1
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Wijegunawardana D, Nayak A, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons. Dev Cell 2025; 60:253-269.e5. [PMID: 39419034 DOI: 10.1016/j.devcel.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Altered RNA metabolism and misregulation of transactive response DNA-binding protein of 43 kDa (TDP-43), an essential RNA-binding protein (RBP), define amyotrophic lateral sclerosis (ALS). Intermediate-length polyglutamine (polyQ) expansions of Ataxin-2, a like-Sm (LSm) RBP, are associated with increased risk for ALS, but the underlying biological mechanisms remain unknown. Here, we studied the spatiotemporal dynamics and mRNA regulatory functions of TDP-43 and Ataxin-2 ribonucleoprotein (RNP) condensates in rodent (rat) primary cortical neurons and mouse motor neuron axons in vivo. We report that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within RNP condensates and disrupt both its motility along the axon and liquid-like properties. We provide evidence that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, our results support a model in which Ataxin-2 polyQ expansions disrupt stability, localization, and/or translation of critical axonal and cytoskeletal mRNAs, particularly important for motor neuron integrity.
Collapse
Affiliation(s)
- Denethi Wijegunawardana
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sonali S Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Neha Venkatesh
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Pallavi P Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
3
|
Wang Y, Zhai Y, Wang J. Insight into the early pathogenesis and therapeutic strategies of spinocerebellar ataxia type 3/machado-joseph disease from mouse models. Parkinsonism Relat Disord 2024; 126:106991. [PMID: 38749872 DOI: 10.1016/j.parkreldis.2024.106991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 09/05/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is the most common subtype of hereditary ataxia (HA), which is characterized by motor deficits and a lack of effective treatments, and imposes a huge physical, mental, and financial burden on patients and their families. Therefore, it is important to study the early pathogenesis of spinal cerebellar ataxia type 3 based on a mouse model for subsequent preventive treatment and seeking new therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - YuYun Zhai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ju Wang
- Department of Rehabilitation, Traditional Chinese Hospital Medicine of Qing Yang District of Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Vieira de Sá R, Sudria-Lopez E, Cañizares Luna M, Harschnitz O, van den Heuvel DMA, Kling S, Vonk D, Westeneng HJ, Karst H, Bloemenkamp L, Varderidou-Minasian S, Schlegel DK, Mars M, Broekhoven MH, van Kronenburg NCH, Adolfs Y, Vangoor VR, de Jongh R, Ljubikj T, Peeters L, Seeler S, Mocholi E, Basak O, Gordon D, Giuliani F, Verhoeff T, Korsten G, Calafat Pla T, Venø MT, Kjems J, Talbot K, van Es MA, Veldink JH, van den Berg LH, Zelina P, Pasterkamp RJ. ATAXIN-2 intermediate-length polyglutamine expansions elicit ALS-associated metabolic and immune phenotypes. Nat Commun 2024; 15:7484. [PMID: 39209824 PMCID: PMC11362472 DOI: 10.1038/s41467-024-51676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are the strongest genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown. Here, we combine patient-derived and mouse models to dissect the effects of ATXN2 intermediate expansions in an ALS background. iPSC-derived motor neurons from ATXN2-ALS patients show altered stress granules, neurite damage and abnormal electrophysiological properties compared to healthy control and other familial ALS mutations. In TDP-43Tg-ALS mice, ATXN2-Q33 causes reduced motor function, NMJ alterations, neuron degeneration and altered in vitro stress granule dynamics. Furthermore, gene expression changes related to mitochondrial function and inflammatory response are detected and confirmed at the cellular level in mice and human neuron and organoid models. Together, these results define pathogenic defects underlying ATXN2-ALS and provide a framework for future research into ATXN2-dependent pathogenesis and therapy.
Collapse
Affiliation(s)
- Renata Vieira de Sá
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Emma Sudria-Lopez
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Marta Cañizares Luna
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Oliver Harschnitz
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Human Technopole, Viale Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Dianne M A van den Heuvel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Sandra Kling
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Danielle Vonk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Henk Karst
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Lauri Bloemenkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Domino K Schlegel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Mayte Mars
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Mark H Broekhoven
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Vamshidhar R Vangoor
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Rianne de Jongh
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Tijana Ljubikj
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Lianne Peeters
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Sabine Seeler
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Enric Mocholi
- Center for Molecuar Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Fabrizio Giuliani
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Tessa Verhoeff
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Giel Korsten
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Teresa Calafat Pla
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Morten T Venø
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
| | - Michael A van Es
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Moreira-Gomes T, Nóbrega C. From the disruption of RNA metabolism to the targeting of RNA-binding proteins: The case of polyglutamine spinocerebellar ataxias. J Neurochem 2024; 168:1442-1459. [PMID: 37990934 DOI: 10.1111/jnc.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine-induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA-binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
Collapse
Affiliation(s)
- Tiago Moreira-Gomes
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
6
|
Bonsor M, Ammar O, Schnoegl S, Wanker EE, Silva Ramos E. Polyglutamine disease proteins: Commonalities and differences in interaction profiles and pathological effects. Proteomics 2024; 24:e2300114. [PMID: 38615323 DOI: 10.1002/pmic.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Currently, nine polyglutamine (polyQ) expansion diseases are known. They include spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 17), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and Huntington's disease (HD). At the root of these neurodegenerative diseases are trinucleotide repeat mutations in coding regions of different genes, which lead to the production of proteins with elongated polyQ tracts. While the causative proteins differ in structure and molecular mass, the expanded polyQ domains drive pathogenesis in all these diseases. PolyQ tracts mediate the association of proteins leading to the formation of protein complexes involved in gene expression regulation, RNA processing, membrane trafficking, and signal transduction. In this review, we discuss commonalities and differences among the nine polyQ proteins focusing on their structure and function as well as the pathological features of the respective diseases. We present insights from AlphaFold-predicted structural models and discuss the biological roles of polyQ-containing proteins. Lastly, we explore reported protein-protein interaction networks to highlight shared protein interactions and their potential relevance in disease development.
Collapse
Affiliation(s)
- Megan Bonsor
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orchid Ammar
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sigrid Schnoegl
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Erich E Wanker
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
7
|
Petrauskas A, Fortunati DL, Kandi AR, Pothapragada SS, Agrawal K, Singh A, Huelsmeier J, Hillebrand J, Brown G, Chaturvedi D, Lee J, Lim C, Auburger G, VijayRaghavan K, Ramaswami M, Bakthavachalu B. Structured and disordered regions of Ataxin-2 contribute differently to the specificity and efficiency of mRNP granule formation. PLoS Genet 2024; 20:e1011251. [PMID: 38768217 PMCID: PMC11166328 DOI: 10.1371/journal.pgen.1011251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/11/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Ataxin-2 (ATXN2) is a gene implicated in spinocerebellar ataxia type II (SCA2), amyotrophic lateral sclerosis (ALS) and Parkinsonism. The encoded protein is a therapeutic target for ALS and related conditions. ATXN2 (or Atx2 in insects) can function in translational activation, translational repression, mRNA stability and in the assembly of mRNP-granules, a process mediated by intrinsically disordered regions (IDRs). Previous work has shown that the LSm (Like-Sm) domain of Atx2, which can help stimulate mRNA translation, antagonizes mRNP-granule assembly. Here we advance these findings through a series of experiments on Drosophila and human Ataxin-2 proteins. Results of Targets of RNA Binding Proteins Identified by Editing (TRIBE), co-localization and immunoprecipitation experiments indicate that a polyA-binding protein (PABP) interacting, PAM2 motif of Ataxin-2 may be a major determinant of the mRNA and protein content of Ataxin-2 mRNP granules. Experiments with transgenic Drosophila indicate that while the Atx2-LSm domain may protect against neurodegeneration, structured PAM2- and unstructured IDR- interactions both support Atx2-induced cytotoxicity. Taken together, the data lead to a proposal for how Ataxin-2 interactions are remodelled during translational control and how structured and non-structured interactions contribute differently to the specificity and efficiency of RNP granule condensation as well as to neurodegeneration.
Collapse
Affiliation(s)
- Arnas Petrauskas
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Daniel L. Fortunati
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Arvind Reddy Kandi
- School of Biosciences and Bioengineering, Indian Institute of Technology, Mandi, India
| | | | - Khushboo Agrawal
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kollam, Kerala, India
| | - Amanjot Singh
- National Centre for Biological Sciences, TIFR, Bangalore, India
- Manipal Institute of Regenerative Medicine, MAHE-Bengaluru, Govindapura, Bengaluru, India
| | - Joern Huelsmeier
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jens Hillebrand
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Georgia Brown
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | | | - Jongbo Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, Republic of Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, Republic of Korea
| | - Georg Auburger
- Experimental Neurology, Medical School, Goethe University, Frankfurt, Germany
| | | | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Baskar Bakthavachalu
- School of Biosciences and Bioengineering, Indian Institute of Technology, Mandi, India
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, India
| |
Collapse
|
8
|
Zeballos C MA, Moore HJ, Smith TJ, Powell JE, Ahsan NS, Zhang S, Gaj T. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat Commun 2023; 14:6492. [PMID: 37838698 PMCID: PMC10576788 DOI: 10.1038/s41467-023-42147-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
The TDP-43 proteinopathies, which include amyotrophic lateral sclerosis and frontotemporal dementia, are a devastating group of neurodegenerative disorders that are characterized by the mislocalization and aggregation of TDP-43. Here we demonstrate that RNA-targeting CRISPR effector proteins, a programmable class of gene silencing agents that includes the Cas13 family of enzymes and Cas7-11, can be used to mitigate TDP-43 pathology when programmed to target ataxin-2, a modifier of TDP-43-associated toxicity. In addition to inhibiting the aggregation and transit of TDP-43 to stress granules, we find that the in vivo delivery of an ataxin-2-targeting Cas13 system to a mouse model of TDP-43 proteinopathy improved functional deficits, extended survival, and reduced the severity of neuropathological hallmarks. Further, we benchmark RNA-targeting CRISPR platforms against ataxin-2 and find that high-fidelity forms of Cas13 possess improved transcriptome-wide specificity compared to Cas7-11 and a first-generation effector. Our results demonstrate the potential of CRISPR technology for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- M Alejandra Zeballos C
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hayden J Moore
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tyler J Smith
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jackson E Powell
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Najah S Ahsan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Boeynaems S, Dorone Y, Zhuang Y, Shabardina V, Huang G, Marian A, Kim G, Sanyal A, Şen NE, Griffith D, Docampo R, Lasker K, Ruiz-Trillo I, Auburger G, Holehouse AS, Kabashi E, Lin Y, Gitler AD. Poly(A)-binding protein is an ataxin-2 chaperone that regulates biomolecular condensates. Mol Cell 2023; 83:2020-2034.e6. [PMID: 37295429 PMCID: PMC10318123 DOI: 10.1016/j.molcel.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases (CAND), Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yanrong Zhuang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003 Catalonia, Spain
| | - Guozhong Huang
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Anca Marian
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France
| | - Garam Kim
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anushka Sanyal
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nesli-Ece Şen
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Keren Lasker
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003 Catalonia, Spain; ICREA, Passeig Lluís Companys 23, Barcelona 08010 Catalonia, Spain
| | - Georg Auburger
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
TR-FRET-Based Immunoassay to Measure Ataxin-2 as a Target Engagement Marker in Spinocerebellar Ataxia Type 2. Mol Neurobiol 2023; 60:3553-3567. [PMID: 36894829 PMCID: PMC10122633 DOI: 10.1007/s12035-023-03294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease, which belongs to the trinucleotide repeat disease group with a CAG repeat expansion in exon 1 of the ATXN2 gene resulting in an ataxin-2 protein with an expanded polyglutamine (polyQ)-stretch. The disease is late manifesting leading to early death. Today, therapeutic interventions to cure the disease or even to decelerate disease progression are not available yet. Furthermore, primary readout parameter for disease progression and therapeutic intervention studies are limited. Thus, there is an urgent need for quantifiable molecular biomarkers such as ataxin-2 becoming even more important due to numerous potential protein-lowering therapeutic intervention strategies. The aim of this study was to establish a sensitive technique to measure the amount of soluble polyQ-expanded ataxin-2 in human biofluids to evaluate ataxin-2 protein levels as prognostic and/or therapeutic biomarker in SCA2. Time-resolved fluorescence energy transfer (TR-FRET) was used to establish a polyQ-expanded ataxin-2-specific immunoassay. Two different ataxin-2 antibodies and two different polyQ-binding antibodies were validated in three different concentrations and tested in cellular and animal tissue as well as in human cell lines, comparing different buffer conditions to evaluate the best assay conditions. We established a TR-FRET-based immunoassay for soluble polyQ-expanded ataxin-2 and validated measurements in human cell lines including iPSC-derived cortical neurons. Additionally, our immunoassay was sensitive enough to monitor small ataxin-2 expression changes by siRNA or starvation treatment. We successfully established the first sensitive ataxin-2 immunoassay to measure specifically soluble polyQ-expanded ataxin-2 in human biomaterials.
Collapse
|
11
|
Wijegunawardana D, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43, drive ribonucleoprotein condensate transport dysfunction and suppress local translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526372. [PMID: 36778347 PMCID: PMC9915502 DOI: 10.1101/2023.01.30.526372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Altered RNA metabolism is a common pathogenic mechanism linked to familial and sporadic Amyotrophic lateral sclerosis (ALS). ALS is characterized by mislocalization and aggregation of TDP-43, an RNA-binding protein (RBP) with multiple roles in post-transcriptional RNA processing. Recent studies have identified genetic interactions between TDP-43 and Ataxin-2, a polyglutamine (polyQ) RBP in which intermediate length polyQ expansions confer increased ALS risk. Here, we used live-cell confocal imaging, photobleaching and translation reporter assays to study the localization, transport dynamics and mRNA regulatory functions of TDP-43/Ataxin-2 in rodent primary cortical neurons. We show that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within ribonucleoprotein (RNP) condensates, and disrupt both its motility along the axon and liquid-like properties. Our data suggest that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, these results indicate Ataxin-2 polyQ expansions have detrimental effects on stability, localization, and translation of transcripts critical for axonal and cytoskeletal integrity, particularly important for motor neurons.
Collapse
|
12
|
Biswas DD, El Haddad L, Sethi R, Huston ML, Lai E, Abdelbarr MM, Mhandire DZ, ElMallah MK. Neuro-respiratory pathology in spinocerebellar ataxia. J Neurol Sci 2022; 443:120493. [PMID: 36410186 PMCID: PMC9808489 DOI: 10.1016/j.jns.2022.120493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
The spinocerebellar ataxias (SCA) are a heterogeneous group of neurodegenerative disorders with an autosomal dominant inheritance. Symptoms include poor coordination and balance, peripheral neuropathy, impaired vision, incontinence, respiratory insufficiency, dysphagia, and dysarthria. Although many patients with SCA have respiratory-related complications, the exact mechanism and extent of this pathology remain unclear. This review aims to provide an update on the recent clinical and preclinical scientific findings on neuropathology causing respiratory insufficiency in SCA.
Collapse
Affiliation(s)
- Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Ronit Sethi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Meredith L Huston
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Elias Lai
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Mariam M Abdelbarr
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Doreen Z Mhandire
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
14
|
Haas E, Incebacak RD, Hentrich T, Huridou C, Schmidt T, Casadei N, Maringer Y, Bahl C, Zimmermann F, Mills JD, Aronica E, Riess O, Schulze-Hentrich JM, Hübener-Schmid J. A Novel SCA3 Knock-in Mouse Model Mimics the Human SCA3 Disease Phenotype Including Neuropathological, Behavioral, and Transcriptional Abnormalities Especially in Oligodendrocytes. Mol Neurobiol 2022; 59:495-522. [PMID: 34716557 PMCID: PMC8786755 DOI: 10.1007/s12035-021-02610-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022]
Abstract
Spinocerebellar ataxia type 3 is the most common autosomal dominant inherited ataxia worldwide, caused by a CAG repeat expansion in the Ataxin-3 gene resulting in a polyglutamine (polyQ)-expansion in the corresponding protein. The disease is characterized by neuropathological, phenotypical, and specific transcriptional changes in affected brain regions. So far, there is no mouse model available representing all the different aspects of the disease, yet highly needed for a better understanding of the disease pathomechanisms. Here, we characterized a novel Ataxin-3 knock-in mouse model, expressing a heterozygous or homozygous expansion of 304 CAACAGs in the murine Ataxin-3 locus using biochemical, behavioral, and transcriptomic approaches. We compared neuropathological, and behavioral features of the new knock-in model with the in SCA3 research mostly used YAC84Q mouse model. Further, we compared transcriptional changes found in cerebellar samples of the SCA3 knock-in mice and post-mortem human SCA3 patients. The novel knock-in mouse is characterized by the expression of a polyQ-expansion in the murine Ataxin-3 protein, leading to aggregate formation, especially in brain regions known to be vulnerable in SCA3 patients, and impairment of Purkinje cells. Along these neuropathological changes, the mice showed a reduction in body weight accompanied by gait and balance instability. Transcriptomic analysis of cerebellar tissue revealed age-dependent differential expression, enriched for genes attributed to myelinating oligodendrocytes. Comparing these changes with those found in cerebellar tissue of SCA3 patients, we discovered an overlap of differentially expressed genes pointing towards similar gene expression perturbances in several genes linked to myelin sheaths and myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Eva Haas
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Rana D Incebacak
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Chrisovalantou Huridou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Thorsten Schmidt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
- DFG NGS Competence Center Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Carola Bahl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Frank Zimmermann
- Interfaculty Biomedical Facility (IBF) Biotechnology lab, University of Heidelberg, Heidelberg, Germany
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
- DFG NGS Competence Center Tübingen, Tübingen, Germany
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Marcelo A, Afonso IT, Afonso-Reis R, Brito DVC, Costa RG, Rosa A, Alves-Cruzeiro J, Ferreira B, Henriques C, Nobre RJ, Matos CA, de Almeida LP, Nóbrega C. Autophagy in Spinocerebellar ataxia type 2, a dysregulated pathway, and a target for therapy. Cell Death Dis 2021; 12:1117. [PMID: 34845184 PMCID: PMC8630050 DOI: 10.1038/s41419-021-04404-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an incurable and genetic neurodegenerative disorder. The disease is characterized by progressive degeneration of several brain regions, resulting in severe motor and non-motor clinical manifestations. The mutation causing SCA2 disease is an abnormal expansion of CAG trinucleotide repeats in the ATXN2 gene, leading to a toxic expanded polyglutamine segment in the translated ataxin-2 protein. While the genetic cause is well established, the exact mechanisms behind neuronal death induced by mutant ataxin-2 are not yet completely understood. Thus, the goal of this study is to investigate the role of autophagy in SCA2 pathogenesis and investigate its suitability as a target for therapeutic intervention. For that, we developed and characterized a new striatal lentiviral mouse model that resembled several neuropathological hallmarks observed in SCA2 disease, including formation of aggregates, neuronal marker loss, cell death and neuroinflammation. In this new model, we analyzed autophagic markers, which were also analyzed in a SCA2 cellular model and in human post-mortem brain samples. Our results showed altered levels of SQSTM1 and LC3B in cells and tissues expressing mutant ataxin-2. Moreover, an abnormal accumulation of these markers was detected in SCA2 patients' striatum and cerebellum. Importantly, the molecular activation of autophagy, using the compound cordycepin, mitigated the phenotypic alterations observed in disease models. Overall, our study suggests an important role for autophagy in the context of SCA2 pathology, proposing that targeting this pathway could be a potential target to treat SCA2 patients.
Collapse
Affiliation(s)
- Adriana Marcelo
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- PhD Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Inês T Afonso
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
| | - Ricardo Afonso-Reis
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - David V C Brito
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
| | - Rafael G Costa
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Ana Rosa
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
| | - João Alves-Cruzeiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Benedita Ferreira
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rui J Nobre
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Carlos A Matos
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
16
|
Hommersom MP, Buijsen RAM, van Roon-Mom WMC, van de Warrenburg BPC, van Bokhoven H. Human Induced Pluripotent Stem Cell-Based Modelling of Spinocerebellar Ataxias. Stem Cell Rev Rep 2021; 18:441-456. [PMID: 34031815 PMCID: PMC8930896 DOI: 10.1007/s12015-021-10184-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Abstract Dominant spinocerebellar ataxias (SCAs) constitute a large group of phenotypically and genetically heterogeneous disorders that mainly present with dysfunction of the cerebellum as their main hallmark. Although animal and cell models have been highly instrumental for our current insight into the underlying disease mechanisms of these neurodegenerative disorders, they do not offer the full human genetic and physiological context. The advent of human induced pluripotent stem cells (hiPSCs) and protocols to differentiate these into essentially every cell type allows us to closely model SCAs in a human context. In this review, we systematically summarize recent findings from studies using hiPSC-based modelling of SCAs, and discuss what knowledge has been gained from these studies. We conclude that hiPSC-based models are a powerful tool for modelling SCAs as they contributed to new mechanistic insights and have the potential to serve the development of genetic therapies. However, the use of standardized methods and multiple clones of isogenic lines are essential to increase validity and reproducibility of the insights gained. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Marina P Hommersom
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands. .,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, Netherlands.
| |
Collapse
|
17
|
Dennis AG, Almaguer-Mederos LE, Raúl RA, Roberto RL, Luis VP, Dany CA, Yanetza GZ, Yaimeé VM, Annelié ED, Arnoy PA, Reydenis TV. Redox Imbalance Associates with Clinical Worsening in Spinocerebellar Ataxia Type 2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9875639. [PMID: 33688396 PMCID: PMC7920744 DOI: 10.1155/2021/9875639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/24/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease presenting with redox imbalance. However, the nature and implications of redox imbalance in SCA2 physiopathology have not been fully understood. OBJECTIVE The objective of this study is to assess the redox imbalance and its association with disease severity in SCA2 mutation carriers. METHODS A case-control study was conducted involving molecularly confirmed SCA2 patients, presymptomatic individuals, and healthy controls. Several antioxidant parameters were assessed, including serum thiol concentration and the superoxide dismutase, catalase, and glutathione S-transferase enzymatic activities. Also, several prooxidant parameters were evaluated, including thiobarbituric acid-reactive species and protein carbonyl concentrations. Damage, protective, and OXY scores were computed. Clinical correlates were established. RESULTS Significant differences were found between comparison groups for redox markers, including protein carbonyl concentration (F = 3.30; p = 0.041), glutathione S-transferase activity (F = 4.88; p = 0.009), and damage (F = 3.20; p = 0.045), protection (F = 12.75; p < 0.001), and OXY (F = 7.29; p = 0.001) scores. Protein carbonyl concentration was positively correlated with CAG repeat length (r = 0.27; p = 0.022), while both protein carbonyl concentration (r = -0.27; p = 0.018) and OXY score (r = -0.25; p = 0.013) were inversely correlated to the disease duration. Increasing levels of antioxidants and decreasing levels of prooxidant parameters were associated with clinical worsening. CONCLUSIONS There is a disruption of redox balance in SCA2 mutation carriers which depends on the disease stage. Besides, redox changes associate with markers of disease severity, suggesting a link between disruption of redox balance and SCA2 physiopathology.
Collapse
Affiliation(s)
- Almaguer-Gotay Dennis
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- University of Medical Sciences of Holguín, Cuba
| | - Luis E. Almaguer-Mederos
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- University of Medical Sciences of Holguín, Cuba
| | - Rodríguez-Aguilera Raúl
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- University of Medical Sciences of Holguín, Cuba
| | | | - Velázquez-Pérez Luis
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- Cuban Academy of Sciences, Cuba
| | - Cuello-Almarales Dany
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- University of Medical Sciences of Holguín, Cuba
| | - González-Zaldívar Yanetza
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
- University of Medical Sciences of Holguín, Cuba
| | - Vázquez-Mojena Yaimeé
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | - Peña-Acosta Arnoy
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Torres-Vega Reydenis
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| |
Collapse
|
18
|
Canet-Pons J, Sen NE, Arsović A, Almaguer-Mederos LE, Halbach MV, Key J, Döring C, Kerksiek A, Picchiarelli G, Cassel R, René F, Dieterlé S, Fuchs NV, König R, Dupuis L, Lütjohann D, Gispert S, Auburger G. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis 2021; 152:105289. [PMID: 33577922 DOI: 10.1016/j.nbd.2021.105289] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
Collapse
Affiliation(s)
- Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Melanie V Halbach
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Gina Picchiarelli
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Raphaelle Cassel
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Frédérique René
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Stéphane Dieterlé
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Luc Dupuis
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Almaguer-Mederos LE, Pérez-Ávila I, Aguilera-Rodríguez R, Velázquez-Garcés M, Almaguer-Gotay D, Hechavarría-Pupo R, Rodríguez-Estupiñán A, Auburger G. Body Mass Index Is Significantly Associated With Disease Severity in Spinocerebellar Ataxia Type 2 Patients. Mov Disord 2021; 36:1372-1380. [PMID: 33548146 DOI: 10.1002/mds.28498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 2 is a progressive neurodegenerative disorder due to an unstable expansion of a CAG repeat in the ATXN2 gene. Although weight loss has been associated with disease progression in several neurodegenerative conditions, it has been barely assessed in patients with spinocerebellar ataxia type 2. OBJECTIVE The objective of this study was to test whether body mass index is altered in patients with spinocerebellar ataxia type 2 with varying expansion sizes from early to late disease stages. METHODS A cross-sectional case-control study was performed, which included 222 clinically and molecularly diagnosed patients and 214 sex- and age-matched healthy individuals. ATXN2 genotypes and sex were considered as risk factors. Clinical outcomes included the body mass index, age at onset, disease duration, Scale for the Assessment and Rating of Ataxia score, disease stage, dysphagia, and progression rate. Multiple linear regression models were generated. RESULTS Body mass index was significantly decreased in male patients, but not in female patients, relative to control subjects. In addition to sex, body mass index was significantly associated with age at onset and progression rate. Conversely, body mass index, along with repeat length in ATXN2 expanded alleles and disease duration, was associated with Scale for the Assessment and Rating of Ataxia score. In addition, body mass index, along with the age at onset and the repeat length in ATXN2 normal and expanded alleles, has a significant influence on progression rate. CONCLUSIONS Body mass index might be a useful biomarker of disease severity, particularly in male patients with spinocerebellar ataxia type 2 in the context of nutritional interventions or clinical trials assessing the efficacy of promising new drugs. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Ilbedis Pérez-Ávila
- Center for the Investigation and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Center for Sports Medicine, Holguín, Cuba
| | | | | | - Dennis Almaguer-Gotay
- Center for the Investigation and Rehabilitation of Hereditary Ataxias, Holguín, Cuba
| | | | | | - Georg Auburger
- Experimental Neurology, Goethe University Medical Faculty, Frankfurt, Germany
| |
Collapse
|
20
|
Donaldson J, Powell S, Rickards N, Holmans P, Jones L. What is the Pathogenic CAG Expansion Length in Huntington's Disease? J Huntingtons Dis 2021; 10:175-202. [PMID: 33579866 PMCID: PMC7990448 DOI: 10.3233/jhd-200445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington's disease (HD) (OMIM 143100) is caused by an expanded CAG repeat tract in the HTT gene. The inherited CAG length is known to expand further in somatic and germline cells in HD subjects. Age at onset of the disease is inversely correlated with the inherited CAG length, but is further modulated by a series of genetic modifiers which are most likely to act on the CAG repeat in HTT that permit it to further expand. Longer repeats are more prone to expansions, and this expansion is age dependent and tissue-specific. Given that the inherited tract expands through life and most subjects develop disease in mid-life, this implies that in cells that degenerate, the CAG length is likely to be longer than the inherited length. These findings suggest two thresholds- the inherited CAG length which permits further expansion, and the intracellular pathogenic threshold, above which cells become dysfunctional and die. This two-step mechanism has been previously proposed and modelled mathematically to give an intracellular pathogenic threshold at a tract length of 115 CAG (95% confidence intervals 70- 165 CAG). Empirically, the intracellular pathogenic threshold is difficult to determine. Clues from studies of people and models of HD, and from other diseases caused by expanded repeat tracts, place this threshold between 60- 100 CAG, most likely towards the upper part of that range. We assess this evidence and discuss how the intracellular pathogenic threshold in manifest disease might be better determined. Knowing the cellular pathogenic threshold would be informative for both understanding the mechanism in HD and deploying treatments.
Collapse
Affiliation(s)
- Jasmine Donaldson
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie Powell
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nadia Rickards
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
22
|
Watanabe R, Higashi S, Nonaka T, Kawakami I, Oshima K, Niizato K, Akiyama H, Yoshida M, Hasegawa M, Arai T. Intracellular dynamics of Ataxin-2 in the human brains with normal and frontotemporal lobar degeneration with TDP-43 inclusions. Acta Neuropathol Commun 2020; 8:176. [PMID: 33115537 PMCID: PMC7594343 DOI: 10.1186/s40478-020-01055-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
TAR DNA-binding protein of 43 kDa (TDP-43) is a major component of intracellular aggregates formed in brains of the patients with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), which are correctively referred to as TDP-43 proteinopathies. A link between Ataxin-2 (ATXN2) and TDP-43 proteinopathies was established when intermediate CAG repeat expansions of ATXN2 gene were found to be associated with ALS and it was shown that ATXN2 modifies TDP-43 toxicity. Although ATXN2's contribution to TDP-43 proteinopathies has been mostly studied in ALS, recent studies have shown that intermediate repeat expansions of ATXN2 also influence the phenotype of FTLD by an unknown mechanism. To address this issue, we immunohistochemically and biochemically analyzed the intracellular dynamics of ATXN2 in brains of normal controls and FTLD-TDP cases. The immunohistochemical studies revealed that ATXN2 localized in the neuronal cytoplasm and proximal dendrites, and expressed widely and uniformly in normal human brains. A semi-quantitative immunofluorescent analysis of normal brains revealed that the cytoplasmic ATXN2 strongly associates with ribosomal protein S6 and poly-A binding protein 1 and partially overlaps with the endoplasmic reticulum marker Calnexin, suggesting a major role of ATXN2 in protein synthesis. The results of immunohistochemical and biochemical analyses of brains from FTLD-TDP cases showed the colocalization of ATXN2 and phosphorylated TDP-43 in the dystrophic neurites and the neuronal cytoplasmic inclusions in the hippocampal region, and a significant reduction of ATXN2 protein compared to controls. These results suggest that ATXN2 is involved in the pathological process of FTLD-TDP. It remains to be clarified whether reduced ATXN2 expression induces neurodegeneration by impairing protein synthesis or plays a neuroprotective role by attenuating the toxicity of TDP-43 aggregates in FTLD-TDP and other TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Ryohei Watanabe
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo Japan
- Department of Psychiatry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, 2-1-1 Kamikitazawa, Setagaya, Tokyo Japan
| | - Shinji Higashi
- Department of Psychiatry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Japan
- Department of Psychiatry, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki Japan
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo Japan
| | - Ito Kawakami
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, 2-1-1 Kamikitazawa, Setagaya, Tokyo Japan
- Brain Bank for Aging Research, Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi, Tokyo Japan
| | - Kenichi Oshima
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, 2-1-1 Kamikitazawa, Setagaya, Tokyo Japan
| | - Kazuhiro Niizato
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, 2-1-1 Kamikitazawa, Setagaya, Tokyo Japan
| | - Haruhiko Akiyama
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo Japan
- Department of Clinical Research, Yokohama Brain and Spine Center, 1-2-1 Takigashira, Isogo, Yokohama, Kanagawa Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo Japan
| | - Tetsuaki Arai
- Department of Psychiatry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Japan
| |
Collapse
|
23
|
Arsović A, Halbach MV, Canet-Pons J, Esen-Sehir D, Döring C, Freudenberg F, Czechowska N, Seidel K, Baader SL, Gispert S, Sen NE, Auburger G. Mouse Ataxin-2 Expansion Downregulates CamKII and Other Calcium Signaling Factors, Impairing Granule-Purkinje Neuron Synaptic Strength. Int J Mol Sci 2020; 21:E6673. [PMID: 32932600 PMCID: PMC7555182 DOI: 10.3390/ijms21186673] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is caused by polyglutamine expansion in Ataxin-2 (ATXN2). This factor binds RNA/proteins to modify metabolism after stress, and to control calcium (Ca2+) homeostasis after stimuli. Cerebellar ataxias and corticospinal motor neuron degeneration are determined by gain/loss in ATXN2 function, so we aimed to identify key molecules in this atrophic process, as potential disease progression markers. Our Atxn2-CAG100-Knock-In mouse faithfully models features observed in patients at pre-onset, early and terminal stages. Here, its cerebellar global RNA profiling revealed downregulation of signaling cascades to precede motor deficits. Validation work at mRNA/protein level defined alterations that were independent of constant physiological ATXN2 functions, but specific for RNA/aggregation toxicity, and progressive across the short lifespan. The earliest changes were detected at three months among Ca2+ channels/transporters (Itpr1, Ryr3, Atp2a2, Atp2a3, Trpc3), IP3 metabolism (Plcg1, Inpp5a, Itpka), and Ca2+-Calmodulin dependent kinases (Camk2a, Camk4). CaMKIV-Sam68 control over alternative splicing of Nrxn1, an adhesion component of glutamatergic synapses between granule and Purkinje neurons, was found to be affected. Systematic screening of pre/post-synapse components, with dendrite morphology assessment, suggested early impairment of CamKIIα abundance together with the weakening of parallel fiber connectivity. These data reveal molecular changes due to ATXN2 pathology, primarily impacting excitability and communication.
Collapse
Affiliation(s)
- Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Melanie Vanessa Halbach
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Dilhan Esen-Sehir
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Medical Faculty, Goethe University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany; (D.E.-S.); (F.F.)
- Faculty of Biosciences, Goethe-University, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany;
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Medical Faculty, Goethe University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany; (D.E.-S.); (F.F.)
| | - Nicoletta Czechowska
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53115 Bonn, Germany; (N.C.); (K.S.); (S.L.B.)
| | - Kay Seidel
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53115 Bonn, Germany; (N.C.); (K.S.); (S.L.B.)
| | - Stephan L. Baader
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53115 Bonn, Germany; (N.C.); (K.S.); (S.L.B.)
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
- Faculty of Biosciences, Goethe-University, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| |
Collapse
|
24
|
Key J, Harter PN, Sen NE, Gradhand E, Auburger G, Gispert S. Mid-Gestation lethality of Atxn2l-Ablated Mice. Int J Mol Sci 2020; 21:E5124. [PMID: 32698485 PMCID: PMC7404131 DOI: 10.3390/ijms21145124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Depletion of yeast/fly Ataxin-2 rescues TDP-43 overexpression toxicity. In mouse models of Amyotrophic Lateral Sclerosis via TDP-43 overexpression, depletion of its ortholog ATXN2 mitigated motor neuron degeneration and extended lifespan from 25 days to >300 days. There is another ortholog in mammals, named ATXN2L (Ataxin-2-like), which is almost uncharacterized but also functions in RNA surveillance at stress granules. We generated mice with Crispr/Cas9-mediated deletion of Atxn2l exons 5-8, studying homozygotes prenatally and heterozygotes during aging. Our novel findings indicate that ATXN2L absence triggers mid-gestational embryonic lethality, affecting female animals more strongly. Weight and development stages of homozygous mutants were reduced. Placenta phenotypes were not apparent, but brain histology showed lamination defects and apoptosis. Aged heterozygotes showed no locomotor deficits or weight loss over 12 months. Null mutants in vivo displayed compensatory efforts to maximize Atxn2l expression, which were prevented upon nutrient abundance in vitro. Mouse embryonal fibroblast cells revealed more multinucleated giant cells upon ATXN2L deficiency. In addition, in human neural cells, transcript levels of ATXN2L were induced upon starvation and glucose and amino acids exposure, but this induction was partially prevented by serum or low cholesterol administration. Neither ATXN2L depletion triggered dysregulation of ATXN2, nor a converse effect was observed. Overall, this essential role of ATXN2L for embryogenesis raises questions about its role in neurodegenerative diseases and neuroprotective therapies.
Collapse
Affiliation(s)
- Jana Key
- Exp. Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (J.K.); (N.-E.S.)
- Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt am Main, Germany;
| | - Nesli-Ece Sen
- Exp. Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (J.K.); (N.-E.S.)
- Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Elise Gradhand
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University, Theodor-Stern-Kai-7, 60590 Frankfurt am Main, Germany;
| | - Georg Auburger
- Exp. Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (J.K.); (N.-E.S.)
| | - Suzana Gispert
- Exp. Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (J.K.); (N.-E.S.)
| |
Collapse
|
25
|
Xue YC, Ng CS, Xiang P, Liu H, Zhang K, Mohamud Y, Luo H. Dysregulation of RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2020; 13:78. [PMID: 32547363 PMCID: PMC7273501 DOI: 10.3389/fnmol.2020.00078] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Genetic analyses of patients with amyotrophic lateral sclerosis (ALS) have revealed a strong association between mutations in genes encoding many RNA-binding proteins (RBPs), including TARDBP, FUS, hnRNPA1, hnRNPA2B1, MATR3, ATXN2, TAF15, TIA-1, and EWSR1, and disease onset/progression. RBPs are a group of evolutionally conserved proteins that participate in multiple steps of RNA metabolism, including splicing, polyadenylation, mRNA stability, localization, and translation. Dysregulation of RBPs, as a consequence of gene mutations, impaired nucleocytoplasmic trafficking, posttranslational modification (PTM), aggregation, and sequestration by abnormal RNA foci, has been shown to be involved in neurodegeneration and the development of ALS. While the exact mechanism by which dysregulated RBPs contribute to ALS remains elusive, emerging evidence supports the notion that both a loss of function and/or a gain of toxic function of these ALS-linked RBPs play a significant role in disease pathogenesis through facilitating abnormal protein interaction, causing aberrant RNA metabolism, and by disturbing ribonucleoprotein granule dynamics and phase transition. In this review article, we summarize the current knowledge on the molecular mechanism by which RBPs are dysregulated and the influence of defective RBPs on cellular homeostasis during the development of ALS. The strategies of ongoing clinical trials targeting RBPs and/or relevant processes are also discussed in the present review.
Collapse
Affiliation(s)
- Yuan Chao Xue
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chen Seng Ng
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pinhao Xiang
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Huitao Liu
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Zhang
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Hansen M, Zeddies S, Meinders M, di Summa F, Rollmann E, van Alphen FP, Hoogendijk AJ, Moore KS, Halbach M, Gutiérrez L, van den Biggelaar M, Thijssen-Timmer DC, Auburger GW, van den Akker E, von Lindern M. The RNA-Binding Protein ATXN2 is Expressed during Megakaryopoiesis and May Control Timing of Gene Expression. Int J Mol Sci 2020; 21:ijms21030967. [PMID: 32024018 PMCID: PMC7037754 DOI: 10.3390/ijms21030967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Megakaryopoiesis is the process during which megakaryoblasts differentiate to polyploid megakaryocytes that can subsequently shed thousands of platelets in the circulation. Megakaryocytes accumulate mRNA during their maturation, which is required for the correct spatio-temporal production of cytoskeletal proteins, membranes and platelet-specific granules, and for the subsequent shedding of thousands of platelets per cell. Gene expression profiling identified the RNA binding protein ATAXIN2 (ATXN2) as a putative novel regulator of megakaryopoiesis. ATXN2 expression is high in CD34+/CD41+ megakaryoblasts and sharply decreases upon maturation to megakaryocytes. ATXN2 associates with DDX6 suggesting that it may mediate repression of mRNA translation during early megakaryopoiesis. Comparative transcriptome and proteome analysis on megakaryoid cells (MEG-01) with differential ATXN2 expression identified ATXN2 dependent gene expression of mRNA and protein involved in processes linked to hemostasis. Mice deficient for Atxn2 did not display differences in bleeding times, but the expression of key surface receptors on platelets, such as ITGB3 (carries the CD61 antigen) and CD31 (PECAM1), was deregulated and platelet aggregation upon specific triggers was reduced.
Collapse
Affiliation(s)
- Marten Hansen
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Sabrina Zeddies
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Marjolein Meinders
- Department Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam,1066CX Amsterdam, The Netherlands; (M.M.); (L.G.)
| | - Franca di Summa
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Ewa Rollmann
- Experimental Neurology, Goethe University Medical School, 60528 Frankfurt am Main, Germany; (E.R.); (M.H.)
| | - Floris P.J. van Alphen
- Department of Molecular and Cellular Hemostasis, Sanquin Research, 1066CX Amsterdam, The Netherlands (A.J.H.); (M.v.d.B.)
| | - Arjan J. Hoogendijk
- Department of Molecular and Cellular Hemostasis, Sanquin Research, 1066CX Amsterdam, The Netherlands (A.J.H.); (M.v.d.B.)
| | - Kat S. Moore
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Melanie Halbach
- Experimental Neurology, Goethe University Medical School, 60528 Frankfurt am Main, Germany; (E.R.); (M.H.)
| | - Laura Gutiérrez
- Department Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam,1066CX Amsterdam, The Netherlands; (M.M.); (L.G.)
| | - Maartje van den Biggelaar
- Department of Molecular and Cellular Hemostasis, Sanquin Research, 1066CX Amsterdam, The Netherlands (A.J.H.); (M.v.d.B.)
| | - Daphne C. Thijssen-Timmer
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Georg W.J. Auburger
- Experimental Neurology, Goethe University Medical School, 60528 Frankfurt am Main, Germany; (E.R.); (M.H.)
| | - Emile van den Akker
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Marieke von Lindern
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
- Correspondence: ; Tel.: +31-6-1203-7801
| |
Collapse
|
27
|
Lalonde R, Strazielle C. Motor Performances of Spontaneous and Genetically Modified Mutants with Cerebellar Atrophy. THE CEREBELLUM 2019; 18:615-634. [PMID: 30820866 DOI: 10.1007/s12311-019-01017-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chance discovery of spontaneous mutants with atrophy of the cerebellar cortex has unearthed genes involved in optimizing motor coordination. Rotorod, stationary beam, and suspended wire tests are useful in delineating behavioral phenotypes of spontaneous mutants with cerebellar atrophy such as Grid2Lc, Grid2ho, Rorasg, Agtpbp1pcd, Relnrl, and Dab1scm. Likewise, transgenic or null mutants serving as experimental models of spinocerebellar ataxia (SCA) are phenotyped with the same tests. Among experimental models of autosomal dominant SCA, rotorod deficits were reported in SCA1 to 3, SCA5 to 8, SCA14, SCA17, and SCA27 and stationary beam deficits in SCA1 to 3, SCA5, SCA6, SCA13, SCA17, and SCA27. Beam tests are sensitive to experimental therapies of various kinds including molecules affecting glutamate signaling, mesenchymal stem cells, anti-oligomer antibodies, lentiviral vectors carrying genes, interfering RNAs, or neurotrophic factors, and interbreeding with other mutants.
Collapse
Affiliation(s)
- Robert Lalonde
- Department of Psychology, University of Rouen, 76821, Mont-Saint-Aignan Cedex, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, and Pathogens EA7300, and CHRU of Nancy, University of Lorraine, 54500, Vandoeuvre-les-Nancy, France
| |
Collapse
|
28
|
Sen NE, Arsovic A, Meierhofer D, Brodesser S, Oberschmidt C, Canet-Pons J, Kaya ZE, Halbach MV, Gispert S, Sandhoff K, Auburger G. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism. Int J Mol Sci 2019; 20:E5854. [PMID: 31766565 PMCID: PMC6928749 DOI: 10.3390/ijms20235854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide-sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany;
| | - Susanne Brodesser
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Carola Oberschmidt
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Júlia Canet-Pons
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Zeynep-Ece Kaya
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Melanie-Vanessa Halbach
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Suzana Gispert
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Georg Auburger
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| |
Collapse
|
29
|
Egorova PA, Bezprozvanny IB. Molecular Mechanisms and Therapeutics for Spinocerebellar Ataxia Type 2. Neurotherapeutics 2019; 16:1050-1073. [PMID: 31435879 PMCID: PMC6985344 DOI: 10.1007/s13311-019-00777-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effective therapeutic treatment and the disease-modifying therapy for spinocerebellar ataxia type 2 (SCA2) (a progressive hereditary disease caused by an expansion of polyglutamine in the ataxin-2 protein) is not available yet. At present, only symptomatic treatment and methods of palliative care are prescribed to the patients. Many attempts were made to study the physiological, molecular, and biochemical changes in SCA2 patients and in a variety of the model systems to find new therapeutic targets for SCA2 treatment. A better understanding of the uncovered molecular mechanisms of the disease allowed the scientific community to develop strategies of potential therapy and helped to create some promising therapeutic approaches for SCA2 treatment. Recent progress in this field will be discussed in this review article.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, ND12.200, Dallas, Texas, 75390, USA.
| |
Collapse
|
30
|
Sen NE, Canet-Pons J, Halbach MV, Arsovic A, Pilatus U, Chae WH, Kaya ZE, Seidel K, Rollmann E, Mittelbronn M, Meierhofer D, De Zeeuw CI, Bosman LWJ, Gispert S, Auburger G. Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiol Dis 2019; 132:104559. [PMID: 31376479 DOI: 10.1016/j.nbd.2019.104559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion mutations in the ATXN2 gene, mainly affecting motor neurons in the spinal cord and Purkinje neurons in the cerebellum. While the large expansions were shown to cause SCA2, the intermediate length expansions lead to increased risk for several atrophic processes including amyotrophic lateral sclerosis and Parkinson variants, e.g. progressive supranuclear palsy. Intense efforts to pioneer a neuroprotective therapy for SCA2 require longitudinal monitoring of patients and identification of crucial molecular pathways. The ataxin-2 (ATXN2) protein is mainly involved in RNA translation control and regulation of nutrient metabolism during stress periods. The preferential mRNA targets of ATXN2 are yet to be determined. In order to understand the molecular disease mechanism throughout different prognostic stages, we generated an Atxn2-CAG100-knock-in (KIN) mouse model of SCA2 with intact murine ATXN2 expression regulation. Its characterization revealed somatic mosaicism of the expansion, with shortened lifespan, a progressive spatio-temporal pattern of pathology with subsequent phenotypes, and anomalies of brain metabolites such as N-acetylaspartate (NAA), all of which mirror faithfully the findings in SCA2 patients. Novel molecular analyses from stages before the onset of motor deficits revealed a strong selective effect of ATXN2 on Nat8l mRNA which encodes the enzyme responsible for NAA synthesis. This metabolite is a prominent energy store of the brain and a well-established marker for neuronal health. Overall, we present a novel authentic rodent model of SCA2, where in vivo magnetic resonance imaging was feasible to monitor progression and where the definition of earliest transcriptional abnormalities was possible. We believe that this model will not only reveal crucial insights regarding the pathomechanism of SCA2 and other ATXN2-associated disorders, but will also aid in developing gene-targeted therapies and disease prevention.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Melanie V Halbach
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Woon-Hyung Chae
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Zeynep-Ece Kaya
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany; Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Kay Seidel
- Department of Anatomy II, Institute of Clinical Neuroanatomy, Goethe University, 60590 Frankfurt am Main, Germany
| | - Ewa Rollmann
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), Goethe University, 60590 Frankfurt am Main, Germany; Luxembourg Centre of Neuropathology (LCNP), Luxembourg; Department of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Oncology, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Lastres-Becker I, Nonis D, Nowock J, Auburger G. New alternative splicing variants of the ATXN2 transcript. Neurol Res Pract 2019; 1:22. [PMID: 33324888 PMCID: PMC7650068 DOI: 10.1186/s42466-019-0025-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant disorder with progressive degeneration of cerebellar Purkinje cells and selective loss of neurons in the brainstem. This neurodegenerative disorder is caused by the expansion of a polyglutamine domain in ataxin-2. Ataxin-2 is composed of 1312 amino acids, has a predicted molecular weight of 150-kDa and is widely expressed in neuronal and non-neuronal tissues. To date, the putative functions of ataxin-2 on mRNA translation and endocytosis remain ill-defined. Differential splicing with a lack of exons 10 and 21 was described in humans, and additional splicing of exon 11 in mice. In this study, we observed that the molecular size of transfected full-length wild-type ataxin-2 (22 glutamines) is different from endogenous ataxin-2 and that this variation could not be explained by the previously published splice variants alone. Methods Quantitative immunoblots and qualitative reverse-transcriptase polymerase-chain-reaction (RT-PCR) were used to characterize isoform variants, before sequencing was employed for validation. Results We report the characterization of further splice variants of ataxin-2 in different human cell lines and in mouse and human brain. Using RT-PCR from cell lines HeLa, HEK293 and COS-7 throughout the open reading frame of ataxin-2 together with PCR-sequencing, we found novel splice variants lacking exon 12 and exon 24. These findings were corroborated in murine and human brain. The splice variants were also found in human skin fibroblasts from SCA2 patients and controls, indicating that the polyglutamine expansion does not abolish the splicing. Conclusions Given that Ataxin-2 interacts with crucial splice modulators such as TDP-43 and modulates the risk of Amyotrophic Lateral Sclerosis, its own splice isoforms may become relevant in brain tissue to monitor the RNA processing during disease progression and neuroprotective therapy.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.,Present address: Department of Biochemistry, Faculty of Medicine, Universidad Autonoma of Madrid, Madrid, Spain
| | - David Nonis
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Joachim Nowock
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
32
|
Chen ZS, Wong AKY, Cheng TC, Koon AC, Chan HYE. FipoQ/FBXO33, a Cullin-1-based ubiquitin ligase complex component modulates ubiquitination and solubility of polyglutamine disease protein. J Neurochem 2019; 149:781-798. [PMID: 30685895 DOI: 10.1111/jnc.14669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/17/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
Abstract
Polyglutamine (polyQ) diseases describe a group of progressive neurodegenerative disorders caused by the CAG triplet repeat expansion in the coding region of the disease genes. To date, nine such diseases, including spinocerebellar ataxia type 3 (SCA3), have been reported. The formation of SDS-insoluble protein aggregates in neurons causes cellular dysfunctions, such as impairment of the ubiquitin-proteasome system, and contributes to polyQ pathologies. Recently, the E3 ubiquitin ligases, which govern substrate specificity of the ubiquitin-proteasome system, have been implicated in polyQ pathogenesis. The Cullin (Cul) proteins are major components of Cullin-RING ubiquitin ligases (CRLs) complexes that are evolutionarily conserved in the Drosophila genome. In this study, we examined the effect of individual Culs on SCA3 pathogenesis and found that the knockdown of Cul1 expression enhances SCA3-induced neurodegeneration and reduces the solubility of expanded SCA3-polyQ proteins. The F-box proteins are substrate receptors of Cul1-based CRL. We further performed a genetic modifier screen of the 19 Drosophila F-box genes and identified F-box involved in polyQ pathogenesis (FipoQ) as a genetic modifier of SCA3 degeneration that modulates the ubiquitination and solubility of expanded SCA3-polyQ proteins. In the human SK-N-MC cell model, we identified that F-box only protein 33 (FBXO33) exerts similar functions as FipoQ in modulating the ubiquitination and solubility of expanded SCA3-polyQ proteins. Taken together, our study demonstrates that Cul1-based CRL and its associated F-box protein, FipoQ/FBXO33, modify SCA3 protein toxicity. These findings will lead to a better understanding of the disease mechanism of SCA3 and provide insights for developing treatments against SCA3. Cover Image for this issue: doi: 10.1111/jnc.14510.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- Laboratory of Drosophila Research, Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.,Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Azaria Kam Yan Wong
- Laboratory of Drosophila Research, Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.,Molecular Biotechnology Programme, Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Tat Cheung Cheng
- Laboratory of Drosophila Research, Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.,Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.,Molecular Biotechnology Programme, Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.,Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
33
|
Paul S, Dansithong W, Figueroa KP, Scoles DR, Pulst SM. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun 2018; 9:3648. [PMID: 30194296 PMCID: PMC6128856 DOI: 10.1038/s41467-018-06041-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/17/2018] [Indexed: 11/26/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of polyglutamine tract in the ATXN2 protein. We identified Staufen1 (STAU1) as an interactor of ATXN2, and showed elevation in cells from SCA2 patients, amyotrophic lateral sclerosis (ALS) patients, and in SCA2 mouse models. We demonstrated recruitment of STAU1 to mutant ATXN2 aggregates in brain tissue from patients with SCA2 human brain and in an SCA2 mouse model, and association of STAU1 elevation with dysregulation of SCA2-related transcript abundances. Targeting STAU1 in vitro by RNAi restored PCP2 transcript levels and lowering mutant ATXN2 also normalized STAU1 levels. Reduction of Stau1 in vivo improved motor behavior in an SCA2 mouse model, normalized the levels of several SCA2-related proteins, and reduced aggregation of polyglutamine-expanded ATXN2. These findings suggest a function for STAU1 in aberrant RNA metabolism associated with ATXN2 mutation, suggesting STAU1 is a possible novel therapeutic target for SCA2.
Collapse
Affiliation(s)
- Sharan Paul
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah 84132, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah 84132, USA
| | - Karla P Figueroa
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah 84132, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
34
|
Scoles DR, Pulst SM. Spinocerebellar Ataxia Type 2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:175-195. [PMID: 29427103 DOI: 10.1007/978-3-319-71779-1_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is autosomal dominantly inherited and caused by CAG repeat expansion in the ATXN2 gene. Because the CAG repeat expansion is localized to an encoded region of ATXN2, the result is an expanded polyglutamine (polyQ) tract in the ATXN2 protein. SCA2 is characterized by progressive ataxia, and slow saccades. No treatment for SCA2 exists. ATXN2 mutation causes gains of new or toxic functions for the ATXN2 protein, resulting in abnormally slow Purkinje cell (PC) firing frequency and ultimately PC loss. This chapter describes the characteristics of SCA2 patients briefly, and reviews ATXN2 molecular features and progress toward the identification of a treatment for SCA2.
Collapse
Affiliation(s)
- Daniel R Scoles
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT, 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
35
|
Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat Rev Neurosci 2017; 18:613-626. [PMID: 28855740 PMCID: PMC6420820 DOI: 10.1038/nrn.2017.92] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.
Collapse
Affiliation(s)
- Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
36
|
Halbach MV, Gispert S, Stehning T, Damrath E, Walter M, Auburger G. Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway. THE CEREBELLUM 2017; 16:68-81. [PMID: 26868665 PMCID: PMC5243904 DOI: 10.1007/s12311-016-0762-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disorder with preferential affection of Purkinje neurons, which are known as integrators of calcium currents. The expansion of a polyglutamine (polyQ) domain in the RNA-binding protein ataxin-2 (ATXN2) is responsible for this disease, but the causal roles of deficient ATXN2 functions versus aggregation toxicity are still under debate. Here, we studied mouse mutants with Atxn2 knockout (KO) regarding their cerebellar global transcriptome by microarray and RT-qPCR, in comparison with data from Atxn2-CAG42-knock-in (KIN) mouse cerebellum. Global expression downregulations involved lipid and growth signaling pathways in good agreement with previous data. As a novel effect, downregulations of key factors in calcium homeostasis pathways (the transcription factor Rora, transporters Itpr1 and Atp2a2, as well as regulator Inpp5a) were observed in the KO cerebellum, and some of them also occurred subtly early in KIN cerebellum. The ITPR1 protein levels were depleted from soluble fractions of cerebellum in both mutants, but accumulated in its membrane-associated form only in the SCA2 model. Coimmunoprecipitation demonstrated no association of ITPR1 with Q42-expanded or with wild-type ATXN2. These findings provide evidence that the physiological functions and protein interactions of ATXN2 are relevant for calcium-mediated excitation of Purkinje cells as well as for ATXN2-triggered neurotoxicity. These insights may help to understand pathogenesis and tissue specificity in SCA2 and other polyQ ataxias like SCA1, where inositol regulation of calcium flux and RORalpha play a role.
Collapse
Affiliation(s)
- Melanie Vanessa Halbach
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Tanja Stehning
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076, Tuebingen, Germany
| | - Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Pflieger LT, Dansithong W, Paul S, Scoles DR, Figueroa KP, Meera P, Otis TS, Facelli JC, Pulst SM. Gene co-expression network analysis for identifying modules and functionally enriched pathways in SCA2. Hum Mol Genet 2017; 26:3069-3080. [PMID: 28525545 PMCID: PMC5886232 DOI: 10.1093/hmg/ddx191] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/22/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the ATXN2 gene. The repeat resides in an encoded region of the gene resulting in polyglutamine (polyQ) expansion which has been assumed to result in gain of function, predominantly, for the ATXN2 protein. We evaluated temporal cerebellar expression profiles by RNA sequencing of ATXN2Q127 mice versus wild-type (WT) littermates. ATXN2Q127 mice are characterized by a progressive motor phenotype onset, and have progressive cerebellar molecular and neurophysiological (Purkinje cell firing frequency) phenotypes. Our analysis revealed previously uncharacterized early and progressive abnormal patterning of cerebellar gene expression. Weighted Gene Coexpression Network Analysis revealed four gene modules that were significantly correlated with disease status, composed primarily of genes associated with GTPase signaling, calcium signaling and cell death. Of these genes, few overlapped with differentially expressed cerebellar genes that we identified in Atxn2-/- knockout mice versus WT littermates, suggesting that loss-of-function is not a significant component of disease pathology. We conclude that SCA2 is a disease characterized by gain of function for ATXN2.
Collapse
Affiliation(s)
| | - Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Pratap Meera
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas S. Otis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
38
|
Auburger G, Sen NE, Meierhofer D, Başak AN, Gitler AD. Efficient Prevention of Neurodegenerative Diseases by Depletion of Starvation Response Factor Ataxin-2. Trends Neurosci 2017; 40:507-516. [DOI: 10.1016/j.tins.2017.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
|
39
|
Oswald F, Klöble P, Ruland A, Rosenkranz D, Hinz B, Butter F, Ramljak S, Zechner U, Herlyn H. The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration. Front Cell Neurosci 2017; 11:212. [PMID: 28798667 PMCID: PMC5526973 DOI: 10.3389/fncel.2017.00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022] Open
Abstract
The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing FOXP2 cDNA of either humans or the common chimpanzee, Rhesus monkey, and marmoset, respectively. RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. RT-qPCR and Western blotting indicated differential regulation of additional 13 new target genes in response to overexpression of human FOXP2. These genes may be directly regulated by FOXP2 considering numerous matches of established FOXP2-binding motifs as well as publicly available FOXP2-ChIP-seq reads within their putative promoters. Ontology analysis of the new and reproduced targets, along with their interactors in a network, revealed an enrichment of terms relating to cellular signaling and communication, metabolism and catabolism, cellular migration and differentiation, and expression regulation. Notably, terms including the words "neuron" or "axonogenesis" were also enriched. Complementary literature screening uncovered many connections to human developmental (autism spectrum disease, schizophrenia, Down syndrome, agenesis of corpus callosum, trismus-pseudocamptodactyly, ankyloglossia, facial dysmorphology) and neurodegenerative diseases and disorders (Alzheimer's, Parkinson's, and Huntington's diseases, Lewy body dementia, amyotrophic lateral sclerosis). Links to deafness and dyslexia were detected, too. Such relations existed for single proteins (e.g., DCDC2, NURR1, PHOX2B, MYH8, and MYH13) and groups of proteins which conjointly function in mRNA processing, ribosomal recruitment, cell-cell adhesion (e.g., CDH4), cytoskeleton organization, neuro-inflammation, and processing of amyloid precursor protein. Conspicuously, many links pointed to an involvement of the FOXP2-driven network in JAK/STAT signaling and the regulation of the ezrin-radixin-moesin complex. Altogether, the applied phylogenetic perspective substantiated FOXP2's importance for nervous system development, maintenance, and functioning. However, the study also disclosed new regulatory pathways that might prove to be useful for understanding the molecular background of the aforementioned developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - Patricia Klöble
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - André Ruland
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - David Rosenkranz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| | - Bastian Hinz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
| | - Falk Butter
- Institute of Molecular BiologyMainz, Germany
| | | | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
- Dr. Senckenbergisches Zentrum für HumangenetikFrankfurt, Germany
| | - Holger Herlyn
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| |
Collapse
|
40
|
Li PP, Sun X, Xia G, Arbez N, Paul S, Zhu S, Peng HB, Ross CA, Koeppen AH, Margolis RL, Pulst SM, Ashizawa T, Rudnicki DD. ATXN2-AS, a gene antisense to ATXN2, is associated with spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis. Ann Neurol 2017; 80:600-15. [PMID: 27531668 DOI: 10.1002/ana.24761] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by a CAG repeat expansion in the gene ataxin-2 (ATXN2). ATXN2 intermediate-length CAG expansions were identified as a risk factor for amyotrophic lateral sclerosis (ALS). The ATXN2 CAG repeat is translated into polyglutamine, and SCA2 pathogenesis has been thought to derive from ATXN2 protein containing an expanded polyglutamine tract. However, recent evidence of bidirectional transcription at multiple CAG/CTG disease loci has led us to test whether additional mechanisms of pathogenesis may contribute to SCA2. METHODS In this work, using human postmortem tissue, various cell models, and animal models, we provide the first evidence that an antisense transcript at the SCA2 locus contributes to SCA2 pathogenesis. RESULTS We demonstrate the expression of a transcript, containing the repeat as a CUG tract, derived from a gene (ATXN2-AS) directly antisense to ATXN2. ATXN2-AS transcripts with normal and expanded CUG repeats are expressed in human postmortem SCA2 brains, human SCA2 fibroblasts, induced SCA2 pluripotent stem cells, SCA2 neural stem cells, and lymphoblastoid lines containing an expanded ATXN2 allele associated with ALS. ATXN2-AS transcripts with a CUG repeat expansion are toxic in an SCA2 cell model and form RNA foci in SCA2 cerebellar Purkinje cells. Finally, we detected missplicing of amyloid beta precursor protein and N-methyl-D-aspartate receptor 1 in SCA2 brains, consistent with findings in other diseases characterized by RNA-mediated pathogenesis. INTERPRETATION These results suggest that ATXN2-AS has a role in SCA2 and possibly ALS pathogenesis, and may therefore provide a novel therapeutic target for these diseases. Ann Neurol 2016;80:600-615.
Collapse
Affiliation(s)
- Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xin Sun
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Research and Neurology Services, Veterans Affairs Medical Center, Albany, NY
| | - Guangbin Xia
- Department of Neurology, College of Medicine, and McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Shanshan Zhu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - H Benjamin Peng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Arnulf H Koeppen
- Research and Neurology Services, Veterans Affairs Medical Center, Albany, NY.,Department of Neurology and Pathology, Albany Medical College, Albany, NY
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Tetsuo Ashizawa
- Department of Neurology, College of Medicine, and McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD. .,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
41
|
Carmo-Silva S, Nobrega C, Pereira de Almeida L, Cavadas C. Unraveling the Role of Ataxin-2 in Metabolism. Trends Endocrinol Metab 2017; 28:309-318. [PMID: 28117213 DOI: 10.1016/j.tem.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
Ataxin-2 is a polyglutamine protein implicated in several biological processes such as RNA metabolism and cytoskeleton reorganization. Ataxin-2 is highly expressed in various tissues including the hypothalamus, a brain region that controls food intake and energy balance. Ataxin-2 expression is influenced by nutritional status. Emerging studies discussed here now show that ataxin-2 deficiency correlates with insulin resistance and dyslipidemia, an action mediated via the mTOR pathway, suggesting that ataxin-2 might play key roles in metabolic homeostasis including body weight regulation, insulin sensitivity, and cellular stress responses. In this review we also discuss the relevance of ataxin-2 in the hypothalamic regulation of energy balance, and its potential as a therapeutic target in metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Sara Carmo-Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clevio Nobrega
- Department of Biomedical Sciences and Medicine, Center for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Claudia Cavadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
42
|
Velázquez-Pérez L, Rodríguez-Labrada R, Laffita-Mesa JM. Prodromal spinocerebellar ataxia type 2: Prospects for early interventions and ethical challenges. Mov Disord 2017; 32:708-718. [DOI: 10.1002/mds.26969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
| | | | - José Miguel Laffita-Mesa
- Centre for the Research and Rehabilitation of Hereditary Ataxias; Holguín Cuba
- Department of Clinical Neuroscience; Karolinska Universitetssjukhuset; Stockholm Sweden
| |
Collapse
|
43
|
Seidel G, Meierhofer D, Şen NE, Guenther A, Krobitsch S, Auburger G. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. J Proteome Res 2016; 16:504-515. [PMID: 27966978 DOI: 10.1021/acs.jproteome.6b00647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast protein PBP1 is implicated in very diverse pathways. Intriguingly, its deletion mitigates the toxicity of human neurodegeneration factors. Here, we performed label-free quantitative global proteomics to identify crucial downstream factors, either without stress or under cell stress conditions (heat and NaN3). Compared to the wildtype BY4741 strain, PBP1 deletion always triggered downregulation of the key bioenergetics enzyme KGD2 and the prion protein RNQ1 as well as upregulation of the leucine biosynthesis enzyme LEU1. Without stress, enrichment of stress response factors was consistently detected for both deletion mutants; upon stress, these factors were more pronounced. The selective analysis of components of stress granules and P-bodies revealed a prominent downregulation of GIS2. Our yeast data are in good agreement with a global proteomics and metabolomics publication that the PBP1 ortholog ATAXIN-2 (ATXN2) knockout (KO) in mouse results in mitochondrial deficits in leucine/fatty acid catabolism and bioenergetics, with an obesity phenotype. Furthermore, our data provide the completely novel insight that PBP1 mutations in stress periods involve GIS2, a plausible scenario in view of previous data that both PBP1 and GIS2 relocalize from ribosomes to stress granules, interact with poly(A)-binding protein in translation regulation and prevent mitochondrial precursor overaccumulation stress (mPOS). This may be relevant for human diseases like spinocerebellar ataxias, amyotrophic lateral sclerosis, and the metabolic syndrome.
Collapse
Affiliation(s)
- Gunnar Seidel
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Nesli-Ece Şen
- Experimental Neurology, Goethe University Medical School , Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Anika Guenther
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Sylvia Krobitsch
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School , Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
44
|
Alves-Cruzeiro JMDC, Mendonça L, Pereira de Almeida L, Nóbrega C. Motor Dysfunctions and Neuropathology in Mouse Models of Spinocerebellar Ataxia Type 2: A Comprehensive Review. Front Neurosci 2016; 10:572. [PMID: 28018166 PMCID: PMC5156697 DOI: 10.3389/fnins.2016.00572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant ataxia caused by an expansion of CAG repeats in the exon 1 of the gene ATXN2, conferring a gain of toxic function that triggers the appearance of the disease phenotype. SCA2 is characterized by several symptoms including progressive gait ataxia and dysarthria, slow saccadic eye movements, sleep disturbances, cognitive impairments, and psychological dysfunctions such as insomnia and depression, among others. The available treatments rely on palliative care, which mitigate some of the major symptoms but ultimately fail to block the disease progression. This persistent lack of effective therapies led to the development of several models in yeast, C. elegans, D. melanogaster, and mice to serve as platforms for testing new therapeutic strategies and to accelerate the research on the complex disease mechanisms. In this work, we review 4 transgenic and 1 knock-in mouse that exhibit a SCA2-related phenotype and discuss their usefulness in addressing different scientific problems. The knock-in mice are extremely faithful to the human disease, with late onset of symptoms and physiological levels of mutant ataxin-2, while the other transgenic possess robust and well-characterized motor impairments and neuropathological features. Furthermore, a new BAC model of SCA2 shows promise to study the recently explored role of non-coding RNAs as a major pathogenic mechanism in this devastating disorder. Focusing on specific aspects of the behavior and neuropathology, as well as technical aspects, we provide a highly practical description and comparison of all the models with the purpose of creating a useful resource for SCA2 researchers worldwide.
Collapse
Affiliation(s)
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Clévio Nóbrega
- Department of Biomedical Sciences and Medicine and Center for Biomedical Research, University of Algarve Faro, Portugal
| |
Collapse
|
45
|
Pfeffer M, Gispert S, Auburger G, Wicht H, Korf HW. Impact of Ataxin-2 knock out on circadian locomotor behavior and PER immunoreaction in the SCN of mice. Chronobiol Int 2016; 34:129-137. [PMID: 27791392 DOI: 10.1080/07420528.2016.1245666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In Drosophila melanogaster, Ataxin-2 is a crucial activator of Period and is involved in the control of circadian rhythms. However, in mammals the function of Ataxin-2 is unknown despite its involvement in the inherited neurogenerative disease Spinocerebellar Ataxia type 2 in humans. Therefore, we analyzed locomotor behavior of Atxn2-deficient mice and their WT littermates under entrained- and free-running conditions as well as after experimental jet lag. Furthermore, we compared the PER1 and PER2 immunoreaction (IR) in the SCN. Atxn2-/- mice showed an unstable rhythmicity of locomotor activity, but the level of PER1 and PER2 IR in the SCN did not differ between genotypes.
Collapse
Affiliation(s)
- Martina Pfeffer
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany.,b Dr. Senckenbergisches Chronomedizinisches Institut , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Suzana Gispert
- c Experimental Neurology, Department of Neurology , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Georg Auburger
- c Experimental Neurology, Department of Neurology , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Helmut Wicht
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Horst-Werner Korf
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany.,b Dr. Senckenbergisches Chronomedizinisches Institut , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
46
|
Griesche N, Schilling J, Weber S, Rohm M, Pesch V, Matthes F, Auburger G, Krauss S. Regulation of mRNA Translation by MID1: A Common Mechanism of Expanded CAG Repeat RNAs. Front Cell Neurosci 2016; 10:226. [PMID: 27774050 PMCID: PMC5054010 DOI: 10.3389/fncel.2016.00226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/20/2016] [Indexed: 12/28/2022] Open
Abstract
Expansion of CAG repeats, which code for the disease-causing polyglutamine protein, is a common feature in polyglutamine diseases. RNA-mediated mechanisms that contribute to neuropathology in polyglutamine diseases are important. RNA-toxicity describes a phenomenon by which the mutant CAG repeat RNA recruits RNA-binding proteins, thereby leading to aberrant function. For example the MID1 protein binds to mutant huntingtin (HTT) RNA, which is linked to Huntington's disease (HD), at its CAG repeat region and induces protein synthesis of mutant protein. But is this mechanism specific to HD or is it a common mechanism in CAG repeat expansion disorders? To answer this question, we have analyzed the interaction between MID1 and three other CAG repeat mRNAs, Ataxin2 (ATXN2), Ataxin3 (ATXN3), and Ataxin7 (ATXN7), that all differ in the sequence flanking the CAG repeat. We show that ATXN2, ATXN3, and ATXN7 bind to MID1 in a CAG repeat length-dependent manner. Furthermore, we show that functionally, in line with what we have previously observed for HTT, the binding of MID1 to ATXN2, ATXN3, and ATXN7 mRNA induces protein synthesis in a repeat length-dependent manner. Our data suggest that regulation of protein translation by the MID1 complex is a common mechanism for CAG repeat containing mRNAs.
Collapse
Affiliation(s)
| | | | | | - Marlena Rohm
- German Center for Neurodegenerative Diseases Bonn, Germany
| | - Verena Pesch
- German Center for Neurodegenerative Diseases Bonn, Germany
| | - Frank Matthes
- German Center for Neurodegenerative Diseases Bonn, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School Frankfurt, Germany
| | - Sybille Krauss
- German Center for Neurodegenerative Diseases Bonn, Germany
| |
Collapse
|
47
|
Nkiliza A, Mutez E, Simonin C, Leprêtre F, Duflot A, Figeac M, Villenet C, Semaille P, Comptdaer T, Genet A, Sablonnière B, Devos D, Defebvre L, Destée A, Chartier-Harlin MC. RNA-binding disturbances as a continuum from spinocerebellar ataxia type 2 to Parkinson disease. Neurobiol Dis 2016; 96:312-322. [PMID: 27663142 DOI: 10.1016/j.nbd.2016.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 12/13/2022] Open
Abstract
CAG triplet expansions in Ataxin-2 gene (ATXN2) cause spinocerebellar ataxia type 2 and have a role that remains to be clarified in Parkinson's disease (PD). To study the molecular events associated with these expansions, we sequenced them and analyzed the transcriptome from blood cells of controls and three patient groups diagnosed with spinocerebellar ataxia type 2 (herein referred to as SCA2c) or PD with or without ATXN2 triplet expansions (named SCA2p). The transcriptome profiles of these 40 patients revealed three main observations: i) a specific pattern of pathways related to cellular contacts, proliferation and differentiation associated with SCA2p group, ii) similarities between the SCA2p and sporadic PD groups in genes and pathways known to be altered in PD such as Wnt, Ephrin and Leukocyte extravasation signaling iii) RNA metabolism disturbances with "RNA-binding" and "poly(A) RNA-binding" as a common feature in all groups. Remarkably, disturbances of ALS signaling were shared between SCA2p and sporadic PD suggesting common molecular dysfunctions in PD and ALS including CACNA1, hnRNP, DDX and PABPC gene family perturbations. Interestingly, the transcriptome profiles of patients with parkinsonian phenotypes were prevalently associated with alterations of translation while SCA2c and PD patients presented perturbations of splicing. While ATXN2 RNA expression was not perturbed, its protein expression in immortalized lymphoblastoid cells was significantly decreased in SCA2c and SCA2p versus control groups assuming post-transcriptional biological perturbations. In conclusion, the transcriptome data do not exclude the role of ATXN2 mutated alleles in PD but its decrease protein expression in both SCA2c and SCA2p patients suggest a potential involvement of this gene in PD. The perturbations of "RNA-binding" and "poly(A) RNA-binding" molecular functions in the three patient groups as well as gene deregulations of factors not yet described in PD but known to be deleterious in other neurological conditions, suggest the existence of RNA-binding disturbances as a continuum between spinocerebellar ataxia type 2 and Parkinson's disease.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Eugénie Mutez
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Clémence Simonin
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Frédéric Leprêtre
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Aurélie Duflot
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Martin Figeac
- Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Céline Villenet
- Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Pierre Semaille
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Thomas Comptdaer
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Alexandre Genet
- CHU Lille, Centre de Biologie Pathologie, Unité de Neurobiologie, F-59000 Lille, France
| | - Bernard Sablonnière
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; CHU Lille, Centre de Biologie Pathologie, Unité de Neurobiologie, F-59000 Lille, France
| | - David Devos
- CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Luc Defebvre
- CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Alain Destée
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France.
| |
Collapse
|
48
|
Sen NE, Drost J, Gispert S, Torres-Odio S, Damrath E, Klinkenberg M, Hamzeiy H, Akdal G, Güllüoğlu H, Başak AN, Auburger G. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol Dis 2016; 96:115-126. [PMID: 27597528 DOI: 10.1016/j.nbd.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
Ataxin-2 (ATXN2) polyglutamine domain expansions of large size result in an autosomal dominantly inherited multi-system-atrophy of the nervous system named spinocerebellar ataxia type 2 (SCA2), while expansions of intermediate size act as polygenic risk factors for motor neuron disease (ALS and FTLD) and perhaps also for Levodopa-responsive Parkinson's disease (PD). In view of the established role of ATXN2 for RNA processing in periods of cell stress and the expression of ATXN2 in blood cells such as platelets, we investigated whether global deep RNA sequencing of whole blood from SCA2 patients identifies a molecular profile which might serve as diagnostic biomarker. The bioinformatic analysis of SCA2 blood global transcriptomics revealed various significant effects on RNA processing pathways, as well as the pathways of Huntington's disease and PD where mitochondrial dysfunction is crucial. Notably, an induction of PINK1 and PARK7 expression was observed. Conversely, expression of Pink1 was severely decreased upon global transcriptome profiling of Atxn2-knockout mouse cerebellum and liver, in parallel to strong effects on Opa1 and Ghitm, which encode known mitochondrial dynamics regulators. These results were validated by quantitative PCR and immunoblots. Starvation stress of human SH-SY5Y neuroblastoma cells led to a transcriptional phasic induction of ATXN2 in parallel to PINK1, and the knockdown of one enhanced the expression of the other during stress response. These findings suggest that ATXN2 may modify the known PINK1 roles for mitochondrial quality control and autophagy during cell stress. Given that PINK1 is responsible for autosomal recessive juvenile PD, this genetic interaction provides a concept how the degeneration of nigrostriatal dopaminergic neurons and the Parkinson phenotype may be triggered by ATXN2 mutations.
Collapse
Affiliation(s)
- Nesli Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany; Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Jessica Drost
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Michael Klinkenberg
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Gülden Akdal
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Halil Güllüoğlu
- Department of Neurology, Faculty of Medicine, Izmir University, Izmir, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey.
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
49
|
Lastres-Becker I, Nonis D, Eich F, Klinkenberg M, Gorospe M, Kötter P, Klein FAC, Kedersha N, Auburger G. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1558-69. [PMID: 27240544 PMCID: PMC4967000 DOI: 10.1016/j.bbadis.2016.05.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/11/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
Ataxin-2 is a cytoplasmic protein, product of the ATXN2 gene, whose deficiency leads to obesity, while its gain-of-function leads to neural atrophy. Ataxin-2 affects RNA homeostasis, but its effects are unclear. Here, immunofluorescence analysis suggested that ataxin-2 associates with 48S pre-initiation components at stress granules in neurons and mouse embryonic fibroblasts, but is not essential for stress granule formation. Coimmunoprecipitation analysis showed associations of ataxin-2 with initiation factors, which were concentrated at monosome fractions of polysome gradients like ataxin-2, unlike its known interactor PABP. Mouse embryonic fibroblasts lacking ataxin-2 showed increased phosphorylation of translation modulators 4E-BP1 and ribosomal protein S6 through the PI3K-mTOR pathways. Indeed, human neuroblastoma cells after trophic deprivation showed a strong induction of ATXN2 transcript via mTOR inhibition. Our results support the notion that ataxin-2 is a nutritional stress-inducible modulator of mRNA translation at the pre-initiation complex.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - David Nonis
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Florian Eich
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Michael Klinkenberg
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Peter Kötter
- Center of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Fabrice A C Klein
- Translational Medicine and Neurogenetics Department, Institut de Génétique et Biologie Moléculaire et Cellulaire, UMR7104-CNRS/U964-INSERM/UDS, BP10142, 67404 Illkirch Cédex, France
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, One Jimmy Fund Way, Boston, MA 02115, USA
| | - Georg Auburger
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
50
|
Yang H, Hu HY. Sequestration of cellular interacting partners by protein aggregates: implication in a loss-of-function pathology. FEBS J 2016; 283:3705-3717. [PMID: 27016044 DOI: 10.1111/febs.13722] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/11/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Protein misfolding and aggregation are a hallmark of several neurodegenerative diseases (NDs). However, how protein aggregation leads to cytotoxicity and neurodegeneration is still controversial. Emerging evidence demonstrates that sequestration of cellular-interacting partners by protein aggregates contributes to the pathogenesis of these diseases. Here, we review current research on sequestration of cellular proteins by protein aggregates and its relation to proteinopathies. Based on different interaction modes, we classify these protein sequestrations into four types: protein coaggregation, domain/motif-mediated sequestration, RNA-assisted sequestration, and sequestration of molecular chaperones. Thus, the cellular essential proteins and/or RNA hijacked by protein aggregates may lose their biological functions, consequently resulting in cytotoxicity and neurodegeneration. We have proposed a hijacking model recapitulating the sequestration process and the loss-of-function pathology of ND.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|