1
|
Jain N, Shashi Bhushan BL, Natarajan M, Mehta R, Saini DK, Chatterjee K. Advanced 3D In Vitro Lung Fibrosis Models: Contemporary Status, Clinical Uptake, and Prospective Outlooks. ACS Biomater Sci Eng 2024; 10:1235-1261. [PMID: 38335198 DOI: 10.1021/acsbiomaterials.3c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Fibrosis has been characterized as a global health problem and ranks as one of the primary causes of organ dysfunction. Currently, there is no cure for pulmonary fibrosis, and limited therapeutic options are available due to an inadequate understanding of the disease pathogenesis. The absence of advanced in vitro models replicating dynamic temporal changes observed in the tissue with the progression of the disease is a significant impediment in the development of novel antifibrotic treatments, which has motivated research on tissue-mimetic three-dimensional (3D) models. In this review, we summarize emerging trends in preparing advanced lung models to recapitulate biochemical and biomechanical processes associated with lung fibrogenesis. We begin by describing the importance of in vivo studies and highlighting the often poor correlation between preclinical research and clinical outcomes and the limitations of conventional cell culture in accurately simulating the 3D tissue microenvironment. Rapid advancement in biomaterials, biofabrication, biomicrofluidics, and related bioengineering techniques are enabling the preparation of in vitro models to reproduce the epithelium structure and operate as reliable drug screening strategies for precise prediction. Improving and understanding these model systems is necessary to find the cross-talks between growing cells and the stage at which myofibroblasts differentiate. These advanced models allow us to utilize the knowledge and identify, characterize, and hand pick medicines beneficial to the human community. The challenges of the current approaches, along with the opportunities for further research with potential for translation in this field, are presented toward developing novel treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| | - B L Shashi Bhushan
- Department of Pulmonary Medicine, Victoria Hospital, Bangalore Medical College and Research Institute, Bangalore 560002 India
| | - M Natarajan
- Department of Pathology, Victoria Hospital, Bangalore Medical College and Research Institute, Bangalore 560002 India
| | - Ravi Mehta
- Department of Pulmonology and Critical Care, Apollo Hospitals, Jayanagar, Bangalore 560011 India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| |
Collapse
|
2
|
Zheng R, Xu Q, Wang Y, Zhong Y, Zhu R. Cordyceps cicadae polysaccharides attenuate diabetic nephropathy via the miR-30a-3p/TRIM16 axis. J Diabetes Investig 2024; 15:300-314. [PMID: 38149724 PMCID: PMC10906025 DOI: 10.1111/jdi.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE The molecular mechanism of the protective effect of Cordyceps cicadae polysaccharides (CCPs) on renal tubulointerstitial fibrosis in diabetic nephropathy (DN) is still unclear. This study aims to further understand the molecular mechanisms behind the therapeutic benefits of CCP on diabetic nephropathy. METHODS Mice were randomly assigned into six groups (n = 8). Cordyceps cicadae polysaccharide dissolved in 5% dimethyl sulfoxide was administered by gavage for 12 consecutive weeks. The CCP doses were divided into low, medium, and high, 75, 150, and 300 mg/kg/day, respectively. The efficacy of CCP was determined by assessing the renal function and histological alterations in diabetic db/db mice. The degree of glomerular mesangial dilatation and sclerosis was evaluated using semiquantitative markers. Cell viability, apoptosis, epithelial-mesenchymal transition (EMT), inflammation, oxidative stress, and mitochondrial reactive oxygen species (ROS) in high glucose (HG)-cultured MPC5 podocytes were determined. The interaction of miR-30a-3p and tripartite motif-containing protein 16 (TRIM16) was examined by luciferase reporter assay. Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence were used to analyze gene and protein expressions. RESULTS The in vivo findings illustrated that CCP may protect mice with type 2 diabetes from inflammation and oxidative damage (P < 0.05). Furthermore, CCP has a therapeutic value in protecting renal function and morphology in diabetic nephropathy by reversing podocyte EMT. The in vitro results indicated that CCP dose-dependently inhibited HG-induced apoptosis, EMT, inflammation, oxidative stress, and mitochondrial ROS levels in MPC5 podocytes (P < 0.05). Luciferase reporter assay confirmed the interaction between miR-30a-3p and TRIM16 in MPC5 podocytes cultured in high glucose (P < 0.05). CONCLUSION The protective effect of CCP on HG-induced MPC5 can be achieved by miR-30a-3p/TRIM16 axis.
Collapse
Affiliation(s)
- Rong Zheng
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qin Xu
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yiwen Wang
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yifei Zhong
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Rong Zhu
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
3
|
Miao Y, Wang Y, Bi Z, Huang K, Gao J, Li X, Li S, Wei L, Zhou H, Yang C. Antifibrotic mechanism of avitinib in bleomycin-induced pulmonary fibrosis in mice. BMC Pulm Med 2023; 23:94. [PMID: 36949426 PMCID: PMC10031887 DOI: 10.1186/s12890-023-02385-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by alveolar epithelial cell injury and lung fibroblast overactivation. At present, only two drugs are approved by the FDA for the treatment of IPF, including the synthetic pyridinone drug, pirfenidone, and the tyrosine kinase inhibitor, nintedanib. Avitinib (AVB) is a novel oral and potent third-generation tyrosine kinase inhibitor for treating non-small cell lung cancer (NSCLC). However, the role of avitinib in pulmonary fibrosis has not yet been established. In the present study, we used in vivo and in vitro models to evaluate the role of avitinib in pulmonary fibrosis. In vivo experiments first verified that avitinib significantly alleviated bleomycin-induced pulmonary fibrosis in mice. Further in vitro molecular studies indicated that avitinib inhibited myofibroblast activation, migration and extracellular matrix (ECM) production in NIH-3T3 cells, mainly by inhibiting the TGF-β1/Smad3 signalling pathways. The cellular experiments also indicated that avitinib improved alveolar epithelial cell injury in A549 cells. In conclusion, the present findings demonstrated that avitinib attenuates bleomycin-induced pulmonary fibrosis in mice by inhibiting alveolar epithelial cell injury and myofibroblast activation.
Collapse
Affiliation(s)
- Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Yanhua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Kai Huang
- Tianjin Jikun Technology Co., Ltd. Tianjin, Tianjin, 301700, People's Republic of China
| | - Jingjing Gao
- Tianjin Jikun Technology Co., Ltd. Tianjin, Tianjin, 301700, People's Republic of China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Shimeng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Luqing Wei
- Tianjin Beichen Hospital, No. 7 Beiyi Road, Beichen District, Tianjin, 300400, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
4
|
Fernández Pérez ER, Harmacek LD, O'Connor BP, Danhorn T, Vestal B, Maier LA, Koelsch TL, Leach SM. Prognostic accuracy of a peripheral blood transcriptome signature in chronic hypersensitivity pneumonitis. Thorax 2021; 77:86-90. [PMID: 34183448 DOI: 10.1136/thoraxjnl-2020-214790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/14/2021] [Indexed: 11/04/2022]
Abstract
The prognostic value of peripheral blood mononuclear cell (PBMC) expression profiles, when used in patients with chronic hypersensitivity pneumonitis (CHP), as an adjunct to traditional clinical assessment is unknown. RNA-seq analysis on PBMC from 37 patients with CHP at initial presentation determined that (1) 74 differentially expressed transcripts at a 10% false discovery rate distinguished those with (n=10) and without (n=27) disease progression, defined as absolute FVC and/or diffusing capacity of the lungs for carbon monoxide (DLCO) decline of ≥10% and increased fibrosis on chest CT images within 24 months, and (2) classification models based on gene expression and clinical factors strongly outperform models based solely on clinical factors (baseline FVC%, DLCO% and chest CT fibrosis).
Collapse
Affiliation(s)
- Evans R Fernández Pérez
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Department of Medicine, Denver, Colorado, USA
| | - Laura D Harmacek
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Brian P O'Connor
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Thomas Danhorn
- Biostatistics and Bioinformatics Shared Resource, University of Colorado Cancer Center, Auroa, Colorado, USA
| | - Brian Vestal
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Lisa A Maier
- Division of Occupational Health and Environmental Health Sciences, National Jewish Health Department of Medicine, Denver, Colorado, USA
| | - Tilman L Koelsch
- Thoracic Radiology, National Jewish Health, Denver, Colorado, USA
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
5
|
Dobrinskikh E, Estrella AM, Hennessy CE, Hara N, Schwarz MI, Kurche JS, Yang IV, Schwartz DA. Genes, other than Muc5b, play a role in bleomycin-induced lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2021; 321:L440-L450. [PMID: 34160296 PMCID: PMC8410112 DOI: 10.1152/ajplung.00615.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an incurable genetic disease that affects 5 million people worldwide. The gain-of-function MUC5B promoter variant rs35705950 is the dominant genetic risk factor for IPF, yet has a low penetrance. This raises the possibility that other genes and transcripts affect the penetrance of MUC5B. Previously, we have shown that the concentration of Muc5b in bronchoalveolar epithelia is directly associated with the extent and persistence of bleomycin-induced lung fibrosis in mice. In this study, we investigated whether bleomycin-induced lung injury is Muc5b dependent in genetically divergent strains of mice. Specifically, mice from the eight Diversity Outbred (DO) founders were phenotyped for Muc5b expression and lung fibrosis 3 wk after intratracheal bleomycin administration. Although we identified strains with low Muc5b expression and minimal lung fibrosis (CAST/EiJ and PWK/PhJ) and strains with high Muc5b expression and extensive lung fibrosis (NZO/H1LtJ and WSB/EiJ), there also were strains that did not demonstrate a clear relationship between Muc5b expression and lung fibrosis (129S1/SvlmJ, NOD/ShiLtJ, and C57BL/6J, A/J). Hierarchical clustering suggests that other factors may work in concert with or potentially independent of Muc5b to promote bleomycin-induced lung injury and fibrosis. This study suggests that these strains and their recombinant inbred crosses may prove helpful in identifying the genes and transcripts that interact with Muc5b and cause lung fibrosis.
Collapse
Affiliation(s)
- Evgenia Dobrinskikh
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Alani M Estrella
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Corinne E Hennessy
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Naoko Hara
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Marvin I Schwarz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Department of Immunology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
6
|
Al-Habeeb F, Aloufi N, Traboulsi H, Liu X, Nair P, Haston C, Azuelos I, Huang SK, White ES, Gallouzi IE, Di Marco S, Eidelman DH, Baglole CJ. Human antigen R promotes lung fibroblast differentiation to myofibroblasts and increases extracellular matrix production. J Cell Physiol 2021; 236:6836-6851. [PMID: 33855709 DOI: 10.1002/jcp.30380] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease of progressive scarring caused by excessive extracellular matrix (ECM) deposition and activation of α-SMA-expressing myofibroblasts. Human antigen R (HuR) is an RNA binding protein that promotes protein translation. Upon translocation from the nucleus to the cytoplasm, HuR functions to stabilize messenger RNA (mRNA) to increase protein levels. However, the role of HuR in promoting ECM production, myofibroblast differentiation, and lung fibrosis is unknown. Human lung fibroblasts (HLFs) treated with transforming growth factor β1 (TGF-β1) showed a significant increase in translocation of HuR from the nucleus to the cytoplasm. TGF-β-treated HLFs that were transfected with HuR small interfering RNA had a significant reduction in α-SMA protein as well as the ECM proteins COL1A1, COL3A, and FN1. HuR was also bound to mRNA for ACTA2, COL1A1, COL3A1, and FN. HuR knockdown affected the mRNA stability of ACTA2 but not that of the ECM genes COL1A1, COL3A1, or FN. In mouse models of pulmonary fibrosis, there was higher cytoplasmic HuR in lung structural cells compared to control mice. In human IPF lungs, there was also more cytoplasmic HuR. This study is the first to show that HuR in lung fibroblasts controls their differentiation to myofibroblasts and consequent ECM production. Further research on HuR could assist in establishing the basis for the development of new target therapy for fibrotic diseases, such as IPF.
Collapse
Affiliation(s)
- Fatmah Al-Habeeb
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Noof Aloufi
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Departments of Pathology, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xingxing Liu
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Parameswaran Nair
- Department of Medicine, McMaster University & St Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Christina Haston
- Department of Computer Science, Mathematics, Physics and Statistics, University of British Columbia, British Columbia, Canada
| | - Ilan Azuelos
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Imed E Gallouzi
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Faculty of Medicine, Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Sergio Di Marco
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Faculty of Medicine, Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Departments of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Yanagihara T, Chong SG, Vierhout M, Hirota JA, Ask K, Kolb M. Current models of pulmonary fibrosis for future drug discovery efforts. Expert Opin Drug Discov 2020; 15:931-941. [PMID: 32396021 DOI: 10.1080/17460441.2020.1755252] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pulmonary fibrosis includes several lung disorders characterized by progressive fibrosis, of which idiopathic pulmonary fibrosis (IPF) is a particularly severe form with a median survival time of 3-5 years after diagnosis. Although numerous compounds have shown efficacy in attenuating pulmonary fibrosis using animal models, only a few compounds have shown their beneficial effects for IPF in clinical trials. Thus, there is an emergent need to improve the preclinical development process to better identify, characterize and select clinically useful targets. AREAS COVERED In this review, the authors extensively describe current models of pulmonary fibrosis, including rodent models, ex vivo models, and in vitro models. EXPERT OPINION Based upon our current understanding, improving the identification and characterization of clinically relevant molecules or pathways responsible for progressive fibrotic diseases and use of the appropriate preclinical model system to test these will likely be required to improve the drug development pipeline for pulmonary fibrosis. Combination with appropriate preclinical models with ex vivo (precision-cut lung slices) or in vitro models would be beneficial for high-throughput drug discovery or validation of drug effects.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada.,Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Sy Giin Chong
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Megan Vierhout
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| |
Collapse
|
8
|
Zhang E, Yang Y, Zhang J, Ding G, Chen S, Peng C, Lavin MF, Yeo AJ, Du Z, Shao H. Efficacy of bone marrow mesenchymal stem cell transplantation in animal models of pulmonary fibrosis after exposure to bleomycin: A meta-analysis. Exp Ther Med 2019; 17:2247-2255. [PMID: 30867709 PMCID: PMC6395999 DOI: 10.3892/etm.2019.7205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that bone marrow mesenchymal stem cell (BMSC) transplantation is a promising treatment strategy for pulmonary fibrosis. Although encouraging results have been obtained using animal models of bleomycin (BLM)-induced pulmonary fibrosis, it is evident that transplantation of BMSCs at various time-points after BLM administration has produced different results in terms of treatment efficacy. To shed light on the potential utility of BMSCs for the treatment of lung disease, the present study performed a meta-analysis to estimate the efficacy of BMSCs in animal models of BLM-induced pulmonary fibrosis, and compare early transplantation (BMSCs injected on the same day after administration of BLM) with late transplantation (BMSCs injected on the 14th day after administration of BLM). Relevant studies were retrieved from the MEDLINE, PubMed, Chinese Knowledge Infrastructure and WanFang databases using a comprehensive search approach. A total of 6 studies involving 228 model rats were included. Meta-analysis indicated that early BMSC transplantation was able to prevent or reduce BLM-induced alveolitis and pulmonary fibrosis, while late BMSC transplantation was able to reduce alveolitis, but there was no significant evidence regarding improvement of pulmonary fibrosis. Although BMSC therapy was identified to be generally beneficial in rodent models of BLM-induced pulmonary fibrosis, the efficacy of early transplantation appears to be more satisfactory; overall, the efficacy of transplantation of BMSCs at the acute inflammatory phase was more effective compared with that at the chronic fibrosis stage. Of note, regarding alveolitis and pulmonary fibrosis scores after late transplantation of BMSCs, the sensitivity analysis revealed that the scores were less stable; thus, this result must be interpreted with caution. Furthermore, the quality and methodology of the included studies was comparatively low. Therefore, higher-quality and more rigorous studies are required to validate the results of the present meta-analysis in the future.
Collapse
Affiliation(s)
- Enguo Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Ye Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Juan Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Guoyong Ding
- School of Public Health, Taishan Medical University, Taian, Shandong 271016, P.R. China
| | - Shangya Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,Queensland Alliance for Environmental Health Sciences, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Martin F Lavin
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Abrey J Yeo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
9
|
Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A, Glassberg MK. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2017; 4:118. [PMID: 28804709 PMCID: PMC5532376 DOI: 10.3389/fmed.2017.00118] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/11/2017] [Indexed: 02/03/2023] Open
Abstract
Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans.
Collapse
Affiliation(s)
- Jun Tashiro
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gustavo A Rubio
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andrew H Limper
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Kurt Williams
- Department Pathobiology and Diagnostic Investigations, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Sharon J Elliot
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ioanna Ninou
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Argyrios Tzouvelekis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Marilyn K Glassberg
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
10
|
Qi L, Lu Z, Sun YH, Song HT, Xu WK. TRIM16 suppresses the progression of prostate tumors by inhibiting the Snail signaling pathway. Int J Mol Med 2016; 38:1734-1742. [PMID: 27748839 PMCID: PMC5117739 DOI: 10.3892/ijmm.2016.2774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
Prostate carcinoma is a devastating disease which is characterized by insidious early symptoms, rapid progression and a poor prognosis. Tripartite motif-containing protein 16 (TRIM16) was identified as an estrogen- and antiestrogen-regulated gene in epithelial cells stably expressing estrogen receptors. The protein encoded by this gene contains two B-box domains and a coiled-coiled region that are characteristic of the B-box zinc finger protein family. Proteins belonging to this family have been reported to be involved in a variety of biological processes including cell growth, differentiation and pathogenesis. TRIM16 expression has been detected in most tissues. However, the funtions of this gene remain to be elucidated. In the present study, immunohistochemical staining revealed that the expression of TRIM16 was decreased in prostate adenocarcinoma compared with that in normal prostate tissues. The patients with high TRIM16-expressing tumors had a significantly greater survival than those with low TRIM16-expressing tumors. Western blot analysis showed that TRIM16 was downregulated in distant metastatic cancer tissues compared with that in non-distant metastatic cancer tissues. The overexpression of TRIM16 inhibited the migration and invasion of prostate cancer cells as well as inhibiting the epithelial-to-mesenchymal transition process, whereas TRIM16 depletion enhanced these processes. Moreover, TRIM16 inhibited the Snail signaling pathway. The silencing of Snail by small interfering RNA was performed in order to determine the role of Snail in the TRIM16-mediated tumor phenotype. Taken together, these findings suggest that TRIM16 may be an important molecular target which may aid in the design of novel therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Li Qi
- Clinical College of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Zhong Lu
- Clinical College of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yong-Hong Sun
- Clinical College of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Hai-Tao Song
- Clinical College of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wei-Kang Xu
- Clinical College of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
11
|
Chen W, Li S, Yu H, Liu X, Huang L, Wang Q, Liu H, Cui Y, Tang Y, Zhang P, Wang C. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs. PLoS Pathog 2016; 12:e1005462. [PMID: 26900919 PMCID: PMC4762662 DOI: 10.1371/journal.ppat.1005462] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/29/2016] [Indexed: 02/08/2023] Open
Abstract
Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses. The stimulator of interferon genes (STING/MITA/ERIS/MPYS) is characterized as the converging point of the cytosolic DNAs-triggered innate immune signaling, and its function has been well documented in mediating the production of type I interferon and other pro-inflammatory cytokines. It remains intriguing to address how IRF3 is recruited onto the STING signalosome. In this study, we have further identified and characterized the SREBP cleavage-activating protein (SCAP) as the long-sought-after adaptor of the STING signaling. Upon microbial DNA challenge, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. SCAP thus serves as a scaffold adaptor to recruit IRF3 and facilitate its integration into the perinuclear microsomes. Our study reveals an important missing link in innate immunity, further highlighting the physical and/or functional links between innate immunity and metabolism.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Senlin Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huansha Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xing Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lulu Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ye Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yijun Tang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
- * E-mail: (PZ); (CW)
| | - Chen Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (PZ); (CW)
| |
Collapse
|
12
|
TRIM16 inhibits proliferation and migration through regulation of interferon beta 1 in melanoma cells. Oncotarget 2015; 5:10127-39. [PMID: 25333256 PMCID: PMC4259410 DOI: 10.18632/oncotarget.2466] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/07/2014] [Indexed: 12/12/2022] Open
Abstract
High basal or induced expression of the tripartite motif protein, TRIM16, leads to reduce cell growth and migration of neuroblastoma and skin squamous cell carcinoma cells. However, the role of TRIM16 in melanoma is currently unknown. TRIM16 protein levels were markedly reduced in human melanoma cell lines, compared with normal human epidermal melanocytes due to both DNA methylation and reduced protein stability. TRIM16 knockdown strongly increased cell migration in normal human epidermal melanocytes, while TRIM16 overexpression reduced cell migration and proliferation of melanoma cells in an interferon beta 1 (IFNβ1)-dependent manner. Chromatin immunoprecipitation assays revealed TRIM16 directly bound the IFNβ1 gene promoter. Low level TRIM16 expression in 91 melanoma patient samples, strongly correlated with lymph node metastasis, and, predicted poor patient prognosis in a separate cohort of 170 melanoma patients with lymph node metastasis. The BRAF inhibitor, vemurafenib, increased TRIM16 protein levels in melanoma cells in vitro, and induced growth arrest in BRAF-mutant melanoma cells in a TRIM16-dependent manner. High levels of TRIM16 in melanoma tissues from patients treated with Vemurafenib correlated with clinical response. Our data, for the first time, demonstrates TRIM16 is a marker of cell migration and metastasis, and a novel treatment target in melanoma.
Collapse
|
13
|
Abstract
Innate immune detection and subsequent immune responses rely on the initial recognition of pathogen specific molecular motifs. Foreign nucleic acids are key structures recognised by the immune system, recognition of which occurs mainly through the use of nucleic acid receptors including members of the Toll-like receptors, AIM2-like receptors, RIG-I-like receptors and intracellular DNA receptors. While the immune system is critically important in protecting the host from infection, it is of utmost importance that it is tightly regulated, in order to prevent recognition of self-nucleic acids and the subsequent development of autoimmunity. Defects in the mechanisms regulating such pathways, for example mutations in endonucleases that clear DNA, altered expression of nucleic acid sensors and defects in negative regulators of these signalling pathways involved in RNA/DNA sensing, have all been implicated in promoting the generation of autoimmune responses. This evidence, as reviewed here, suggests that novel therapeutics targeting these sensors and their downstream pathways may be of use in the treatment of patients with autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and primary Sjögren's syndrome.
Collapse
Affiliation(s)
- Siobhán Smith
- Molecular and Cellular Therapeutics and RCSI Research Institute, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Caroline Jefferies
- Molecular and Cellular Therapeutics and RCSI Research Institute, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| |
Collapse
|