1
|
Everitt T, Rönneburg T, Elsner D, Olsson A, Liu Y, Larva T, Korb J, Webster MT. Unexpectedly low recombination rates and presence of hotspots in termite genomes. Genome Res 2025; 35:1124-1137. [PMID: 40113265 PMCID: PMC12047536 DOI: 10.1101/gr.279180.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Meiotic recombination is a fundamental evolutionary process that facilitates adaptation and the removal of deleterious genetic variation. Social Hymenoptera exhibit some of the highest recombination rates among metazoans, whereas high recombination rates have not been found among nonsocial species from this insect order. It is unknown whether elevated recombination rates are a ubiquitous feature of all social insects. In many metazoan taxa, recombination is mainly restricted to hotspots a few kilobases in length. However, little is known about the prevalence of recombination hotspots in insect genomes. Here we infer recombination rate and its fine-scale variation across the genomes of two social species from the insect order Blattodea: the termites Macrotermes bellicosus and Cryptotermes secundus We used linkage disequilibrium-based methods to infer recombination rate. We infer that recombination rates are close to 1 cM/Mb in both species, similar to the average metazoan rate. We also observe a highly punctate distribution of recombination in both termite genomes, indicative of the presence of recombination hotspots. We infer the presence of full-length PRDM9 genes in the genomes of both species, which suggests recombination hotspots in termites might be determined by PRDM9, as they are in mammals. We also find that recombination rates in genes are correlated with inferred levels of germline DNA methylation. The finding of low recombination rates in termites indicates that eusociality is not universally connected to elevated recombination rate. We speculate that the elevated recombination rates in social Hymenoptera are instead promoted by intense selection among haploid males.
Collapse
Affiliation(s)
- Turid Everitt
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Tilman Rönneburg
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Daniel Elsner
- Evolutionary Biology and Ecology, University of Freiburg, D-79104 Freiburg, Germany
| | - Anna Olsson
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Yuanzhen Liu
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Tuuli Larva
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Judith Korb
- Evolutionary Biology and Ecology, University of Freiburg, D-79104 Freiburg, Germany
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina Campus, Darwin, Casuarina NT 0909, Australia
| | - Matthew T Webster
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden;
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
2
|
Bursell M, Rohilla M, Ramirez L, Cheng Y, Schwarzkopf EJ, Guerrero RF, Smukowski Heil C. Mixed Outcomes in Recombination Rates After Domestication: Revisiting Theory and Data. Mol Ecol 2025:e17773. [PMID: 40271548 DOI: 10.1111/mec.17773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
The process of domestication has altered many phenotypes. Selection on these phenotypes has long been hypothesised to indirectly select for increases in the genome-wide recombination rate. This hypothesis is potentially consistent with theory on the evolution of the recombination rate, but empirical support has been unclear. We review relevant theory, lab-based experiments, and data comparing recombination rates in wild progenitors and their domesticated counterparts. We utilise population sequencing data and a deep learning method to infer genome-wide recombination rates for new comparisons of chicken/red junglefowl, sheep/mouflon, and goat/bezoar. We find evidence of increased recombination in domesticated goats compared to bezoars but more mixed results in chicken and generally decreased recombination in domesticated sheep compared to mouflon. Our results add to a growing body of literature in plants and animals that finds no consistent evidence of an increase in genome-wide recombination with domestication.
Collapse
Affiliation(s)
- Madeline Bursell
- Department of Plant Pathology and Entomology, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Manav Rohilla
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Lucia Ramirez
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Yuhuan Cheng
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Enrique J Schwarzkopf
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rafael F Guerrero
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Prentout D, Bykova D, Hoge C, Hooper DM, McDiarmid CS, Wu F, Griffith SC, de Manuel M, Przeworski M. Germline mutation rates and fine-scale recombination parameters in zebra finch. PLoS Genet 2025; 21:e1011661. [PMID: 40233115 PMCID: PMC12047795 DOI: 10.1371/journal.pgen.1011661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/02/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
Most of our understanding of the fundamental processes of mutation and recombination stems from a handful of disparate model organisms and pedigree studies of mammals, with little known about other vertebrates. To gain a broader comparative perspective, we focused on the zebra finch (Taeniopygia castanotis), which, like other birds, differs from mammals in its karyotype (which includes many micro-chromosomes), in the mechanism by which recombination is directed to the genome, and in aspects of ontogenesis. We collected genome sequences from three generation pedigrees that provide information about 80 meioses, inferring 202 single-point de novo mutations, 1,088 crossovers, and 275 non-crossovers. On that basis, we estimated a sex-averaged mutation rate of 5.0 × 10-9 per base pair per generation, on par with mammals that have a similar generation time (~2-3 years). Also as in mammals, we found a paternal germline mutation bias at later stages of gametogenesis (of 1.7:1) but no discernible difference between sexes in early development. Examining recombination patterns, we found that the sex-averaged crossover rate on macro-chromosomes is 0.93 cM/Mb, with a pronounced enrichment of crossovers near telomeres. In contrast, non-crossover rates are more uniformly distributed. On micro-chromosomes, sex-averaged crossover rates are substantially higher (3.96 cM/Mb), in accordance with crossover homeostasis, and both crossover and non-crossover events are more uniformly distributed. At a finer scale, recombination events overlap CpG islands more often than expected by chance, as expected in the absence of PRDM9. Estimates of the degree of GC-biased gene conversion (59%), the mean non-crossover conversion tract length (~32 bp), and the non-crossover-to-crossover ratio (5.4:1) are all comparable to those reported in primates and mice. Therefore, properties of germline mutation and recombination resolutions remain similar over large phylogenetic distances.
Collapse
Affiliation(s)
- Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Daria Bykova
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Carla Hoge
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Daniel M. Hooper
- Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of Natural History, New York, New York, United States of America
| | - Callum S. McDiarmid
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Felix Wu
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Simon C. Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marc de Manuel
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| |
Collapse
|
4
|
Prentout D, Bykova D, Hoge C, Hooper DM, McDiarmid CS, Wu F, Griffith SC, de Manuel M, Przeworski M. Mutation and recombination parameters in zebra finch are similar to those in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.05.611523. [PMID: 39282267 PMCID: PMC11398497 DOI: 10.1101/2024.09.05.611523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Most of our understanding of the fundamental processes of mutation and recombination stems from a handful of disparate model organisms and pedigree studies of mammals, with little known about other vertebrates. To gain a broader comparative perspective, we focused on the zebra finch (Taeniopygia castanotis), which, like other birds, differs from mammals in its karyotype (which includes many micro-chromosomes), in the mechanism by which recombination is directed to the genome, and in aspects of ontogenesis. We collected genome sequences from three generation pedigrees that provide information about 80 meioses, inferring 202 single-point de novo mutations, 1,174 crossovers, and 275 non-crossovers. On that basis, we estimated a sex-averaged mutation rate of 5.0 × 10-9 per base pair per generation, on par with mammals that have a similar generation time (~2-3 years). Also as in mammals, we found a paternal germline mutation bias at later stages of gametogenesis (of 1.7:1) but no discernible difference between sexes in early development. Examining recombination patterns, we found that the sex-averaged crossover rate on macro-chromosomes (1.05 cM/Mb) is again similar to values observed in mammals, as is the spatial distribution of crossovers, with a pronounced enrichment near telomeres. In contrast, non-crossover rates are more uniformly distributed. On micro-chromosomes, sex-averaged crossover rates are substantially higher (4.21 cM/Mb), as expected from crossover homeostasis, and both crossover and non-crossover events are more uniformly distributed. At a finer scale, recombination events overlap CpG islands more often than expected by chance, as expected in the absence of PRDM9. Despite differences in the mechanism by which recombination events are specified and the presence of many micro-chromosomes, estimates of the degree of GC-biased gene conversion (59%), the mean non-crossover conversion tract length (~32 bp), and the non-crossover-to-crossover ratio (5.4:1) are all comparable to those reported in primates and mice. The similarity of mutation and recombination properties in zebra finch to those in mammals suggest that they are conserved by natural selection.
Collapse
Affiliation(s)
| | - Daria Bykova
- Dept. of Biological Sciences, Columbia University
| | - Carla Hoge
- Dept. of Biological Sciences, Columbia University
| | - Daniel M. Hooper
- Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of Natural History, New York, New York, USA
| | - Callum S. McDiarmid
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Felix Wu
- Dept. of Systems Biology, Columbia University
| | - Simon C. Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | - Molly Przeworski
- Dept. of Biological Sciences, Columbia University
- Dept. of Systems Biology, Columbia University
| |
Collapse
|
5
|
Topaloudis A, Cumer T, Lavanchy E, Ducrest AL, Simon C, Machado AP, Paposhvili N, Roulin A, Goudet J. The recombination landscape of the barn owl, from families to populations. Genetics 2025; 229:1-50. [PMID: 39545468 PMCID: PMC11708917 DOI: 10.1093/genetics/iyae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Homologous recombination is a meiotic process that generates diversity along the genome and interacts with all evolutionary forces. Despite its importance, studies of recombination landscapes are lacking due to methodological limitations and limited data. Frequently used approaches include linkage mapping based on familial data that provides sex-specific broad-scale estimates of realized recombination and inferences based on population linkage disequilibrium that reveal a more fine-scale resolution of the recombination landscape, albeit dependent on the effective population size and the selective forces acting on the population. In this study, we use a combination of these 2 methods to elucidate the recombination landscape for the Afro-European barn owl (Tyto alba). We find subtle differences in crossover placement between sexes that lead to differential effective shuffling of alleles. Linkage disequilibrium-based estimates of recombination are concordant with family-based estimates and identify large variation in recombination rates within and among linkage groups. Larger chromosomes show variation in recombination rates, while smaller chromosomes have a universally high rate that shapes the diversity landscape. We find that recombination rates are correlated with gene content, genetic diversity, and GC content. We find no conclusive differences in the recombination landscapes between populations. Overall, this comprehensive analysis enhances our understanding of recombination dynamics, genomic architecture, and sex-specific variation in the barn owl, contributing valuable insights to the broader field of avian genomics.
Collapse
Affiliation(s)
- Alexandros Topaloudis
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Celine Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Nika Paposhvili
- Institute of Ecology, Ilia State University, Tbilisi 0162, Georgia
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Lyulina AS, Liu Z, Good BH. Linkage equilibrium between rare mutations. Genetics 2024; 228:iyae145. [PMID: 39222343 PMCID: PMC11538400 DOI: 10.1093/genetics/iyae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Recombination breaks down genetic linkage by reshuffling existing variants onto new genetic backgrounds. These dynamics are traditionally quantified by examining the correlations between alleles, and how they decay as a function of the recombination rate. However, the magnitudes of these correlations are strongly influenced by other evolutionary forces like natural selection and genetic drift, making it difficult to tease out the effects of recombination. Here, we introduce a theoretical framework for analyzing an alternative family of statistics that measure the homoplasy produced by recombination. We derive analytical expressions that predict how these statistics depend on the rates of recombination and recurrent mutation, the strength of negative selection and genetic drift, and the present-day frequencies of the mutant alleles. We find that the degree of homoplasy can strongly depend on this frequency scale, which reflects the underlying timescales over which these mutations occurred. We show how these scaling properties can be used to isolate the effects of recombination and discuss their implications for the rates of horizontal gene transfer in bacteria.
Collapse
Affiliation(s)
- Anastasia S Lyulina
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Zhiru Liu
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Benjamin H Good
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Whitehouse LS, Ray DD, Schrider DR. Tree Sequences as a General-Purpose Tool for Population Genetic Inference. Mol Biol Evol 2024; 41:msae223. [PMID: 39460991 PMCID: PMC11600592 DOI: 10.1093/molbev/msae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
As population genetic data increase in size, new methods have been developed to store genetic information in efficient ways, such as tree sequences. These data structures are computationally and storage efficient but are not interchangeable with existing data structures used for many population genetic inference methodologies such as the use of convolutional neural networks applied to population genetic alignments. To better utilize these new data structures, we propose and implement a graph convolutional network to directly learn from tree sequence topology and node data, allowing for the use of neural network applications without an intermediate step of converting tree sequences to population genetic alignment format. We then compare our approach to standard convolutional neural network approaches on a set of previously defined benchmarking tasks including recombination rate estimation, positive selection detection, introgression detection, and demographic model parameter inference. We show that tree sequences can be directly learned from using a graph convolutional network approach and can be used to perform well on these common population genetic inference tasks with accuracies roughly matching or even exceeding that of a convolutional neural network-based method. As tree sequences become more widely used in population genetic research, we foresee developments and optimizations of this work to provide a foundation for population genetic inference moving forward.
Collapse
Affiliation(s)
- Logan S Whitehouse
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dylan D Ray
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Schaeffer SW, Richards S, Fuller ZL. Genomics of natural populations: gene conversion events reveal selected genes within the inversions of Drosophila pseudoobscura. G3 (BETHESDA, MD.) 2024; 14:jkae176. [PMID: 39073776 PMCID: PMC11457094 DOI: 10.1093/g3journal/jkae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
When adaptive phenotypic variation or quantitative trait loci map within an inverted segment of a chromosome, researchers often despair because the suppression of crossing over will prevent the discovery of selective target genes that established the rearrangement. If an inversion polymorphism is old enough, then the accumulation of gene conversion tracts offers the promise that quantitative trait loci or selected loci within inversions can be mapped. The inversion polymorphism of Drosophila pseudoobscura is a model system to show that gene conversion analysis is a useful tool for mapping selected loci within inversions. D. pseudoobscura has over 30 different chromosomal arrangements on the third chromosome (Muller C) in natural populations and their frequencies vary with changes in environmental habitats. Statistical tests of five D. pseudoobscura gene arrangements identified outlier genes within inverted regions that had potentially heritable variation, either fixed amino acid differences or differential expression patterns. We use genome sequences of the inverted third chromosome (Muller C) to infer 98,443 gene conversion tracts for a total coverage of 142 Mb or 7.2× coverage of the 19.7 Mb chromosome. We estimated gene conversion tract coverage in the 2,668 genes on Muller C and tested whether gene conversion coverage was similar among arrangements for outlier vs non-outlier loci. Outlier genes had lower gene conversion tract coverage among arrangements than the non-outlier genes suggesting that selection removes exchanged DNA in the outlier genes. These data support the hypothesis that the third chromosome in D. pseudoobscura captured locally adapted combinations of alleles prior to inversion mutation events.
Collapse
Affiliation(s)
- Stephen W Schaeffer
- Department of Biology, The Pennsylvania State University, 208 Erwin W. Mueller Laboratory, University Park, PA 16802-5301, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
9
|
Lu DS, Peris D, Sønstebø JH, James TY, Rieseberg LH, Maurice S, Kauserud H, Ravinet M, Skrede I. Reticulate evolution and rapid development of reproductive barriers upon secondary contact in a forest fungus. Curr Biol 2024; 34:4513-4525.e6. [PMID: 39317194 DOI: 10.1016/j.cub.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/12/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
Reproductive barriers between sister species of the mushroom-forming fungi tend to be stronger in sympatry, leading to speculation on whether they are being reinforced by selection against hybrids. We have used population genomic analyses together with in vitro crosses of a global sample of the wood decay fungus Trichaptum abietinum to investigate reproductive barriers within this species complex and the processes that have shaped them. Our phylogeographic analyses show that T. abietinum is delimited into six major genetic groups: one in Asia, two in Europe, and three in North America. The groups present in Europe are interfertile and admixed, whereas our crosses show that the North American groups are reproductively isolated. In Asia, a more complex pattern appears, with partial intersterility between subgroups that likely originated independently and more recently than the reproductive barriers in North America. We found pre-mating barriers in T. abietinum to be moderately correlated with genomic divergence, whereas mean growth reduction of the mated hybrids showed a strong correlation with increasing genomic divergence. Genome-wide association analyses identified candidate genes with programmed cell death annotations, which are known to be involved in intersterility in distantly related fungi, although their link here remains unproven. Our demographic modeling and phylogenetic network analyses fit a scenario where reproductive barriers in Trichaptum abietinum could have been reinforced upon secondary contact between groups that diverged in allopatry during the Pleistocene glacial cycles. Our combination of experimental and genomic approaches demonstrates how T. abietinum is a tractable system for studying speciation mechanisms.
Collapse
Affiliation(s)
- Dabao Sun Lu
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - David Peris
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway; Department of Biotechnology, Institute of Agrochemistry and Food Biotechnology (IATA), CSIC, Carrer del Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Jørn Henrik Sønstebø
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800 Bø, Norway
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, 105 North University Ave Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Sundy Maurice
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Mark Ravinet
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway; School of Life Sciences, University of Nottingham, East Dr., Nottingham NG7 2TQ, UK
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| |
Collapse
|
10
|
Whitehouse LS, Ray D, Schrider DR. Tree sequences as a general-purpose tool for population genetic inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581288. [PMID: 39185244 PMCID: PMC11343121 DOI: 10.1101/2024.02.20.581288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
As population genetics data increases in size new methods have been developed to store genetic information in efficient ways, such as tree sequences. These data structures are computationally and storage efficient, but are not interchangeable with existing data structures used for many population genetic inference methodologies such as the use of convolutional neural networks (CNNs) applied to population genetic alignments. To better utilize these new data structures we propose and implement a graph convolutional network (GCN) to directly learn from tree sequence topology and node data, allowing for the use of neural network applications without an intermediate step of converting tree sequences to population genetic alignment format. We then compare our approach to standard CNN approaches on a set of previously defined benchmarking tasks including recombination rate estimation, positive selection detection, introgression detection, and demographic model parameter inference. We show that tree sequences can be directly learned from using a GCN approach and can be used to perform well on these common population genetics inference tasks with accuracies roughly matching or even exceeding that of a CNN-based method. As tree sequences become more widely used in population genetics research we foresee developments and optimizations of this work to provide a foundation for population genetics inference moving forward.
Collapse
Affiliation(s)
- Logan S. Whitehouse
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA, 120 Mason Farm Rd, Chapel Hill, NC 27514
| | - Dylan Ray
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA, 120 Mason Farm Rd, Chapel Hill, NC 27514
| | - Daniel R. Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA, 120 Mason Farm Rd, Chapel Hill, NC 27514
| |
Collapse
|
11
|
Kato S, Arakaki S, Nagano AJ, Kikuchi K, Hirase S. Genomic landscape of introgression from the ghost lineage in a gobiid fish uncovers the generality of forces shaping hybrid genomes. Mol Ecol 2024; 33:e17216. [PMID: 38047388 DOI: 10.1111/mec.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Extinct lineages can leave legacies in the genomes of extant lineages through ancient introgressive hybridization. The patterns of genomic survival of these extinct lineages provide insight into the role of extinct lineages in current biodiversity. However, our understanding on the genomic landscape of introgression from extinct lineages remains limited due to challenges associated with locating the traces of unsampled 'ghost' extinct lineages without ancient genomes. Herein, we conducted population genomic analyses on the East China Sea (ECS) lineage of Chaenogobius annularis, which was suspected to have originated from ghost introgression, with the aim of elucidating its genomic origins and characterizing its landscape of introgression. By combining phylogeographic analysis and demographic modelling, we demonstrated that the ECS lineage originated from ancient hybridization with an extinct ghost lineage. Forward simulations based on the estimated demography indicated that the statistic γ of the HyDe analysis can be used to distinguish the differences in local introgression rates in our data. Consistent with introgression between extant organisms, we found reduced introgression from extinct lineage in regions with low recombination rates and with functional importance, thereby suggesting a role of linked selection that has eliminated the extinct lineage in shaping the hybrid genome. Moreover, we identified enrichment of repetitive elements in regions associated with ghost introgression, which was hitherto little known but was also observed in the re-analysis of published data on introgression between extant organisms. Overall, our findings underscore the unexpected similarities in the characteristics of introgression landscapes across different taxa, even in cases of ghost introgression.
Collapse
Affiliation(s)
- Shuya Kato
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| | - Seiji Arakaki
- Amakusa Marine Biological Laboratory, Kyushu University, Amakusa, Kumamoto, Japan
| | - Atsushi J Nagano
- Department of Life Sciences, Faculty of Agriculture, Ryukoku University, Ōtsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| | - Shotaro Hirase
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
12
|
Chen XY, Zhou BF, Shi Y, Liu H, Liang YY, Ingvarsson PK, Wang B. Evolution of the Correlated Genomic Variation Landscape Across a Divergence Continuum in the Genus Castanopsis. Mol Biol Evol 2024; 41:msae191. [PMID: 39248185 PMCID: PMC11421576 DOI: 10.1093/molbev/msae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.
Collapse
Affiliation(s)
- Xue-Yan Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
13
|
Zhang H, Lundberg M, Ponnikas S, Hasselquist D, Hansson B. Male-biased recombination at chromosome ends in a songbird revealed by precisely mapping crossover positions. G3 (BETHESDA, MD.) 2024; 14:jkae150. [PMID: 38985659 PMCID: PMC11373659 DOI: 10.1093/g3journal/jkae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Recombination plays a crucial role in evolution by generating novel haplotypes and disrupting linkage between genes, thereby enhancing the efficiency of selection. Here, we analyze the genomes of 12 great reed warblers (Acrocephalus arundinaceus) in a 3-generation pedigree to identify precise crossover positions along the chromosomes. We located more than 200 crossovers and found that these were highly concentrated toward the telomeric ends of the chromosomes. Apart from this major pattern in the recombination landscape, we found significantly higher frequencies of crossovers in genic compared with intergenic regions, and in exons compared with introns. Moreover, while the number of recombination events was similar between the sexes, the crossovers were located significantly closer to the ends of paternal compared with maternal chromosomes. In conclusion, our study of the great reed warbler revealed substantial variation in crossover frequencies within chromosomes, with a distinct bias toward the sub-telomeric regions, particularly on the paternal side. These findings emphasize the importance of thoroughly screening the entire length of chromosomes to characterize the recombination landscape and uncover potential sex-biases in recombination.
Collapse
Affiliation(s)
- Hongkai Zhang
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Max Lundberg
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Suvi Ponnikas
- Department of Biology, University of Oulu, 90570 Oulu, Finland
| | | | - Bengt Hansson
- Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
14
|
McAuley JB, Servin B, Burnett HA, Brekke C, Peters L, Hagen IJ, Niskanen AK, Ringsby TH, Husby A, Jensen H, Johnston SE. The Genetic Architecture of Recombination Rates is Polygenic and Differs Between the Sexes in Wild House Sparrows (Passer domesticus). Mol Biol Evol 2024; 41:msae179. [PMID: 39183719 PMCID: PMC11385585 DOI: 10.1093/molbev/msae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/01/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Meiotic recombination through chromosomal crossing-over is a fundamental feature of sex and an important driver of genomic diversity. It ensures proper disjunction, allows increased selection responses, and prevents mutation accumulation; however, it is also mutagenic and can break up favorable haplotypes. This cost-benefit dynamic is likely to vary depending on mechanistic and evolutionary contexts, and indeed, recombination rates show huge variation in nature. Identifying the genetic architecture of this variation is key to understanding its causes and consequences. Here, we investigate individual recombination rate variation in wild house sparrows (Passer domesticus). We integrate genomic and pedigree data to identify autosomal crossover counts (ACCs) and intrachromosomal allelic shuffling (r¯intra) in 13,056 gametes transmitted from 2,653 individuals to their offspring. Females had 1.37 times higher ACC, and 1.55 times higher r¯intra than males. ACC and r¯intra were heritable in females and males (ACC h2 = 0.23 and 0.11; r¯intra h2 = 0.12 and 0.14), but cross-sex additive genetic correlations were low (rA = 0.29 and 0.32 for ACC and r¯intra). Conditional bivariate analyses showed that all measures remained heritable after accounting for genetic values in the opposite sex, indicating that sex-specific ACC and r¯intra can evolve somewhat independently. Genome-wide models showed that ACC and r¯intra are polygenic and driven by many small-effect loci, many of which are likely to act in trans as global recombination modifiers. Our findings show that recombination rates of females and males can have different evolutionary potential in wild birds, providing a compelling mechanism for the evolution of sexual dimorphism in recombination.
Collapse
Affiliation(s)
- John B McAuley
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Bertrand Servin
- Génétique Physiologie et Systèmes d'Elevage (GenPhySE), Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - Hamish A Burnett
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Cathrine Brekke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Lucy Peters
- Génétique Physiologie et Systèmes d'Elevage (GenPhySE), Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - Ingerid J Hagen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Norwegian Institute for Nature Research, Trondheim 7034, Norway
| | - Alina K Niskanen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Ecology and Genetics Research Unit, University of Oulu, Oulu 90014, Finland
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala 75236, Sweden
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
15
|
Langdon QK, Groh JS, Aguillon SM, Powell DL, Gunn T, Payne C, Baczenas JJ, Donny A, Dodge TO, Du K, Schartl M, Ríos-Cárdenas O, Gutiérrez-Rodríguez C, Morris M, Schumer M. Swordtail fish hybrids reveal that genome evolution is surprisingly predictable after initial hybridization. PLoS Biol 2024; 22:e3002742. [PMID: 39186811 PMCID: PMC11379403 DOI: 10.1371/journal.pbio.3002742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/06/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Over the past 2 decades, biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common-not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past approximately 40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni × X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Jeffrey S. Groh
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - Stepfanie M. Aguillon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States of America
| | - Daniel L. Powell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Theresa Gunn
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - John J. Baczenas
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Alex Donny
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Tristram O. Dodge
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, United States of America
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, United States of America
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Oscar Ríos-Cárdenas
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | | | - Molly Morris
- Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Freeman Hrabowski Fellow, Howard Hughes Medical Institute, Stanford, California, United States of America
| |
Collapse
|
16
|
North HL, Fu Z, Metz R, Stull MA, Johnson CD, Shirley X, Crumley K, Reisig D, Kerns DL, Gilligan T, Walsh T, Jiggins CD, Sword GA. Rapid Adaptation and Interspecific Introgression in the North American Crop Pest Helicoverpa zea. Mol Biol Evol 2024; 41:msae129. [PMID: 38941083 PMCID: PMC11259193 DOI: 10.1093/molbev/msae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Zhen Fu
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Richard Metz
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Matt A Stull
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Xanthe Shirley
- Animal and Plant Health Inspection Service, United States Department of Agriculture, College Station, TX, USA
| | - Kate Crumley
- Agrilife Extension, Texas A&M University, Wharton, TX, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Plymouth, NC, 27962, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Todd Gilligan
- Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Tom Walsh
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
17
|
Johnston SE. Understanding the Genetic Basis of Variation in Meiotic Recombination: Past, Present, and Future. Mol Biol Evol 2024; 41:msae112. [PMID: 38959451 PMCID: PMC11221659 DOI: 10.1093/molbev/msae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Meiotic recombination is a fundamental feature of sexually reproducing species. It is often required for proper chromosome segregation and plays important role in adaptation and the maintenance of genetic diversity. The molecular mechanisms of recombination are remarkably conserved across eukaryotes, yet meiotic genes and proteins show substantial variation in their sequence and function, even between closely related species. Furthermore, the rate and distribution of recombination shows a huge diversity within and between chromosomes, individuals, sexes, populations, and species. This variation has implications for many molecular and evolutionary processes, yet how and why this diversity has evolved is not well understood. A key step in understanding trait evolution is to determine its genetic basis-that is, the number, effect sizes, and distribution of loci underpinning variation. In this perspective, I discuss past and current knowledge on the genetic basis of variation in recombination rate and distribution, explore its evolutionary implications, and present open questions for future research.
Collapse
Affiliation(s)
- Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
18
|
Venu V, Harjunmaa E, Dreau A, Brady S, Absher D, Kingsley DM, Jones FC. Fine-scale contemporary recombination variation and its fitness consequences in adaptively diverging stickleback fish. Nat Ecol Evol 2024; 8:1337-1352. [PMID: 38839849 PMCID: PMC11239493 DOI: 10.1038/s41559-024-02434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Despite deep evolutionary conservation, recombination rates vary greatly across the genome and among individuals, sexes and populations. Yet the impact of this variation on adaptively diverging populations is not well understood. Here we characterized fine-scale recombination landscapes in an adaptively divergent pair of marine and freshwater populations of threespine stickleback from River Tyne, Scotland. Through whole-genome sequencing of large nuclear families, we identified the genomic locations of almost 50,000 crossovers and built recombination maps for marine, freshwater and hybrid individuals at a resolution of 3.8 kb. We used these maps to quantify the factors driving variation in recombination rates. We found strong heterochiasmy between sexes but also differences in recombination rates among ecotypes. Hybrids showed evidence of significant recombination suppression in overall map length and in individual loci. Recombination rates were lower not only within individual marine-freshwater-adaptive loci, but also between loci on the same chromosome, suggesting selection on linked gene 'cassettes'. Through temporal sampling along a natural hybrid zone, we found that recombinants showed traits associated with reduced fitness. Our results support predictions that divergence in cis-acting recombination modifiers, whose functions are disrupted in hybrids, may play an important role in maintaining differences among adaptively diverging populations.
Collapse
Affiliation(s)
- Vrinda Venu
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- Los Alamos National Laboratory, New Mexico, NM, USA.
| | - Enni Harjunmaa
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- CeGAT GmbH, Tübingen, Germany
| | - Andreea Dreau
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Evotec SE 'Campus Curie', Toulouse, France
| | - Shannon Brady
- Deptartment of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - David M Kingsley
- Deptartment of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
19
|
She H, Liu Z, Xu Z, Zhang H, Wu J, Wang X, Cheng F, Charlesworth D, Qian W. Insights into spinach domestication from genome sequences of two wild spinach progenitors, Spinacia turkestanica and Spinacia tetrandra. THE NEW PHYTOLOGIST 2024; 243:477-494. [PMID: 38715078 DOI: 10.1111/nph.19799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Cultivated spinach (Spinacia oleracea) is a dioecious species. We report high-quality genome sequences for its two closest wild relatives, Spinacia turkestanica and Spinacia tetrandra, which are also dioecious, and are used to study the genetics of spinach domestication. Using a combination of genomic approaches, we assembled genomes of both these species and analyzed them in comparison with the previously assembled S. oleracea genome. These species diverged c. 6.3 million years ago (Ma), while cultivated spinach split from S. turkestanica 0.8 Ma. In all three species, all six chromosomes include very large gene-poor, repeat-rich regions, which, in S. oleracea, are pericentromeric regions with very low recombination rates in both male and female genetic maps. We describe population genomic evidence that the similar regions in the wild species also recombine rarely. We characterized 282 structural variants (SVs) that have been selected during domestication. These regions include genes associated with leaf margin type and flowering time. We also describe evidence that the downy mildew resistance loci of cultivated spinach are derived from introgression from both wild spinach species. Collectively, this study reveals the genome architecture of spinach assemblies and highlights the importance of SVs during the domestication of cultivated spinach.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
20
|
Joseph J, Prentout D, Laverré A, Tricou T, Duret L. High prevalence of PRDM9-independent recombination hotspots in placental mammals. Proc Natl Acad Sci U S A 2024; 121:e2401973121. [PMID: 38809707 PMCID: PMC11161765 DOI: 10.1073/pnas.2401973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.
Collapse
Affiliation(s)
- Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexandre Laverré
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
- Swiss Institute of Bioinformatics, LausanneCH-1015, Switzerland
| | - Théo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| |
Collapse
|
21
|
Marín-García C, Álvarez-González L, Marín-Gual L, Casillas S, Picón J, Yam K, Garcias-Ramis MM, Vara C, Ventura J, Ruiz-Herrera A. Multiple Genomic Landscapes of Recombination and Genomic Divergence in Wild Populations of House Mice-The Role of Chromosomal Fusions and Prdm9. Mol Biol Evol 2024; 41:msae063. [PMID: 38513632 PMCID: PMC10991077 DOI: 10.1093/molbev/msae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Chromosomal fusions represent one of the most common types of chromosomal rearrangements found in nature. Yet, their role in shaping the genomic landscape of recombination and hence genome evolution remains largely unexplored. Here, we take advantage of wild mice populations with chromosomal fusions to evaluate the effect of this type of structural variant on genomic landscapes of recombination and divergence. To this aim, we combined cytological analysis of meiotic crossovers in primary spermatocytes with inferred analysis of recombination rates based on linkage disequilibrium using single nucleotide polymorphisms. Our results suggest the presence of a combined effect of Robertsonian fusions and Prdm9 allelic background, a gene involved in the formation of meiotic double strand breaks and postzygotic reproductive isolation, in reshaping genomic landscapes of recombination. We detected a chromosomal redistribution of meiotic recombination toward telomeric regions in metacentric chromosomes in mice with Robertsonian fusions when compared to nonfused mice. This repatterning was accompanied by increased levels of crossover interference and reduced levels of estimated recombination rates between populations, together with high levels of genomic divergence. Interestingly, we detected that Prdm9 allelic background was a major determinant of recombination rates at the population level, whereas Robertsonian fusions showed limited effects, restricted to centromeric regions of fused chromosomes. Altogether, our results provide new insights into the effect of Robertsonian fusions and Prdm9 background on meiotic recombination.
Collapse
Affiliation(s)
- Cristina Marín-García
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Sònia Casillas
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Judith Picón
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Keren Yam
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - María Magdalena Garcias-Ramis
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Covadonga Vara
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Small Mammals Research Unit, Granollers Museum of Natural Sciences, Granollers 08402, Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
22
|
Lyulina AS, Liu Z, Good BH. Linkage equilibrium between rare mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587282. [PMID: 38617331 PMCID: PMC11014483 DOI: 10.1101/2024.03.28.587282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Recombination breaks down genetic linkage by reshuffling existing variants onto new genetic backgrounds. These dynamics are traditionally quantified by examining the correlations between alleles, and how they decay as a function of the recombination rate. However, the magnitudes of these correlations are strongly influenced by other evolutionary forces like natural selection and genetic drift, making it difficult to tease out the effects of recombination. Here we introduce a theoretical framework for analyzing an alternative family of statistics that measure the homoplasy produced by recombination. We derive analytical expressions that predict how these statistics depend on the rates of recombination and recurrent mutation, the strength of negative selection and genetic drift, and the present-day frequencies of the mutant alleles. We find that the degree of homoplasy can strongly depend on this frequency scale, which reflects the underlying timescales over which these mutations occurred. We show how these scaling properties can be used to isolate the effects of recombination, and discuss their implications for the rates of horizontal gene transfer in bacteria.
Collapse
Affiliation(s)
- Anastasia S Lyulina
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Zhiru Liu
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Benjamin H Good
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
23
|
Groh JS, Coop G. The temporal and genomic scale of selection following hybridization. Proc Natl Acad Sci U S A 2024; 121:e2309168121. [PMID: 38489387 PMCID: PMC10962946 DOI: 10.1073/pnas.2309168121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the evolutionary dynamics within hybrid populations that underlie these patterns have been lacking. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of ancestry variation at varying spatial genomic scales through time. Here, we develop methods based on the Discrete Wavelet Transform to study the genomic scale of local ancestry variation and its association with recombination rates and show that these methods capture temporal dynamics of drift and genome-wide selection after hybridization. We apply these methods to published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio) and to inferred Neanderthal introgression in modern humans. Across systems, upward of 20% of variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. Signatures of selection at fine genomic scales suggest selection over longer time scales; however, we suggest that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from contiguous segments of genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available and can help shed light on generalities of the genomic consequences of interspecific hybridization.
Collapse
Affiliation(s)
- Jeffrey S. Groh
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA95616
| | - Graham Coop
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA95616
| |
Collapse
|
24
|
Carpinteyro-Ponce J, Machado CA. The Complex Landscape of Structural Divergence Between the Drosophila pseudoobscura and D. persimilis Genomes. Genome Biol Evol 2024; 16:evae047. [PMID: 38482945 PMCID: PMC10980976 DOI: 10.1093/gbe/evae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Structural genomic variants are key drivers of phenotypic evolution. They can span hundreds to millions of base pairs and can thus affect large numbers of genetic elements. Although structural variation is quite common within and between species, its characterization depends upon the quality of genome assemblies and the proportion of repetitive elements. Using new high-quality genome assemblies, we report a complex and previously hidden landscape of structural divergence between the genomes of Drosophila persimilis and D. pseudoobscura, two classic species in speciation research, and study the relationships among structural variants, transposable elements, and gene expression divergence. The new assemblies confirm the already known fixed inversion differences between these species. Consistent with previous studies showing higher levels of nucleotide divergence between fixed inversions relative to collinear regions of the genome, we also find a significant overrepresentation of INDELs inside the inversions. We find that transposable elements accumulate in regions with low levels of recombination, and spatial correlation analyses reveal a strong association between transposable elements and structural variants. We also report a strong association between differentially expressed (DE) genes and structural variants and an overrepresentation of DE genes inside the fixed chromosomal inversions that separate this species pair. Interestingly, species-specific structural variants are overrepresented in DE genes involved in neural development, spermatogenesis, and oocyte-to-embryo transition. Overall, our results highlight the association of transposable elements with structural variants and their importance in driving evolutionary divergence.
Collapse
Affiliation(s)
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
25
|
Herman RW, Clucas G, Younger J, Bates J, Robinson B, Reddy S, Stepanuk J, O'Brien K, Veeramah K, Lynch HJ. Whole genome sequencing reveals stepping-stone dispersal buffered against founder effects in a range expanding seabird. Mol Ecol 2024; 33:e17282. [PMID: 38299701 DOI: 10.1111/mec.17282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Many species are shifting their ranges in response to climate-driven environmental changes, particularly in high-latitude regions. However, the patterns of dispersal and colonization during range shifting events are not always clear. Understanding how populations are connected through space and time can reveal how species navigate a changing environment. Here, we present a fine-scale population genomics study of gentoo penguins (Pygoscelis papua), a presumed site-faithful colonial nesting species that has increased in population size and expanded its range south along the Western Antarctic Peninsula. Using whole genome sequencing, we analysed 129 gentoo penguin individuals across 12 colonies located at or near the southern range edge. Through a detailed examination of fine-scale population structure, admixture, and population divergence, we inferred that gentoo penguins historically dispersed rapidly in a stepping-stone pattern from the South Shetland Islands leading to the colonization of Anvers Island, and then the adjacent mainland Western Antarctica Peninsula. Recent southward expansion along the Western Antarctic Peninsula also followed a stepping-stone dispersal pattern coupled with limited post-divergence gene flow from colonies on Anvers Island. Genetic diversity appeared to be maintained across colonies during the historical dispersal process, and range-edge populations are still growing. This suggests large numbers of migrants may provide a buffer against founder effects at the beginning of colonization events to maintain genetic diversity similar to that of the source populations before migration ceases post-divergence. These results coupled with a continued increase in effective population size since approximately 500-800 years ago distinguish gentoo penguins as a robust species that is highly adaptable and resilient to changing climate.
Collapse
Affiliation(s)
- Rachael W Herman
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Gemma Clucas
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Jane Younger
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - John Bates
- Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, Illinois, USA
| | - Bryce Robinson
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Sushma Reddy
- Bell Museum of Natural History and Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Julia Stepanuk
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Katie O'Brien
- Milner Centre for Evolution, University of Bath, Bath, UK
| | - Krishna Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Heather J Lynch
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
26
|
Hoge C, de Manuel M, Mahgoub M, Okami N, Fuller Z, Banerjee S, Baker Z, McNulty M, Andolfatto P, Macfarlan TS, Schumer M, Tzika AC, Przeworski M. Patterns of recombination in snakes reveal a tug-of-war between PRDM9 and promoter-like features. Science 2024; 383:eadj7026. [PMID: 38386752 DOI: 10.1126/science.adj7026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
In some mammals, notably humans, recombination occurs almost exclusively where the protein PRDM9 binds, whereas in vertebrates lacking an intact PRDM9, such as birds and canids, recombination rates are elevated near promoter-like features. To determine whether PRDM9 directs recombination in nonmammalian vertebrates, we focused on an exemplar species with a single, intact PRDM9 ortholog, the corn snake (Pantherophis guttatus). Analyzing historical recombination rates along the genome and crossovers in pedigrees, we found evidence that PRDM9 specifies the location of recombination events, but we also detected a separable effect of promoter-like features. These findings reveal that the uses of PRDM9 and promoter-like features need not be mutually exclusive and instead reflect a tug-of-war that is more even in some species than others.
Collapse
Affiliation(s)
- Carla Hoge
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marc de Manuel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Mohamed Mahgoub
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Naima Okami
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Zachary Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Shreya Banerjee
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Zachary Baker
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Morgan McNulty
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Chase MA, Vilcot M, Mugal CF. The role of recombination dynamics in shaping signatures of direct and indirect selection across the Ficedula flycatcher genome †. Proc Biol Sci 2024; 291:20232382. [PMID: 38228173 DOI: 10.1098/rspb.2023.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Recombination is a central evolutionary process that reshuffles combinations of alleles along chromosomes, and consequently is expected to influence the efficacy of direct selection via Hill-Robertson interference. Additionally, the indirect effects of selection on neutral genetic diversity are expected to show a negative relationship with recombination rate, as background selection and genetic hitchhiking are stronger when recombination rate is low. However, owing to the limited availability of recombination rate estimates across divergent species, the impact of evolutionary changes in recombination rate on genomic signatures of selection remains largely unexplored. To address this question, we estimate recombination rate in two Ficedula flycatcher species, the taiga flycatcher (Ficedula albicilla) and collared flycatcher (Ficedula albicollis). We show that recombination rate is strongly correlated with signatures of indirect selection, and that evolutionary changes in recombination rate between species have observable impacts on this relationship. Conversely, signatures of direct selection on coding sequences show little to no relationship with recombination rate, even when restricted to genes where recombination rate is conserved between species. Thus, using measures of indirect and direct selection that bridge micro- and macro-evolutionary timescales, we demonstrate that the role of recombination rate and its dynamics varies for different signatures of selection.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Maurine Vilcot
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- CEFE, University of Montpellier, CNRS, EPHE, IRD, 34293 Montpellier 5, France
| | - Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology, University of Lyon 1, CNRS UMR 5558, 69622 Villeurbanne cedex, France
| |
Collapse
|
28
|
Freudiger A, Jovanovic VM, Huang Y, Snyder-Mackler N, Conrad DF, Miller B, Montague MJ, Westphal H, Stadler PF, Bley S, Horvath JE, Brent LJN, Platt ML, Ruiz-Lambides A, Tung J, Nowick K, Ringbauer H, Widdig A. Taking identity-by-descent analysis into the wild: Estimating realized relatedness in free-ranging macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574911. [PMID: 38260273 PMCID: PMC10802400 DOI: 10.1101/2024.01.09.574911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of DNA segments that are identical-by-descent (IBD) yield the most precise estimates of relatedness. Here, we leverage novel methods for estimating locus-specific IBD from low coverage whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4-6× coverage data from a rhesus macaque (Macaca mulatta) population with available long-term pedigree data, we show that we can call the number and length of IBD segments across the genome with high accuracy even at 0.5× coverage. The resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. They identify cryptic genetic relatives that are not represented in the pedigree and reveal elevated recombination rates in females relative to males, which allows us to discriminate maternal and paternal kin using genotype data alone. Our findings represent a breakthrough in the ability to understand the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.
Collapse
Affiliation(s)
- Annika Freudiger
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vladimir M Jovanovic
- Human Biology and Primate Evolution, Institut für Zoologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Noah Snyder-Mackler
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Portland, Oregon, USA
| | - Brian Miller
- Division of Genetics, Oregon National Primate Research Center, Portland, Oregon, USA
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hendrikje Westphal
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
- Santa Fe Institute, Santa Fe, NM, USA
| | - Stefanie Bley
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julie E Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina, Durham, USA
- Research and Collections Section, North Carolina Museum of Natural Sciences, North Carolina, Raleigh, USA
- Department of Biological Sciences, North Carolina State University, North Carolina, Raleigh, USA
- Department of Evolutionary Anthropology, Duke University, North Carolina, Durham, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Michael L Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, the Wharton School of Business, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Ruiz-Lambides
- Cayo Santiago Field Station, Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, Duke University, North Carolina, Durham, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Duke University Population Research Institute, Durham, North Carolina, USA
| | - Katja Nowick
- Human Biology and Primate Evolution, Institut für Zoologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anja Widdig
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| |
Collapse
|
29
|
Ferguson S, Jones A, Murray K, Andrew RL, Schwessinger B, Bothwell H, Borevitz J. Exploring the role of polymorphic interspecies structural variants in reproductive isolation and adaptive divergence in Eucalyptus. Gigascience 2024; 13:giae029. [PMID: 38869149 PMCID: PMC11170218 DOI: 10.1093/gigascience/giae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the prevalence and impact of different categories of SVs. We conducted a comparative analysis of long-read assembled reference genomes of closely related Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon, along with recent high-quality genome assemblies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon, respectively. Focusing on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural divergences, 2,623 structural polymorphisms, and 928 shared structural polymorphisms. We assessed the functional significance of fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, revealing a complex history of natural selection. Shared structural polymorphisms displayed enrichment of potentially adaptive genes. Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between populations.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076 Germany
| | - Rose L Andrew
- Botany & N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Helen Bothwell
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens 30602 GA, United States
| | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| |
Collapse
|
30
|
Langdon QK, Groh JS, Aguillon SM, Powell DL, Gunn T, Payne C, Baczenas JJ, Donny A, Dodge TO, Du K, Schartl M, Ríos-Cárdenas O, Gutierrez-Rodríguez C, Morris M, Schumer M. Genome evolution is surprisingly predictable after initial hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572897. [PMID: 38187753 PMCID: PMC10769416 DOI: 10.1101/2023.12.21.572897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Over the past two decades, evolutionary biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common - not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past ~40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni×X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California
| | - Jeffrey S. Groh
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis
| | - Stepfanie M. Aguillon
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Daniel L. Powell
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Theresa Gunn
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Cheyenne Payne
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | | | - Alex Donny
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Tristram O. Dodge
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University San Marcos
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University San Marcos
- Developmental Biochemistry, Biocenter, University of Würzburg
| | | | | | | | - Molly Schumer
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Freeman Hrabowski Fellow, Howard Hughes Medical Institute
| |
Collapse
|
31
|
Zhao Y, Su C, He B, Nie R, Wang Y, Ma J, Song J, Yang Q, Hao J. Dispersal from the Qinghai-Tibet plateau by a high-altitude butterfly is associated with rapid expansion and reorganization of its genome. Nat Commun 2023; 14:8190. [PMID: 38081828 PMCID: PMC10713551 DOI: 10.1038/s41467-023-44023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Parnassius glacialis is a typical "Out of the QTP" alpine butterfly that originated on the Qinghai-Tibet Plateau (QTP) and dispersed into relatively low-altitude mountainous. Here we assemble a chromosome-level genome of P. glacialis and resequence 9 populations in order to explore the genome evolution and local adaptation of this species. These results indicated that the rapid accumulation and slow unequal recombination of transposable elements (TEs) contributed to the formation of its large genome. Several ribosomal gene families showed extensive expansion and selective evolution through transposon-mediated processed pseudogenes. Additionally, massive structural variations (SVs) of TEs affected the genetic differentiation of low-altitude populations. These low-altitude populations might have experienced a genetic bottleneck in the past and harbor genes with selective signatures which may be responsible for the potential adaptation to low-altitude environments. These results provide a foundation for understanding genome evolution and local adaptation for "Out of the QTP" of P. glacialis.
Collapse
Affiliation(s)
- Youjie Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Ruie Nie
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yunliang Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Junye Ma
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingyu Song
- College of Animal Science, Shandong Agricultural University, Taian, 271000, China
| | - Qun Yang
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Nanjing College, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
32
|
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. How chromosomal inversions reorient the evolutionary process. J Evol Biol 2023; 36:1761-1782. [PMID: 37942504 DOI: 10.1111/jeb.14242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
Collapse
Affiliation(s)
- Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas H Barton
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Roger Butlin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Bioscience, The University of Sheffield, Sheffield, UK
| | - Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rui Faria
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Inês Fragata
- CHANGE - Global Change and Sustainability Institute/Animal Biology Department, cE3c - Center for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Claire Mérot
- UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, Rennes, France
| | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Stephen W Schaeffer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerstin Johannesson
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
33
|
Hayman E, Ignatieva A, Hein J. Recoverability of ancestral recombination graph topologies. Theor Popul Biol 2023; 154:27-39. [PMID: 37544486 DOI: 10.1016/j.tpb.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Recombination is a powerful evolutionary process that shapes the genetic diversity observed in the populations of many species. Reconstructing genealogies in the presence of recombination from sequencing data is a very challenging problem, as this relies on mutations having occurred on the correct lineages in order to detect the recombination and resolve the ordering of coalescence events in the local trees. We investigate the probability of reconstructing the true topology of ancestral recombination graphs (ARGs) under the coalescent with recombination and gene conversion. We explore how sample size and mutation rate affect the inherent uncertainty in reconstructed ARGs, which sheds light on the theoretical limitations of ARG reconstruction methods. We illustrate our results using estimates of evolutionary rates for several organisms; in particular, we find that for parameter values that are realistic for SARS-CoV-2, the probability of reconstructing genealogies that are close to the truth is low.
Collapse
Affiliation(s)
- Elizabeth Hayman
- Department of Mathematics, University of Oxford, Andrew Wiles Building, Oxford OX2 6GG, UK.
| | - Anastasia Ignatieva
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK; Department of Statistics, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, UK
| | - Jotun Hein
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, UK; The Alan Turing Institute, British Library, London NW1 2DB, UK
| |
Collapse
|
34
|
Strobl F, Ratke J, Krämer F, Utta A, Becker S, Stelzer EHK. Next generation marker-based vector concepts for rapid and unambiguous identification of single and double homozygous transgenic organisms. Biol Open 2023; 12:bio060015. [PMID: 37855381 PMCID: PMC10602009 DOI: 10.1242/bio.060015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 10/20/2023] Open
Abstract
For diploid model organisms, the actual transgenesis processes require subsequent periods of transgene management, which are challenging in emerging model organisms due to the lack of suitable methodology. We used the red flour beetle Tribolium castaneum, a stored-grain pest, to perform a comprehensive functional evaluation of our AClashOfStrings (ACOS) and the combined AGameOfClones/AClashOfStrings (AGOC/ACOS) vector concepts, which use four clearly distinguishable markers to provide full visual control over up to two independent transgenes. We achieved comprehensive statistical validation of our approach by systematically creating seventeen novel single and double homozygous sublines intended for fluorescence live imaging, including several sublines in which the microtubule cytoskeleton is labeled. During the mating procedures, we genotyped more than 20,000 individuals in less than 80 working hours, which corresponds to about 10 to 15 s per individual. We also confirm the functionality of our combined concept in two double transgene special cases, i.e. integration of both transgenes in close proximity on the same chromosome and integration of one transgene on the X allosome. Finally, we discuss our vector concepts regarding performance, genotyping accuracy, throughput, resource saving potential, fluorescent protein choice, modularity, adaptation to other diploid model organisms and expansion capability.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Julia Ratke
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Franziska Krämer
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Ana Utta
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Sigrun Becker
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Ernst H. K. Stelzer
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
35
|
Ki C, Terhorst J. Exact Decoding of a Sequentially Markov Coalescent Model in Genetics. J Am Stat Assoc 2023; 119:2242-2255. [PMID: 39323740 PMCID: PMC11421421 DOI: 10.1080/01621459.2023.2252570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/27/2024]
Abstract
In statistical genetics, the sequentially Markov coalescent (SMC) is an important family of models for approximating the distribution of genetic variation data under complex evolutionary models. Methods based on SMC are widely used in genetics and evolutionary biology, with significant applications to genotype phasing and imputation, recombination rate estimation, and inferring population history. SMC allows for likelihood-based inference using hidden Markov models (HMMs), where the latent variable represents a genealogy. Because genealogies are continuous, while HMMs are discrete, SMC requires discretizing the space of trees in a way that is awkward and creates bias. In this work, we propose a method that circumvents this requirement, enabling SMC-based inference to be performed in the natural setting of a continuous state space. We derive fast, exact procedures for frequentist and Bayesian inference using SMC. Compared to existing methods, ours requires minimal user intervention or parameter tuning, no numerical optimization or E-M, and is faster and more accurate.
Collapse
Affiliation(s)
- Caleb Ki
- Department of Statistics, University of Michigan
| | | |
Collapse
|
36
|
Yan W, Wang Z, Zhou B. Population evolution of seagrasses returning to the ocean. Heliyon 2023; 9:e20231. [PMID: 37809433 PMCID: PMC10559988 DOI: 10.1016/j.heliyon.2023.e20231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/05/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Seagrasses are higher flowering plants that live entirely in marine environments, with the greatest habitat variation occurring from land to sea. Genetic structure or population differentiation history is a hot topic in evolutionary biology, which is of great significance for understanding speciation. Genetic information is obtained from geographically distributed subpopulations, different subspecies, or strains of the same species using next-generation sequencing techniques. Genetic variation is identified by comparison with reference genomes. Genetic diversity is explored using population structure, principal component analysis (PCA), and phylogenetic relationships. Patterns of population genetic differentiation are elucidated by combining the isolation by distance (IBD) model, linkage disequilibrium levels, and genetic statistical analysis. Demographic history is simulated using effective population size, divergence time, and site frequency spectrum (SFS). Through various population genetic analyses, the genetic structure and historical population dynamics of seagrass can be clarified, and their evolutionary processes can be further explored at the molecular level to understand how evolutionary processes contributed to the formation of early ecological species and provide data support for seagrass conservation.
Collapse
Affiliation(s)
- Wenjie Yan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Zhaohua Wang
- First Institute of Oceanography, MNR, Qingdao, 266061, China
| | - Bin Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
37
|
Blanc C, Saclier N, Le Faou E, Marie-Orleach L, Wenger E, Diblasi C, Glemin S, Galtier N, Delattre M. Cosegregation of recombinant chromatids maintains genome-wide heterozygosity in an asexual nematode. SCIENCE ADVANCES 2023; 9:eadi2804. [PMID: 37624896 PMCID: PMC10456839 DOI: 10.1126/sciadv.adi2804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
In asexual animals, female meiosis is modified to produce diploid oocytes. If meiosis still involves recombination, this is expected to lead to a rapid loss of heterozygosity, with adverse effects on fitness. Many asexuals, however, have a heterozygous genome, the underlying mechanisms being most often unknown. Cytological and population genomic analyses in the nematode Mesorhabditis belari revealed another case of recombining asexual being highly heterozygous genome-wide. We demonstrated that heterozygosity is maintained despite recombination because the recombinant chromatids of each chromosome pair cosegregate during the unique meiotic division. A theoretical model confirmed that this segregation bias is necessary to account for the observed pattern and likely to evolve under a wide range of conditions. Our study uncovers an unexpected type of non-Mendelian genetic inheritance involving cosegregation of recombinant chromatids.
Collapse
Affiliation(s)
- Caroline Blanc
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Nathanaelle Saclier
- Institut des Sciences de l'Evolution, Université Montpellier, Institut de Recherche pour le Développement, 34090 Montpellier, France
| | - Ehouarn Le Faou
- University of Rennes, CNRS, ECOBIO (Ecologie, Biodiversité, Evolution)–UMR 6553, F-35000 Rennes, France
| | - Lucas Marie-Orleach
- University of Rennes, CNRS, ECOBIO (Ecologie, Biodiversité, Evolution)–UMR 6553, F-35000 Rennes, France
| | - Eva Wenger
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Celian Diblasi
- Institut des Sciences de l'Evolution, Université Montpellier, Institut de Recherche pour le Développement, 34090 Montpellier, France
| | - Sylvain Glemin
- University of Rennes, CNRS, ECOBIO (Ecologie, Biodiversité, Evolution)–UMR 6553, F-35000 Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, Université Montpellier, Institut de Recherche pour le Développement, 34090 Montpellier, France
| | - Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
38
|
Sephton-Clark P, Nguyen T, Hoa NT, Ashton P, van Doorn HR, Ly VT, Le T, Cuomo CA. Impact of pathogen genetics on clinical phenotypes in a population of Talaromyces marneffei from Vietnam. Genetics 2023; 224:iyad100. [PMID: 37226893 PMCID: PMC10411598 DOI: 10.1093/genetics/iyad100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Talaromycosis, a severe and invasive fungal infection caused by Talaromyces marneffei, is difficult to treat and impacts those living in endemic regions of Southeast Asia, India, and China. While 30% of infections result in mortality, our understanding of the genetic basis of pathogenesis for this fungus is limited. To address this, we apply population genomics and genome-wide association study approaches to a cohort of 336 T. marneffei isolates collected from patients who enrolled in the Itraconazole vs Amphotericin B for Talaromycosis trial in Vietnam. We find that isolates from northern and southern Vietnam form two distinct geographical clades, with isolates from southern Vietnam associated with increased disease severity. Leveraging longitudinal isolates, we identify multiple instances of disease relapse linked to unrelated strains, highlighting the potential for multistrain infections. In more frequent cases of persistent talaromycosis caused by the same strain, we identify variants arising over the course of patient infections that impact genes predicted to function in the regulation of gene expression and secondary metabolite production. By combining genetic variant data with patient metadata for all 336 isolates, we identify pathogen variants significantly associated with multiple clinical phenotypes. In addition, we identify genes and genomic regions under selection across both clades, highlighting loci undergoing rapid evolution, potentially in response to external pressures. With this combination of approaches, we identify links between pathogen genetics and patient outcomes and identify genomic regions that are altered during T. marneffei infection, providing an initial view of how pathogen genetics affects disease outcomes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thu Nguyen
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Oxford University, Ho Chi Minh City 749000, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Microbiology department and Biological Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Philip Ashton
- Veterinary and Ecological Sciences, Institute of Infection, University of Liverpool, Liverpool CH647TE, UK
| | - H Rogier van Doorn
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Oxford University Clinical Research Unit, Oxford University, Hanoi 113000, Vietnam
| | - Vo Trieu Ly
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Department of Medicine and Pharmacy, Hospital for Tropical Diseases, Ho Chi Minh City 749000, Vietnam
| | - Thuy Le
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA
- Tropical Medicine Research Center for Talaromycosis, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
39
|
Wang Y, Obbard DJ. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol Lett 2023; 7:216-226. [PMID: 37475753 PMCID: PMC10355183 DOI: 10.1093/evlett/qrad027] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Mutation is the ultimate source of all genetic variation, and over the last 10 years the ready availability of whole-genome sequencing has permitted direct estimation of mutation rate for many non-model species across the tree of life. In this meta-analysis, we make a comprehensive search of the literature for mutation rate estimates in eukaryotes, identifying 140 mutation accumulation (MA) and parent-offspring (PO) sequencing studies covering 134 species. Based on these data, we revisit differences in the single-nucleotide mutation (SNM) rate between different phylogenetic lineages and update the known relationships between mutation rate and generation time, genome size, and nucleotide diversity-while accounting for phylogenetic nonindependence. We do not find a significant difference between MA and PO in estimated mutation rates, but we confirm that mammal and plant lineages have higher mutation rates than arthropods and that unicellular eukaryotes have the lowest mutation rates. We find that mutation rates are higher in species with longer generation times and larger genome sizes, even when accounting for phylogenetic relationships. Moreover, although nucleotide diversity is positively correlated with mutation rate, the gradient of the relationship is significantly less than one (on a logarithmic scale), consistent with higher mutation rates in populations with smaller effective size. For the 29 species for which data are available, we find that indel mutation rates are positively correlated with nucleotide mutation rates and that short deletions are generally more common than short insertions. Nevertheless, despite recent progress, no estimates of either SNM or indel mutation rates are available for the majority of deeply branching eukaryotic lineages-or even for most animal phyla. Even among charismatic megafauna, experimental mutation rate estimates remain unknown for amphibia and scarce for reptiles and fish.
Collapse
Affiliation(s)
- Yiguan Wang
- Corresponding author: Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
40
|
Hoge C, de Manuel M, Mahgoub M, Okami N, Fuller Z, Banerjee S, Baker Z, McNulty M, Andolfatto P, Macfarlan TS, Schumer M, Tzika AC, Przeworski M. Patterns of recombination in snakes reveal a tug of war between PRDM9 and promoter-like features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548536. [PMID: 37502971 PMCID: PMC10369914 DOI: 10.1101/2023.07.11.548536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In vertebrates, there are two known mechanisms by which meiotic recombination is directed to the genome: in humans, mice, and other mammals, recombination occurs almost exclusively where the protein PRDM9 binds, while in species lacking an intact PRDM9, such as birds and canids, recombination rates are elevated near promoter-like features. To test if PRDM9 also directs recombination in non-mammalian vertebrates, we focused on an exemplar species, the corn snake (Pantherophis guttatus). Unlike birds, this species possesses a single, intact PRDM9 ortholog. By inferring historical recombination rates along the genome from patterns of linkage disequilibrium and identifying crossovers in pedigrees, we found that PRDM9 specifies the location of recombination events outside of mammals. However, we also detected an independent effect of promoter-like features on recombination, which is more pronounced on macro- than microchromosomes. Thus, our findings reveal that the uses of PRDM9 and promoter-like features are not mutually-exclusive, and instead reflect a tug of war, which varies in strength along the genome and is more lopsided in some species than others.
Collapse
Affiliation(s)
- Carla Hoge
- Dept. of Biological Sciences, Columbia University
| | | | - Mohamed Mahgoub
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Naima Okami
- Dept. of Biological Sciences, Columbia University
| | | | | | | | | | | | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Molly Schumer
- Dept. of Biology, Stanford University
- Howard Hughes Medical Institute, Stanford, CA
| | - Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva
| | - Molly Przeworski
- Dept. of Biological Sciences, Columbia University
- Howard Hughes Medical Institute, Stanford, CA
| |
Collapse
|
41
|
Naseri A, Yue W, Zhang S, Zhi D. Fast inference of genetic recombination rates in biobank scale data. Genome Res 2023; 33:1015-1022. [PMID: 37349109 PMCID: PMC10538484 DOI: 10.1101/gr.277676.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Although rates of recombination events across the genome (genetic maps) are fundamental to genetic research, the majority of current studies only use one standard map. There is evidence suggesting population differences in genetic maps, and thus estimating population-specific maps, are of interest. Although the recent availability of biobank-scale data offers such opportunities, current methods are not efficient at leveraging very large sample sizes. The most accurate methods are still linkage disequilibrium (LD)-based methods that are only tractable for a few hundred samples. In this work, we propose a fast and memory-efficient method for estimating genetic maps from population genotyping data. Our method, FastRecomb, leverages the efficient positional Burrows-Wheeler transform (PBWT) data structure for counting IBD segment boundaries as potential recombination events. We used PBWT blocks to avoid redundant counting of pairwise matches. Moreover, we used a panel-smoothing technique to reduce the noise from errors and recent mutations. Using simulation, we found that FastRecomb achieves state-of-the-art performance at 10-kb resolution, in terms of correlation coefficients between the estimated map and the ground truth. This is mainly because FastRecomb can effectively take advantage of large panels comprising more than hundreds of thousands of haplotypes. At the same time, other methods lack the efficiency to handle such data. We believe further refinement of FastRecomb would deliver more accurate genetic maps for the genetics community.
Collapse
Affiliation(s)
- Ardalan Naseri
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - William Yue
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, Florida 32816, USA
| | - Degui Zhi
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas 77030, USA;
| |
Collapse
|
42
|
Groh J, Coop G. The temporal and genomic scale of selection following hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542345. [PMID: 37337589 PMCID: PMC10276902 DOI: 10.1101/2023.05.25.542345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the dynamics underlying these patterns within hybrid populations have been lacking. Here, we develop methods based on the Wavelet Transform to understand the spatial genomic scale of local ancestry variation and its association with recombination rates. We present theory and use simulations to show how wavelet-based decompositions of ancestry variance along the genome and the correlation between ancestry and recombination reflect the joint effects of recombination, genetic drift, and genome-wide selection against introgressed alleles. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of local ancestry variation at varying spatial genomic scales through time. Using wavelet approaches to identify the genomic scale of variance in ancestry and its correlates, we show that these methods can detect temporally localized effects of drift and selection. We apply these methods to previously published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio), and to inferred Neanderthal introgression in modern humans. Across systems, we find that upwards of 20% of the variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. We also see signals of selection at fine genomic scales and much longer time scales. However, we show that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available, and can help shed light on generalities of the genomic consequences of interspecific hybridization.
Collapse
Affiliation(s)
- Jeffrey Groh
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| | - Graham Coop
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| |
Collapse
|
43
|
Komluski J, Habig M, Stukenbrock EH. Repeat-Induced Point Mutation and Gene Conversion Coinciding with Heterochromatin Shape the Genome of a Plant-Pathogenic Fungus. mBio 2023:e0329022. [PMID: 37093087 DOI: 10.1128/mbio.03290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Meiosis is associated with genetic changes in the genome-via recombination, gene conversion, and mutations. The occurrence of gene conversion and mutations during meiosis may further be influenced by the chromatin conformation, similar to the effect of the chromatin conformation on the mitotic mutation rate. To date, however, the exact distribution and type of meiosis-associated changes and the role of the chromatin conformation in this context are largely unexplored. Here, we determine recombination, gene conversion, and de novo mutations using whole-genome sequencing of all meiotic products of 23 individual meioses in Zymoseptoria tritici, an important pathogen of wheat. We confirm a high genome-wide recombination rate of 65 centimorgan (cM)/Mb and see higher recombination rates on the accessory compared to core chromosomes. A substantial fraction of 0.16% of all polymorphic markers was affected by gene conversions, showing a weak GC-bias and occurring at higher frequency in regions of constitutive heterochromatin, indicated by the histone modification H3K9me3. The de novo mutation rate associated with meiosis was approximately three orders of magnitude higher than the corresponding mitotic mutation rate. Importantly, repeat-induced point mutation (RIP), a fungal defense mechanism against duplicated sequences, is active in Z. tritici and responsible for the majority of these de novo meiotic mutations. Our results indicate that the genetic changes associated with meiosis are a major source of variability in the genome of an important plant pathogen and shape its evolutionary trajectory. IMPORTANCE The impact of meiosis on the genome composition via gene conversion and mutations is mostly poorly understood, in particular, for non-model species. Here, we sequenced all four meiotic products for 23 individual meioses and determined the genetic changes caused by meiosis for the important fungal wheat pathogen Zymoseptoria tritici. We found a high rate of gene conversions and an effect of the chromatin conformation on gene conversion rates. Higher conversion rates were found in regions enriched with the H3K9me3-a mark for constitutive heterochromatin. Most importantly, meiosis was associated with a much higher frequency of de novo mutations than mitosis; 78% of the meiotic mutations were caused by repeat-induced point mutations-a fungal defense mechanism against duplicated sequences. In conclusion, the genetic changes associated with meiosis are therefore a major factor shaping the genome of this fungal pathogen.
Collapse
Affiliation(s)
- Jovan Komluski
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Michael Habig
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
44
|
Sephton-Clark P, Nguyen T, Hoa NT, Ashton P, van Doorn HR, Ly VT, Le T, Cuomo CA. Impact of pathogen genetics on clinical phenotypes in a population of Talaromyces marneffei from Vietnam. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534926. [PMID: 37034632 PMCID: PMC10081260 DOI: 10.1101/2023.03.30.534926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Talaromycosis, a severe and invasive fungal infection caused by Talaromyces marneffei , is difficult to treat and impacts those living in endemic regions of southeast Asia, India, and China. While 30% of infections result in mortality, our understanding of the genetic basis of pathogenesis for this fungus is limited. To address this, we apply population genomics and genome wide association study approaches to a cohort of 336 T. marneffei isolates collected from patients who enrolled in the Itraconazole versus Amphotericin B for Talaromycosis (IVAP) trial in Vietnam. We find that isolates from northern and southern Vietnam form two distinct geographical clades, with isolates from southern Vietnam associated with increased disease severity. Leveraging longitudinal isolates, we identify multiple instances of disease relapse linked to unrelated strains, highlighting the potential for multi-strain infections. In more frequent cases of persistent talaromycosis caused by the same strain, we identify variants arising over the course of patient infections that impact genes predicted to function in the regulation of gene expression and secondary metabolite production. By combining genetic variant data with patient metadata for all 336 isolates, we identify pathogen variants significantly associated with multiple clinical phenotypes. In addition, we identify genes and genomic regions under selection across both clades, highlighting loci undergoing rapid evolution, potentially in response to external pressures. With this combination of approaches, we identify links between pathogen genetics and patient outcomes and identify genomic regions that are altered during T. marneffei infection, providing an initial view of how pathogen genetics affects disease outcomes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 02142
| | - Thu Nguyen
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Microbiology department and Biological Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Philip Ashton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK CH647TE
| | - H. Rogier van Doorn
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Vo Trieu Ly
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Thuy Le
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA 27710
- Tropical Medicine Research Center for Talaromycosis, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 02142
| |
Collapse
|
45
|
Wang Y, McNeil P, Abdulazeez R, Pascual M, Johnston SE, Keightley PD, Obbard DJ. Variation in mutation, recombination, and transposition rates in Drosophila melanogaster and Drosophila simulans. Genome Res 2023; 33:587-598. [PMID: 37037625 PMCID: PMC10234296 DOI: 10.1101/gr.277383.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
The rates of mutation, recombination, and transposition are core parameters in models of evolution. They impact genetic diversity, responses to ongoing selection, and levels of genetic load. However, even for key evolutionary model species such as Drosophila melanogaster and Drosophila simulans, few estimates of these parameters are available, and we have little idea of how rates vary between individuals, sexes, or populations. Knowledge of this variation is fundamental for parameterizing models of genome evolution. Here, we provide direct estimates of mutation, recombination, and transposition rates and their variation in a West African and a European population of D. melanogaster and a European population of D. simulans Across 89 flies, we observe 58 single-nucleotide mutations, 286 crossovers, and 89 transposable element (TE) insertions. Compared to the European D. melanogaster, we find the West African population has a lower mutation rate (1.67 × 10-9 site-1 gen-1 vs. 4.86 × 10-9 site-1 gen-1) and a lower transposition rate (8.99 × 10-5 copy-1 gen-1 vs. 23.36 × 10-5 copy-1 gen-1), but a higher recombination rate (3.44 cM/Mb vs. 2.06 cM/Mb). The European D. simulans population has a similar mutation rate to European D. melanogaster, but a significantly higher recombination rate and a lower, but not significantly different, transposition rate. Overall, we find paternal-derived mutations are more frequent than maternal ones in both species. Our study quantifies the variation in rates of mutation, recombination, and transposition among different populations and sexes, and our direct estimates of these parameters in D. melanogaster and D. simulans will benefit future studies in population and evolutionary genetics.
Collapse
Affiliation(s)
- Yiguan Wang
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Paul McNeil
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | | | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística and IRBio, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Susan E Johnston
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
46
|
Krishnan S, DeMaere MZ, Beck D, Ostrowski M, Seymour JR, Darling AE. Rhometa: Population recombination rate estimation from metagenomic read datasets. PLoS Genet 2023; 19:e1010683. [PMID: 36972309 PMCID: PMC10079220 DOI: 10.1371/journal.pgen.1010683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/06/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Prokaryotic evolution is influenced by the exchange of genetic information between species through a process referred to as recombination. The rate of recombination is a useful measure for the adaptive capacity of a prokaryotic population. We introduce Rhometa (https://github.com/sid-krish/Rhometa), a new software package to determine recombination rates from shotgun sequencing reads of metagenomes. It extends the composite likelihood approach for population recombination rate estimation and enables the analysis of modern short-read datasets. We evaluated Rhometa over a broad range of sequencing depths and complexities, using simulated and real experimental short-read data aligned to external reference genomes. Rhometa offers a comprehensive solution for determining population recombination rates from contemporary metagenomic read datasets. Rhometa extends the capabilities of conventional sequence-based composite likelihood population recombination rate estimators to include modern aligned metagenomic read datasets with diverse sequencing depths, thereby enabling the effective application of these techniques and their high accuracy rates to the field of metagenomics. Using simulated datasets, we show that our method performs well, with its accuracy improving with increasing numbers of genomes. Rhometa was validated on a real S. pneumoniae transformation experiment, where we show that it obtains plausible estimates of the rate of recombination. Finally, the program was also run on ocean surface water metagenomic datasets, through which we demonstrate that the program works on uncultured metagenomic datasets.
Collapse
Affiliation(s)
- Sidaswar Krishnan
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew Z. DeMaere
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW, Australia
- * E-mail:
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Martin Ostrowski
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Justin R. Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Aaron E. Darling
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW, Australia
- Illumina Australia Pty Ltd, Ultimo, NSW, Australia
| |
Collapse
|
47
|
Wang Y, Wang Y, Cheng X, Ding Y, Wang C, Merilä J, Guo B. Prevalent Introgression Underlies Convergent Evolution in the Diversification of Pungitius Sticklebacks. Mol Biol Evol 2023; 40:7026025. [PMID: 36738166 PMCID: PMC9949714 DOI: 10.1093/molbev/msad026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
New mutations and standing genetic variations contribute significantly to repeated phenotypic evolution in sticklebacks. However, less is known about the role of introgression in this process. We analyzed taxonomically and geographically comprehensive genomic data from Pungitius sticklebacks to decipher the extent of introgression and its consequences for the diversification of this genus. Our results demonstrate that introgression is more prevalent than suggested by earlier studies. Although gene flow was generally bidirectional, it was often asymmetric and left unequal genomic signatures in hybridizing species, which might, at least partly, be due to biased hybridization and/or population size differences. In several cases, introgression of variants from one species to another was accompanied by transitions of pelvic and/or lateral plate structures-important diagnostic traits in Pungitius systematics-and frequently left signatures of adaptation in the core gene regulatory networks of armor trait development. This finding suggests that introgression has been an important source of genetic variation and enabled phenotypic convergence among Pungitius sticklebacks. The results highlight the importance of introgression of genetic variation as a source of adaptive variation underlying key ecological and taxonomic traits. Taken together, our study indicates that introgression-driven convergence likely explains the long-standing challenges in resolving the taxonomy and systematics of this small but phenotypically highly diverse group of fish.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yingnan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqi Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yongli Ding
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chongnv Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Juha Merilä
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
48
|
Naseri A, Yue W, Zhang S, Zhi D. FastRecomb: Fast inference of genetic recombination rates in biobank scale data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523304. [PMID: 36712114 PMCID: PMC9882036 DOI: 10.1101/2023.01.09.523304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While rates of recombination events across the genome (genetic maps) are fundamental to genetic research, the majority of current studies only use one standard map. There is evidence suggesting population differences in genetic maps, and thus estimating population-specific maps are of interest. While the recent availability of biobank-scale data offers such opportunities, current methods are not efficient at leveraging very large sample sizes. The most accurate methods are still linkage-disequilibrium (LD)-based methods that are only tractable for a few hundred samples. In this work, we propose a fast and memory-efficient method for estimating genetic maps from population genotyping data. Our method, FastRecomb, leverages the efficient positional Burrows-Wheeler transform (PBWT) data structure for counting IBD segment boundaries as potential recombination events. We used PBWT blocks to avoid redundant counting of pairwise matches. Moreover, we used a panel smoothing technique to reduce the noise from errors and recent mutations. Using simulation, we found that FastRecomb achieves state-of-the-art performance at 10k resolution, in terms of correlation coefficients between the estimated map and the ground truth. This is mainly due to the fact that FastRecomb can effectively take advantage of large panels comprising more than hundreds of thousands of haplotypes. At the same time, other methods lack the efficiency to handle such data. We believe further refinement of FastRecomb would deliver more accurate genetic maps for the genetics community.
Collapse
Affiliation(s)
- Ardalan Naseri
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - William Yue
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Degui Zhi
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston TX 77030, USA
| |
Collapse
|
49
|
Yuan S, Shi Y, Zhou BF, Liang YY, Chen XY, An QQ, Fan YR, Shen Z, Ingvarsson PK, Wang B. Genomic vulnerability to climate change in Quercus acutissima, a dominant tree species in East Asian deciduous forests. Mol Ecol 2023; 32:1639-1655. [PMID: 36626136 DOI: 10.1111/mec.16843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Understanding the evolutionary processes that shape the landscape of genetic variation and influence the response of species to future climate change is critical for biodiversity conservation. Here, we sampled 27 populations across the distribution range of a dominant forest tree, Quercus acutissima, in East Asia, and applied genome-wide analyses to track the evolutionary history and predict the fate of populations under future climate. We found two genetic groups (East and West) in Q. acutissima that diverged during Pliocene. We also found a heterogeneous landscape of genomic variation in this species, which may have been shaped by population demography and linked selections. Using genotype-environment association analyses, we identified climate-associated SNPs in a diverse set of genes and functional categories, indicating a model of polygenic adaptation in Q. acutissima. We further estimated three genetic offset metrics to quantify genomic vulnerability of this species to climate change due to the complex interplay between local adaptation and migration. We found that marginal populations are under higher risk of local extinction because of future climate change, and may not be able to track suitable habitats to maintain the gene-environment relationships observed under the current climate. We also detected higher reverse genetic offsets in northern China, indicating that genetic variation currently present in the whole range of Q. acutissima may not adapt to future climate conditions in this area. Overall, this study illustrates how evolutionary processes have shaped the landscape of genomic variation, and provides a comprehensive genome-wide view of climate maladaptation in Q. acutissima.
Collapse
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yan-Ru Fan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Zhao Shen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
50
|
Wooldridge LK, Dumont BL. Rapid Evolution of the Fine-scale Recombination Landscape in Wild House Mouse (Mus musculus) Populations. Mol Biol Evol 2022; 40:6889355. [PMID: 36508360 PMCID: PMC9825251 DOI: 10.1093/molbev/msac267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination is an important evolutionary force and an essential meiotic process. In many species, recombination events concentrate into hotspots defined by the site-specific binding of PRMD9. Rapid evolution of Prdm9's zinc finger DNA-binding array leads to remarkably abrupt shifts in the genomic distribution of hotspots between species, but the question of how Prdm9 allelic variation shapes the landscape of recombination between populations remains less well understood. Wild house mice (Mus musculus) harbor exceptional Prdm9 diversity, with >150 alleles identified to date, and pose a particularly powerful system for addressing this open question. We employed a coalescent-based approach to construct broad- and fine-scale sex-averaged recombination maps from contemporary patterns of linkage disequilibrium in nine geographically isolated wild house mouse populations, including multiple populations from each of three subspecies. Comparing maps between wild mouse populations and subspecies reveals several themes. First, we report weak fine- and broad-scale recombination map conservation across subspecies and populations, with genetic divergence offering no clear prediction for recombination map divergence. Second, most hotspots are unique to one population, an outcome consistent with minimal sharing of Prdm9 alleles between surveyed populations. Finally, by contrasting aggregate hotspot activity on the X versus autosomes, we uncover evidence for population-specific differences in the degree and direction of sex dimorphism for recombination. Overall, our findings illuminate the variability of both the broad- and fine-scale recombination landscape in M. musculus and underscore the functional impact of Prdm9 allelic variation in wild mouse populations.
Collapse
|