Frazer KA, Gage FH, Juul S, Hickey S, Karlseder J. High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer. Nat Commun 2024; 15:5149. [PMID: 38890299 PMCID: PMC11189484 DOI: 10.1038/s41467-024-48917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Telomeres are the protective nucleoprotein structures at the end of linear eukaryotic chromosomes. Telomeres' repetitive nature and length have traditionally challenged the precise assessment of the composition and length of individual human telomeres. Here, we present Telo-seq to resolve bulk, chromosome arm-specific and allele-specific human telomere lengths using Oxford Nanopore Technologies' native long-read sequencing. Telo-seq resolves telomere shortening in five population doubling increments and reveals intrasample, chromosome arm-specific, allele-specific telomere length heterogeneity. Telo-seq can reliably discriminate between telomerase- and ALT-positive cancer cell lines. Thus, Telo-seq is a tool to study telomere biology during development, aging, and cancer at unprecedented resolution.
Collapse
Affiliation(s)
| | - Carly Tyer
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | | | - Candy Haggblom
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jeffrey R Jones
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Xiaoguang Dai
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | - Kelly A Frazer
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093-0761, USA
| | - Fred H Gage
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sissel Juul
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | - Scott Hickey
- Oxford Nanopore Technologies, Inc., New York, NY, USA.
| | - Jan Karlseder
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
32
|
Waitkus MS, Erman EN, Reitman ZJ, Ashley DM. Mechanisms of telomere maintenance and associated therapeutic vulnerabilities in malignant gliomas. Neuro Oncol 2024; 26:1012-1024. [PMID: 38285162 PMCID: PMC11145458 DOI: 10.1093/neuonc/noae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/30/2024] Open
Abstract
A majority of cancers (~85%) activate the enzyme telomerase to maintain telomere length over multiple rounds of cellular division. Telomerase-negative cancers activate a distinct, telomerase-independent mechanism of telomere maintenance termed alternative lengthening of telomeres (ALT). ALT uses homologous recombination to maintain telomere length and exhibits features of break-induced DNA replication. In malignant gliomas, the activation of either telomerase or ALT is nearly ubiquitous in pediatric and adult tumors, and the frequency with which these distinct telomere maintenance mechanisms (TMMs) is activated varies according to genetically defined glioma subtypes. In this review, we summarize the current state of the field of TMMs and their relevance to glioma biology and therapy. We review the genetic alterations and molecular mechanisms leading to telomerase activation or ALT induction in pediatric and adult gliomas. With this background, we review emerging evidence on strategies for targeting TMMs for glioma therapy. Finally, we comment on critical gaps and issues for moving the field forward to translate our improved understanding of glioma telomere maintenance into better therapeutic strategies for patients.
Collapse
Affiliation(s)
- Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Elise N Erman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary J Reitman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
33
|
Lee J, Lee J, Sohn EJ, Taglialatela A, O’Sullivan RJ, Ciccia A, Min J. Extrachromosomal telomere DNA derived from excessive strand displacements. Proc Natl Acad Sci U S A 2024; 121:e2318438121. [PMID: 38696464 PMCID: PMC11087782 DOI: 10.1073/pnas.2318438121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.
Collapse
Affiliation(s)
- Junyeop Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Jina Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Eric J. Sohn
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Roderick J. O’Sullivan
- Department of Pharmacology and Chemical Biology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | - Alberto Ciccia
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| |
Collapse
|
34
|
Jiang H, Zhang T, Kaur H, Shi T, Krishnan A, Kwon Y, Sung P, Greenberg RA. BLM helicase unwinds lagging strand substrates to assemble the ALT telomere damage response. Mol Cell 2024; 84:1684-1698.e9. [PMID: 38593805 PMCID: PMC11069441 DOI: 10.1016/j.molcel.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.
Collapse
Affiliation(s)
- Haoyang Jiang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Tianpeng Zhang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Hardeep Kaur
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tao Shi
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Aravind Krishnan
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
35
|
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M, Ciurea AV. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr Issues Mol Biol 2024; 46:2402-2443. [PMID: 38534769 DOI: 10.3390/cimb46030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas constitute a diverse and complex array of tumors within the central nervous system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the immunological context of gliomas, unveiling the intricate immune environment and its ramifications for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in understanding tumor behavior, focusing on recent research breakthroughs in treatment responses and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies, we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to tumor evolution and possible therapeutic advancements. In the end, this comparative oncological analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared characteristics with other types of tumors.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
36
|
Bisht S, Mao Y, Easwaran H. Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes. Curr Opin Oncol 2024; 36:82-92. [PMID: 38441107 PMCID: PMC10939788 DOI: 10.1097/cco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW This review emphasizes the role of epigenetic processes as incidental changes occurring during aging, which, in turn, promote the development of cancer. RECENT FINDINGS Aging is a complex biological process associated with the progressive deterioration of normal physiological functions, making age a significant risk factor for various disorders, including cancer. The increasing longevity of the population has made cancer a global burden, as the risk of developing most cancers increases with age due to the cumulative effect of exposure to environmental carcinogens and DNA replication errors. The classical 'somatic mutation theory' of cancer cause is being challenged by the observation that multiple normal cells harbor cancer driver mutations without resulting in cancer. In this review, we discuss the role of age-associated epigenetic alterations, including DNA methylation, which occur across all cell types and tissues with advancing age. There is an increasing body of evidence linking these changes with cancer risk and prognosis. SUMMARY A better understanding about the epigenetic changes acquired during aging is critical for comprehending the mechanisms leading to the age-associated increase in cancer and for developing novel therapeutic strategies for cancer treatment and prevention.
Collapse
Affiliation(s)
- Shilpa Bisht
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiqing Mao
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Rai R, Sodeinde T, Boston A, Chang S. Telomeres cooperate with the nuclear envelope to maintain genome stability. Bioessays 2024; 46:e2300184. [PMID: 38047499 DOI: 10.1002/bies.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Mammalian telomeres have evolved safeguards to prevent their recognition as DNA double-stranded breaks by suppressing the activation of various DNA sensing and repair proteins. We have shown that the telomere-binding proteins TRF2 and RAP1 cooperate to prevent telomeres from undergoing aberrant homology-directed recombination by mediating t-loop protection. Our recent findings also suggest that mammalian telomere-binding proteins interact with the nuclear envelope to maintain chromosome stability. RAP1 interacts with nuclear lamins through KU70/KU80, and disruption of RAP1 and TRF2 function result in nuclear envelope rupture, promoting telomere-telomere recombination to form structures termed ultrabright telomeres. In this review, we discuss the importance of the interactions between shelterin components and the nuclear envelope to maintain telomere homeostasis and genome stability.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tori Sodeinde
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ava Boston
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Udroiu I, Marinaccio J, Sgura A. Effects of p53 and ATRX inhibition on telomeric recombination in aging fibroblasts. Front Oncol 2024; 14:1322438. [PMID: 38333682 PMCID: PMC10850245 DOI: 10.3389/fonc.2024.1322438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
In order to avoid replicative senescence, tumor cells must acquire a telomere maintenance mechanism. Beside telomerase activation, a minority of tumors employs a recombinational mechanism called Alternative Lengthening of Telomeres (ALT). Several studies have investigated the potential ALT stimulation by inactivation of ATRX in tumor cells, obtaining contrasting results. Differently, since ALT can be viewed as a mechanism to overcome telomere shortening-mediated replicative senescence, we have investigated the effects of the inhibition of ATRX and p53 in aging primary fibroblasts. We observed that senescence leads to a phenotype that seems permissive for ALT activity, i.e. high levels of ALT-associated PML bodies (APB), telomeric damage and telomeric cohesion. On the other hand, RAD51 is highly repressed and thus telomeric recombination, upon which the ALT machinery relies, is almost absent. Silencing of ATRX greatly increases telomeric recombination in young cells, but is not able to overcome senescence-induced repression of homologous recombination. Conversely, inhibition of both p53 and ATRX leads to a phenotype reminiscent of some aspects of ALT activity, with a further increase of APB, a decrease of telomere shortening (and increased proliferation) and, above all, an increase of telomeric recombination.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università “Roma Tre“, Rome, Italy
| | | | | |
Collapse
|
39
|
Mori JO, Keegan J, Flynn RL, Heaphy CM. Alternative lengthening of telomeres: mechanism and the pathogenesis of cancer. J Clin Pathol 2024; 77:82-86. [PMID: 37890990 PMCID: PMC11450735 DOI: 10.1136/jcp-2023-209005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Telomere maintenance and elongation allows cells to gain replicative immortality and evade cellular senescence during cancer development. While most cancers use telomerase to maintain telomere lengths, a subset of cancers engage the alternative lengthening of telomeres (ALT) pathway for telomere maintenance. ALT is present in 5%-10% of all cancers, although the prevalence is dramatically higher in certain cancer types, including complex karyotype sarcomas, isocitrate dehydrogenase-mutant astrocytoma (WHO grade II-IV), pancreatic neuroendocrine tumours, neuroblastoma and chromophobe hepatocellular carcinomas. ALT is maintained through a homology-directed DNA repair mechanism. Resembling break-induced replication, this aberrant process results in dramatic cell-to-cell telomere length heterogeneity, widespread chromosomal instability and chronic replication stress. Additionally, ALT-positive cancers frequently harbour inactivating mutations in either chromatin remodelling proteins (ATRX, DAXX and H3F3A) or DNA damage repair factors (SMARCAL1 and SLX4IP). ALT can readily be detected in tissue by assessing the presence of unique molecular characteristics, such as large ultrabright nuclear telomeric foci or partially single-stranded telomeric DNA circles (C-circles). Importantly, ALT has been validated as a robust diagnostic and prognostic biomarker for certain cancer types and may even be exploited as a therapeutic target via small molecular inhibitors and/or synthetic lethality approaches.
Collapse
Affiliation(s)
- Joakin O Mori
- Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Joshua Keegan
- Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rachel L Flynn
- Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Christopher M Heaphy
- Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Pathology and Laboratory Medicine, Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Malgulwar PB, Danussi C, Dharmaiah S, Johnson W, Singh A, Rai K, Rao A, Huse JT. Sirtuin 2 inhibition modulates chromatin landscapes genome-wide to induce senescence in ATRX-deficient malignant glioma. Neuro Oncol 2024; 26:55-67. [PMID: 37625115 PMCID: PMC10769000 DOI: 10.1093/neuonc/noad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Functional inactivation of ATRX characterizes large subgroups of malignant gliomas in adults and children. ATRX deficiency in glioma induces widespread chromatin remodeling, driving transcriptional shifts and oncogenic phenotypes. Effective strategies to therapeutically target these broad epigenomic sequelae remain undeveloped. METHODS We utilized integrated multiomics and the Broad Institute Connectivity Map (CMAP) to identify drug candidates that could potentially revert ATRX-deficient transcriptional changes. We then employed disease-relevant experimental models to evaluate functional phenotypes, coupling these studies with epigenomic profiling to elucidate molecular mechanism(s). RESULTS CMAP analysis and transcriptional/epigenomic profiling implicated the Class III HDAC Sirtuin2 (SIRT2) as a central mediator of ATRX-deficient cellular phenotypes and a driver of unfavorable prognosis in ATRX-deficient glioma. SIRT2 inhibitors reverted Atrx-deficient transcriptional signatures in murine neuroepithelial progenitor cells (mNPCs), impaired cell migration in Atrx/ATRX-deficient mNPCs and human glioma stem cells (GSCs), and increased expression of senescence markers in glioma models. Moreover, SIRT2 inhibition impaired growth and increased senescence in ATRX-deficient GSCs in vivo. These effects were accompanied by genome-wide shifts in enhancer-associated H3K27ac and H4K16ac marks, with the latter in particular demonstrating compelling transcriptional links to SIRT2-dependent phenotypic reversals. Motif analysis of these data identified the transcription factor KLF16 as a mediator of phenotype reversal in Atrx-deficient cells upon SIRT2 inhibition. CONCLUSIONS Our findings indicate that SIRT2 inhibition selectively targets ATRX-deficient gliomas for senescence through global chromatin remodeling, while demonstrating more broadly a viable approach to combat complex epigenetic rewiring in cancer.
Collapse
Affiliation(s)
- Prit Benny Malgulwar
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carla Danussi
- Sanofi, Research and Development, Cambridge, Massachusetts, USA
| | - Sharvari Dharmaiah
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William Johnson
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anand Singh
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kunal Rai
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Arvind Rao
- Departments of Biostatistics, Computational Medicine and Bioinformatics, and Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason T Huse
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
41
|
Meenakshi S, Maharana KC, Nama L, Vadla UK, Dhingra S, Ravichandiran V, Murti K, Kumar N. Targeting Histone 3 Variants Epigenetic Landscape and Inhibitory Immune Checkpoints: An Option for Paediatric Brain Tumours Therapy. Curr Neuropharmacol 2024; 22:1248-1270. [PMID: 37605389 PMCID: PMC10964098 DOI: 10.2174/1570159x21666230809110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 08/23/2023] Open
Abstract
Despite little progress in survival rates with regular therapies, which do not provide complete care for curing pediatric brain tumors (PBTs), there is an urgent need for novel strategies to overcome the toxic effects of conventional therapies to treat PBTs. The co-inhibitory immune checkpoint molecules, e.g., CTLA-4, PD-1/PD-L1, etc., and epigenetic alterations in histone variants, e.g., H3K27me3 that help in immune evasion at tumor microenvironment have not gained much attention in PBTs treatment. However, key epigenetic mechanistic alterations, such as acetylation, methylation, phosphorylation, sumoylation, poly (ADP)-ribosylation, and ubiquitination in histone protein, are greatly acknowledged. The crucial checkpoints in pediatric brain tumors are cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PDL1), OX-2 membrane glycoprotein (CD200), and indoleamine 2,3-dioxygenase (IDO). This review covers the state of knowledge on the role of multiple co-inhibitory immunological checkpoint proteins and histone epigenetic alterations in different cancers. We further discuss the processes behind these checkpoints, cell signalling, the current scenario of clinical and preclinical research and potential futuristic opportunities for immunotherapies in the treatment of pediatric brain tumors. Conclusively, this article further discusses the possibilities of these interventions to be used for better therapy options.
Collapse
Affiliation(s)
- Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Udaya Kumar Vadla
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Velayutham Ravichandiran
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| |
Collapse
|
42
|
Baumann C, Zhang X, Kandasamy MK, Mei X, Chen S, Tehrani KF, Mortensen LJ, Watford W, Lall A, De La Fuente R. Acute irradiation induces a senescence-like chromatin structure in mammalian oocytes. Commun Biol 2023; 6:1258. [PMID: 38086992 PMCID: PMC10716162 DOI: 10.1038/s42003-023-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The mechanisms leading to changes in mesoscale chromatin organization during cellular aging are unknown. Here, we used transcriptional activator-like effectors, RNA-seq and superresolution analysis to determine the effects of genotoxic stress on oocyte chromatin structure. Major satellites are organized into tightly packed globular structures that coalesce into chromocenters and dynamically associate with the nucleolus. Acute irradiation significantly enhanced chromocenter mobility in transcriptionally inactive oocytes. In transcriptionally active oocytes, irradiation induced a striking unfolding of satellite chromatin fibers and enhanced the expression of transcripts required for protection from oxidative stress (Fermt1, Smg1), recovery from DNA damage (Tlk2, Rad54l) and regulation of heterochromatin assembly (Zfp296, Ski-oncogene). Non-irradiated, senescent oocytes exhibit not only high chromocenter mobility and satellite distension but also a high frequency of extra chromosomal satellite DNA. Notably, analysis of biological aging using an oocyte-specific RNA clock revealed cellular communication, posttranslational protein modifications, chromatin and histone dynamics as the top cellular processes that are dysregulated in both senescent and irradiated oocytes. Our results indicate that unfolding of heterochromatin fibers following acute genotoxic stress or cellular aging induced the formation of distended satellites and that abnormal chromatin structure together with increased chromocenter mobility leads to chromosome instability in senescent oocytes.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | | | - Xiaohan Mei
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Surgical Research, University of Missouri, School of Medicine, Columbia, MO, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Shiyou Chen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Surgical Research, University of Missouri, School of Medicine, Columbia, MO, USA
| | - Kayvan F Tehrani
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luke J Mortensen
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Wendy Watford
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Ashley Lall
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA.
| |
Collapse
|
43
|
Sanchez SE, Gu J, Golla A, Martin A, Shomali W, Hockemeyer D, Savage SA, Artandi SE. Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569263. [PMID: 38077053 PMCID: PMC10705489 DOI: 10.1101/2023.11.29.569263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Telomere length is an important biomarker of organismal aging and cellular replicative potential, but existing measurement methods are limited in resolution and accuracy. Here, we deploy digital telomere measurement by nanopore sequencing to understand how distributions of human telomere length change with age and disease. We measure telomere attrition and de novo elongation with unprecedented resolution in genetically defined populations of human cells, in blood cells from healthy donors and in blood cells from patients with genetic defects in telomere maintenance. We find that human aging is accompanied by a progressive loss of long telomeres and an accumulation of shorter telomeres. In patients with defects in telomere maintenance, the accumulation of short telomeres is more pronounced and correlates with phenotypic severity. We apply machine learning to train a binary classification model that distinguishes healthy individuals from those with telomere biology disorders. This sequencing and bioinformatic pipeline will advance our understanding of telomere maintenance mechanisms and the use of telomere length as a clinical biomarker of aging and disease.
Collapse
Affiliation(s)
- Santiago E. Sanchez
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine; Stanford, CA, USA
- Medical Scientist Training Program, Stanford University; Stanford CA, USA
| | - Jessica Gu
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine; Stanford, CA, USA
| | - Anudeep Golla
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
| | - Annika Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - William Shomali
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven E. Artandi
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
44
|
Choo ZN, Behr JM, Deshpande A, Hadi K, Yao X, Tian H, Takai K, Zakusilo G, Rosiene J, Da Cruz Paula A, Weigelt B, Setton J, Riaz N, Powell SN, Busam K, Shoushtari AN, Ariyan C, Reis-Filho J, de Lange T, Imieliński M. Most large structural variants in cancer genomes can be detected without long reads. Nat Genet 2023; 55:2139-2148. [PMID: 37945902 PMCID: PMC10703688 DOI: 10.1038/s41588-023-01540-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
Short-read sequencing is the workhorse of cancer genomics yet is thought to miss many structural variants (SVs), particularly large chromosomal alterations. To characterize missing SVs in short-read whole genomes, we analyzed 'loose ends'-local violations of mass balance between adjacent DNA segments. In the landscape of loose ends across 1,330 high-purity cancer whole genomes, most large (>10-kb) clonal SVs were fully resolved by short reads in the 87% of the human genome where copy number could be reliably measured. Some loose ends represent neotelomeres, which we propose as a hallmark of the alternative lengthening of telomeres phenotype. These pan-cancer findings were confirmed by long-molecule profiles of 38 breast cancer and melanoma cases. Our results indicate that aberrant homologous recombination is unlikely to drive the majority of large cancer SVs. Furthermore, analysis of mass balance in short-read whole genome data provides a surprisingly complete picture of cancer chromosomal structure.
Collapse
Affiliation(s)
- Zi-Ning Choo
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional MD PhD Program, Weill Cornell Medicine, New York, NY, USA
- Physiology and Biophysics PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Julie M Behr
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Aditya Deshpande
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Kevin Hadi
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Physiology and Biophysics PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Xiaotong Yao
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Huasong Tian
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Kaori Takai
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - George Zakusilo
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Joel Rosiene
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Britta Weigelt
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy Setton
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N Powell
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Klaus Busam
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Titia de Lange
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Marcin Imieliński
- New York Genome Center, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
45
|
Meredith DM, Pisapia DJ. 2021 World Health Organization Classification of Brain Tumors. Continuum (Minneap Minn) 2023; 29:1638-1661. [PMID: 38085892 DOI: 10.1212/con.0000000000001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE The classification of brain tumors is a rapidly evolving field that requires extensive integration of molecular diagnostic findings from an expanding set of platforms and assays. This article summarizes the schema presented in the 5th edition of the World Health Organization (WHO) classification of central nervous system (CNS) tumors while highlighting diagnostic molecular findings and discussing the strengths and weaknesses of commonly available testing modalities. LATEST DEVELOPMENTS Several major changes in practice were introduced with the 5th edition of the CNS WHO classification, including molecular grading of adult diffuse gliomas, the introduction of many new entities within the spectrum of pediatric gliomas and glioneuronal tumors, and the widespread adoption of methylation classes as useful or even necessary diagnostic criteria. Additionally, several revisions to nomenclature (eg, IDH-mutant gliomas) were introduced for simplicity and to disambiguate from other tumor types. ESSENTIAL POINTS The classification of brain tumors continues to grow in complexity alongside our improved understanding of their nuanced molecular underpinnings.
Collapse
|
46
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
47
|
Rosso I, Jones-Weinert C, Rossiello F, Cabrini M, Brambillasca S, Munoz-Sagredo L, Lavagnino Z, Martini E, Tedone E, Garre' M, Aguado J, Parazzoli D, Mione M, Shay JW, Mercurio C, d'Adda di Fagagna F. Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs. Nat Commun 2023; 14:7086. [PMID: 37925537 PMCID: PMC10625592 DOI: 10.1038/s41467-023-42831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism activated in ~10-15% of cancers, characterized by telomeric damage. Telomeric damage-induced long non-coding RNAs (dilncRNAs) are transcribed at dysfunctional telomeres and contribute to telomeric DNA damage response (DDR) activation and repair. Here we observed that telomeric dilncRNAs are preferentially elevated in ALT cells. Inhibition of C-rich (teloC) dilncRNAs with antisense oligonucleotides leads to DNA replication stress responses, increased genomic instability, and apoptosis induction selectively in ALT cells. Cell death is dependent on DNA replication and is increased by DNA replication stress. Mechanistically, teloC dilncRNA inhibition reduces RAD51 and 53BP1 recruitment to telomeres, boosts the engagement of BIR machinery, and increases C-circles and telomeric sister chromatid exchanges, without increasing telomeric non-S phase synthesis. These results indicate that teloC dilncRNA is necessary for a coordinated recruitment of DDR factors to ALT telomeres and it is essential for ALT cancer cells survival.
Collapse
Affiliation(s)
- Ilaria Rosso
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Corey Jones-Weinert
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Matteo Cabrini
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Brambillasca
- IFOM ETS - The AIRC Institute of Molecular Oncology (Experimental Therapeutics Program), Milan, Italy
| | - Leonel Munoz-Sagredo
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- School of Medicine, Universidad de Valparaiso, Valparaiso, Chile
| | - Zeno Lavagnino
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Emanuele Martini
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Enzo Tedone
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Massimiliano Garre'
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- RCSI, Royal College of Surgeons in Ireland, Department of Chemistry, Dublin, Ireland
| | - Julio Aguado
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Dario Parazzoli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marina Mione
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ciro Mercurio
- IFOM ETS - The AIRC Institute of Molecular Oncology (Experimental Therapeutics Program), Milan, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy.
| |
Collapse
|
48
|
Cai Y, Guo H, Zhou J, Zhu G, Qu H, Liu L, Shi T, Ge S, Qu Y. An alternative extension of telomeres related prognostic model to predict survival in lower grade glioma. J Cancer Res Clin Oncol 2023; 149:13575-13589. [PMID: 37515613 DOI: 10.1007/s00432-023-05155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/09/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE The alternative extension of the telomeres (ALT) mechanism is activated in lower grade glioma (LGG), but the role of the ALT mechanism has not been well discussed. The primary purpose was to demonstrate the significance of the ALT mechanism in prognosis estimation for LGG patients. METHOD Gene expression and clinical data of LGG patients were collected from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) cohort, respectively. ALT-related genes obtained from the TelNet database and potential prognostic genes related to ALT were selected by LASSO regression to calculate an ALT-related risk score. Multivariate Cox regression analysis was performed to construct a prognosis signature, and a nomogram was used to represent this signature. Possible pathways of the ALT-related risk score are explored by enrichment analysis. RESULT The ALT-related risk score was calculated based on the LASSO regression coefficients of 22 genes and then divided into high-risk and low-risk groups according to the median. The ALT-related risk score is an independent predictor of LGG (HR and 95% CI in CGGA cohort: 5.70 (3.79, 8.58); in TCGA cohort: 1.96 (1.09, 3.54)). ROC analysis indicated that the model contained ALT-related risk score was superior to conventional clinical features (AUC: 0.818 vs 0.729) in CGGA cohorts. The results in the TCGA cohort also shown a powerful ability of ALT-related risk score (AUC: 0.766 vs 0.691). The predicted probability and actual probability of the nomogram are consistent. Enrichment analysis demonstrated that the ALT mechanism was involved in the cell cycle, DNA repair, immune processes, and others. CONCLUSION ALT-related risk score based on the 22-gene is an important factor in predicting the prognosis of LGG patients.
Collapse
Affiliation(s)
- Yaning Cai
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - Hao Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - JinPeng Zhou
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - Hongwen Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - Lingyu Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - Tao Shi
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an 710038, China.
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an 710038, China.
| |
Collapse
|
49
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
50
|
Loe TK, Lazzerini Denchi E, Tricola GM, Azeroglu B. ALTercations at telomeres: stress, recombination and extrachromosomal affairs. Biochem Soc Trans 2023; 51:1935-1946. [PMID: 37767563 DOI: 10.1042/bst20230265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Approximately 15% of human cancers depend on the alternative lengthening of telomeres (ALT) pathway to maintain telomeres and proliferate. Telomeres that are elongated using ALT display unique features raising the exciting prospect of tailored cancer therapies. ALT-mediated telomere elongation shares several features with recombination-based DNA repair. Strikingly, cells that use the ALT pathway display abnormal levels of replication stress at telomeres and accumulate abundant extrachromosomal telomeric DNA. In this review, we examine recent findings that shed light on the ALT mechanisms and the strategies currently available to suppress this telomere elongation mechanism.
Collapse
Affiliation(s)
- Taylor K Loe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Gianna M Tricola
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| |
Collapse
|