1
|
Ma Y, Boycott C, Zhang J, Gomilar R, Yang T, Stefanska B. SIRT1/DNMT3B-mediated epigenetic gene silencing in response to phytoestrogens in mammary epithelial cells. Epigenetics 2025; 20:2473770. [PMID: 40029260 PMCID: PMC11881848 DOI: 10.1080/15592294.2025.2473770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
We performed an integrated analysis of genome-wide DNA methylation and expression datasets in normal cells and healthy animals exposed to polyphenols with estrogenic activity (i.e. phytoestrogens). We identified that phytoestrogens target genes linked to disrupted cellular homeostasis, e.g. genes limiting DNA break repair (RNF169) or promoting ribosomal biogenesis (rDNA). Existing evidence suggests that DNA methylation may be governed by sirtuin 1 (SIRT1) deacetylase via interactions with DNA methylating enzymes, specifically DNMT3B. Since SIRT1 was reported to be regulated by phytoestrogens, we test whether phytoestrogens suppress genes related to disrupted homeostasis via SIRT1/DNMT3B-mediated transcriptional silencing. Human MCF10A mammary epithelial cells were treated with phytoestrogens, pterostilbene (PTS) or genistein (GEN), followed by analysis of cell growth, DNA methylation, gene expression, and SIRT1/DNMT3B binding. SIRT1 occupancy at the selected phytoestrogen-target genes, RNF169 and rDNA, was accompanied by consistent promoter hypermethylation and gene downregulation in response to GEN, but not PTS. GEN-mediated hypermethylation and SIRT1 binding were linked to a robust DNMT3B enrichment at RNF169 and rDNA promoters. This was not observed in cells exposed to PTS, suggesting a distinct mechanism of action. Although both SIRT1 and DNMT3B bind to RNF169 and rDNA promoters upon GEN, the two proteins do not co-occupy the regions. Depletion of SIRT1 abolishes GEN-mediated decrease in rDNA expression, suggesting SIRT1-dependent epigenetic suppression of rDNA by GEN. These findings enhance our understanding of the role of SIRT1-DNMT3B interplay in epigenetic mechanisms mediating the impact of phytoestrogens on cell biology and cellular homeostasis.
Collapse
Affiliation(s)
- Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jiaxi Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Rekha Gomilar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Zhang Y, Yang J, Min J, Huang S, Li Y, Liu S. The emerging role of E3 ubiquitin ligases and deubiquitinases in metabolic dysfunction-associated steatotic liver disease. J Transl Med 2025; 23:368. [PMID: 40133964 PMCID: PMC11938720 DOI: 10.1186/s12967-025-06255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a prevalence as high as 32.4%. MASLD encompasses a spectrum of liver pathologies, ranging from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and, in some cases, progression to end-stage liver disease (cirrhosis and hepatocellular carcinoma). A comprehensive understanding of the pathogenesis of this highly prevalent liver disease may facilitate the identification of novel targets for the development of improved therapies. E3 ubiquitin ligases and deubiquitinases (DUBs) are key regulatory components of the ubiquitin‒proteasome system (UPS), which plays a pivotal role in maintaining intracellular protein homeostasis. Emerging evidence implicates that aberrant expression of E3 ligases and DUBs is involved in the progression of MASLD. Here, we review abnormalities in E3 ligases and DUBs by (1) discussing their targets, mechanisms, and functions in MASLD; (2) summarizing pharmacological interventions targeting these enzymes in preclinical and clinical studies; and (3) addressing challenges and future therapeutic strategies. This review synthesizes current evidence to highlight the development of novel therapeutic strategies based on the UPS for MASLD and progressive liver disease.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiahui Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shan Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Yuchen Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Zhang W, Li W, Yang Y, Cao W, Shao W, Huang M, Wang J, Chen Z, Cai J, Liu H, Zhao X, Dong X, Zhou T, Tian H, Zhu Z, Yang F, Zheng H. RING finger protein 5 is a key anti-FMDV host factor through inhibition of virion assembly. PLoS Pathog 2025; 21:e1012848. [PMID: 39823440 PMCID: PMC11741381 DOI: 10.1371/journal.ppat.1012848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Foot-and-mouth disease virus (FMDV) are small, icosahedral viruses that cause serious clinical symptoms in livestock. The FMDV VP1 protein is a key structural component, facilitating virus entry. Here, we find that the E3 ligase RNF5 interacts with VP1 and targets it for degradation through ubiquitination at the lys200 of VP1, ultimately inhibiting virus replication. Mutations at this lysine site have been found to increase the replication of FMDV in mice. Importantly, the RNF5 pharmacological activator Analog-1 alleviates disease development in a mouse infection model. Furthermore, RNF5 recognizes the VP1 protein from several picornaviruses, suggesting that targeting RNF5 may be a broad-spectrum antiviral strategy. These findings shed light on the role of the ubiquitin-proteasome system in controlling virus replication, offering potential new strategies for treating viral infections.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Weiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Wenhua Shao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Mengyao Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jiali Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhitong Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jiantao Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Hongyi Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xiaoyi Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xingyan Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Tingting Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
4
|
Zhang Q, Tian H, Ge K, Wang F, Gao P, Chen AM, Wang L, Zhao Y, Lian C, Wang F. PGD2/PTGDR2 signaling pathway affects the self-renewal capacity of gastric cancer stem cells by regulating ATG4B ubiquitination. Front Oncol 2024; 14:1496050. [PMID: 39777337 PMCID: PMC11703842 DOI: 10.3389/fonc.2024.1496050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background Prostaglandin D2 (PGD2) inhibits the development of different malignant tumors; however, the underlying mechanism of inhibiting tumor development is not yet clear. This study aimed to elucidate how PGD2 inhibits the stemness of gastric cancer stem cells (GCSCs) via autophagy and its underlying molecular mechanism to provide a theoretical basis for the treatment of gastric cancer. Methods In this study, GCSCs were enriched in vitro by serum-free incubation. Furthermore, the effects of PGD2 and PGD2 receptor (PTGDR2) on autophagy were detected by Western blotting, immunofluorescence analysis, and transmission electron microscopy. Moreover, the ATG4B ubiquitination levels were assessed via immunoprecipitation and other methods. Results The results indicated that PGD2 induced LC3I/LC3II conversion in GCSCs to activate autophagy, while PGD2 promoted the expression of PTGDR2, thereby further activating autophagy. Furthermore, PTGDR2 competes with ATG4B for binding with E3 ligase RNF5 (also known as RMA1) to promote autophagy protein ATG4B expression. Moreover, PTGDR2 knockdown blocked the activation of autophagy by PGD2 and the level of ATG4B ubiquitination in GCSCs. Conclusions In summary, it was elucidated that the PGD2/PTGDR2 signaling cascade affects GCSCs stemness by regulating autophagy, suggesting that the PGD2/PTGDR2 signaling pathway could serve as a novel target for cancer therapy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - HengJin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Kunpeng Ge
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - FeiFan Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - PeiYao Gao
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - AMin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Lulu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - YanMing Zhao
- Department of Clinical Laboratory, The Second People’s Hospital of Bengbu, Bengbu, China
| | - Chaoqun Lian
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - FengChao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
5
|
Wu Y, Chen Y, Yan X, Dai X, Liao Y, Yuan J, Wang L, Liu D, Niu D, Sun L, Chen L, Zhang Y, Xiang L, Chen A, Li S, Xiang W, Ni Z, Chen M, He F, Yang M, Lian J. Lopinavir enhances anoikis by remodeling autophagy in a circRNA-dependent manner. Autophagy 2024; 20:1651-1672. [PMID: 38433354 PMCID: PMC11210930 DOI: 10.1080/15548627.2024.2325304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Macroautophagy/autophagy-mediated anoikis resistance is crucial for tumor metastasis. As a key autophagy-related protein, ATG4B has been demonstrated to be a prospective anti-tumor target. However, the existing ATG4B inhibitors are still far from clinical application, especially for tumor metastasis. In this study, we identified a novel circRNA, circSPECC1, that interacted with ATG4B. CircSPECC1 facilitated liquid-liquid phase separation of ATG4B, which boosted the ubiquitination and degradation of ATG4B in gastric cancer (GC) cells. Thus, pharmacological addition of circSPECC1 may serve as an innovative approach to suppress autophagy by targeting ATG4B. Specifically, the circSPECC1 underwent significant m6A modification in GC cells and was subsequently recognized and suppressed by the m6A reader protein ELAVL1/HuR. The activation of the ELAVL1-circSPECC1-ATG4B pathway was demonstrated to mediate anoikis resistance in GC cells. Moreover, we also verified that the above pathway was closely related to metastasis in tissues from GC patients. Furthermore, we determined that the FDA-approved compound lopinavir efficiently enhanced anoikis and prevented metastasis by eliminating repression of ELAVL1 on circSPECC1. In summary, this study provides novel insights into ATG4B-mediated autophagy and introduces a viable clinical inhibitor of autophagy, which may be beneficial for the treatment of GC with metastasis.
Collapse
Affiliation(s)
- Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Yang Chen
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaojing Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Xufang Dai
- College of Education and Science, Chongqing Normal University, Chongqing, China
| | - Yaling Liao
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Jing Yuan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Dong Liu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Dun Niu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Liangbo Sun
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Lingxi Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yang Zhang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Li Xiang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - An Chen
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Shuhui Li
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Sun C, Chen Y, Gu Q, Fu Y, Wang Y, Liu C, Xie H, Liao Y, Zheng Z, Liu P, Li M. UBE3C tunes autophagy via ATG4B ubiquitination. Autophagy 2024; 20:645-658. [PMID: 38146933 PMCID: PMC10936621 DOI: 10.1080/15548627.2023.2299514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
ATG4B is a core protein and essential for cleaving precursor MAP1LC3/LC3 or deconjugating lipidated LC3-II to drive the formation of autophagosomes. The protein stability and activity of ATG4B regulated by post-translational modification (ubiquitination) will directly affect macroautophagy/autophagy. However, the mechanism involved in ATG4B ubiquitination is largely unclear. In this study, a new E3 ligase of ATG4B, UBE3C, was identified by mass spectra. UBE3C mainly assembles K33-branched ubiquitin chains on ATG4B at Lys119 without causing ATG4B degradation. In addition, the increased ubiquitination of ATG4B caused by UBE3C overexpression inhibits autophagy flux in both normal and starvation conditions, which might be due to the reduced activity of ATG4B and ATG4B-LC3 interaction. This reduction could be reversed once the lysine 119 of ATG4B was mutated to arginine. More important, under starvation conditions the interaction between ATG4B and UBE3C apparently decreased followed by the removal of the K33-branched ubiquitin chain of ATG4B. Thus, starvation-induced autophagy could be partially suppressed by an increased ubiquitination level of ATG4B. In conclusion, our research reveals a novel modification mode of ATG4B in which UBE3C can fine tune ATG4B activity by specific ubiquitination regulating autophagy without causing ATG4B degradation.Abbreviation: ATG: autophagy-related; Baf: bafilomycin A1; CBB: Coomassie Brilliant Blue; CM: complete medium; CQ: chloroquine; GFP: green fluorescent protein; HA-Ub: HA-tagged ubiquitin; IF: immunofluorescence; IP: immunoprecipitation; K: lysine; KO: knockout; K0: all K-to-R mutant; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MS: mass spectrometry; NC: negative control; R: arginine; WCL: whole cell lysate; WT: wild-type.
Collapse
Affiliation(s)
- Chaonan Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuxin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qianqian Gu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanyuan Fu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Cui Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huazhong Xie
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yong Liao
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Zhihua Zheng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Min Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Qiu Z, He S, Lu B, Sun Y, Zhang T, Lv W, Shen D. The E3 ubiquitin ligase RNF135 modulates chemotherapy resistance to oxaliplatin for colorectal cancer by modulating autophagy. Tissue Cell 2024; 86:102282. [PMID: 38056362 DOI: 10.1016/j.tice.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND RING finger protein 135 plays an important role in tumorigenesis and is associated with drug resistance. METHODS Bioinformatics analysis showed that RNF135 was significantly differentially expressed in colorectal cancer. RT-qPCR and western blot were used to detect the expression of RNF135. Immunohistochemical analysis were used to measure the expression of RNF135 and Ki-67. RESULTS The expression of RNF135 was up-regulated in human tissue samples and colorectal cancer and was positively correlated with Ki-67. Compared with oxaliplatin sensitive patients, RNF135 expression levels were higher in the tissue of resistant patients. The regulatory effect of RNF135 on colorectal cancer cells was further investigated in vitro. Therefore, inhibition of autophagy by down-regulating RNF135 can partially increase its susceptibility to oxaliplatin.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Pathology, Hongze People's Hospital, 102 Dongfeng Road, Hongze 223100, China
| | - Shuyan He
- Department of Tumor Center, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Boyi Lu
- Department of Tumor Center, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Yuejun Sun
- Department of Pathology, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Ting Zhang
- Department of Central Laboratory, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Wei Lv
- Department of Pharmacy, Jiangyin Hospital Affiliated to Nantong University, 163 Shoushan Road, Jiangyin 214400, China.
| | - Dong Shen
- Department of Tumor Center, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China.
| |
Collapse
|
8
|
Ge J, Zhang L. RNF5: inhibiting antiviral immunity and shaping virus life cycle. Front Immunol 2024; 14:1324516. [PMID: 38250078 PMCID: PMC10796512 DOI: 10.3389/fimmu.2023.1324516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
RNF5 is an E3 ubiquitin ligase involved in various physiological processes such as protein localization and cancer progression. Recent studies have shown that RNF5 significantly inhibits antiviral innate immunity by promoting the ubiquitination and degradation of STING and MAVS, which are essential adaptor proteins, as well as their downstream signal IRF3. The abundance of RNF5 is delicately regulated by both host factors and viruses. Host factors have been found to restrict RNF5-mediated ubiquitination, maintaining the stability of STING or MAVS through distinct mechanisms. Meanwhile, viruses have developed ingenious strategies to hijack RNF5 to ubiquitinate and degrade immune proteins. Moreover, recent studies have revealed the multifaceted roles of RNF5 in the life cycle of various viruses, including SARS-CoV-2 and KSHV. Based on these emerging discoveries, RNF5 represents a novel means of modulating antiviral immunity. In this review, we summarize the latest research on the roles of RNF5 in antiviral immunity and virus life cycle. This comprehensive understanding could offer valuable insights into exploring potential therapeutic applications focused on targeting RNF5 during viral infections.
Collapse
Affiliation(s)
- Junyi Ge
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
9
|
Van Espen B, Oo HZ, Collins C, Fazli L, Molinolo A, Yip K, Murad R, Gleave M, Ronai ZA. RNF185 Control of COL3A1 Expression Limits Prostate Cancer Migration and Metastatic Potential. Mol Cancer Res 2024; 22:41-54. [PMID: 37831068 PMCID: PMC10841372 DOI: 10.1158/1541-7786.mcr-23-0512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
RNF185 is a RING finger domain-containing ubiquitin ligase implicated in ER-associated degradation. Prostate tumor patient data analysis revealed a negative correlation between RNF185 expression and prostate cancer progression and metastasis. Likewise, several prostate cancer cell lines exhibited greater migration and invasion capabilities in culture upon RNF185 depletion. Subcutaneous inoculation of mouse prostate cancer MPC3 cells stably expressing short hairpin RNA against RNF185 into mice resulted in larger tumors and more frequent lung metastases. RNA-sequencing and Ingenuity Pathway Analysis identified wound-healing and cellular movement among the most significant pathways upregulated in RNF185-depleted lines, compared with control prostate cancer cells. Gene Set Enrichment Analyses performed in samples from patients harboring low RNF185 expression and in RNF185-depleted lines confirmed the deregulation of genes implicated in epithelial-to-mesenchymal transition. Among those, COL3A1 was identified as the primary mediator of RNF185's ability to impact migration phenotypes. Correspondingly, enhanced migration and metastasis of RNF185 knockdown (KD) prostate cancer cells were attenuated upon co-inhibition of COL3A1. Our results identify RNF185 as a gatekeeper of prostate cancer metastasis, partly via its control of COL3A1 availability. IMPLICATIONS RNF185 is identified as an important regulator of prostate cancer migration and metastasis, in part due to its regulation of COL3A1. Both RNF185 and COL3A1 may serve as novel markers for prostate tumors.
Collapse
Affiliation(s)
- Benjamin Van Espen
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Htoo Zarni Oo
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Colin Collins
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Alfredo Molinolo
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Kevin Yip
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Rabi Murad
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Martin Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
10
|
Zeng L, Zheng W, Zhang J, Wang J, Ji Q, Wu X, Meng Y, Zhu X. An epitope encoded by uORF of RNF10 elicits a therapeutic anti-tumor immune response. Mol Ther Oncolytics 2023; 31:100737. [PMID: 38020063 PMCID: PMC10654591 DOI: 10.1016/j.omto.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor-specific antigens (TSAs) are crucial for tumor-specific immune response that reduces tumor burden and thus serve as important targets for immunotherapy. Identification of novel TSAs can provide new strategies for immunotherapies. In this study, we demonstrated that the upstream open reading frame (uORF) of RNF10 encodes an antigenic peptide (RNF10 uPeptide), capable of eliciting a T cell-mediated anti-tumor immune response. We initially demonstrated the immunogenicity of the RNF10 uPeptide in a CT26 tumor mouse model, by showing that its epitope was specifically recognized by CD8+ T cells. Vaccination of mice with the long form of the RNF10 uPeptide conferred strong anti-tumor activity. Next, we proved that the human RNF10 uORF could be translated. In addition, we predicted the binding of an RNF10 uPeptide epitope to HLA-A∗02:01 (HLA-A2). This HLA-A2-restricted epitope of the RNF10 uPeptide induced a potent specific human T cell response. Finally, we showed that an HLA-A2-restricted cytotoxic T cell (CTL) clone, derived from a pancreatic cancer patient, recognized the RNF10 uPeptide epitope (RLFGQQQRA) and lysed HLA-A2+ pancreatic carcinoma cells expressing the RNF10 uPeptide. These results indicate that the RNF10 uPeptide could be a promising target for pancreatic carcinoma immunotherapy.
Collapse
Affiliation(s)
- Lili Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Wei Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qing Ji
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xinglong Wu
- Department of Pathology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yaming Meng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast and Thyroid Center, Guangzhou Women and Children’s Medical Center, Guangzhou 510000, China
| |
Collapse
|
11
|
Li X, Wang F, Huang L, Yang M, Kuang E. Downregulation of EphA2 stability by RNF5 limits its tumor-suppressive function in HER2-negative breast cancers. Cell Death Dis 2023; 14:662. [PMID: 37816703 PMCID: PMC10564927 DOI: 10.1038/s41419-023-06188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Ephrin receptor A2 (EphA2) plays dual functions in tumorigenesis through ligand-independent tumor promotion or ligand-dependent tumor suppression. However, the regulation of EphA2 tumor-suppressive function remains unclear. Here, we showed that RNF5 interacts with EphA2 and induces its ubiquitination and degradation, decreases the stability and cell surface distribution of EphA2 and alters the balance of its phosphorylation at S897 and Y772. In turn, RNF5 inhibition decreases ERK phosphorylation and increases p53 expression through an increase in the EphA2 level in HER2-negative breast cancer cells. Consequently, RNF5 inhibition increases the adhesion and decreases the migration of HER2-negative breast cancer cells, and RNF5 silencing suppresses the growth of xenograft tumors derived from ER-positive, HER2-negative breast cancer cells with increased EphA2 expression and altered phosphorylation. RNF5 expression is inversely correlated with EphA2 expression in breast cancers, and a high EphA2 level accompanied by a low RNF5 level is related to better survival in patients with ER-positive, HER2-negative breast cancers. These studies revealed that RNF5 negatively regulates EphA2 properties and suppresses its tumor-suppressive function in HER2-negative breast cancers.
Collapse
Affiliation(s)
- Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Fan Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Lu Huang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Mengtian Yang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ersheng Kuang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
12
|
Nozawa T, Toh H, Iibushi J, Kogai K, Minowa-Nozawa A, Satoh J, Ito S, Murase K, Nakagawa I. Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy. Nat Commun 2023; 14:6230. [PMID: 37802980 PMCID: PMC10558455 DOI: 10.1038/s41467-023-42039-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Xenophagy, a type of selective autophagy, is a bactericidal membrane trafficking that targets cytosolic bacterial pathogens, but the membrane homeostatic system to cope with bacterial infection in xenophagy is not known. Here, we show that the endosomal sorting complexes required for transport (ESCRT) machinery is needed to maintain homeostasis of xenophagolysosomes damaged by a bacterial toxin, which is regulated through the TOM1L2-Rab41 pathway that recruits AAA-ATPase VPS4. We screened Rab GTPases and identified Rab41 as critical for maintaining the acidification of xenophagolysosomes. Confocal microscopy revealed that ESCRT components were recruited to the entire xenophagolysosome, and this recruitment was inhibited by intrabody expression against bacterial cytolysin, indicating that ESCRT targets xenophagolysosomes in response to a bacterial toxin. Rab41 translocates to damaged autophagic membranes via adaptor protein TOM1L2 and recruits VPS4 to complete ESCRT-mediated membrane repair in a unique GTPase-independent manner. Finally, we demonstrate that the TOM1L2-Rab41 pathway-mediated ESCRT is critical for the efficient clearance of bacteria through xenophagy.
Collapse
Affiliation(s)
- Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junpei Iibushi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kohei Kogai
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
13
|
Lee YB, Jung M, Kim J, Charles A, Christ W, Kang J, Kang MG, Kwak C, Klingström J, Smed-Sörensen A, Kim JS, Mun JY, Rhee HW. Super-resolution proximity labeling reveals anti-viral protein network and its structural changes against SARS-CoV-2 viral proteins. Cell Rep 2023; 42:112835. [PMID: 37478010 DOI: 10.1016/j.celrep.2023.112835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in human cells by interacting with host factors following infection. To understand the virus and host interactome proximity, we introduce a super-resolution proximity labeling (SR-PL) method with a "plug-and-playable" PL enzyme, TurboID-GBP (GFP-binding nanobody protein), and we apply it for interactome mapping of SARS-CoV-2 ORF3a and membrane protein (M), which generates highly perturbed endoplasmic reticulum (ER) structures. Through SR-PL analysis of the biotinylated interactome, 224 and 272 peptides are robustly identified as ORF3a and M interactomes, respectively. Within the ORF3a interactome, RNF5 co-localizes with ORF3a and generates ubiquitin modifications of ORF3a that can be involved in protein degradation. We also observe that the SARS-CoV-2 infection rate is efficiently reduced by the overexpression of RNF5 in host cells. The interactome data obtained using the SR-PL method are presented at https://sarscov2.spatiomics.org. We hope that our method will contribute to revealing virus-host interactions of other viruses in an efficient manner.
Collapse
Affiliation(s)
- Yun-Bin Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| | - Afandi Charles
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Wanda Christ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Jiwoong Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonas Klingström
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14183 Stockholm, Sweden; Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
14
|
Li K, Wei X, Li K, Zhang Q, Zhang J, Wang D, Yang J. Dietary restriction to optimize T cell immunity is an ancient survival strategy conserved in vertebrate evolution. Cell Mol Life Sci 2023; 80:219. [PMID: 37470873 PMCID: PMC11071854 DOI: 10.1007/s00018-023-04865-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Recent advances highlight a key role of transient fasting in optimizing immunity of human and mouse. However, it remains unknown whether this strategy is independently acquired by mammals during evolution or instead represents gradually evolved functions common to vertebrates. Using a tilapia model, we report that T cells are the main executors of the response of the immune system to fasting and that dietary restriction bidirectionally modulates T cell immunity. Long-term fasting impaired T cell immunity by inducing intense autophagy, apoptosis, and aberrant inflammation. However, transient dietary restriction triggered moderate autophagy to optimize T cell response by maintaining homeostasis, alleviating inflammation and tissue damage, as well as enhancing T cell activation, proliferation and function. Furthermore, AMPK is the central hub linking fasting and autophagy-controlled T cell immunity in tilapia. Our findings demonstrate that dietary restriction to optimize immunity is an ancient strategy conserved in vertebrate evolution, providing novel perspectives for understanding the adaptive evolution of T cell response.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qian Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
Brusa I, Sondo E, Pesce E, Tomati V, Gioia D, Falchi F, Balboni B, Ortega Martínez JA, Veronesi M, Romeo E, Margaroli N, Recanatini M, Girotto S, Pedemonte N, Roberti M, Cavalli A. Innovative Strategy toward Mutant CFTR Rescue in Cystic Fibrosis: Design and Synthesis of Thiadiazole Inhibitors of the E3 Ligase RNF5. J Med Chem 2023. [PMID: 37440686 PMCID: PMC10388311 DOI: 10.1021/acs.jmedchem.3c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) is associated to misfolding and defective gating of the mutant channel. One of the most promising CF drug targets is the ubiquitin ligase RNF5, which promotes F508del-CFTR degradation. Recently, the first ever reported inhibitor of RNF5 was discovered, i.e., the 1,2,4-thiadiazol-5-ylidene inh-2. Here, we designed and synthesized a series of new analogues to explore the structure-activity relationships (SAR) of this class of compounds. SAR efforts ultimately led to compound 16, which showed a greater F508del-CFTR corrector activity than inh-2, good tolerability, and no toxic side effects. Analogue 16 increased the basal level of autophagy similar to what has been described with RNF5 silencing. Furthermore, co-treatment with 16 significantly improved the F508del-CFTR rescue induced by the triple combination elexacaftor/tezacaftor/ivacaftor in CFBE41o- cells. These findings validate the 1,2,4-thiadiazolylidene scaffold for the discovery of novel RNF5 inhibitors and provide evidence to pursue this unprecedented strategy for the treatment of CF.
Collapse
Affiliation(s)
- Irene Brusa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Dario Gioia
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Federico Falchi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Beatrice Balboni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Marina Veronesi
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elisa Romeo
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Natasha Margaroli
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Stefania Girotto
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Centre Européen de Calcul Atomique et Moléculaire, EPFL CECAM, 1015 Lousanne, Switzerland
| |
Collapse
|
16
|
Van Espen B, Oo HZ, Collins C, Fazli L, Molinolo A, Murad R, Gleave M, Ronai ZA. RNF185 control of COL3A1 expression limits prostate cancer migration and metastatic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547118. [PMID: 37425866 PMCID: PMC10327057 DOI: 10.1101/2023.06.29.547118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
RNF185 is a RING finger domain-containing ubiquitin ligase implicated in ER-associated degradation. Prostate tumor patient data analysis revealed a negative correlation between RNF185 expression and prostate cancer progression and metastasis. Likewise, several prostate cancer cell lines exhibited greater migration and invasion capabilities in culture upon RNF185 depletion. Subcutaneous inoculation of mouse prostate cancer MPC3 cells stably expressing shRNA against RNF185 into mice resulted in larger tumors and more frequent lung metastases. RNA-sequencing and Ingenuity Pathway Analysis identified wound healing and cellular movement among the most significant pathways upregulated in RNF185-depleted, compared to control prostate cancer cells. Gene Set Enrichment Analyses performed in samples from patients harboring low RNF185 expression and in RNF185-depleted lines confirmed the deregulation of genes implicated in EMT. Among those, COL3A1 was identified as the primary mediator of RNF185's ability to impact migration phenotypes. Correspondingly, enhanced migration and metastasis of RNF185 KD prostate cancer cells were attenuated upon co-inhibition of COL3A1. Our results identify RNF185 as a gatekeeper of prostate cancer metastasis, partly via its control of COL3A1 availability.
Collapse
|
17
|
Autophagy/Mitophagy Regulated by Ubiquitination: A Promising Pathway in Cancer Therapeutics. Cancers (Basel) 2023; 15:cancers15041112. [PMID: 36831455 PMCID: PMC9954143 DOI: 10.3390/cancers15041112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Autophagy is essential for organismal development, maintenance of energy homeostasis, and quality control of organelles and proteins. As a selective form of autophagy, mitophagy is necessary for effectively eliminating dysfunctional mitochondria. Both autophagy and mitophagy are linked with tumor progression and inhibition. The regulation of mitophagy and autophagy depend upon tumor type and stage. In tumors, mitophagy has dual roles: it removes damaged mitochondria to maintain healthy mitochondria and energy production, which are necessary for tumor growth. In contrast, mitophagy has been shown to inhibit tumor growth by mitigating excessive ROS production, thus preventing mutation and chromosomal instability. Ubiquitination and deubiquitination are important modifications that regulate autophagy. Multiple E3 ubiquitin ligases and DUBs modulate the activity of the autophagy and mitophagy machinery, thereby influencing cancer progression. In this review, we summarize the mechanistic association between cancer development and autophagy/mitophagy activities regulated by the ubiquitin modification of autophagic proteins. In addition, we discuss the function of multiple proteins involved in autophagy/mitophagy in tumors that may represent potential therapeutic targets.
Collapse
|
18
|
Yu P, Hua Z. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Int J Mol Sci 2023; 24:ijms24032221. [PMID: 36768543 PMCID: PMC9917186 DOI: 10.3390/ijms24032221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquitin-26S proteasome system and autophagy are two major protein degradation machineries encoded in all eukaryotic organisms. While the UPS is responsible for the turnover of short-lived and/or soluble misfolded proteins under normal growth conditions, the autophagy-lysosomal/vacuolar protein degradation machinery is activated under stress conditions to remove long-lived proteins in the forms of aggregates, either soluble or insoluble, in the cytoplasm and damaged organelles. Recent discoveries suggested an integrative function of these two seemly independent systems for maintaining the proteome homeostasis. One such integration is represented by their reciprocal degradation, in which the small 76-amino acid peptide, ubiquitin, plays an important role as the central signaling hub. In this review, we summarized the current knowledge about the activity control of proteasome and autophagosome at their structural organization, biophysical states, and turnover levels from yeast and mammals to plants. Through comprehensive literature studies, we presented puzzling questions that are awaiting to be solved and proposed exciting new research directions that may shed light on the molecular mechanisms underlying the biological function of protein degradation.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
19
|
Li X, Wang F, Zhang X, Sun Q, Kuang E. Suppression of KSHV lytic replication and primary effusion lymphoma by selective RNF5 inhibition. PLoS Pathog 2023; 19:e1011103. [PMID: 36656913 PMCID: PMC9888681 DOI: 10.1371/journal.ppat.1011103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Primary effusion lymphoma (PEL), a rare aggressive B-cell lymphoma in immunosuppressed patients, is etiologically associated with oncogenic γ-herpesvirus infection. Chemotherapy is commonly used to treat PEL but usually results in poor prognosis and survival; thus, novel therapies and drug development are urgently needed for PEL treatment. Here, we demonstrated that inhibition of Ring finger protein 5 (RNF5), an ER-localized E3 ligase, suppresses multiple cellular pathways and lytic replication of Kaposi sarcoma-associated herpesvirus (KSHV) in PEL cells. RNF5 interacts with and induces Ephrin receptors A3 (EphA3) and EphA4 ubiquitination and degradation. RNF5 inhibition increases the levels of EphA3 and EphA4, thereby reducing ERK and Akt activation and KSHV lytic replication. RNF5 inhibition decreased PEL xenograft tumor growth and downregulated viral gene expression, cell cycle gene expression, and hedgehog signaling in xenograft tumors. Our study suggests that RNF5 plays the critical roles in KSHV lytic infection and tumorigenesis of primary effusion lymphoma.
Collapse
Affiliation(s)
- Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
- * E-mail:
| |
Collapse
|
20
|
Shariq M, Quadir N, Alam A, Zarin S, Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE, Ehtesham NZ. The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy 2023; 19:3-23. [PMID: 35000542 PMCID: PMC9809970 DOI: 10.1080/15548627.2021.2021495] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intracellular pathogens have evolved various efficient molecular armaments to subvert innate defenses. Cellular ubiquitination, a normal physiological process to maintain homeostasis, is emerging one such exploited mechanism. Ubiquitin (Ub), a small protein modifier, is conjugated to diverse protein substrates to regulate many functions. Structurally diverse linkages of poly-Ub to target proteins allow enormous functional diversity with specificity being governed by evolutionarily conserved enzymes (E3-Ub ligases). The Ub-binding domain (UBD) and LC3-interacting region (LIR) are critical features of macroautophagy/autophagy receptors that recognize Ub-conjugated on protein substrates. Emerging evidence suggests that E3-Ub ligases unexpectedly protect against intracellular pathogens by tagging poly-Ub on their surfaces and targeting them to phagophores. Two E3-Ub ligases, PRKN and SMURF1, provide immunity against Mycobacterium tuberculosis (M. tb). Both enzymes conjugate K63 and K48-linked poly-Ub to M. tb for successful delivery to phagophores. Intriguingly, M. tb exploits virulence factors to effectively dampen host-directed autophagy utilizing diverse mechanisms. Autophagy receptors contain LIR-motifs that interact with conserved Atg8-family proteins to modulate phagophore biogenesis and fusion to the lysosome. Intracellular pathogens have evolved a vast repertoire of virulence effectors to subdue host-immunity via hijacking the host ubiquitination process. This review highlights the xenophagy-mediated clearance of M. tb involving host E3-Ub ligases and counter-strategy of autophagy inhibition by M. tb using virulence factors. The role of Ub-binding receptors and their mode of autophagy regulation is also explained. We also discuss the co-opting and utilization of the host Ub system by M. tb for its survival and virulence.Abbreviations: APC: anaphase promoting complex/cyclosome; ATG5: autophagy related 5; BCG: bacille Calmette-Guerin; C2: Ca2+-binding motif; CALCOCO2: calcium binding and coiled-coil domain 2; CUE: coupling of ubiquitin conjugation to ER degradation domains; DUB: deubiquitinating enzyme; GABARAP: GABA type A receptor-associated protein; HECT: homologous to the E6-AP carboxyl terminus; IBR: in-between-ring fingers; IFN: interferon; IL1B: interleukin 1 beta; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LGALS: galectin; LIR: LC3-interacting region; MAPK11/p38: mitogen-activated protein kinase 11; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK8/JNK: mitogen-activated protein kinase 8; MHC-II: major histocompatibility complex-II; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB1/p50: nuclear factor kappa B subunit 1; OPTN: optineurin; PB1: phox and bem 1; PE/PPE: proline-glutamic acid/proline-proline-glutamic acid; PknG: serine/threonine-protein kinase PknG; PRKN: parkin RBR E3 ubiquitin protein ligase; RBR: RING-in between RING; RING: really interesting new gene; RNF166: RING finger protein 166; ROS: reactive oxygen species; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; Ub: ubiquitin; UBA: ubiquitin-associated; UBAN: ubiquitin-binding domain in ABIN proteins and NEMO; UBD: ubiquitin-binding domain; UBL: ubiquitin-like; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Neha Quadir
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Anwar Alam
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Sheeba Zarin
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A. Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Neha Sharma
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasmine Samal
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Uzair Ahmad
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Indu Kumari
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India,Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India,Seyed E. Hasnain ; ; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India
| | - Nasreen Z. Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,CONTACT Nasreen Z. Ehtesham ; ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi110029, India
| |
Collapse
|
21
|
Krshnan L, van de Weijer ML, Carvalho P. Endoplasmic Reticulum-Associated Protein Degradation. Cold Spring Harb Perspect Biol 2022; 14:a041247. [PMID: 35940909 PMCID: PMC9732900 DOI: 10.1101/cshperspect.a041247] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Misfolded, potentially toxic proteins in the lumen and membrane of the endoplasmic reticulum (ER) are eliminated by proteasomes in the cytosol through ER-associated degradation (ERAD). The ERAD process involves the recognition of substrates in the lumen and membrane of the ER, their translocation into the cytosol, ubiquitination, and delivery to the proteasome for degradation. These ERAD steps are performed by membrane-embedded ubiquitin-ligase complexes of different specificity that together cover a wide range of substrates. Besides misfolded proteins, ERAD further contributes to quality control by targeting unassembled and mislocalized proteins. ERAD also targets a restricted set of folded proteins to influence critical ER functions such as sterol biosynthesis, calcium homeostasis, or ER contacts with other organelles. This review describes the ubiquitin-ligase complexes and the principles guiding protein degradation by ERAD.
Collapse
Affiliation(s)
- Logesvaran Krshnan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
22
|
Ruan J, Liang D, Yan W, Zhong Y, Talley DC, Rai G, Tao D, LeClair CA, Simeonov A, Zhang Y, Chen F, Quinney NL, Boyles SE, Cholon DM, Gentzsch M, Henderson MJ, Xue F, Fang S. A small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase. Mol Biol Cell 2022; 33:ar120. [PMID: 36074076 PMCID: PMC9634977 DOI: 10.1091/mbc.e22-06-0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RNF5 E3 ubiquitin ligase has multiple biological roles and has been linked to the development of severe diseases such as cystic fibrosis, acute myeloid leukemia, and certain viral infections, emphasizing the importance of discovering small-molecule RNF5 modulators for research and drug development. The present study describes the synthesis of a new benzo[b]thiophene derivative, FX12, that acts as a selective small-molecule inhibitor and degrader of RNF5. We initially identified the previously reported STAT3 inhibitor, Stattic, as an inhibitor of dislocation of misfolded proteins from the endoplasmic reticulum (ER) lumen to the cytosol in ER-associated degradation. A concise structure-activity relationship campaign (SAR) around the Stattic chemotype led to the synthesis of FX12, which has diminished activity in inhibition of STAT3 activation and retains dislocation inhibitory activity. FX12 binds to RNF5 and inhibits its E3 activity in vitro as well as promoting proteasomal degradation of RNF5 in cells. RNF5 as a molecular target for FX12 was supported by the facts that FX12 requires RNF5 to inhibit dislocation and negatively regulates RNF5 function. Thus, this study developed a small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase, providing a chemical biology tool for RNF5 research and therapeutic development.
Collapse
Affiliation(s)
- Jingjing Ruan
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201,First Affiliated Hospital and
| | - Dongdong Liang
- University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Wenjing Yan
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Daniel C. Talley
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Christopher A. LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yinghua Zhang
- Center for Innovative Biomedical Resources, Biosensor Core, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | | | | | | | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center,Department of Pediatric Pulmonology, and,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850,*Address corespondence to: Shengyun Fang (lead contact) (); Mark J. Henderson (); Fengtian Xue ()
| | - Fengtian Xue
- University of Maryland School of Pharmacy, Baltimore, MD 21201,*Address corespondence to: Shengyun Fang (lead contact) (); Mark J. Henderson (); Fengtian Xue ()
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201,*Address corespondence to: Shengyun Fang (lead contact) (); Mark J. Henderson (); Fengtian Xue ()
| |
Collapse
|
23
|
Yang LL, Xiao WC, Li H, Hao ZY, Liu GZ, Zhang DH, Wu LM, Wang Z, Zhang YQ, Huang Z, Zhang YZ. E3 ubiquitin ligase RNF5 attenuates pathological cardiac hypertrophy through STING. Cell Death Dis 2022; 13:889. [PMID: 36270989 PMCID: PMC9587004 DOI: 10.1038/s41419-022-05231-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
Ring-finger protein 5 (RNF5) is an E3 ubiquitin ligase which is expressed in a variety of human tissues. RNF5 is involved in the regulation of endoplasmic reticulum stress, inflammation, and innate immunity and plays an important role in the occurrence and development of various tumors. However, the role of RNF5 in cardiac hypertrophy has not been reported. In this study, we found the expression of RNF5 was increased in the hearts of mice with pathological cardiac hypertrophy. The loss-of-function research demonstrated that RNF5 deficiency exacerbated cardiac hypertrophy, whereas gain-of-function studies revealed that overexpression of RNF5 had opposite effects. The stimulator of interferon genes (STING) is a signaling molecule that can activate type I interferon immunity, which can meditate inflammation and immune response in many diseases. The protein-protein interaction experiments confirmed that STING interacted with RNF5. Further studies showed that RNF5 inhibited cardiac hypertrophy by promoting STING degradation through K48-linked polyubiquitination. Therefore, we defined RNF5 as importantly regulated signaling for cardiac hypertrophy.
Collapse
Affiliation(s)
- Lu-Lu Yang
- grid.207374.50000 0001 2189 3846Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Wen-Chang Xiao
- grid.508284.3Department of Cardiovascular Surgery, Huanggang Central Hospital, Huanggang Institute of Translational Medicine, Huanggang, 438000 China
| | - Huan Li
- grid.207374.50000 0001 2189 3846Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Zheng-Yang Hao
- grid.207374.50000 0001 2189 3846Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Gui-Zhi Liu
- grid.207374.50000 0001 2189 3846Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Dian-Hong Zhang
- grid.207374.50000 0001 2189 3846Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Lei-Ming Wu
- grid.207374.50000 0001 2189 3846Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Zheng Wang
- grid.207374.50000 0001 2189 3846Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan-Qing Zhang
- grid.207374.50000 0001 2189 3846Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhen Huang
- grid.207374.50000 0001 2189 3846Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan-Zhou Zhang
- grid.207374.50000 0001 2189 3846Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
24
|
Liu Z, Xia L. E3 ligase RNF5 inhibits type I interferon response in herpes simplex virus keratitis through the STING/IRF3 signaling pathway. Front Microbiol 2022; 13:944101. [PMID: 35992663 PMCID: PMC9382029 DOI: 10.3389/fmicb.2022.944101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex keratitis (HSK), caused by the herpes simplex virus 1 (HSV-1), is a major blinding disease in developed countries. HSV-1 can remain latent in the host for life and cannot be eradicated. The infection causes the secretion of various cytokines and aggregation of inflammatory cells. In the early stage of inflammation, mainly neutrophils infiltrate the cornea, and CD4+ T cells mediate the immunopathological changes in herpetic stromal keratitis in the subsequent progression. The STING/IRF3-mediated type I interferon (IFN) response can effectively inhibit viral replication and control infection, but the activity of STING is affected by various ubiquitination modifications. In this study, we found that the expression of RNF5 was elevated in corneal tissues and corneal epithelial cells after infection with HSV-1. Immunofluorescence staining confirmed that RNF5 was mainly expressed in the corneal epithelial layer. We silenced and overexpressed RNF5 expression in corneal epithelial cells and then inoculated them with HSV-1. We found that the expressions of STING, p-IRF3, p-TBK1, and IFN-β mRNA increased after RNF5 silencing. The opposite results were obtained after RNF5 overexpression. We also used siRNA to silence RNF5 in the mouse cornea and then established the HSK model. Compared with the siRNA-control group, the siRNA-RNF5 group showed significantly improved corneal inflammation, reduced clinical scores and tear virus titers, and significantly increased corneal IFN-β expression. In addition, the expressions of the proinflammatory cytokines IL-6 and TNF-α in the corneal tissue were significantly decreased, indicating that RNF5 silencing could effectively promote IFN-I expression, inhibit virus replication, alleviate inflammation, and reduce corneal inflammatory damage. In summary, our results suggest that RNF5 limits the type I IFN antiviral response in HSV corneal epithelitis by inhibiting STING/IRF3 signaling.
Collapse
|
25
|
Ding M, Fang H, Zhang J, Shi J, Yu X, Wen P, Wang Z, Cao S, Zhang Y, Shi X, Zhang H, He Y, Yan B, Tang H, Guo D, Gao J, Liu Z, Zhang L, Zhang S, Zhang X, Guo W. E3 ubiquitin ligase ring finger protein 5 protects against hepatic ischemia reperfusion injury by mediating phosphoglycerate mutase family member 5 ubiquitination. Hepatology 2022; 76:94-111. [PMID: 34735734 PMCID: PMC9303746 DOI: 10.1002/hep.32226] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (HIR) injury, a common clinical complication of liver transplantation and resection, affects patient prognosis. Ring finger protein 5 (RNF5) is an E3 ubiquitin ligase that plays important roles in endoplasmic reticulum stress, unfolded protein reactions, and inflammatory responses; however, its role in HIR is unclear. APPROACH AND RESULTS RNF5 expression was significantly down-regulated during HIR in mice and hepatocytes. Subsequently, RNF5 knockdown and overexpression of cell lines were subjected to hypoxia-reoxygenation challenge. Results showed that RNF5 knockdown significantly increased hepatocyte inflammation and apoptosis, whereas RNF5 overexpression had the opposite effect. Furthermore, hepatocyte-specific RNF5 knockout and transgenic mice were established and subjected to HIR, and RNF5 deficiency markedly aggravated liver damage and cell apoptosis and activated hepatic inflammatory responses, whereas hepatic RNF5 transgenic mice had the opposite effect compared with RNF5 knockout mice. Mechanistically, RNF5 interacted with phosphoglycerate mutase family member 5 (PGAM5) and mediated the degradation of PGAM5 through K48-linked ubiquitination, thereby inhibiting the activation of apoptosis-regulating kinase 1 (ASK1) and its downstream c-Jun N-terminal kinase (JNK)/p38. This eventually suppresses the inflammatory response and cell apoptosis in HIR. CONCLUSIONS We revealed that RNF5 protected against HIR through its interaction with PGAM5 to inhibit the activation of ASK1 and the downstream JNK/p38 signaling cascade. Our findings indicate that the RNF5-PGAM5 axis may be a promising therapeutic target for HIR.
Collapse
Affiliation(s)
- Ming‐Jie Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hao‐Ran Fang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Jia‐Kai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Ji‐Hua Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Pei‐Hao Wen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Zhi‐Hui Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Sheng‐Li Cao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Yi Zhang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiao‐Yi Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hua‐Peng Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Yu‐Ting He
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Bing Yan
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Hong‐Wei Tang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Dan‐Feng Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | - Zhen Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shui‐Jun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| | | | - Wen‐Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina,Henan Engineering Technology Research Center for Organ TransplantationZhengzhouChina,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and ApplicationZhengzhouChina,Henan Research Centre for Organ TransplantationZhengzhouChina
| |
Collapse
|
26
|
Post-Translational Modifications of ATG4B in the Regulation of Autophagy. Cells 2022; 11:cells11081330. [PMID: 35456009 PMCID: PMC9025542 DOI: 10.3390/cells11081330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy plays a key role in eliminating and recycling cellular components in response to stress, including starvation. Dysregulation of autophagy is observed in various diseases, including neurodegenerative diseases, cancer, and diabetes. Autophagy is tightly regulated by autophagy-related (ATG) proteins. Autophagy-related 4 (ATG4) is the sole cysteine protease, and four homologs (ATG4A–D) have been identified in mammals. These proteins have two domains: catalytic and short fingers. ATG4 facilitates autophagy by promoting autophagosome maturation through reversible lipidation and delipidation of seven autophagy-related 8 (ATG8) homologs, including microtubule-associated protein 1-light chain 3 (LC3) and GABA type A receptor-associated protein (GABARAP). Each ATG4 homolog shows a preference for a specific ATG8 homolog. Post-translational modifications of ATG4, including phosphorylation/dephosphorylation, O-GlcNAcylation, oxidation, S-nitrosylation, ubiquitination, and proteolytic cleavage, regulate its activity and ATG8 processing, thus modulating its autophagic activity. We reviewed recent advances in our understanding of the effect of post-translational modification on the regulation, activity, and function of ATG4, the main protease that controls autophagy.
Collapse
|
27
|
Brusa I, Sondo E, Falchi F, Pedemonte N, Roberti M, Cavalli A. Proteostasis Regulators in Cystic Fibrosis: Current Development and Future Perspectives. J Med Chem 2022; 65:5212-5243. [PMID: 35377645 PMCID: PMC9014417 DOI: 10.1021/acs.jmedchem.1c01897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In cystic fibrosis (CF), the deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) leads to misfolding and premature degradation of the mutant protein. These defects can be targeted with pharmacological agents named potentiators and correctors. During the past years, several efforts have been devoted to develop and approve new effective molecules. However, their clinical use remains limited, as they fail to fully restore F508del-CFTR biological function. Indeed, the search for CFTR correctors with different and additive mechanisms has recently increased. Among them, drugs that modulate the CFTR proteostasis environment are particularly attractive to enhance therapy effectiveness further. This Perspective focuses on reviewing the recent progress in discovering CFTR proteostasis regulators, mainly describing the design, chemical structure, and structure-activity relationships. The opportunities, challenges, and future directions in this emerging and promising field of research are discussed, as well.
Collapse
Affiliation(s)
- Irene Brusa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
28
|
Principi E, Sondo E, Bianchi G, Ravera S, Morini M, Tomati V, Pastorino C, Zara F, Bruno C, Eva A, Pedemonte N, Raffaghello L. Targeting of Ubiquitin E3 Ligase RNF5 as a Novel Therapeutic Strategy in Neuroectodermal Tumors. Cancers (Basel) 2022; 14:cancers14071802. [PMID: 35406574 PMCID: PMC8997491 DOI: 10.3390/cancers14071802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
RNF5, an endoplasmic reticulum (ER) E3 ubiquitin ligase, participates to the ER-associated protein degradation guaranteeing the protein homeostasis. Depending on tumor model tested, RNF5 exerts pro- or anti-tumor activity. The aim of this study was to elucidate the controversial role of RNF5 in neuroblastoma and melanoma, two neuroectodermal tumors of infancy and adulthood, respectively. RNF5 gene levels are evaluated in publicly available datasets reporting the gene expression profile of melanoma and neuroblastoma primary tumors at diagnosis. The therapeutic effect of Analog-1, an RNF5 pharmacological activator, was investigated on in vitro and in vivo neuroblastoma and melanoma models. In both neuroblastoma and melanoma patients the high expression of RNF5 correlated with a better prognostic outcome. Treatment of neuroblastoma and melanoma cell lines with Analog-1 reduced cell viability by impairing the glutamine availability and energy metabolism through inhibition of F1Fo ATP-synthase activity. This latter event led to a marked increase in oxidative stress, which, in turn, caused cell death. Similarly, neuroblastoma- and melanoma-bearing mice treated with Analog-1 showed a significant delay of tumor growth in comparison to those treated with vehicle only. These findings validate RNF5 as an innovative drug target and support the development of Analog-1 in early phase clinical trials for neuroblastoma and melanoma patients.
Collapse
Affiliation(s)
- Elisa Principi
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giovanna Bianchi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, 16132 Genova, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Cristina Pastorino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Federico Zara
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | | | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
29
|
Xia F, Fu Y, Xie H, Chen Y, Fang D, Zhang W, Liu P, Li M. Suppression of ATG4B by copper inhibits autophagy and involves in Mallory body formation. Redox Biol 2022; 52:102284. [PMID: 35349929 PMCID: PMC8965161 DOI: 10.1016/j.redox.2022.102284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an evolutionarily conserved self-protecting mechanism implicated in cellular homeostasis. ATG4B plays a vital role in autophagy process via undertaking priming and delipidation of LC3. Chemical inhibitors and regulative modifications such as oxidation of ATG4B have been demonstrated to modulate autophagy function. Whether and how ATG4B could be regulated by metal ions is largely unknown. Copper is an essential trace metal served as static co-factors in redox reactions in physiology process. Excessive accumulation of copper in ATP7B mutant cells leads to pathology progression such as insoluble Mallory body (MB) in Wilson disease (WD). The clearance of MB via autophagy pathway was thought as a promising strategy for WD. Here, we discovered that copper ion instead of other ions could inhibit the activity of ATG4B followed by autophagy suppression. In addition, copper could induce ATG4B oligomers depending on cysteine oxidation which could be abolished in reduced condition. Copper also promotes the formation of insoluble ATG4B aggregates, as well as p62-and ubiquitin-positive aggregates, which is consistent with the components of MB caused by copper overload in WD cell model. Importantly, overexpression of ATG4B could partially reduce the formation of MB and rescue impaired autophagy. Taken together, our results uncovered for the first time a new damage mechanism mediated by copper and implied new insights of the crosstalk between the toxicity of copper and autophagy in the pathogenesis of WD.
Collapse
Affiliation(s)
- Fan Xia
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuanyuan Fu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Huazhong Xie
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuxin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dongmei Fang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wei Zhang
- Laboratory Animal Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Min Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Yang Q, Chen X, Zhang Y, Hu S, Hu F, Huang Y, Ma T, Hu H, Tian H, Tian S, Ji YX, She ZG, Zhang P, Zhang XJ, Hu Y, Yang H, Yuan Y, Li H. The E3 Ubiquitin Ligase Ring Finger Protein 5 Ameliorates NASH Through Ubiquitin-Mediated Degradation of 3-Hydroxy-3-Methylglutaryl CoA Reductase Degradation Protein 1. Hepatology 2021; 74:3018-3036. [PMID: 34272738 DOI: 10.1002/hep.32061] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS NAFLD is the most prevalent chronic liver disease worldwide, but no effective pharmacological therapeutics are available for clinical use. NASH is the more severe stage of NAFLD. During this progress, dysregulation of endoplasmic reticulum (ER)-related pathways and proteins is one of the predominant hallmarks. We aimed to reveal the role of ring finger protein 5 (RNF5), an ER-localized E3 ubiquitin-protein ligase, in NASH and to explore its underlying mechanism. APPROACH AND RESULTS We first inspected the expression level of RNF5 and found that it was markedly decreased in livers with NASH in multiple species including humans. We then introduced adenoviruses for Rnf5 overexpression or knockdown into primary mouse hepatocytes and found that palmitic acid/oleic acid (PAOA)-induced lipid accumulation and inflammation in hepatocytes were markedly attenuated by Rnf5 overexpression but exacerbated by Rnf5 gene silencing. Hepatocyte-specific Rnf5 knockout significantly exacerbated hepatic steatosis, inflammatory response, and fibrosis in mice challenged with diet-induced NASH. Mechanistically, we identified 3-hydroxy-3-methylglutaryl CoA reductase degradation protein 1 (HRD1) as a binding partner of RNF5 by systematic interactomics analysis. RNF5 directly bound to HRD1 and promoted its lysine 48 (K48)-linked and K33-linked ubiquitination and subsequent proteasomal degradation. Furthermore, Hrd1 overexpression significantly exacerbated PAOA-induced lipid accumulation and inflammation, and short hairpin RNA-mediated Hrd1 knockdown exerted the opposite effects. Notably, Hrd1 knockdown significantly diminished PAOA-induced lipid deposition, and up-regulation of related genes resulted from Rnf5 ablation in hepatocytes. CONCLUSIONS These data indicate that RNF5 inhibits NASH progression by targeting HRD1 in the ubiquitin-mediated proteasomal pathway. Targeting the RNF5-HRD1 axis may provide insights into the pathogenesis of NASH and pave the way for developing strategies for NASH prevention and treatment.
Collapse
Affiliation(s)
- Qin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedures of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, China
| | - Yanfang Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Sha Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Fengjiao Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongping Huang
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Tengfei Ma
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Han Tian
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufeng Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hailong Yang
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedures of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, China
| | - Hongliang Li
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Khateb A, Deshpande A, Feng Y, Finlay D, Lee JS, Lazar I, Fabre B, Li Y, Fujita Y, Zhang T, Yin J, Pass I, Livneh I, Jeremias I, Burian C, Mason JR, Almog R, Horesh N, Ofran Y, Brown K, Vuori K, Jackson M, Ruppin E, Deshpande AJ, Ronai ZA. The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors. Nat Commun 2021; 12:5397. [PMID: 34518534 PMCID: PMC8437979 DOI: 10.1038/s41467-021-25664-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) remains incurable, largely due to its resistance to conventional treatments. Here, we find that increased abundance of the ubiquitin ligase RNF5 contributes to AML development and survival. High RNF5 expression in AML patient specimens correlates with poor prognosis. RNF5 inhibition decreases AML cell growth in culture, in patient-derived xenograft (PDX) samples and in vivo, and delays development of MLL-AF9-driven leukemogenesis in mice, prolonging their survival. RNF5 inhibition causes transcriptional changes that overlap with those seen upon histone deacetylase (HDAC)1 inhibition. RNF5 induces the formation of K29 ubiquitin chains on the histone-binding protein RBBP4, promoting its recruitment to and subsequent epigenetic regulation of genes involved in AML maintenance. Correspondingly, RNF5 or RBBP4 knockdown enhances AML cell sensitivity to HDAC inhibitors. Notably, low expression of both RNF5 and HDAC coincides with a favorable prognosis. Our studies identify an ERAD-independent role for RNF5, demonstrating that its control of RBBP4 constitutes an epigenetic pathway that drives AML, and highlight RNF5/RBBP4 as markers useful to stratify patients for treatment with HDAC inhibitors.
Collapse
Affiliation(s)
- Ali Khateb
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anagha Deshpande
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yongmei Feng
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Darren Finlay
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Joo Sang Lee
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Ikrame Lazar
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Bertrand Fabre
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yan Li
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yu Fujita
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Division of Respiratory Medicine, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jun Yin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ian Pass
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ido Livneh
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
| | - Carol Burian
- Scripps MD Anderson Cancer Center, La Jolla, CA, USA
| | - James R Mason
- Scripps MD Anderson Cancer Center, La Jolla, CA, USA
| | - Ronit Almog
- Rambam Health Care Campus, Epidemiology Department and Biobank, Haifa, Israel
| | - Nurit Horesh
- Rambam Health Care Campus, Hematology and Bone marrow Transplantation Department, Haifa, Israel
| | - Yishai Ofran
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Rambam Health Care Campus, Hematology and Bone marrow Transplantation Department, Haifa, Israel
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kristiina Vuori
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael Jackson
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Aniruddha J Deshpande
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
32
|
Sun-Wang JL, Yarritu-Gallego A, Ivanova S, Zorzano A. The ubiquitin-proteasome system and autophagy: self-digestion for metabolic health. Trends Endocrinol Metab 2021; 32:594-608. [PMID: 34034951 DOI: 10.1016/j.tem.2021.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health challenge. Therefore, understanding the molecular mechanisms underlying the pathophysiology of T2DM is key to improving current therapies. Loss of protein homeostasis leads to the accumulation of damaged proteins in cells, which results in tissue dysfunction. The elimination of damaged proteins occurs through the ubiquitin-proteasome system (UPS) and autophagy. In this review, we describe the mutual regulation between the UPS and autophagy and the involvement of these two proteolytic systems in metabolic dysregulation, insulin resistance, and T2DM. We propose that alterations in the UPS or autophagy contribute to triggering insulin resistance and the development of T2DM. In addition, these two pathways emerge as promising therapeutic targets for improving insulin resistance.
Collapse
Affiliation(s)
- Jia Liang Sun-Wang
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| | - Alex Yarritu-Gallego
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Saška Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| |
Collapse
|
33
|
Regulation of autophagy flux by E3 ubiquitin ligase Pirh2 in lung cancer. Biochem Biophys Res Commun 2021; 563:119-125. [PMID: 34090148 DOI: 10.1016/j.bbrc.2021.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023]
Abstract
Autophagy is a special catabolic cellular program that is induced in response to deprivation of nutrients and energy starvation. During the execution of this program, cellular components, including aggregates, as well as damaged organelles and some proteins are encapsulated in special vesicles known as autophagosomes and subsequently are degraded after fusion of autophagosomes with lysosomes. Importantly, at late stages of tumorigenesis cancer cells employ autophagy to sustain proliferation in unfavorable conditions, including anti-cancer drug therapy. E3 ubiquitin ligases play an important role in controlling autophagy. Here we demonstrate that the E3 ligase, a p53-induced RING-H2 protein (Pirh2), is involved in the regulation of autophagy in non-small cell lung cancer cells. Knockdown of Pirh2 decreased the expression of genes involved in all steps of autophagy. Concomitantly, Pirh2 knockdown cell lines exhibited much less of the processed form of LC3 compared to the respective cell lines with normal levels of Pirh2. These results were confirmed by the immune fluorescence microscopy using LC3 antibody and the LysoTracker dye. In agreement with the protective role of autophagy, cells with attenuated expression of Pirh2 were more sensitive to the treatment with doxorubicin. Collectively, we have uncovered a novel function of Pirh2 in the regulation of autophagy in lung cancer cells.
Collapse
|
34
|
Wang C, Wan X, Yu T, Huang Z, Shen C, Qi Q, Xiang S, Chen X, Arbely E, Ling ZQ, Liu CY, Yu W. Acetylation Stabilizes Phosphoglycerate Dehydrogenase by Disrupting the Interaction of E3 Ligase RNF5 to Promote Breast Tumorigenesis. Cell Rep 2021; 32:108021. [PMID: 32783943 DOI: 10.1016/j.celrep.2020.108021] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) is the first enzyme in the serine synthesis pathway in which it is also the rate-limiting enzyme. It is significantly upregulated in many cancers, especially breast cancer. However, the posttranslational mechanism of PHGDH upregulation in breast cancer is unknown. In this study, we find that RNF5, an E3 ubiquitin ligase, is essential for the degradation of PHGDH protein. PHGDH is degraded by RNF5 to prevent the proliferation of breast cancer cells. The acetylation of PHGDH at K58 is able to disrupt the interaction of RNF5-PHGDH and promote the proliferation of breast cancer cells. Tip60 and SIRT2 regulate the reversible acetylation modification of PHGDH in response to glucose alteration. Moreover, PHGDH is significantly upregulated in samples of human breast cancer and is associated with decreased RNF5 expression. This implies a potential therapeutic target through the interference interaction of PHGDH-RNF5 to degrade PHGDH in breast cancer.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xingyou Wan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Tong Yu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Chao Shen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Qian Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Sheng Xiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xinyuan Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Eyal Arbely
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Zhi-Qiang Ling
- Experimental Research Centre, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China.
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
35
|
Egea V, Kessenbrock K, Lawson D, Bartelt A, Weber C, Ries C. Let-7f miRNA regulates SDF-1α- and hypoxia-promoted migration of mesenchymal stem cells and attenuates mammary tumor growth upon exosomal release. Cell Death Dis 2021; 12:516. [PMID: 34016957 PMCID: PMC8137693 DOI: 10.1038/s41419-021-03789-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Bone marrow-derived human mesenchymal stem cells (hMSCs) are recruited to damaged or inflamed tissues where they contribute to tissue repair. This multi-step process involves chemokine-directed invasion of hMSCs and on-site release of factors that influence target cells or tumor tissues. However, the underlying molecular mechanisms are largely unclear. Previously, we described that microRNA let-7f controls hMSC differentiation. Here, we investigated the role of let-7f in chemotactic invasion and paracrine anti-tumor effects. Incubation with stromal cell-derived factor-1α (SDF-1α) or inflammatory cytokines upregulated let-7f expression in hMSCs. Transfection of hMSCs with let-7f mimics enhanced CXCR4-dependent invasion by augmentation of pericellular proteolysis and release of matrix metalloproteinase-9. Hypoxia-induced stabilization of the hypoxia-inducible factor 1 alpha in hMSCs promoted cell invasion via let-7f and activation of autophagy. Dependent on its endogenous level, let-7f facilitated hMSC motility and invasion through regulation of the autophagic flux in these cells. In addition, secreted let-7f encapsulated in exosomes was increased upon upregulation of endogenous let-7f by treatment of the cells with SDF-1α, hypoxia, or induction of autophagy. In recipient 4T1 tumor cells, hMSC-derived exosomal let-7f attenuated proliferation and invasion. Moreover, implantation of 3D spheroids composed of hMSCs and 4T1 cells into a breast cancer mouse model demonstrated that hMSCs overexpressing let-7f inhibited tumor growth in vivo. Our findings provide evidence that let-7f is pivotal in the regulation of hMSC invasion in response to inflammation and hypoxia, suggesting that exosomal let-7f exhibits paracrine anti-tumor effects.
Collapse
Affiliation(s)
- Virginia Egea
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany.
| | - Kai Kessenbrock
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Devon Lawson
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Department of Molecular Metabolism, 665 Huntington Avenue, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany.,Dept. Biochemistry, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Ries
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany.
| |
Collapse
|
36
|
JMJD6 negatively regulates cytosolic RNA induced antiviral signaling by recruiting RNF5 to promote activated IRF3 K48 ubiquitination. PLoS Pathog 2021; 17:e1009366. [PMID: 33684176 PMCID: PMC7971890 DOI: 10.1371/journal.ppat.1009366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/18/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The negative regulation of antiviral immune responses is essential for the host to maintain homeostasis. Jumonji domain-containing protein 6 (JMJD6) was previously identified with a number of functions during RNA virus infection. Upon viral RNA recognition, retinoic acid-inducible gene-I-like receptors (RLRs) physically interact with the mitochondrial antiviral signaling protein (MAVS) and activate TANK-binding kinase 1 (TBK1) to induce type-I interferon (IFN-I) production. Here, JMJD6 was demonstrated to reduce type-I interferon (IFN-I) production in response to cytosolic poly (I:C) and RNA virus infections, including Sendai virus (SeV) and Vesicular stomatitis virus (VSV). Genetic inactivation of JMJD6 enhanced IFN-I production and impaired viral replication. Our unbiased proteomic screen demonstrated JMJD6 contributes to IRF3 K48 ubiquitination degradation in an RNF5-dependent manner. Mice with gene deletion of JMJD6 through piggyBac transposon-mediated gene transfer showed increased VSV-triggered IFN-I production and reduced susceptibility to the virus. These findings classify JMJD6 as a negative regulator of the host’s innate immune responses to cytosolic viral RNA. RLRs-mediated signaling needs to be terminated in order to prevent persistent immune responses and adverse effects to the host once the virus has been cleared. In this study, we provide rigorous evidence that JMJD6 negatively regulates RLRs-mediated innate immune responses. We found that JMJD6 recruits RNF5 to induce the K48-linked polyubiquitination and proteasomal degradation of activated IRF3. Genetic inactivation of JMJD6 in cells increases IFN-I production to suppress viral infection. Consistently, in vivo studies show that, compared with WT mice, JMJD6-deficient mice are more resistant to VSV infection with more IFN-I production and reduced viral load in livers. Our findings reveal a novel mechanism to downregulate innate immune responses mediated by RNA viral infection, which allows the host to prevent undue immune responses and sustain homeostasis.
Collapse
|
37
|
Berchtold L, Letouzé E, Alexander MP, Canaud G, Logt AEVD, Hamilton P, Mousson C, Vuiblet V, Moyer AM, Guibert S, Mrázová P, Levi C, Dubois V, Cruzado JM, Torres A, Gandhi MJ, Yousfi N, Tesar V, Viklický O, Hourmant M, Moulin B, Rieu P, Choukroun G, Legendre C, Wetzels J, Brenchley P, Ballarín Castan JA, Debiec H, Ronco P. HLA-D and PLA2R1 risk alleles associate with recurrent primary membranous nephropathy in kidney transplant recipients. Kidney Int 2021; 99:671-685. [DOI: 10.1016/j.kint.2020.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
|
38
|
Abstract
As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a membrane protein (M) that mediates viral release from cellular membranes. However, the molecular mechanisms of SARS-CoV-2 virion release remain poorly understood. In the present study, we performed RNA interference (RNAi) screening and identified the E3 ligase RNF5, which mediates the ubiquitination of SARS-CoV-2 M at residue K15 to enhance the interaction of the viral envelope protein (E) with M, whereas the deubiquitinating enzyme POH1 negatively regulates this process. The M-E complex ensures the uniform size of viral particles for viral maturation and mediates virion release. Moreover, M traffics from the Golgi apparatus to autophagosomes and uses autophagosomes for virion release, and this process is dependent on RNF5-mediated ubiquitin modification and M-E interaction. These results demonstrate that ubiquitin modification of SARS-CoV-2 M stabilizes the M-E complex and uses autophagosomes for virion release. IMPORTANCE Enveloped virus particles are released from the membranes of host cells, and viral membrane proteins (M) are critical for this process. A better understanding of the molecular mechanisms of SARS-CoV-2 assembly and budding is critical for the development of antiviral therapies. Envelope protein (E) and M of SARS-CoV-2 form complexes to mediate viral assembly and budding. RNF5 was identified to play a role as the E3 ligase, and POH1 was demonstrated to function as the deubiquitinating enzyme of SARS-CoV-2 M. The two components collectively regulate the interaction of M with E to promote viral assembly and budding. Ubiquitinated M uses autophagosomes for viral release. Our findings provide insights into the mechanisms of SARS-CoV-2 assembly and budding, demonstrating the importance of ubiquitination modification and autophagy in viral replication.
Collapse
|
39
|
Li X, Sun L, Yan G, Yan X. PFKP facilitates ATG4B phosphorylation during amino acid deprivation-induced autophagy. Cell Signal 2021; 82:109956. [PMID: 33607258 DOI: 10.1016/j.cellsig.2021.109956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 12/09/2022]
Abstract
ATG4B facilitates autophagy by promoting autophagosome maturation through the reversible lipidation and delipidation of LC3. Recent reports have shown that phosphorylation of ATG4B regulates its activity and LC3 processing, leading to modulate autophagy activity. However, the mechanism about how ATG4B phosphorylation is involved in amino acid deprivation-induced autophagy is unclear. Here, we combined the tandem affinity purification with mass spectrometry (MS) and identified the ATG4B-interacting proteins including its well-known partner gamma-aminobutyric acid receptor-associated protein (GABARAP, a homolog of LC3) and phosphofructokinase 1 platelet isoform (PFKP). Further immunoprecipitation assays showed that amino acid deprivation strengthened the interaction between ATG4B and PFKP. By genetic depletion of PFKP using CRISPR/Cas9, we uncovered that PFKP loss reduced the degradation of LC3-II and p62 due to a partial block in autophagic flux. Furthermore, MS analysis of Flag-tagged ATG4B immunoprecipitates identified phosphorylation of ATG4B serine 34 residue (S34) and PFKP serine 386 residue (S386) under amino acid deprivation condition. In vitro kinase assay validated that PFKP functioning as a protein kinase phosphorylated ATG4B at S34. This phosphorylation could enhance ATG4B activity and p62 degradation. In addition, PFKP S386 phosphorylation was important to ATG4B S34 phosphorylation and autophagy in HEK293T cells. In brief, our findings describe that PFKP, a rate-limiting enzyme in the glycolytic pathway, functions as a protein kinase for ATG4B to regulate ATG4B activity and autophagy under amino acid deprivation condition.
Collapse
Affiliation(s)
- Xiuzhi Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Lingling Sun
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Guokai Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China.
| |
Collapse
|
40
|
The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing. Ageing Res Rev 2020; 64:101203. [PMID: 33130248 DOI: 10.1016/j.arr.2020.101203] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Dysregulated proteostasis is one of the hallmarks of ageing. Damaged proteins may impair cellular function and their accumulation may lead to tissue dysfunction and disease. This is why protective mechanisms to safeguard the cell proteome have evolved. These mechanisms consist of cellular machineries involved in protein quality control, including regulators of protein translation, folding, trafficking and degradation. In eukaryotic cells, protein degradation occurs via two main pathways: the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. Although distinct pathways, they are not isolated systems and have a complementary nature, as evidenced by recent studies. These findings raise the question of how autophagy and the proteasome crosstalk. In this review we address how the two degradation pathways impact each other, thereby adding a new layer of regulation to protein degradation. We also analyze the implications of the UPS and autophagy in ageing.
Collapse
|
41
|
Adir O, Bening-Abu-Shach U, Arbib S, Henis-Korenblit S, Broday L. Inactivation of the Caenorhabditis elegans RNF-5 E3 ligase promotes IRE-1-independent ER functions. Autophagy 2020; 17:2401-2414. [DOI: 10.1080/15548627.2020.1827778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Orit Adir
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ulrike Bening-Abu-Shach
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shir Arbib
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Yang G, Li Y, Zhao Y, Ouyang L, Chen Y, Liu B, Liu J. Targeting Atg4B for cancer therapy: Chemical mediators. Eur J Med Chem 2020; 209:112917. [PMID: 33077263 DOI: 10.1016/j.ejmech.2020.112917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/05/2023]
Abstract
Atg4, a pivotal macroautophagy/autophagy-related cysteine protein family, which regulate autophagy through either cleaving Atg8 homologs for its further lipidation or delipidating Atg8 homologs from the autophagosome. There are four homologs, Atg4A, Atg4B, Atg4C, and Atg4D. Among them, an increasing amount of evidence indicates that Atg4B possessed superior catalytic efficiency toward the Atg8 substrate, as well as regulates autophagy process and plays a key role in the development of several human cancers. Recently, efforts have been contributed to the exploration of Atg4B inhibitors or activators. In this review, we comprehensively clarify the function of Atg4B in autophagy and cancer biology, as well as the relationship between pharmacological function and structure-activity of small molecule drugs targeting Atg4B. The development of novel drugs targeting Atg4B could be well applied in the clinical practice.
Collapse
Affiliation(s)
- Gaoxia Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqian Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jie Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
43
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
44
|
The Roles of Ubiquitin in Mediating Autophagy. Cells 2020; 9:cells9092025. [PMID: 32887506 PMCID: PMC7564124 DOI: 10.3390/cells9092025] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Ubiquitination, the post-translational modification essential for various intracellular processes, is implicated in multiple aspects of autophagy, the major lysosome/vacuole-dependent degradation pathway. The autophagy machinery adopted the structural architecture of ubiquitin and employs two ubiquitin-like protein conjugation systems for autophagosome biogenesis. Ubiquitin chains that are attached as labels to protein aggregates or subcellular organelles confer selectivity, allowing autophagy receptors to simultaneously bind ubiquitinated cargos and autophagy-specific ubiquitin-like modifiers (Atg8-family proteins). Moreover, there is tremendous crosstalk between autophagy and the ubiquitin-proteasome system. Ubiquitination of autophagy-related proteins or regulatory components plays significant roles in the precise control of the autophagy pathway. In this review, we summarize and discuss the molecular mechanisms and functions of ubiquitin and ubiquitination, in the process and regulation of autophagy.
Collapse
|
45
|
Melia TJ, Lystad AH, Simonsen A. Autophagosome biogenesis: From membrane growth to closure. J Cell Biol 2020; 219:e202002085. [PMID: 32357219 PMCID: PMC7265318 DOI: 10.1083/jcb.202002085] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagosome biogenesis involves de novo formation of a membrane that elongates to sequester cytoplasmic cargo and closes to form a double-membrane vesicle (an autophagosome). This process has remained enigmatic since its initial discovery >50 yr ago, but our understanding of the mechanisms involved in autophagosome biogenesis has increased substantially during the last 20 yr. Several key questions do remain open, however, including, What determines the site of autophagosome nucleation? What is the origin and lipid composition of the autophagosome membrane? How is cargo sequestration regulated under nonselective and selective types of autophagy? This review provides key insight into the core molecular mechanisms underlying autophagosome biogenesis, with a specific emphasis on membrane modeling events, and highlights recent conceptual advances in the field.
Collapse
Affiliation(s)
- Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Alf H. Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
46
|
Kuang E, Okumura CYM, Sheffy-Levin S, Varsano T, Shu VCW, Qi J, Niesman IR, Yang HJ, López-Otín C, Yang WY, Reed JC, Broday L, Nizet V, Ronai ZA. Correction: Regulation of ATG4B Stability by RNF5 Limits Basal Levels of Autophagy and Influences Susceptibility to Bacterial Infection. PLoS Genet 2020; 16:e1008795. [PMID: 32392217 PMCID: PMC7213681 DOI: 10.1371/journal.pgen.1008795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Agrotis A, Ketteler R. On ATG4B as Drug Target for Treatment of Solid Tumours-The Knowns and the Unknowns. Cells 2019; 9:cells9010053. [PMID: 31878323 PMCID: PMC7016753 DOI: 10.3390/cells9010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionary conserved stress survival pathway that has been shown to play an important role in the initiation, progression, and metastasis of multiple cancers; however, little progress has been made to date in translation of basic research to clinical application. This is partially due to an incomplete understanding of the role of autophagy in the different stages of cancer, and also to an incomplete assessment of potential drug targets in the autophagy pathway. While drug discovery efforts are on-going to target enzymes involved in the initiation phase of the autophagosome, e.g., unc51-like autophagy activating kinase (ULK)1/2, vacuolar protein sorting 34 (Vps34), and autophagy-related (ATG)7, we propose that the cysteine protease ATG4B is a bona fide drug target for the development of anti-cancer treatments. In this review, we highlight some of the recent advances in our understanding of the role of ATG4B in autophagy and its relevance to cancer, and perform a critical evaluation of ATG4B as a druggable cancer target.
Collapse
|
48
|
Fujita Y, Khateb A, Li Y, Tinoco R, Zhang T, Bar-Yoseph H, Tam MA, Chowers Y, Sabo E, Gerassy-Vainberg S, Starosvetsky E, James B, Brown K, Shen-Orr SS, Bradley LM, Tessier PA, Ronai ZA. Regulation of S100A8 Stability by RNF5 in Intestinal Epithelial Cells Determines Intestinal Inflammation and Severity of Colitis. Cell Rep 2019; 24:3296-3311.e6. [PMID: 30232010 PMCID: PMC6185744 DOI: 10.1016/j.celrep.2018.08.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/29/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is prevalent, but the mechanisms underlying disease development remain elusive. We identify a role for the E3 ubiquitin ligase RNF5 in IBD. Intestinal epithelial cells (IECs) express a high level of RNF5, while the colon of Rnf5−/− mice exhibits activated dendritic cells and intrinsic inflammation. Rnf5−/− mice exhibit severe acute colitis following dextran sodium sulfate (DSS) treatment. S100A8 is identified as an RNF5 substrate, resulting in S100A8 ubiquitination and proteasomal-dependent degradation that is attenuated upon inflammatory stimuli. Loss of RNF5 from IECs leads to enhanced S100A8 secretion, which induces mucosal CD4+ T cells, resulting in Th1 pro-inflammatory responses. Administration of S100A8-neutralizing antibodies to DSS-treated Rnf5−/− mice attenuates acute colitis development and increases survival. An inverse correlation between RNF5 and S100A8 protein expression in IECs of IBD patients coincides with disease severity. Collectively, RNF5-mediated regulation of S100A8 stability in IECs is required for the maintenance of intestinal homeostasis. Fujita et al. show that RNF5 regulation of S100A8 stability in intestinal epithelial cells defines the degree of pro-inflammatory response, culminating in severe intestinal inflammation following DSS treatment to Rnf5−/− mice. Neutralizing S100A8 antibodies attenuates acute colitis phenotypes, and inverse RNF5/S100A8 expression coincides with clinical severity in IBD patients.
Collapse
Affiliation(s)
- Yu Fujita
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ali Khateb
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 31096, Israel
| | - Yan Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Roberto Tinoco
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Haggai Bar-Yoseph
- Rambam Health Care Campus, Gastroenterology Institute, Haifa, 31096, Israel
| | | | - Yehuda Chowers
- Rambam Health Care Campus, Gastroenterology Institute, Haifa, 31096, Israel
| | - Edmond Sabo
- Pathology Division, Carmel Medical Center, Haifa, 34362, Israel
| | - Shiran Gerassy-Vainberg
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 31096, Israel
| | - Elina Starosvetsky
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 31096, Israel
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shai S Shen-Orr
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 31096, Israel
| | - Linda M Bradley
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Philippe A Tessier
- Centre de Recherche du Centre Hospitalier de l'Université Laval, Sainte-Foy, Quebec, QC G1V 4G2, Canada
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
49
|
Chen RH, Chen YH, Huang TY. Ubiquitin-mediated regulation of autophagy. J Biomed Sci 2019; 26:80. [PMID: 31630678 PMCID: PMC6802350 DOI: 10.1186/s12929-019-0569-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a major degradation pathway that utilizes lysosome hydrolases to degrade cellular constituents and is often induced under cellular stress conditions to restore cell homeostasis. Another prime degradation pathway in the cells is ubiquitin-proteasome system (UPS), in which proteins tagged by certain types of polyubiquitin chains are selectively recognized and removed by proteasome. Although the two degradation pathways are operated independently with different sets of players, recent studies have revealed reciprocal cross talks between UPS and autophagy at multiple layers. In this review, we summarize the roles of protein ubiquitination and deubiquitination in controlling the initiation, execution, and termination of bulk autophagy as well as the role of ubiquitination in signaling certain types of selective autophagy. We also highlight how dysregulation of ubiquitin-mediated autophagy pathways is associated with a number of human diseases and the potential of targeting these pathways for disease intervention.
Collapse
Affiliation(s)
- Ruey-Hwa Chen
- Academia Sinica, Institute of Biological Chemistry, Taipei, 115, Taiwan. .,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 100, Taiwan.
| | - Yu-Hsuan Chen
- Academia Sinica, Institute of Biological Chemistry, Taipei, 115, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 100, Taiwan
| | - Tzu-Yu Huang
- Academia Sinica, Institute of Biological Chemistry, Taipei, 115, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 100, Taiwan
| |
Collapse
|
50
|
Melino G, Cecconi F, Pelicci PG, Mak TW, Bernassola F. Emerging roles of HECT-type E3 ubiquitin ligases in autophagy regulation. Mol Oncol 2019; 13:2033-2048. [PMID: 31441992 PMCID: PMC6763782 DOI: 10.1002/1878-0261.12567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a conserved self-eating process that delivers cytoplasmic material to the lysosome to allow degradation of intracellular components, including soluble, unfolded and aggregated proteins, damaged organelles, and invading microorganisms. Autophagy provides a homeostatic control mechanism and is essential for balancing sources of energy in response to nutrient stress. Autophagic dysfunction or dysregulation has been implicated in several human pathologies, including cancer and neurodegeneration, and its modulation has substantial potential as a therapeutic strategy. Given the relevant clinical and therapeutic implications of autophagy, there is emerging intense interest in the identification of the key factors regulating the components of the autophagic machinery. Various post-translational modifications, including ubiquitylation, have been implicated in autophagy control. The list of the E3 ubiquitin protein ligases involved in the regulation of several steps of the autophagic process is continuously growing. In this review, we will focus on recent advances in the understanding of the role of the homologous to the E6AP carboxyl terminus-type E3 ubiquitin ligases in autophagy control.
Collapse
Affiliation(s)
- Gerry Melino
- Department of Experimental MedicineTORUniversity of Rome “Tor Vergata”Italy
- Medical Research Council, Toxicology UnitUniversity of CambridgeUK
| | - Francesco Cecconi
- Cell Stress and Survival UnitDanish Cancer Society Research CenterCopenhagenDenmark
- Department of BiologyTor Vergata University of RomeItaly
- Department of Pediatric Hematology and OncologyIRCCS Bambino Gesù Children's HospitalRomeItaly
| | - Pier Giuseppe Pelicci
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Haemato‐OncologyMilan UniversityItaly
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer ResearchOntario Cancer InstitutePrincess Margaret HospitalTorontoONCanada
| | - Francesca Bernassola
- Department of Experimental MedicineTORUniversity of Rome “Tor Vergata”Italy
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| |
Collapse
|