1
|
Kohli SK, Dhurve G, Mohammad KG, Khan TA, Yusuf M. The power of small RNAs: A comprehensive review on bacterial stress response and adaptation. Int J Biol Macromol 2025; 315:144411. [PMID: 40398788 DOI: 10.1016/j.ijbiomac.2025.144411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Bacteria employ a wide range of RNA-based regulatory systems to adapt to various environmental stressors. Among these, small non-coding RNAs (sRNAs) have emerged as critical regulators of gene expression. These compact RNA molecules modulate numerous cellular functions, including stress adaptation, biofilm development, and virulence. By acting primarily at the post-transcriptional level, sRNAs enable bacteria to swiftly adjust gene expression in response to external challenges. One key mechanism of sRNA action is translational repression, which includes the regulation of toxin-antitoxin systems pathways essential for bacterial persistence and antibiotic resistance. Additionally, sRNAs orchestrate the expression of genes involved in biofilm formation, enhancing surface adhesion, extracellular matrix production, and resistance to antimicrobial agents. Bacterial outer membrane vesicles (OMVs) also play a significant role in stress adaptation and intercellular communication. These vesicles transport a complex cargo of proteins, lipids, and nucleic acids, including sRNAs. The transfer of sRNAs through OMVs can modulate the physiology of neighboring bacterial cells as well as host cells, highlighting their role in cross-kingdom signaling. sRNAs serve as versatile and potent regulatory elements that support bacterial survival under hostile conditions. Advancing our understanding of sRNA-mediated networks offers promising avenues for uncovering bacterial pathogenesis and developing innovative antimicrobial therapies.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Earth and Climate Sciences (ECS), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Ganeshwari Dhurve
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Kashif Gulam Mohammad
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Tanveer Alam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammad Yusuf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Kanda T, Sekijima T, Miyakoshi M. Post-transcriptional regulation of aromatic amino acid metabolism by GcvB small RNA in Escherichia coli. Microbiol Spectr 2025; 13:e0203524. [PMID: 39868872 PMCID: PMC11878033 DOI: 10.1128/spectrum.02035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Escherichia coli synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. E. coli also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in E. coli, but the full extent of GcvB regulon is still underestimated. This study examined all genes involved in AAA biosynthesis and transport using translation reporter assay and qRT-PCR analysis. In addition to previously verified targets, aroC, aroP, and trpE, we identified new target genes that were significantly repressed by GcvB primarily via the R1 seed region. Exceptionally, GcvB strongly inhibits the expression of aroG, which encodes the major isozyme of the first reaction in the common pathway, through direct base pairing between the aroG translation initiation region and the GcvB R3 seed sequence. RNase E mediates the degradation of target mRNAs except aroC and aroP via its C-terminal domain. GcvB overexpression prolongs the lag phase and reduces the growth rate in minimal media supplemented with AAAs and confers resistance to an antibiotic compound, azaserine, by repressing AAA transporters.IMPORTANCEE. coli strains have been genetically modified in relevant transcription factors and biosynthetic enzymes for industrial use in the fermentative production of aromatic amino acids (AAAs) and their derivative compounds. This study focuses on GcvB small RNA, a global regulator of amino acid metabolism in E. coli, and identifies new GcvB targets involved in AAA biosynthesis and uptake. GcvB represses the expression of the first and last enzymes of the common pathway and the first enzymes of Trp and Phe terminal pathways. GcvB also limits import of AAAs. This paper documents the impact of RNA-mediated regulation on AAA metabolism in E. coli.
Collapse
Affiliation(s)
- Takeshi Kanda
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Toshiko Sekijima
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of Tsukuba, Ibaraki, Japan
| | - Masatoshi Miyakoshi
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Bloch S, Węgrzyn G, Arluison V. The Role of the Hfq Protein in Bacterial Resistance to Antibiotics: A Narrative Review. Microorganisms 2025; 13:364. [PMID: 40005731 PMCID: PMC11858733 DOI: 10.3390/microorganisms13020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The antibiotic resistance of pathogenic microorganisms is currently one of most major medical problems, causing a few million deaths every year worldwide due to untreatable bacterial infections. Unfortunately, the prognosis is even worse, as over 8 million deaths associated with antibiotic resistance are expected to occur in 2050 if no new effective antibacterial treatments are discovered. The Hfq protein has been discovered as a bacterial RNA chaperone. However, subsequent studies have indicated that this small protein (composed of 102 amino acid residues in Escherichia coli) has more activities, including binding to DNA and influencing its compaction, interaction with biological membranes, formation of amyloid-like structures, and others. Although Hfq is known to participate in many cellular processes, perhaps surprisingly, only reports from recent years have demonstrated its role in bacterial antibiotic resistance. The aim of this narrative review is to discuss how can Hfq affects antibiotic resistance in bacteria and propose how this knowledge may facilitate developing new therapeutic strategies against pathogenic bacteria. We indicate that the mechanisms by which the Hfq protein modulates the response of bacterial cells to antibiotics are quite different, from the regulation of the expression of genes coding for proteins directly involved in antibiotic transportation or action, through direct effects on membranes, to controlling the replication or transposition of mobile genetic elements bearing antibiotic resistance genes. Therefore, we suggest that Hfq could be considered a potential target for novel antimicrobial compounds. We also discuss difficulties in developing such drugs, but since Hfq appears to be a promising target for drugs that may enhance the efficacy of antibiotics, we propose that works on such potential therapeutics are encouraged.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
- UFR Science Du Vivant, Université Paris Cité, 35 Rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
4
|
Solchaga Flores E, Jagodnik J, Quenette F, Korepanov A, Guillier M. Control of iron acquisition by multiple small RNAs unravels a new role for transcriptional terminator loops in gene regulation. Nucleic Acids Res 2024; 52:13775-13791. [PMID: 39611574 PMCID: PMC11979758 DOI: 10.1093/nar/gkae1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Small RNAs (sRNAs) controlling gene expression by imperfect base-pairing with mRNA(s) are widespread in bacteria. They regulate multiple genes, including genes involved in iron homeostasis, through a wide variety of mechanisms. We previously showed that OmrA and OmrB sRNAs repress the synthesis of the Escherichia coli FepA receptor for iron-enterobactin complexes. We now report that five additional sRNAs, namely RprA, RybB, ArrS, RseX and SdsR, responding to different environmental cues, also repress fepA, independently of one another. While RprA follows the canonical mechanism of pairing with the translation initiation region, repression by ArrS or RseX requires a secondary structure far upstream within the long fepA 5' untranslated region. We also demonstrate a dual action of SdsR, whose 5'-part pairs with the fepA translation initiation region while its 3'-end behaves like ArrS or RseX. Strikingly, mutation analysis shows a key role for the loops of these sRNAs' intrinsic terminators in the regulation. Furthermore, regulation depends on both the Hfq chaperone and the RNase E endonuclease. Overall, our data strongly suggest that FepA levels must be tightly controlled under a variety of conditions and highlight the diversity of mechanisms that underly the regulation of gene expression by sRNAs in bacteria.
Collapse
Affiliation(s)
- Eugenio Solchaga Flores
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jonathan Jagodnik
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Fanny Quenette
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Alexey Korepanov
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Maude Guillier
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
5
|
Bafna‐Rührer J, Orth JV, Sudarsan S. Combined oxygen and glucose oscillations distinctly change the transcriptional and physiological state of Escherichia coli. Microb Biotechnol 2024; 17:e70051. [PMID: 39548707 PMCID: PMC11568247 DOI: 10.1111/1751-7915.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024] Open
Abstract
Escherichia coli, a common microbial host for industrial bioproduction, experiences a highly dynamic environment in industrial-scale bioreactors due to significant glucose and oxygen gradients. In this study, we mimic the combined gradients of glucose and oxygen in high-throughput bioreactors to study the transcriptional response of E. coli to industrial-scale conditions. Under oscillating oxygen conditions, E. coli formed less biomass and accumulated the anaerobic by-product acetate. With respect to oxygen-responsive genes, we found that genes of the TCA cycle and of different electron transport chain complexes were differentially expressed. A global analysis of the expression data revealed that oxygen oscillations had caused a transition towards a catabolite-repressed state and upregulation of several stress-related regulatory programs. Interestingly, the transcriptional changes persisted after oxygen limitation stopped. In contrast, the changes we observed due to glucose starvation, such as induction of the stringent response, were primarily transient. Most importantly, we found that effects of combined oxygen and glucose oscillations were distinct from the ones of oxygen and substrate oscillations alone, suggesting an important interplay between the different metabolic regimes in industrial-scale bioreactors.
Collapse
Affiliation(s)
- Jonas Bafna‐Rührer
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Jean V. Orth
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Suresh Sudarsan
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
6
|
Vellappan S, Sun J, Favate J, Jagadeesan P, Cerda D, Shah P, Yadavalli SS. Translation profiling of stress-induced small proteins reveals a novel link among signaling systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612970. [PMID: 39345582 PMCID: PMC11429745 DOI: 10.1101/2024.09.13.612970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Signaling networks allow adaptation to stressful environments by activating genes that counteract stressors. Small proteins (≤ 50 amino acids long) are a rising class of stress response regulators. Escherichia coli encodes over 150 small proteins, most of which lack phenotypes and their biological roles remain elusive. Using magnesium limitation as a stressor, we identify stress-induced small proteins using ribosome profiling, RNA sequencing, and transcriptional reporter assays. We uncover 17 small proteins with increased translation initiation, several of them transcriptionally upregulated by the PhoQ-PhoP two-component signaling system, crucial for magnesium homeostasis. Next, we describe small protein-specific deletion and overexpression phenotypes, underscoring their physiological significance in low magnesium stress. Most remarkably, we elucidate an unusual connection via a small membrane protein YoaI, between major signaling networks - PhoR-PhoB and EnvZ-OmpR in E. coli, advancing our understanding of small protein regulators in cellular signaling.
Collapse
Affiliation(s)
- Sangeevan Vellappan
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Junhong Sun
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
| | - John Favate
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Pranavi Jagadeesan
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
| | - Debbie Cerda
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
| | - Premal Shah
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Srujana S. Yadavalli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
| |
Collapse
|
7
|
Ekdahl AM, Julien T, Suraj S, Kribelbauer J, Tavazoie S, Freddolino PL, Contreras LM. Multiscale regulation of nutrient stress responses in Escherichia coli from chromatin structure to small regulatory RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599902. [PMID: 38979244 PMCID: PMC11230228 DOI: 10.1101/2024.06.20.599902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Recent research has indicated the presence of heterochromatin-like regions of extended protein occupancy and transcriptional silencing of bacterial genomes. We utilized an integrative approach to track chromatin structure and transcription in E. coli K-12 across a wide range of nutrient conditions. In the process, we identified multiple loci which act similarly to facultative heterochromatin in eukaryotes, normally silenced but permitting expression of genes under specific conditions. We also found a strong enrichment of small regulatory RNAs (sRNAs) among the set of differentially expressed transcripts during nutrient stress. Using a newly developed bioinformatic pipeline, the transcription factors regulating sRNA expression were bioinformatically predicted, with experimental follow-up revealing novel relationships for 36 sRNA-transcription factors candidates. Direct regulation of sRNA expression was confirmed by mutational analysis for five sRNAs of metabolic interest: IsrB, CsrB and CsrC, GcvB, and GadY. Our integrative analysis thus reveals additional layers of complexity in the nutrient stress response in E. coli and provides a framework for revealing similar poorly understood regulatory logic in other organisms.
Collapse
Affiliation(s)
- Alyssa M Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tatiana Julien
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Sahana Suraj
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Judith Kribelbauer
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - P Lydia Freddolino
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Bergman S, Andresen L, Kjellin J, Martinez Burgo Y, Geiser P, Baars S, Söderbom F, Sellin ME, Holmqvist E. ProQ-dependent activation of Salmonella virulence genes mediated by post-transcriptional control of PhoP synthesis. mSphere 2024; 9:e0001824. [PMID: 38411119 PMCID: PMC10964419 DOI: 10.1128/msphere.00018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Gastrointestinal disease caused by Salmonella enterica is associated with the pathogen's ability to replicate within epithelial cells and macrophages. Upon host cell entry, the bacteria express a type-three secretion system encoded within Salmonella pathogenicity island 2, through which host-manipulating effector proteins are secreted to establish a stable intracellular niche. Transcription of this intracellular virulence program is activated by the PhoPQ two-component system that senses the low pH and the reduced magnesium concentration of host cell vacuoles. In addition to transcriptional control, Salmonella commonly employ RNA-binding proteins (RBPs) and small regulatory RNAs (sRNAs) to regulate gene expression at the post-transcriptional level. ProQ is a globally acting RBP in Salmonella that promotes expression of the intracellular virulence program, but its RNA repertoire has previously been characterized only under standard laboratory growth conditions. Here, we provide a high-resolution ProQ interactome during conditions mimicking the environment of the Salmonella-containing vacuole (SCV), revealing hundreds of previously unknown ProQ binding sites in sRNAs and mRNA 3'UTRs. ProQ positively affected both the levels and the stability of many sRNA ligands, some of which were previously shown to associate with the well-studied and infection-relevant RBP Hfq. We further show that ProQ activates the expression of PhoP at the post-transcriptional level, which, in turn, leads to upregulation of the intracellular virulence program. IMPORTANCE Salmonella enterica is a major pathogen responsible for foodborne gastroenteritis, and a leading model organism for genetic and molecular studies of bacterial virulence mechanisms. One key trait of this pathogen is the ability to survive within infected host cells. During infection, the bacteria employ a type three secretion system that deliver effector proteins to target and manipulate host cell processes. The transcriptional regulation of this virulence program is well understood. By contrast, the factors and mechanisms operating at the post-transcriptional level to control virulence gene expression are less clear. In this study, we have charted the global RNA ligand repertoire of the RNA-binding protein ProQ during in vitro conditions mimicking the host cell environment. This identified hundreds of binding sites and revealed ProQ-dependent stabilization of intracellular-specific small RNAs. Importantly, we show that ProQ post-transcriptionally activates the expression of PhoP, a master transcriptional activator of intracellular virulence in Salmonella.
Collapse
Affiliation(s)
- Sofia Bergman
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Liis Andresen
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jonas Kjellin
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yolanda Martinez Burgo
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Petra Geiser
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sophie Baars
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mikael E. Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Raden M, Miladi M. How to do RNA-RNA Interaction Prediction? A Use-Case Driven Handbook Using IntaRNA. Methods Mol Biol 2024; 2726:209-234. [PMID: 38780733 DOI: 10.1007/978-1-0716-3519-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Computational prediction of RNA-RNA interactions (RRI) is a central methodology for the specific investigation of inter-molecular RNA interactions and regulatory effects of non-coding RNAs like eukaryotic microRNAs or prokaryotic small RNAs. Available methods can be classified according to their underlying prediction strategies, each implicating specific capabilities and restrictions often not transparent to the non-expert user. Within this work, we review seven classes of RRI prediction strategies and discuss the advantages and limitations of respective tools, since such knowledge is essential for selecting the right tool in the first place.Among the RRI prediction strategies, accessibility-based approaches have been shown to provide the most reliable predictions. Here, we describe how IntaRNA, as one of the state-of-the-art accessibility-based tools, can be applied in various use cases for the task of computational RRI prediction. Detailed hands-on examples for individual RRI predictions as well as large-scale target prediction scenarios are provided. We illustrate the flexibility and capabilities of IntaRNA through the examples. Each example is designed using real-life data from the literature and is accompanied by instructions on interpreting the respective results from IntaRNA output. Our use-case driven instructions enable non-expert users to comprehensively understand and utilize IntaRNA's features for effective RRI predictions.
Collapse
Affiliation(s)
- Martin Raden
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany.
| | - Milad Miladi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Subhadra B, Cao D, Jensen R, Caswell C, Inzana TJ. Identification and initial characterization of Hfq-associated sRNAs in Histophilus somni strain 2336. PLoS One 2023; 18:e0286158. [PMID: 37220152 DOI: 10.1371/journal.pone.0286158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Small RNAs (sRNA), in association with the global chaperone regulator Hfq, positively or negatively regulate gene expression in bacteria. For this study, Histophilus somni sRNAs that bind to Hfq were identified and then partially characterized. The Hfq-associated sRNAs in H. somni were isolated and identified by co-immunoprecipitation using anti-Hfq antibody, followed by sRNA sequencing. Sequence analysis of the sRNA samples identified 100 putative sRNAs, out of which 16 were present in pathogenic strain 2336, but not in non-pathogenic strain 129Pt. Bioinformatic analyses suggested that the sRNAs HS9, HS79, and HS97 could bind to many genes putatively involved in virulence/biofilm formation. Furthermore, multi-sequence alignment of the sRNA regions in the genome revealed that HS9 and HS97 could interact with sigma 54, which is a transcription factor linked to important bacterial traits, including motility, virulence, and biofilm formation. Northern blotting was used to determine the approximate size, abundance and any processing events attributed to the sRNAs. Selected sRNA candidates were confirmed to bind Hfq, as determined by electrophoretic mobility shift assays using sRNAs synthesized by in vitro transcription and recombinant Hfq. The exact transcriptional start site of the sRNA candidates was determined by RNA ligase-mediated rapid amplification of cDNA ends, followed by cloning and sequencing. This is the first investigation of H. somni sRNAs that show they may have important regulatory roles in virulence and biofilm formation.
Collapse
Affiliation(s)
- Bindu Subhadra
- College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
| | - Dianjun Cao
- College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
| | - Roderick Jensen
- College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Clayton Caswell
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Thomas J Inzana
- College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
11
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
12
|
Regulatory Interplay between RNase III and Antisense RNAs in E. coli: the Case of AsflhD and FlhD, Component of the Master Regulator of Motility. mBio 2022; 13:e0098122. [PMID: 36000733 PMCID: PMC9600491 DOI: 10.1128/mbio.00981-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to respond to ever-changing environmental cues, bacteria display resilient regulatory mechanisms controlling gene expression. At the post-transcriptional level, this is achieved by a combination of RNA-binding proteins, such as ribonucleases (RNases), and regulatory RNAs, including antisense RNAs (asRNAs). Bound to their complementary mRNA, asRNAs are primary targets for the double-strand-specific endoribonuclease, RNase III. Taking advantage of our own and previously published transcriptomic data sets obtained in strains inactivated for RNase III, we selected several candidate asRNAs and confirmed the existence of RNase III-sensitive asRNAs for crp, ompR, phoP, and flhD genes, all encoding global regulators of gene expression in Escherichia coli. Using FlhD, a component of the master regulator of motility (FlhD4C2), as our model, we demonstrate that the asRNA AsflhD, transcribed from the coding sequence of flhD, is involved in the fine-tuning of flhD expression and thus participates in the control of motility.
Collapse
|
13
|
GcvB Regulon Revealed by Transcriptomic and Proteomic Analysis in Vibrio alginolyticus. Int J Mol Sci 2022; 23:ijms23169399. [PMID: 36012664 PMCID: PMC9409037 DOI: 10.3390/ijms23169399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
Vibrio alginolyticus is a widely distributed marine bacterium that is a threat to the aquaculture industry as well as human health. Evidence has revealed critical roles for small RNAs (sRNAs) in bacterial physiology and cellular processes by modulating gene expression post-transcriptionally. GcvB is one of the most conserved sRNAs that is regarded as the master regulator of amino acid uptake and metabolism in a wide range of Gram-negative bacteria. However, little information about GcvB-mediated regulation in V. alginolyticus is available. Here we first characterized GcvB in V. alginolyticus ZJ-T and determined its regulon by integrated transcriptome and quantitative proteome analysis. Transcriptome analysis revealed 40 genes differentially expressed (DEGs) between wild-type ZJ-T and gcvB mutant ZJ-T-ΔgcvB, while proteome analysis identified 50 differentially expressed proteins (DEPs) between them, but only 4 of them displayed transcriptional differences, indicating that most DEPs are the result of post-transcriptional regulation of gcvB. Among the differently expressed proteins, 21 are supposed to be involved in amino acid biosynthesis and transport, and 11 are associated with type three secretion system (T3SS), suggesting that GcvB may play a role in the virulence besides amino acid metabolism. RNA-EMSA showed that Hfq binds to GcvB, which promotes its stability.
Collapse
|
14
|
Brosse A, Boudry P, Walburger A, Magalon A, Guillier M. Synthesis of the NarP response regulator of nitrate respiration in Escherichia coli is regulated at multiple levels by Hfq and small RNAs. Nucleic Acids Res 2022; 50:6753-6768. [PMID: 35748881 PMCID: PMC9262595 DOI: 10.1093/nar/gkac504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Two-component systems (TCS) and small RNAs (sRNA) are widespread regulators that participate in the response and the adaptation of bacteria to their environments. TCSs and sRNAs mostly act at the transcriptional and post-transcriptional levels, respectively, and can be found integrated in regulatory circuits, where TCSs control sRNAs transcription and/or sRNAs post-transcriptionally regulate TCSs synthesis. In response to nitrate and nitrite, the paralogous NarQ-NarP and NarX-NarL TCSs regulate the expression of genes involved in anaerobic respiration of these alternative electron acceptors to oxygen. In addition to the previously reported repression of NarP synthesis by the SdsN137 sRNA, we show here that RprA, another Hfq-dependent sRNA, also negatively controls narP. Interestingly, the repression of narP by RprA actually relies on two independent mechanisms of control. The first is via the direct pairing of the central region of RprA to the narP translation initiation region and presumably occurs at the translation initiation level. In contrast, the second requires only the very 5' end of the narP mRNA, which is targeted, most likely indirectly, by the full-length or the shorter, processed, form of RprA. In addition, our results raise the possibility of a direct role of Hfq in narP control, further illustrating the diversity of post-transcriptional regulation mechanisms in the synthesis of TCSs.
Collapse
Affiliation(s)
- Anaïs Brosse
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Pierre Boudry
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Maude Guillier
- To whom correspondence should be addressed. Tel: +33 01 58 41 51 49; Fax: +33 01 58 41 50 25;
| |
Collapse
|
15
|
Li K, Liao J, Wei M, Qiu S, Wu W, Zhao Y, Wang H, Liu Q, Liu F, Chang C. The Xanthomonas citri Reverse Fitness Deficiency by Activating a Novel β-Glucosidase Under Low Osmostress. Front Microbiol 2022; 13:887967. [PMID: 35586864 PMCID: PMC9108719 DOI: 10.3389/fmicb.2022.887967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria can withstand various types of environmental osmostress. A sudden rise in osmostress affects bacterial cell growth that is countered by activating special genes. The change of osmostress is generally a slow process under the natural environment. However, the collective response of bacteria to low osmostress remains unknown. This study revealed that the deletion of phoP (ΔphoP) from X. citri significantly compromised the growth and virulence as compared to the wild-type strain. Interestingly, low osmostress reversed physiological deficiencies of X. citri phoP mutant related to bacterial growth and virulence. The results also provided biochemical and genetic evidence that the physiological deficiency of phoP mutant can be reversed by low osmostress induced β-glucosidase (BglS) expression. Based on the data, this study proposes a novel regulatory mechanism of a novel β-glucosidase activation in X. citri through low osmostress to reverse the fitness deficiency.
Collapse
Affiliation(s)
- Kaihuai Li
- College of Plant Protection, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinxing Liao
- College of Plant Protection, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Ming Wei
- College of Plant Protection, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Shanxu Qiu
- College of Plant Protection, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Weiyin Wu
- College of Plant Protection, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Haihong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qiongguang Liu
- College of Plant Protection, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Fengquan Liu,
| | - Changqing Chang
- College of Plant Protection, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Changqing Chang,
| |
Collapse
|
16
|
Miyakoshi M, Okayama H, Lejars M, Kanda T, Tanaka Y, Itaya K, Okuno M, Itoh T, Iwai N, Wachi M. Mining RNA-seq data reveals the massive regulon of GcvB small RNA and its physiological significance in maintaining amino acid homeostasis in Escherichia coli. Mol Microbiol 2022; 117:160-178. [PMID: 34543491 PMCID: PMC9299463 DOI: 10.1111/mmi.14814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Bacterial small RNAs regulate the expression of multiple genes through imperfect base-pairing with target mRNAs mediated by RNA chaperone proteins such as Hfq. GcvB is the master sRNA regulator of amino acid metabolism and transport in a wide range of Gram-negative bacteria. Recently, independent RNA-seq approaches identified a plethora of transcripts interacting with GcvB in Escherichia coli. In this study, the compilation of RIL-seq, CLASH, and MAPS data sets allowed us to identify GcvB targets with high accuracy. We validated 21 new GcvB targets repressed at the posttranscriptional level, raising the number of direct targets to >50 genes in E. coli. Among its multiple seed sequences, GcvB utilizes either R1 or R3 to regulate most of these targets. Furthermore, we demonstrated that both R1 and R3 seed sequences are required to fully repress the expression of gdhA, cstA, and sucC genes. In contrast, the ilvLXGMEDA polycistronic mRNA is targeted by GcvB through at least four individual binding sites in the mRNA. Finally, we revealed that GcvB is involved in the susceptibility of peptidase-deficient E. coli strain (Δpeps) to Ala-Gln dipeptide by regulating both Dpp dipeptide importer and YdeE dipeptide exporter via R1 and R3 seed sequences, respectively.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Haruna Okayama
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Maxence Lejars
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Takeshi Kanda
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yuki Tanaka
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Kaori Itaya
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Miki Okuno
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Present address:
School of MedicineKurume UniversityKurumeJapan
| | - Takehiko Itoh
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Noritaka Iwai
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Masaaki Wachi
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
17
|
Siddiqui N, Gupta AK, Dutta T. PhoP induces RyjB expression under acid stress in Escherichia coli. J Biochem 2021; 171:277-285. [PMID: 34967409 PMCID: PMC9077410 DOI: 10.1093/jb/mvab142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Bacterial small RNAs (sRNAs) play a pivotal role in post-transcriptional regulation of gene expression and participate in many physiological circuits. An ~80-nt-long RyjB was earlier identified as a novel sRNA, which appeared to be accumulated in all phases of growth in Escherichia coli. We have taken a comprehensive approach in the current study to understand the regulation of ryjB expression under normal and pH stress conditions. RpoS was not necessary for ryjB expression neither at normal condition nor under acid stress. Hfq also emerged to be unnecessary for RyjB accumulation. Interestingly, RyjB was detected as a novel acid stress induced sRNA. A DNA binding protein PhoP, a component of PhoP/Q regulon, was found to regulate ryjB expression at low pH, as the elimination of phoP allele in the chromosome exhibited a basal level of RyjB expression under acid stress. Ectopic expression of PhoP in ΔphoP cells restored the overabundance of RyjB in the cell. Overexpression of RyjB increased the abundance of sgcA transcripts, with which RyjB shares a 4-nt overlap. The current study increases our knowledge substantially regarding the regulation of ryjB expression in E. coli cell.
Collapse
Affiliation(s)
- Namra Siddiqui
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Amit Kumar Gupta
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Tanmay Dutta
- RNA Biology Laboratory, MS 731, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. Tel.: +91-11-2659-1508, Fax: +91-11-2658-1102,
| |
Collapse
|
18
|
Checkpoints That Regulate Balanced Biosynthesis of Lipopolysaccharide and Its Essentiality in Escherichia coli. Int J Mol Sci 2021; 23:ijms23010189. [PMID: 35008618 PMCID: PMC8745692 DOI: 10.3390/ijms23010189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria, such as Escherichia coli, is essential for their viability. Lipopolysaccharide (LPS) constitutes the major component of OM, providing the permeability barrier, and a tight balance exists between LPS and phospholipids amounts as both of these essential components use a common metabolic precursor. Hence, checkpoints are in place, right from the regulation of the first committed step in LPS biosynthesis mediated by LpxC through its turnover by FtsH and HslUV proteases in coordination with LPS assembly factors LapB and LapC. After the synthesis of LPS on the inner leaflet of the inner membrane (IM), LPS is flipped by the IM-located essential ATP-dependent transporter to the periplasmic face of IM, where it is picked up by the LPS transport complex spanning all three components of the cell envelope for its delivery to OM. MsbA exerts its intrinsic hydrocarbon ruler function as another checkpoint to transport hexa-acylated LPS as compared to underacylated LPS. Additional checkpoints in LPS assembly are: LapB-assisted coupling of LPS synthesis and translocation; cardiolipin presence when LPS is underacylated; the recruitment of RfaH transcriptional factor ensuring the transcription of LPS core biosynthetic genes; and the regulated incorporation of non-stoichiometric modifications, controlled by the stress-responsive RpoE sigma factor, small RNAs and two-component systems.
Collapse
|
19
|
Comparative genomic identification and characterization of npcRNA homologs in Proteus vulgaris. J Biosci 2021. [DOI: 10.1007/s12038-021-00230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Ju X, Fang X, Xiao Y, Li B, Shi R, Wei C, You C. Small RNA GcvB Regulates Oxidative Stress Response of Escherichia coli. Antioxidants (Basel) 2021; 10:antiox10111774. [PMID: 34829644 PMCID: PMC8614746 DOI: 10.3390/antiox10111774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Small non-translated regulatory RNAs control plenty of bacterial vital activities. The small RNA GcvB has been extensively studied, indicating the multifaceted roles of GcvB beyond amino acid metabolism. However, few reported GcvB-dependent regulation in minimal medium. Here, by applying a high-resolution RNA-seq assay, we compared the transcriptomes of a wild-type Escherichia coli K-12 strain and its gcvB deletion derivative grown in minimal medium and identified putative targets responding to GcvB, including flu, a determinant gene of auto-aggregation. The following molecular studies and the enhanced auto-aggregation ability of the gcvB knockout strain further substantiated the induced expression of these genes. Intriguingly, the reduced expression of OxyR (the oxidative stress regulator) in the gcvB knockout strain was identified to account for the increased expression of flu. Additionally, GcvB was characterized to up-regulate the expression of OxyR at the translational level. Accordingly, compared to the wild type, the GcvB deletion strain was more sensitive to oxidative stress and lost some its ability to eliminate endogenous reactive oxygen species. Taken together, we reveal that GcvB regulates oxidative stress response by up-regulating OxyR expression. Our findings provide an insight into the diversity of GcvB regulation and add an additional layer to the regulation of OxyR.
Collapse
Affiliation(s)
- Xian Ju
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
| | - Xingxing Fang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
| | - Yunzhu Xiao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
| | - Bingyu Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
- Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Ruoping Shi
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
| | - Chaoliang Wei
- Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
- Correspondence:
| |
Collapse
|
21
|
Molecular Basis of Essentiality of Early Critical Steps in the Lipopolysaccharide Biogenesis in Escherichia coli K-12: Requirement of MsbA, Cardiolipin, LpxL, LpxM and GcvB. Int J Mol Sci 2021; 22:ijms22105099. [PMID: 34065855 PMCID: PMC8151780 DOI: 10.3390/ijms22105099] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
To identify the physiological factors that limit the growth of Escherichia coli K-12 strains synthesizing minimal lipopolysaccharide (LPS), we describe the first construction of strains devoid of the entire waa locus and concomitantly lacking all three acyltransferases (LpxL/LpxM/LpxP), synthesizing minimal lipid IVA derivatives with a restricted ability to grow at around 21 °C. Suppressors restoring growth up to 37 °C of Δ(gmhD-waaA) identified two independent single-amino-acid substitutions—P50S and R310S—in the LPS flippase MsbA. Interestingly, the cardiolipin synthase-encoding gene clsA was found to be essential for the growth of ΔlpxLMP, ΔlpxL, ΔwaaA, and Δ(gmhD-waaA) bacteria, with a conditional lethal phenotype of Δ(clsA lpxM), which could be overcome by suppressor mutations in MsbA. Suppressor mutations basS A20D or basR G53V, causing a constitutive incorporation of phosphoethanolamine (P-EtN) in the lipid A, could abolish the Ca++ sensitivity of Δ(waaC eptB), thereby compensating for P-EtN absence on the second Kdo. A single-amino-acid OppA S273G substitution is shown to overcome the synthetic lethality of Δ(waaC surA) bacteria, consistent with the chaperone-like function of the OppA oligopeptide-binding protein. Furthermore, overexpression of GcvB sRNA was found to repress the accumulation of LpxC and suppress the lethality of LapAB absence. Thus, this study identifies new and limiting factors in regulating LPS biosynthesis.
Collapse
|
22
|
Kravchenko U, Gogoleva N, Kalubaka N, Kruk A, Diubo Y, Gogolev Y, Nikolaichik Y. The PhoPQ Two-Component System Is the Major Regulator of Cell Surface Properties, Stress Responses and Plant-Derived Substrate Utilisation During Development of Pectobacterium versatile-Host Plant Pathosystems. Front Microbiol 2021; 11:621391. [PMID: 33519782 PMCID: PMC7843439 DOI: 10.3389/fmicb.2020.621391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
Pectobacterium versatile (formerly P. carotovorum) is a recently defined species of soft rot enterobacteria capable of infecting many plant hosts and damaging different tissues. Complex transcriptional regulation of virulence properties can be expected for such a versatile pathogen. However, the relevant information is available only for related species and is rather limited. The PhoPQ two-component system, originally described in pectobacteria as PehRS, was previously shown to regulate a single gene, pehA. Using an insertional phoP mutant of Pectobacterium versatile (earlier-P. carotovorum), we demonstrate that PhoP regulates at least 115 genes with a majority of them specific for pectobacteria. The functions performed by PhoP-controlled genes include degradation, transport and metabolism of plant-derived carbon sources (polygalacturonate, arabinose-containing polysaccharides and citrate), modification of bacterial cell envelope and stress resistance. We also demonstrated PhoP involvement in establishing the order of plant cell wall decomposition and utilisation of the corresponding breakdown products. Based on experimental data and in silico analysis, we defined a PhoP binding site motif and provided proof for its universality in enteric bacteria. Scanning P. versatile genome for the locations of this motif suggested a much larger PhoP regulon enriched with the genes important for a plant pathogen, which makes PhoP a global virulence regulator. Potential PhoP targets include many regulatory genes and PhoP control over one of them, expI, was confirmed experimentally, highlighting the link between the PhoPQ two-component and quorum sensing systems. High concentrations of calcium and magnesium ions were found to abolish the PhoPQ-dependent transcription activation but did not relieve repression. Reduced PhoP expression and minimisation of PhoP dependence of regulon members' expression in P. versatile cells isolated from potato tuber tissues suggest that PhoPQ system is a key switch of expression levels of multiple virulence-related genes fine-tuned to control the development of P. versatile-host plant pathosystem.
Collapse
Affiliation(s)
- Uljana Kravchenko
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Natalia Gogoleva
- Federal Research Center “Kazan Scientific Center of RAS”, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
- Laboratory of Extreme Biology, Kazan Federal University Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Nastassia Kalubaka
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Alla Kruk
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Yuliya Diubo
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Yuri Gogolev
- Federal Research Center “Kazan Scientific Center of RAS”, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
- Department of Biochemistry, Biotechnology and Pharmacology, Kazan Federal University Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Yevgeny Nikolaichik
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| |
Collapse
|
23
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|
24
|
Inference of Bacterial Small RNA Regulatory Networks and Integration with Transcription Factor-Driven Regulatory Networks. mSystems 2020; 5:5/3/e00057-20. [PMID: 32487739 PMCID: PMC8534726 DOI: 10.1128/msystems.00057-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs (sRNAs) are key regulators of bacterial gene expression. Through complementary base pairing, sRNAs affect mRNA stability and translation efficiency. Here, we describe a network inference approach designed to identify sRNA-mediated regulation of transcript levels. We use existing transcriptional data sets and prior knowledge to infer sRNA regulons using our network inference tool, the Inferelator. This approach produces genome-wide gene regulatory networks that include contributions by both transcription factors and sRNAs. We show the benefits of estimating and incorporating sRNA activities into network inference pipelines using available experimental data. We also demonstrate how these estimated sRNA regulatory activities can be mined to identify the experimental conditions where sRNAs are most active. We uncover 45 novel experimentally supported sRNA-mRNA interactions in Escherichia coli, outperforming previous network-based efforts. Additionally, our pipeline complements sequence-based sRNA-mRNA interaction prediction methods by adding a data-driven filtering step. Finally, we show the general applicability of our approach by identifying 24 novel, experimentally supported, sRNA-mRNA interactions in Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis. Overall, our strategy generates novel insights into the functional context of sRNA regulation in multiple bacterial species. IMPORTANCE Individual bacterial genomes can have dozens of small noncoding RNAs with largely unexplored regulatory functions. Although bacterial sRNAs influence a wide range of biological processes, including antibiotic resistance and pathogenicity, our current understanding of sRNA-mediated regulation is far from complete. Most of the available information is restricted to a few well-studied bacterial species; and even in those species, only partial sets of sRNA targets have been characterized in detail. To close this information gap, we developed a computational strategy that takes advantage of available transcriptional data and knowledge about validated and putative sRNA-mRNA interactions for inferring expanded sRNA regulons. Our approach facilitates the identification of experimentally supported novel interactions while filtering out false-positive results. Due to its data-driven nature, our method prioritizes biologically relevant interactions among lists of candidate sRNA-target pairs predicted in silico from sequence analysis or derived from sRNA-mRNA binding experiments.
Collapse
|
25
|
Raden M, Gutmann F, Uhl M, Backofen R. CopomuS-Ranking Compensatory Mutations to Guide RNA-RNA Interaction Verification Experiments. Int J Mol Sci 2020; 21:ijms21113852. [PMID: 32481751 PMCID: PMC7311995 DOI: 10.3390/ijms21113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
In silico RNA-RNA interaction prediction is widely applied to identify putative interaction partners and to assess interaction details in base pair resolution. To verify specific interactions, in vitro evidence can be obtained via compensatory mutation experiments. Unfortunately, the selection of compensatory mutations is non-trivial and typically based on subjective ad hoc decisions. To support the decision process, we introduce our COmPensatOry MUtation Selector CopomuS. CopomuS evaluates the effects of mutations on RNA-RNA interaction formation using a set of objective criteria, and outputs a reliable ranking of compensatory mutation candidates. For RNA-RNA interaction assessment, the state-of-the-art IntaRNA prediction tool is applied. We investigate characteristics of successfully verified RNA-RNA interactions from the literature, which guided the design of CopomuS. Finally, we evaluate its performance based on experimentally validated compensatory mutations of prokaryotic sRNAs and their target mRNAs. CopomuS predictions highly agree with known results, making it a valuable tool to support the design of verification experiments for RNA-RNA interactions. It is part of the IntaRNA package and available as stand-alone webserver for ad hoc application.
Collapse
Affiliation(s)
- Martin Raden
- Bioinformatics, Department of Computer Science, University Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany; (F.G.); (M.U.); (R.B.)
- Correspondence:
| | - Fabio Gutmann
- Bioinformatics, Department of Computer Science, University Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany; (F.G.); (M.U.); (R.B.)
| | - Michael Uhl
- Bioinformatics, Department of Computer Science, University Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany; (F.G.); (M.U.); (R.B.)
| | - Rolf Backofen
- Bioinformatics, Department of Computer Science, University Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany; (F.G.); (M.U.); (R.B.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
26
|
Mann M, Wright PR, Backofen R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res 2019; 45:W435-W439. [PMID: 28472523 PMCID: PMC5570192 DOI: 10.1093/nar/gkx279] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 01/01/2023] Open
Abstract
The IntaRNA algorithm enables fast and accurate prediction of RNA-RNA hybrids by incorporating seed constraints and interaction site accessibility. Here, we introduce IntaRNAv2, which enables enhanced parameterization as well as fully customizable control over the prediction modes and output formats. Based on up to date benchmark data, the enhanced predictive quality is shown and further improvements due to more restrictive seed constraints are highlighted. The extended web interface provides visualizations of the new minimal energy profiles for RNA-RNA interactions. These allow a detailed investigation of interaction alternatives and can reveal potential interaction site multiplicity. IntaRNAv2 is freely available (source and binary), and distributed via the conda package manager. Furthermore, it has been included into the Galaxy workflow framework and its already established web interface enables ad hoc usage.
Collapse
Affiliation(s)
- Martin Mann
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Patrick R Wright
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Grüll MP, Massé E. Mimicry, deception and competition: The life of competing endogenous RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1525. [PMID: 30761752 DOI: 10.1002/wrna.1525] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
Abstract
Since their discovery, small regulatory RNAs (sRNAs) were thought to be regulated exclusively at the transcriptional level. However, accumulating data from recent reports indicate that posttranscriptional signals can also modulate the function and stability of sRNAs. One of these posttranscriptional signals are competing endogenous RNAs (ceRNAs). Commonly called RNA sponges, ceRNAs can effectively sequester sRNAs and prevent them from binding their cognate target messenger RNAs (mRNAs). Subsequently, they prevent sRNA-dependent regulation of translation and stability of mRNA targets. While some ceRNAs seem to be expressed constitutively, others are intricately regulated according to environmental conditions. The outcome of ceRNA binding to a sRNA reaches beyond simple sequestration. Various effects observed on sRNA functions extend from reducing transcriptional noise to promote RNA turnover. Here, we present a historical perspective of the discovery of ceRNAs in eukaryotic organisms and mainly focus on the synthesis and function of select, well-described, ceRNAs in bacterial cells. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Marc P Grüll
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Massé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
28
|
Klein G, Raina S. Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS Defects. Int J Mol Sci 2019; 20:ijms20020356. [PMID: 30654491 PMCID: PMC6358824 DOI: 10.3390/ijms20020356] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Distinguishing feature of the outer membrane (OM) of Gram-negative bacteria is its asymmetry due to the presence of lipopolysaccharide (LPS) in the outer leaflet of the OM and phospholipids in the inner leaflet. Recent studies have revealed the existence of regulatory controls that ensure a balanced biosynthesis of LPS and phospholipids, both of which are essential for bacterial viability. LPS provides the essential permeability barrier function and act as a major virulence determinant. In Escherichia coli, more than 100 genes are required for LPS synthesis, its assembly at inner leaflet of the inner membrane (IM), extraction from the IM, translocation to the OM, and in its structural alterations in response to various environmental and stress signals. Although LPS are highly heterogeneous, they share common structural elements defining their most conserved hydrophobic lipid A part to which a core polysaccharide is attached, which is further extended in smooth bacteria by O-antigen. Defects or any imbalance in LPS biosynthesis cause major cellular defects, which elicit envelope responsive signal transduction controlled by RpoE sigma factor and two-component systems (TCS). RpoE regulon members and specific TCSs, including their non-coding arm, regulate incorporation of non-stoichiometric modifications of LPS, contributing to LPS heterogeneity and impacting antibiotic resistance.
Collapse
Affiliation(s)
- Gracjana Klein
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Satish Raina
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
29
|
Lalaouna D, Eyraud A, Devinck A, Prévost K, Massé E. GcvB small RNA uses two distinct seed regions to regulate an extensive targetome. Mol Microbiol 2018; 111:473-486. [PMID: 30447071 DOI: 10.1111/mmi.14168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
GcvB small RNA is described as post-transcriptional regulator of 1-2% of all mRNAs in Escherichia coli and Salmonella Typhimurium. At least 24 GcvB:mRNA interactions have been validated in vivo, establishing the largest characterized sRNA targetome. By performing MS2-affinity purification coupled with RNA sequencing (MAPS) technology, we identified seven additional mRNAs negatively regulated by GcvB in E. coli. Contrary to the vast majority of previously known targets, which pair to the well-conserved GcvB R1 region, we validated four mRNAs targeted by GcvB R3 region. This indicates that base-pairing through R3 seed sequence seems relatively common. We also noticed unusual GcvB pairing sites in the coding sequence of two target mRNAs. One of these target mRNAs has a pairing site displaying a unique ACA motif, suggesting that GcvB could hijack a translational enhancer element. The second target mRNA is likely regulated via an active RNase E-mediated mRNA degradation mechanism. Remarkably, we confirmed the importance of the sRNA sponge SroC in the fine-tuning control of GcvB activity in function of growth conditions such as growth phase and nutrient availability.
Collapse
Affiliation(s)
- David Lalaouna
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alex Eyraud
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Aurélie Devinck
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Karine Prévost
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
30
|
In silico ‘fishing’ using known small regulatory RNA (sRNA) candidates as the decoy from Escherichia coli, Salmonella typhi and Salmonella typhimurium manifested 14 novel sRNA candidates in the orthologous region of Proteus mirabilis. Mol Biol Rep 2018; 45:2333-2343. [DOI: 10.1007/s11033-018-4397-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
|
31
|
Lalaouna D, Desgranges E, Caldelari I, Marzi S. MS2-Affinity Purification Coupled With RNA Sequencing Approach in the Human Pathogen Staphylococcus aureus. Methods Enzymol 2018; 612:393-411. [PMID: 30502950 DOI: 10.1016/bs.mie.2018.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus is a Gram-positive major human pathogen involved in a wide range of human infectious diseases (from minor skin infections to septicemia, endocarditis or toxic shock syndrome). The treatment of S. aureus infections is very challenging due to the emergence of multiple antibiotic-resistant isolates. The high diversity of clinical symptoms caused by S. aureus depends on the precise expression of numerous virulence factors and stress response pathways, which are tightly regulated at every level (transcriptional, posttranscriptional, translational, and posttranslational). During the last two decades, it has become evident that small regulatory RNAs (sRNAs) play a major role in fast adaptive responses, mainly by targeting mRNA translation. sRNAs act as antisense RNAs by forming noncontiguous pairings with their target mRNAs and their mechanisms of action vary according to the interaction site. To obtain a global and detailed view of the regulatory networks involved in the adaptive processes of S. aureus, we have adapted the MAPS approach to get individual sRNA targetomes. We also set up different strategies to validate MAPS results and establish sRNA regulatory activities. As this method has been first developed in Gram-negative bacteria, we provide here a protocol for its application in S. aureus and highlight underlying differences. Finally, we discuss several points that have been and could be further improved and provide a workflow file for the automatic analysis of the sequencing in Galaxy.
Collapse
Affiliation(s)
- David Lalaouna
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France
| | - Emma Desgranges
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France.
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France.
| |
Collapse
|
32
|
After the Fact(or): Posttranscriptional Gene Regulation in Enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2018; 200:JB.00228-18. [PMID: 29967119 DOI: 10.1128/jb.00228-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To adapt to ever-changing environments, pathogens quickly alter gene expression. This can occur through transcriptional, posttranscriptional, or posttranslational regulation. Historically, transcriptional regulation has been thoroughly studied to understand pathogen niche adaptation, whereas posttranscriptional and posttranslational gene regulation has only relatively recently been appreciated to play a central role in bacterial pathogenesis. Posttranscriptional regulation may involve chaperones, nucleases, and/or noncoding small RNAs (sRNAs) and typically controls gene expression by altering the stability and/or translation of the target mRNA. In this review, we highlight the global importance of posttranscriptional regulation to enterohemorrhagic Escherichia coli (EHEC) gene expression and discuss specific mechanisms of how EHEC regulates expression of virulence factors critical to host colonization and disease progression. The low infectious dose of this intestinal pathogen suggests that EHEC is particularly well adapted to respond to the host environment.
Collapse
|
33
|
Fröhlich KS, Gottesman S. Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0022-2018. [PMID: 29992897 PMCID: PMC10361636 DOI: 10.1128/microbiolspec.rwr-0022-2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 01/05/2023] Open
Abstract
The ability of bacteria to thrive in diverse habitats and to adapt to ever-changing environmental conditions relies on the rapid and stringent modulation of gene expression. It has become evident in the past decade that small regulatory RNAs (sRNAs) are central components of networks controlling the bacterial responses to stress. Functioning at the posttranscriptional level, sRNAs base-pair with cognate mRNAs to alter translation, stability, or both to either repress or activate the targeted transcripts; the RNA chaperone Hfq participates in stabilizing sRNAs and in promoting pairing between target and sRNA. In particular, sRNAs act at the heart of crucial stress responses, including those dedicated to overcoming membrane damage and oxidative stress, discussed here. The bacterial cell envelope is the outermost protective barrier against the environment and thus is constantly monitored and remodeled. Here, we review the integration of sRNAs into the complex networks of several major envelope stress responses of Gram-negative bacteria, including the RpoE (σE), Cpx, and Rcs regulons. Oxidative stress, caused by bacterial respiratory activity or induced by toxic molecules, can lead to significant damage of cellular components. In Escherichia coli and related bacteria, sRNAs also contribute significantly to the function of the RpoS (σS)-dependent general stress response as well as the specific OxyR- and SoxR/S-mediated responses to oxidative damage. Their activities in gene regulation and crosstalk to other stress-induced regulons are highlighted.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- Department of Biology I, Microbiology, LMU Munich, 82152 Martinsried, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
34
|
Krin E, Pierlé SA, Sismeiro O, Jagla B, Dillies MA, Varet H, Irazoki O, Campoy S, Rouy Z, Cruveiller S, Médigue C, Coppée JY, Mazel D. Expansion of the SOS regulon of Vibrio cholerae through extensive transcriptome analysis and experimental validation. BMC Genomics 2018; 19:373. [PMID: 29783948 PMCID: PMC5963079 DOI: 10.1186/s12864-018-4716-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. RESULTS Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5'UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369-1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. CONCLUSIONS We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is conserved among Vibrio species. Furthermore, this specific co-localization is found in other γ-proteobacteria for genes recN-smpA and rmuC-tatABC, suggesting SOS regulon conservation in this phylum. Finally, we comment on the limitations of widespread NGS approaches for identification of all RNA species in bacteria.
Collapse
Affiliation(s)
- Evelyne Krin
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| | - Sebastian Aguilar Pierlé
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| | - Odile Sismeiro
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Bernd Jagla
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
- Present adress: Institut Pasteur, Biomarker Discovery Platform, UtechS CB and Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, Paris, France
| | - Marie-Agnès Dillies
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
- Present adress: Institut Pasteur, Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, Paris, France
| | - Hugo Varet
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Oihane Irazoki
- grid.7080.fDepartament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
| | - Susana Campoy
- grid.7080.fDepartament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
| | - Zoé Rouy
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Stéphane Cruveiller
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Claudine Médigue
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Jean-Yves Coppée
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Didier Mazel
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| |
Collapse
|
35
|
Gulliver EL, Wright A, Lucas DD, Mégroz M, Kleifeld O, Schittenhelm RB, Powell DR, Seemann T, Bulitta JB, Harper M, Boyce JD. Determination of the small RNA GcvB regulon in the Gram-negative bacterial pathogen Pasteurella multocida and identification of the GcvB seed binding region. RNA (NEW YORK, N.Y.) 2018; 24:704-720. [PMID: 29440476 PMCID: PMC5900567 DOI: 10.1261/rna.063248.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/01/2018] [Indexed: 05/12/2023]
Abstract
Pasteurella multocida is a Gram-negative bacterium responsible for many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. Small RNA (sRNA) molecules are critical regulators that act by binding to specific mRNA targets, often in association with the RNA chaperone protein Hfq. In this study, transcriptomic analysis of the P. multocida strain VP161 revealed a putative sRNA with high identity to GcvB from Escherichia coli and Salmonella enterica serovar Typhimurium. High-throughput quantitative liquid proteomics was used to compare the proteomes of the P. multocida VP161 wild-type strain, a gcvB mutant, and a GcvB overexpression strain. These analyses identified 46 proteins that displayed significant differential production after inactivation of gcvB, 36 of which showed increased production. Of the 36 proteins that were repressed by GcvB, 27 were predicted to be involved in amino acid biosynthesis or transport. Bioinformatic analyses of putative P. multocida GcvB target mRNAs identified a strongly conserved 10 nucleotide consensus sequence, 5'-AACACAACAT-3', with the central eight nucleotides identical to the seed binding region present within GcvB mRNA targets in E. coli and S. Typhimurium. Using a defined set of seed region mutants, together with a two-plasmid reporter system that allowed for quantification of sRNA-mRNA interactions, this sequence was confirmed to be critical for the binding of the P. multocida GcvB to the target mRNA, gltA.
Collapse
Affiliation(s)
- Emily L Gulliver
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Amy Wright
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Marianne Mégroz
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Oded Kleifeld
- Monash Biomedical Proteomics Facility, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, Victoria 3800, Australia
| | - Torsten Seemann
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Victorian Life Sciences Computation Initiative, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jürgen B Bulitta
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827, USA
| | - Marina Harper
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - John D Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
36
|
Brosse A, Guillier M. Bacterial Small RNAs in Mixed Regulatory Networks. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0014-2017. [PMID: 29916348 PMCID: PMC11633589 DOI: 10.1128/microbiolspec.rwr-0014-2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Indexed: 12/16/2022] Open
Abstract
Small regulatory RNAs are now recognized as key regulators of gene expression in bacteria. They accumulate under specific conditions, most often because their synthesis is directly controlled by transcriptional regulators, including but not limited to alternative sigma factors and response regulators of two-component systems. In turn, small RNAs regulate, mostly at the posttranscriptional level, expression of multiple genes, among which are genes encoding transcriptional regulators. Small RNAs are thus embedded in mixed regulatory circuits combining transcriptional and posttranscriptional controls, and whose properties are discussed here.
Collapse
Affiliation(s)
- Anaïs Brosse
- CNRS UMR8261, Associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Maude Guillier
- CNRS UMR8261, Associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
37
|
Lu P, Wang Y, Hu Y, Chen S. RgsA, an RpoS-dependent sRNA, negatively regulates rpoS expression in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2018; 164:716-724. [PMID: 29473822 DOI: 10.1099/mic.0.000632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a master regulator, the alternative sigma factor RpoS coordinates the transcription of genes associated with protection against environmental stresses in bacteria. In Pseudomonas aeruginosa, RpoS is also involved in quorum sensing and virulence. The cellular RpoS level is regulated at multiple levels, whereas the post-transcriptional regulation of rpoS in P. aeruginosa remains unclear. To identify and characterize small regulatory RNAs (sRNAs) regulating RpoS in P. aeruginosa, an sRNA library expressing a total of 263 sRNAs was constructed to examine their regulatory roles on rpoS expression. Our results demonstrate that rpoS expression is repressed by the RpoS-dependent sRNA RgsA at the post-transcriptional level. Unlike OxyS, an sRNA previously known to repress rpoS expression under oxidative stress in Escherichia coli, RgsA represses rpoS expression during the exponential phase. This repression requires the RNA chaperone Hfq. Furthermore, the 71-77 conserved region of RgsA is necessary for full repression of rpoS expression, and the -25 to +27 region of rpoS mRNA is sufficient for RgsA-mediated rpoS repression. Together, our results not only add RgsA to the RpoS regulatory circuits but also highlight the complexity of interplay between sRNAs and transcriptional regulators in bacteria.
Collapse
Affiliation(s)
- Pei Lu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yifei Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
38
|
Stem-Loop Structures within mRNA Coding Sequences Activate Translation Initiation and Mediate Control by Small Regulatory RNAs. Mol Cell 2017; 68:158-170.e3. [DOI: 10.1016/j.molcel.2017.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/08/2017] [Accepted: 08/18/2017] [Indexed: 11/20/2022]
|
39
|
Tanwer P, Bauer S, Heinrichs E, Panda G, Saluja D, Rudel T, Beier D. Post-transcriptional regulation of target genes by the sRNA FnrS in Neisseria gonorrhoeae. MICROBIOLOGY-SGM 2017; 163:1081-1092. [PMID: 28691898 DOI: 10.1099/mic.0.000484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small non-coding RNAs (sRNAs) are well-established post-transcriptional regulators of gene expression in bacteria that respond to a variety of environmental stimuli. They usually act by base-pairing with their target mRNAs, which is commonly facilitated by the RNA chaperone Hfq. In this study we initiated the analysis of the sRNA FnrS of Neisseria gonorrhoeae, which is induced under anaerobic conditions. We identified four putative FnrS target genes using bioinformatics approaches and validated these target genes using translational reporter gene fusions in both Escherichia coli and N. gonorrhoeae, thereby demonstrating their downregulation by direct base-pairing between the respective mRNA and FnrS. We demonstrate deregulation of target mRNAs upon deletion of fnrS and provide evidence that the isc gene cluster required for iron-sulfur cluster biosynthesis, which harbours iscS, which is a direct target of FnrS, is coordinately downregulated by the sRNA. By mutational analysis we show that, surprisingly, three distinct regions of FnrS are employed for interaction with different target genes.
Collapse
Affiliation(s)
- Pooja Tanwer
- Chair of Microbiology, University of Würzburg, Biocenter, Germany.,Dr B R Ambedkar Center for Biomedical Research, University of Delhi, India
| | - Susanne Bauer
- Chair of Microbiology, University of Würzburg, Biocenter, Germany
| | | | - Gurudutta Panda
- Institute of Network Biology (INET), Helmholtz Zentrum München, Germany
| | - Daman Saluja
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, India
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg, Biocenter, Germany
| | - Dagmar Beier
- Chair of Microbiology, University of Würzburg, Biocenter, Germany
| |
Collapse
|
40
|
Dersch P, Khan MA, Mühlen S, Görke B. Roles of Regulatory RNAs for Antibiotic Resistance in Bacteria and Their Potential Value as Novel Drug Targets. Front Microbiol 2017; 8:803. [PMID: 28529506 PMCID: PMC5418344 DOI: 10.3389/fmicb.2017.00803] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/23/2023] Open
Abstract
The emergence of antibiotic resistance mechanisms among bacterial pathogens increases the demand for novel treatment strategies. Lately, the contribution of non-coding RNAs to antibiotic resistance and their potential value as drug targets became evident. RNA attenuator elements in mRNA leader regions couple expression of resistance genes to the presence of the cognate antibiotic. Trans-encoded small RNAs (sRNAs) modulate antibiotic tolerance by base-pairing with mRNAs encoding functions important for resistance such as metabolic enzymes, drug efflux pumps, or transport proteins. Bacteria respond with extensive changes of their sRNA repertoire to antibiotics. Each antibiotic generates a unique sRNA profile possibly causing downstream effects that may help to overcome the antibiotic challenge. In consequence, regulatory RNAs including sRNAs and their protein interaction partners such as Hfq may prove useful as targets for antimicrobial chemotherapy. Indeed, several compounds have been developed that kill bacteria by mimicking ligands for riboswitches controlling essential genes, demonstrating that regulatory RNA elements are druggable targets. Drugs acting on sRNAs are considered for combined therapies to treat infections. In this review, we address how regulatory RNAs respond to and establish resistance to antibiotics in bacteria. Approaches to target RNAs involved in intrinsic antibiotic resistance or virulence for chemotherapy will be discussed.
Collapse
Affiliation(s)
- Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Muna A. Khan
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of ViennaVienna, Austria
| | - Sabrina Mühlen
- Department of Molecular Infection Biology, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of ViennaVienna, Austria
| |
Collapse
|
41
|
Small regulatory bacterial RNAs regulating the envelope stress response. Biochem Soc Trans 2017; 45:417-425. [PMID: 28408482 PMCID: PMC5736990 DOI: 10.1042/bst20160367] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
Abstract
Most bacteria encode a large repertoire of RNA-based regulatory mechanisms. Recent discoveries have revealed that the expression of many genes is controlled by a plethora of base-pairing noncoding small regulatory RNAs (sRNAs), regulatory RNA-binding proteins and RNA-degrading enzymes. Some of these RNA-based regulated processes respond to stress conditions and are involved in the maintenance of cellular homeostasis. They achieve it by either direct posttranscriptional repression of several mRNAs, including blocking access to ribosome and/or directing them to RNA degradation when the synthesis of their cognate proteins is unwanted, or by enhanced translation of some key stress-regulated transcriptional factors. Noncoding RNAs that regulate the gene expression by binding to regulatory proteins/transcriptional factors often act negatively by sequestration, preventing target recognition. Expression of many sRNAs is positively regulated by stress-responsive sigma factors like RpoE and RpoS, and two-component systems like PhoP/Q, Cpx and Rcs. Some of these regulatory RNAs act via a feedback mechanism on their own regulators, which is best reflected by recent discoveries, concerning the regulation of cell membrane composition by sRNAs in Escherichia coli and Salmonella, which are highlighted here.
Collapse
|
42
|
Smirnov A, Wang C, Drewry LL, Vogel J. Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J 2017; 36:1029-1045. [PMID: 28336682 PMCID: PMC5391140 DOI: 10.15252/embj.201696127] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022] Open
Abstract
Research into post-transcriptional control of mRNAs by small noncoding RNAs (sRNAs) in the model bacteria Escherichia coli and Salmonella enterica has mainly focused on sRNAs that associate with the RNA chaperone Hfq. However, the recent discovery of the protein ProQ as a common binding partner that stabilizes a distinct large class of structured sRNAs suggests that additional RNA regulons exist in these organisms. The cellular functions and molecular mechanisms of these new ProQ-dependent sRNAs are largely unknown. Here, we report in Salmonella Typhimurium the mode-of-action of RaiZ, a ProQ-dependent sRNA that is made from the 3' end of the mRNA encoding ribosome-inactivating protein RaiA. We show that RaiZ is a base-pairing sRNA that represses in trans the mRNA of histone-like protein HU-α. RaiZ forms an RNA duplex with the ribosome-binding site of hupA mRNA, facilitated by ProQ, to prevent 30S ribosome loading and protein synthesis of HU-α. Similarities and differences between ProQ- and Hfq-mediated regulation will be discussed.
Collapse
Affiliation(s)
- Alexandre Smirnov
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Chuan Wang
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lisa L Drewry
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany .,Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| |
Collapse
|
43
|
Neuhaus K, Landstorfer R, Simon S, Schober S, Wright PR, Smith C, Backofen R, Wecko R, Keim DA, Scherer S. Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq - ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics 2017; 18:216. [PMID: 28245801 PMCID: PMC5331693 DOI: 10.1186/s12864-017-3586-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Background While NGS allows rapid global detection of transcripts, it remains difficult to distinguish ncRNAs from short mRNAs. To detect potentially translated RNAs, we developed an improved protocol for bacterial ribosomal footprinting (RIBOseq). This allowed distinguishing ncRNA from mRNA in EHEC. A high ratio of ribosomal footprints per transcript (ribosomal coverage value, RCV) is expected to indicate a translated RNA, while a low RCV should point to a non-translated RNA. Results Based on their low RCV, 150 novel non-translated EHEC transcripts were identified as putative ncRNAs, representing both antisense and intergenic transcripts, 74 of which had expressed homologs in E. coli MG1655. Bioinformatics analysis predicted statistically significant target regulons for 15 of the intergenic transcripts; experimental analysis revealed 4-fold or higher differential expression of 46 novel ncRNA in different growth media. Out of 329 annotated EHEC ncRNAs, 52 showed an RCV similar to protein-coding genes, of those, 16 had RIBOseq patterns matching annotated genes in other enterobacteriaceae, and 11 seem to possess a Shine-Dalgarno sequence, suggesting that such ncRNAs may encode small proteins instead of being solely non-coding. To support that the RIBOseq signals are reflecting translation, we tested the ribosomal-footprint covered ORF of ryhB and found a phenotype for the encoded peptide in iron-limiting condition. Conclusion Determination of the RCV is a useful approach for a rapid first-step differentiation between bacterial ncRNAs and small mRNAs. Further, many known ncRNAs may encode proteins as well. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3586-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany. .,Core Facility Microbiome/NGS, ZIEL Institute for Food & Health, Weihenstephaner Berg 3, D-85354, Freising, Germany.
| | - Richard Landstorfer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Svenja Simon
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Steffen Schober
- Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Cameron Smith
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Romy Wecko
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Daniel A Keim
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| |
Collapse
|
44
|
Abstract
RNA is involved in the regulation of multiple cellular processes, often by forming sequence-specific base pairs with cellular RNA or DNA targets that must be identified among the large number of nucleic acids in a cell. Several RNA-based regulatory systems in eukaryotes, bacteria and archaea, including microRNAs (miRNAs), small interfering RNAs (siRNAs), CRISPR RNAs (crRNAs) and small RNAs (sRNAs) that are dependent on the RNA chaperone protein Hfq, achieve specificity using similar strategies. Central to their function is the presentation of short 'seed sequences' within a ribonucleoprotein complex to facilitate the search for and recognition of targets.
Collapse
|
45
|
Fontaine F, Gasiorowski E, Gracia C, Ballouche M, Caillet J, Marchais A, Hajnsdorf E. The small RNA SraG participates in PNPase homeostasis. RNA (NEW YORK, N.Y.) 2016; 22:1560-1573. [PMID: 27495318 PMCID: PMC5029454 DOI: 10.1261/rna.055236.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
The rpsO-pnp operon encodes ribosomal protein S15 and polynucleotide phosphorylase, a major 3'-5' exoribonuclease involved in mRNA decay in Escherichia coli The gene for the SraG small RNA is located between the coding regions of the rpsO and pnp genes, and it is transcribed in the opposite direction relative to the two genes. No function has been assigned to SraG. Multiple levels of post-transcriptional regulation have been demonstrated for the rpsO-pnp operon. Here we show that SraG is a new factor affecting pnp expression. SraG overexpression results in a reduction of pnp expression and a destabilization of pnp mRNA; in contrast, inhibition of SraG transcription results in a higher level of the pnp transcript. Furthermore, in vitro experiments indicate that SraG inhibits translation initiation of pnp Together, these observations demonstrate that SraG participates in the post-transcriptional control of pnp by a direct antisense interaction between SraG and PNPase RNAs. Our data reveal a new level of regulation in the expression of this major exoribonuclease.
Collapse
Affiliation(s)
- Fanette Fontaine
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Elise Gasiorowski
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Celine Gracia
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Mathieu Ballouche
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Joel Caillet
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Antonin Marchais
- Institut de Génétique et Microbiologie, CNRS/UMR 8621, Université Paris Sud, 91405 Orsay, France
| | - Eliane Hajnsdorf
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
46
|
Mechanistic study of base-pairing small regulatory RNAs in bacteria. Methods 2016; 117:67-76. [PMID: 27693881 DOI: 10.1016/j.ymeth.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
In all three kingdoms of life, RNA is not only involved in the expression of genetic information, but also carries out extremely diverse cellular functions. This versatility is essentially due to the fact that RNA molecules can exploit the power of base pairing to allow them to fold into a wide variety of structures through which they can perform diverse roles, but also to selectively target and bind to other nucleic acids. This is true in particular for bacterial small regulatory RNAs that act by imperfect base-pairing with target mRNAs, and thereby control their expression through different mechanisms. Here we outline an overview of in vivo and in vitro approaches that are currently used to gain mechanistic insights into how these sRNAs control gene expression in bacteria.
Collapse
|
47
|
Bossi L, Figueroa-Bossi N. Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nat Rev Microbiol 2016; 14:775-784. [PMID: 27640758 DOI: 10.1038/nrmicro.2016.129] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many bacterial regulatory small RNAs (sRNAs) have several mRNA targets, which places them at the centre of regulatory networks that help bacteria to adapt to environmental changes. However, different mRNA targets of any given sRNA compete with each other for binding to the sRNA; thus, depending on relative abundances and sRNA affinity, competition for regulatory sRNAs can mediate cross-regulation between bacterial mRNAs. This 'target-centric' perspective of sRNA regulation is reminiscent of the competing endogenous RNA (ceRNA) hypothesis, which posits that competition for a limited pool of microRNAs (miRNAs) in higher eukaryotes mediates cross-regulation of mRNAs. In this Opinion article, we discuss evidence that a similar network of RNA crosstalk operates in bacteria, and that this network also includes crosstalk between sRNAs and competition for RNA-binding proteins.
Collapse
Affiliation(s)
- Lionello Bossi
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), The French Alternative Energies and Atomic Energy Commission (CEA), University Paris-Saclay, 1 Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Nara Figueroa-Bossi
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), The French Alternative Energies and Atomic Energy Commission (CEA), University Paris-Saclay, 1 Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
48
|
Rossi CC, Bossé JT, Li Y, Witney AA, Gould KA, Langford PR, Bazzolli DMS. A computational strategy for the search of regulatory small RNAs in Actinobacillus pleuropneumoniae. RNA (NEW YORK, N.Y.) 2016; 22:1373-85. [PMID: 27402897 PMCID: PMC4986893 DOI: 10.1261/rna.055129.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/24/2016] [Indexed: 05/26/2023]
Abstract
Bacterial regulatory small RNAs (sRNAs) play important roles in gene regulation and are frequently connected to the expression of virulence factors in diverse bacteria. Only a few sRNAs have been described for Pasteurellaceae pathogens and no in-depth analysis of sRNAs has been described for Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, responsible for considerable losses in the swine industry. To search for sRNAs in A. pleuropneumoniae, we developed a strategy for the computational analysis of the bacterial genome by using four algorithms with different approaches, followed by experimental validation. The coding strand and expression of 17 out of 23 RNA candidates were confirmed by Northern blotting, RT-PCR, and RNA sequencing. Among them, two are likely riboswitches, three are housekeeping regulatory RNAs, two are the widely studied GcvB and 6S sRNAs, and 10 are putative novel trans-acting sRNAs, never before described for any bacteria. The latter group has several potential mRNA targets, many of which are involved with virulence, stress resistance, or metabolism, and connect the sRNAs in a complex gene regulatory network. The sRNAs identified are well conserved among the Pasteurellaceae that are evolutionarily closer to A. pleuropneumoniae and/or share the same host. Our results show that the combination of newly developed computational programs can be successfully utilized for the discovery of novel sRNAs and indicate an intricate system of gene regulation through sRNAs in A. pleuropneumoniae and in other Pasteurellaceae, thus providing clues for novel aspects of virulence that will be explored in further studies.
Collapse
Affiliation(s)
- Ciro C Rossi
- Laboratório de Genética Molecular de Micro-organismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Janine T Bossé
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Adam A Witney
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, United Kingdom
| | - Kate A Gould
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, United Kingdom
| | - Paul R Langford
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Denise M S Bazzolli
- Laboratório de Genética Molecular de Micro-organismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| |
Collapse
|
49
|
Tobias NJ, Mishra B, Gupta DK, Sharma R, Thines M, Stinear TP, Bode HB. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics 2016; 17:537. [PMID: 27488257 PMCID: PMC4971723 DOI: 10.1186/s12864-016-2862-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/29/2016] [Indexed: 01/28/2023] Open
Abstract
Background Bacteria within the genus Photorhabdus maintain mutualistic symbioses with nematodes in complicated lifecycles that also involves insect pathogenic phases. Intriguingly, these bacteria are rich in biosynthetic gene clusters that produce compounds with diverse biological activities. As a basis to better understand the life cycles of Photorhabdus we sequenced the genomes of two recently discovered representative species and performed detailed genomic comparisons with five publically available genomes. Results Here we report the genomic details of two new reference Photorhabdus species. By then conducting genomic comparisons across the genus, we show that there are several highly conserved biosynthetic gene clusters. These clusters produce a range of bioactive small molecules that support the pathogenic phase of the integral relationship that Photorhabdus maintain with nematodes. Conclusions Photorhabdus contain several genetic loci that allow them to become specialist insect pathogens by efficiently evading insect immune responses and killing the insect host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2862-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas J Tobias
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Bagdevi Mishra
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Deepak K Gupta
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne, at the Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
50
|
Fröhlich KS, Haneke K, Papenfort K, Vogel J. The target spectrum of SdsR small RNA in Salmonella. Nucleic Acids Res 2016; 44:10406-10422. [PMID: 27407104 PMCID: PMC5137417 DOI: 10.1093/nar/gkw632] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/11/2016] [Accepted: 06/29/2016] [Indexed: 12/28/2022] Open
Abstract
Model enteric bacteria such as Escherichia coli and Salmonella enterica express hundreds of small non-coding RNAs (sRNAs), targets for most of which are yet unknown. Some sRNAs are remarkably well conserved, indicating that they serve cellular functions that go beyond the necessities of a single species. One of these ‘core sRNAs’ of largely unknown function is the abundant ∼100-nucleotide SdsR sRNA which is transcribed by the general stress σ-factor, σS and accumulates in stationary phase. In Salmonella, SdsR was known to inhibit the synthesis of the species-specific porin, OmpD. However, sdsR genes are present in almost all enterobacterial genomes, suggesting that additional, conserved targets of this sRNA must exist. Here, we have combined SdsR pulse-expression with whole genome transcriptomics to discover 20 previously unknown candidate targets of SdsR which include mRNAs coding for physiologically important regulators such as the carbon utilization regulator, CRP, the nucleoid-associated chaperone, StpA and the antibiotic resistance transporter, TolC. Processing of SdsR by RNase E results in two cellular SdsR variants with distinct target spectra. While the overall physiological role of this orphan core sRNA remains to be fully understood, the new SdsR targets present valuable leads to determine sRNA functions in resting bacteria.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Katharina Haneke
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| | - Kai Papenfort
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| |
Collapse
|