1
|
Zhang F, Cui R, Yin L, Bi R, Xu H, Wang S. The causal relationship between thyroid dysfunction and carpal tunnel syndrome: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41648. [PMID: 40020106 PMCID: PMC11875579 DOI: 10.1097/md.0000000000041648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Mendelian randomization was used to investigate the causal relationship between thyroid dysfunction (including hypothyroidism and hyperthyroidism) and carpal tunnel syndrome. Genetic loci independently associated with hypothyroidism and hyperthyroidism were selected as instrumental variables from pooled data from genome-wide association studies. Inverse variance weighting (IVW) was used to analyze the causal effect, supplemented by weighted median and MR-Egger. Heterogeneity test, pleiotropy testing and leave-one-out analysis were used to analyze the sensitivity test to explore the robustness of the results. Both hypothyroidism and hyperthyroidism increase the risk of carpal tunnel syndrome (hypothyroidism: IVW, OR = 1.04, 95% CI = 1.01-1.08, P = .017; hyperthyroidism: IVW, OR = 1.08, 95% CI = 1.05-1.12, P = 9.218E-06, no pleiotropy was found in both tests. Patients with thyroid dysfunction have an increased risk of carpal tunnel syndrome.
Collapse
Affiliation(s)
- Fan Zhang
- Shandong Traditional Chinese Medicine University, Jinan, China
| | - Rongrong Cui
- Shandong Traditional Chinese Medicine University, Jinan, China
| | - Liang Yin
- Shandong Traditional Chinese Medicine University, Jinan, China
| | - Rongxiu Bi
- Affiliated Hospital of Shandong University of Traditional, Jinan, China
| | - Honghao Xu
- Affiliated Hospital of Shandong University of Traditional, Jinan, China
| | - Shilu Wang
- Affiliated Hospital of Shandong University of Traditional, Jinan, China
| |
Collapse
|
2
|
Jee YH, Wang Y, Jung KJ, Lee JY, Kimm H, Duan R, Price AL, Martin AR, Kraft P. Genome-wide association studies in a large Korean cohort identify novel quantitative trait loci for 36 traits and illuminate their genetic architectures. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.05.17.24307550. [PMID: 38798434 PMCID: PMC11118625 DOI: 10.1101/2024.05.17.24307550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Genome-wide association studies (GWAS) have been predominantly conducted in populations of European ancestry, limiting opportunities for biological discovery in diverse populations. We report GWAS findings from 153,950 individuals across 36 quantitative traits in the Korean Cancer Prevention Study-II (KCPS2) Biobank. We discovered 301 novel genetic loci in KCPS2, including an association between thyroid-stimulating hormone and CD36. Meta-analysis with the Korean Genome and Epidemiology Study, Biobank Japan, Taiwan Biobank, and UK Biobank identified 4,588 loci that were not significant in any contributing GWAS. We describe differences in genetic architectures across these East Asian and European samples. We also highlight East Asian specific associations, including a known pleiotropic missense variant in ALDH2, which fine-mapping identified as a likely causal variant for a diverse set of traits. Our findings provide insights into the genetic architecture of complex traits in East Asian populations and highlight how broadening the population diversity of GWAS samples can aid discovery.
Collapse
Affiliation(s)
- Yon Ho Jee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keum Ji Jung
- Institute for Health Promotion, Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Ji-Young Lee
- Institute for Health Promotion, Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Heejin Kimm
- Institute for Health Promotion, Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Rui Duan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alicia R. Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Transdivisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, MD, USA
| |
Collapse
|
3
|
Wei Y, Zhen J, Hu L, Gu Y, Liu Y, Guo X, Yang Z, Zheng H, Cheng S, Wei F, Xiong L, Liu S. Genome-wide association studies of thyroid-related hormones, dysfunction, and autoimmunity among 85,421 Chinese pregnancies. Nat Commun 2024; 15:8004. [PMID: 39266554 PMCID: PMC11393459 DOI: 10.1038/s41467-024-52236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Maintaining normal thyroid function is crucial in pregnancy, yet thyroid dysfunction and the presence of thyroid peroxidase antibodies (TPOAb) affect 0.5% to 18% of pregnant women. Here, we conducted a genome-wide association study (GWAS) of eight thyroid traits, including two thyroid-related hormones, four thyroid dysfunctions, and two thyroid autoimmunity measurements among 85,421 Chinese pregnant women to investigate the genetic basis of thyroid function during pregnancy. Our study identified 176 genetic loci, including 125 previously unknown genome-wide associations. Joint epidemiological and Mendelian randomization analyses revealed significant associations between the gestational thyroid phenotypes and gestational complications, birth outcomes, and later-age health outcomes. Specifically, genetically elevated thyroid-stimulating hormone (TSH) levels during pregnancy correlated with lower glycemic levels, reduced blood pressure, and longer gestational duration. Additionally, TPOAb and thyroid functions during pregnancy share genetic correlations with later-age thyroid and cardiac disorders. These findings provide insights into the genetic determinants of thyroid traits during pregnancy, which may lead to new therapeutics, early pre-diagnosis and preventive strategies starting from early adulthood.
Collapse
Affiliation(s)
- Yuandan Wei
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Central Laboratory, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, 518102, China
| | - Jianxin Zhen
- Central Laboratory, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, 518102, China
| | - Liang Hu
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, 518172, China
| | - Yuqin Gu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yanhong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xinxin Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijing Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hao Zheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Shiyao Cheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Fengxiang Wei
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, 518172, China.
| | - Likuan Xiong
- Central Laboratory, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, 518102, China.
- Shenzhen Key Laboratory of Birth Defects Research, Shenzhen, Guangdong, 518102, China.
| | - Siyang Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Guangdong, 518107, China.
| |
Collapse
|
4
|
Strosahl J, Ye K, Pazdro R. Novel insights into the pleiotropic health effects of growth differentiation factor 11 gained from genome-wide association studies in population biobanks. BMC Genomics 2024; 25:837. [PMID: 39237910 PMCID: PMC11378601 DOI: 10.1186/s12864-024-10710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β (TGF-β) superfamily that has gained considerable attention over the last decade for its observed ability to reverse age-related deterioration of multiple tissues, including the heart. Yet as many researchers have struggled to confirm the cardioprotective and anti-aging effects of GDF11, the topic has grown increasingly controversial, and the field has reached an impasse. We postulated that a clearer understanding of GDF11 could be gained by investigating its health effects at the population level. METHODS AND RESULTS We employed a comprehensive strategy to interrogate results from genome-wide association studies in population Biobanks. Interestingly, phenome-wide association studies (PheWAS) of GDF11 tissue-specific cis-eQTLs revealed associations with asthma, immune function, lung function, and thyroid phenotypes. Furthermore, PheWAS of GDF11 genetic variants confirmed these results, revealing similar associations with asthma, immune function, lung function, and thyroid health. To complement these findings, we mined results from transcriptome-wide association studies, which uncovered associations between predicted tissue-specific GDF11 expression and the same health effects identified from PheWAS analyses. CONCLUSIONS In this study, we report novel relationships between GDF11 and disease, namely asthma and hypothyroidism, in contrast to its formerly assumed role as a rejuvenating factor in basic aging and cardiovascular health. We propose that these associations are mediated through the involvement of GDF11 in inflammatory signaling pathways. Taken together, these findings provide new insights into the health effects of GDF11 at the population level and warrant future studies investigating the role of GDF11 in these specific health conditions.
Collapse
Affiliation(s)
- Jessica Strosahl
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Bushra H, Rashid M. Clearing the Skepticism about Subclinical Hypothyroidism: Is It Beneficial to Treat Patients with Thyroid-Stimulating Hormone >4.5 and <10 mIU/L? Avicenna J Med 2024; 14:137-145. [PMID: 39584162 PMCID: PMC11581835 DOI: 10.1055/s-0044-1788040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Subclinical hypothyroidism (SCH) is a heterogeneous clinical condition ranging from asymptomatic to wide variety of clinical manifestations, which are often nonspecific. Being a common laboratory finding, clinicians often face the dilemma of whether to treat or not. Threshold of 10 mIU/L of thyroid-stimulating hormone (TSH) is often used as a cutoff limit to offer treatment. However, still, debate remains on whether to treat less than 10 mIU/L considering special clinical conditions like pregnancy. Whether SCH exists, is screening needed in asymptomatic individuals, is treating asymptomatic cases beneficial or harmful and what threshold level of TSH to be considered for treatment are all potential questions that need to be answered.
Collapse
Affiliation(s)
- Hafsa Bushra
- Department of Internal Medicine, Royal Commission Hospital Jubail, Jubail, Saudi Arabia
| | - Murtaza Rashid
- Department of Emergency Medicine, Royal Commission Hospital Jubail, Jubail, Saudi Arabia
| |
Collapse
|
6
|
Zadeh-Vakili A, Najd-Hassan-Bonab L, Akbarzadeh M, Abdi H, Zahedi AS, Azizi F, Daneshpour MS. Three candidate SNPs show associations with thyroid-stimulating hormone in euthyroid subjects: Tehran thyroid study. J Diabetes Metab Disord 2024; 23:1047-1055. [PMID: 38932823 PMCID: PMC11196493 DOI: 10.1007/s40200-023-01383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/23/2023] [Indexed: 06/28/2024]
Abstract
Objectives Previous studies have shown interindividual variation in free thyroxine (FT4) serum levels and thyroid stimulating hormone (TSH) in healthy persons. Genetic factors mainly determine this variation, and genome-wide association studies have increased the number of thyroid function-associated variants. The present study investigates the association of candidate variants with FT4 and TSH in a euthyroid Iranian population. Method A total of 2931 unrelated euthyroid subjects (FT4 10.29-21.88 pmol/L; TSH 0.32-10 mIU/L, thyroid peroxidase antibody TPOAb < 33 IU/mL in men and < 35 IU/mL in women), with available genotypes were chosen from the Tehran Thyroid Study (TTS), to examine the impact of selected SNPs on thyroid hormone under the additive genetic model. In order to evaluate regional associations with FT4 and TSH levels, a haplotype analysis was done. Results We identified a strong association between the rs4338740-C allele and TSH in the adjusted model (β = -0.095, P-value = 0.0004). Also, findings indicated that rs4954192 ACMSD and rs4445669 CADM1 correlated with normal TSH levels (P-value = 0.011, P-value = 0.014, respectively). Haplotype analysis revealed that two haplotypes were significantly associated with TSH levels in euthyroid individuals. The ACGA and AC haplotypes on chromosomes 8 and 14 were significantly correlated with normal TSH levels, respectively (P-value = 0.014, P-value = 0.016). Conclusions This is the first genetic association study with TSH and FT4 reference values in an Iranian population. Our findings indicate that a few gene variants associated with the reference values of TSH in other populations are also associated with the reference values of TSH in Iranians. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01383-2.
Collapse
Affiliation(s)
- Azita Zadeh-Vakili
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Najd-Hassan-Bonab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, IR Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, IR Iran
| | - Hengameh Abdi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asiyeh Sadat Zahedi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, IR Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S. Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, IR Iran
| |
Collapse
|
7
|
Yan Q, Blue NR, Truong B, Zhang Y, Guerrero RF, Liu N, Honigberg MC, Parry S, McNeil RB, Simhan HN, Chung J, Mercer BM, Grobman WA, Silver R, Greenland P, Saade GR, Reddy UM, Wapner RJ, Haas DM. Genetic Associations with Placental Proteins in Maternal Serum Identify Biomarkers for Hypertension in Pregnancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.25.23290460. [PMID: 37398343 PMCID: PMC10312829 DOI: 10.1101/2023.05.25.23290460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Preeclampsia is a complex syndrome that accounts for considerable maternal and perinatal morbidity and mortality. Despite its prevalence, no effective disease-modifying therapies are available. Maternal serum placenta-derived proteins have been in longstanding use as markers of risk for aneuploidy and placental dysfunction, but whether they have a causal contribution to preeclampsia is unknown. Objective We aimed to investigate the genetic regulation of serum placental proteins in early pregnancy and their potential causal links with preeclampsia and gestational hypertension. Study design This study used a nested case-control design with nulliparous women enrolled in the nuMoM2b study from eight clinical sites across the United States between 2010 and 2013. The first- and second-trimester serum samples were collected, and nine proteins were measured, including vascular endothelial growth factor (VEGF), placental growth factor, endoglin, soluble fms-like tyrosine kinase-1 (sFlt-1), a disintegrin and metalloproteinase domain-containing protein 12 (ADAM-12), pregnancy-associated plasma protein A, free beta-human chorionic gonadotropin, inhibin A, and alpha-fetoprotein. This study used genome-wide association studies to discern genetic influences on these protein levels, treating proteins as outcomes. Furthermore, Mendelian randomization was used to evaluate the causal effects of these proteins on preeclampsia and gestational hypertension, and their further causal relationship with long-term hypertension, treating proteins as exposures. Results A total of 2,352 participants were analyzed. We discovered significant associations between the pregnancy zone protein locus and concentrations of ADAM-12 (rs6487735, P= 3.03×10 -22 ), as well as between the vascular endothelial growth factor A locus and concentrations of both VEGF (rs6921438, P= 7.94×10 -30 ) and sFlt-1 (rs4349809, P= 2.89×10 -12 ). Our Mendelian randomization analyses suggested a potential causal association between first-trimester ADAM-12 levels and gestational hypertension (odds ratio=0.78, P= 8.6×10 -4 ). We also found evidence for a potential causal effect of preeclampsia (odds ratio=1.75, P =8.3×10 -3 ) and gestational hypertension (odds ratio=1.84, P =4.7×10 -3 ) during the index pregnancy on the onset of hypertension 2-7 years later. The additional mediation analysis indicated that the impact of ADAM-12 on postpartum hypertension could be explained in part by its indirect effect through gestational hypertension (mediated effect=-0.15, P= 0.03). Conclusions Our study discovered significant genetic associations with placental proteins ADAM-12, VEGF, and sFlt-1, offering insights into their regulation during pregnancy. Mendelian randomization analyses demonstrated evidence of potential causal relationships between the serum levels of placental proteins, particularly ADAM-12, and gestational hypertension, potentially informing future prevention and treatment investigations.
Collapse
|
8
|
Grasberger H, Dumitrescu AM, Liao XH, Swanson EG, Weiss RE, Srichomkwun P, Pappa T, Chen J, Yoshimura T, Hoffmann P, França MM, Tagett R, Onigata K, Costagliola S, Ranchalis J, Vollger MR, Stergachis AB, Chong JX, Bamshad MJ, Smits G, Vassart G, Refetoff S. STR mutations on chromosome 15q cause thyrotropin resistance by activating a primate-specific enhancer of MIR7-2/MIR1179. Nat Genet 2024; 56:877-888. [PMID: 38714869 PMCID: PMC11472772 DOI: 10.1038/s41588-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/14/2024] [Indexed: 05/22/2024]
Abstract
Thyrotropin (TSH) is the master regulator of thyroid gland growth and function. Resistance to TSH (RTSH) describes conditions with reduced sensitivity to TSH. Dominantly inherited RTSH has been linked to a locus on chromosome 15q, but its genetic basis has remained elusive. Here we show that non-coding mutations in a (TTTG)4 short tandem repeat (STR) underlie dominantly inherited RTSH in all 82 affected participants from 12 unrelated families. The STR is contained in a primate-specific Alu retrotransposon with thyroid-specific cis-regulatory chromatin features. Fiber-seq and RNA-seq studies revealed that the mutant STR activates a thyroid-specific enhancer cluster, leading to haplotype-specific upregulation of the bicistronic MIR7-2/MIR1179 locus 35 kb downstream and overexpression of its microRNA products in the participants' thyrocytes. An imbalance in signaling pathways targeted by these micro-RNAs provides a working model for this cause of RTSH. This finding broadens our current knowledge of genetic defects altering pituitary-thyroid feedback regulation.
Collapse
Affiliation(s)
- Helmut Grasberger
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra M Dumitrescu
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Elliott G Swanson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Roy E Weiss
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Theodora Pappa
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Junfeng Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Phillip Hoffmann
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Rebecca Tagett
- Michigan Medicine BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | | | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mitchell R Vollger
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Jessica X Chong
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Center of Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, and Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
- Committee on Genetics, The University of Chicago, Chicago, IL, USA.
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Wen X, You H, Wei L, Guo J, Su L, Wang L, Zhang M, Sun H, Chen H, Bu L, Qu S. Correlation Between Impaired Sensitivity to Thyroid Hormones and Serum Uric Acid in Female Patients With Obesity and After Laparoscopic Sleeve Gastrectomy. Endocr Pract 2024; 30:417-423. [PMID: 38479647 DOI: 10.1016/j.eprac.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE An alterable risk factor for hyperuricemia is obesity. Additionally, obese people may have a moderate form of acquired resistance to thyroid hormones. Thyrotropin, thyroid hormones, and obesity all interact subtly. However, the connection between thyroid hormone sensitivity and hyperuricemia in obese patients both before and after laparoscopic sleeve gastrectomy (LSG) has not yet been clarified. The objective of our study was to investigate the connection between impaired thyroid hormone sensitivity and elevated uric acid (UA) levels before and after LSG. METHODS In total, 1054 euthyroid patients with obesity (481 males, 573 females), 248 (143 female patients) of whom underwent subsequent LSG, were enrolled in this retrospective study. Anthropometric measurements and thyroid hormone and UA levels were taken before and 3 months after LSG. RESULTS Female patients with obesity with impaired sensitivity to thyroid hormones had higher UA levels (P for trend <.01). The odds ratio of the fourth vs first quartile of thyroid feedback quantile index, thyrotropin index, and thyrotropin-thyroxine resistance index were 4.285 (confidence interval: 1.360-13.507), 3.700 (confidence interval: 1.276-10.729), and 2.839 (confidence interval: 1.014-7.948), respectively, with robust relationships with female hyperuricemia (all P < .05). However, there was only a positive correlation between the decline in UA levels and thyroid feedback quantile index, thyrotropin, and thyrotropin-thyroxine resistance index in female patients following LSG. CONCLUSION Female hyperuricemia is correlated with higher thyroid hormone resistance index scores. Resistance to thyroid hormones was greatly improved by LSG. The decrease in UA levels after surgery is correlated with the improvement of thyroid hormone resistance after LSG.
Collapse
Affiliation(s)
- Xin Wen
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui You
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Wei
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junwei Guo
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lili Su
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Wang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Manna Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hang Sun
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Le Bu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Narumi S, Nagasaki K, Kiriya M, Uehara E, Akiba K, Tanase-Nakao K, Shimura K, Abe K, Sugisawa C, Ishii T, Miyako K, Hasegawa Y, Maruo Y, Muroya K, Watanabe N, Nishihara E, Ito Y, Kogai T, Kameyama K, Nakabayashi K, Hata K, Fukami M, Shima H, Kikuchi A, Takayama J, Tamiya G, Hasegawa T. Functional variants in a TTTG microsatellite on 15q26.1 cause familial nonautoimmune thyroid abnormalities. Nat Genet 2024; 56:869-876. [PMID: 38714868 PMCID: PMC11096107 DOI: 10.1038/s41588-024-01735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
Insufficient thyroid hormone production in newborns is referred to as congenital hypothyroidism. Multinodular goiter (MNG), characterized by an enlarged thyroid gland with multiple nodules, is usually seen in adults and is recognized as a separate disorder from congenital hypothyroidism. Here we performed a linkage analysis of a family with both nongoitrous congenital hypothyroidism and MNG and identified a signal at 15q26.1. Follow-up analyses with whole-genome sequencing and genetic screening in congenital hypothyroidism and MNG cohorts showed that changes in a noncoding TTTG microsatellite on 15q26.1 were frequently observed in congenital hypothyroidism (137 in 989) and MNG (3 in 33) compared with controls (3 in 38,722). Characterization of the noncoding variants with epigenomic data and in vitro experiments suggested that the microsatellite is located in a thyroid-specific transcriptional repressor, and its activity is disrupted by the variants. Collectively, we presented genetic evidence linking nongoitrous congenital hypothyroidism and MNG, providing unique insights into thyroid abnormalities.
Collapse
Affiliation(s)
- Satoshi Narumi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Erika Uehara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhisa Akiba
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Kanako Tanase-Nakao
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiro Shimura
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kiyomi Abe
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Chiho Sugisawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Internal Medicine, Ito Hospital, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenichi Miyako
- Department of Endocrinology and Metabolism, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama, Japan
| | | | - Eijun Nishihara
- Center for Excellence in Thyroid Care, Kuma Hospital, Kobe, Japan
| | - Yuka Ito
- Department of Genetic Diagnosis and Laboratory Medicine, Dokkyo Medical University, Mibu, Japan
| | - Takahiko Kogai
- Department of Genetic Diagnosis and Laboratory Medicine, Dokkyo Medical University, Mibu, Japan
| | - Kaori Kameyama
- Department of Pathology, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohito Shima
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Takayama
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization (ToMMo) Tohoku University, Sendai, Japan
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Gen Tamiya
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization (ToMMo) Tohoku University, Sendai, Japan
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Oliveira JM, Zenzeluk J, Serrano-Nascimento C, Romano MA, Romano RM. A System Biology Approach Reveals New Targets for Human Thyroid Gland Toxicity in Embryos and Adult Individuals. Metabolites 2024; 14:226. [PMID: 38668354 PMCID: PMC11052307 DOI: 10.3390/metabo14040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Compounds of natural or synthetic origin present in personal care products, food additives, and packaging may interfere with hormonal regulation and are called endocrine-disrupting chemicals (EDCs). The thyroid gland is an important target of these compounds. The objective of this study was to analyze public data on the human thyroid transcriptome and investigate potential new targets of EDCs in the embryonic and adult thyroid glands. We compared the public transcriptome data of adult and embryonic human thyroid glands and selected 100 up- or downregulated genes that were subsequently subjected to functional enrichment analysis. In the embryonic thyroid, the most highly expressed gene was PRMT6, which methylates arginine-4 of histone H2A (86.21%), and the downregulated clusters included plasma lipoprotein particles (39.24%) and endopeptidase inhibitory activity (24.05%). For the adult thyroid gland, the most highly expressed genes were related to the following categories: metallothionein-binding metals (56.67%), steroid hormone biosynthetic process (16.67%), and cellular response to vascular endothelial growth factor stimulus (6.67%). Several compounds ranging from antihypertensive drugs to enzyme inhibitors were identified as potentially harmful to thyroid gland development and adult function.
Collapse
Affiliation(s)
- Jeane Maria Oliveira
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| | - Jamilli Zenzeluk
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| | - Caroline Serrano-Nascimento
- Institute of Environmental, Chemical and Pharmaceutical Sciences (ICAQF), Department of Biological Sciences, Federal University of São Paulo (UNIFESP), Rua Professor Arthur Riedel, 275, Diadema 09972-270, SP, Brazil;
- Department of Medicine, Laboratory of Molecular and Translational Endocrinology Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo, 669-11º andar-L11E, São Paulo 04039-032, SP, Brazil
| | - Marco Aurelio Romano
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| | - Renata Marino Romano
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| |
Collapse
|
12
|
Wang M, Lu X, Zheng X, Zhu X, Liu J. Associations among thyroid hormone levels and mean corpuscular volume in adults in the US: A cross-sectional examination of the NHANES 2007-2012 dataset. Medicine (Baltimore) 2024; 103:e37350. [PMID: 38457537 PMCID: PMC10919465 DOI: 10.1097/md.0000000000037350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 03/10/2024] Open
Abstract
Mean corpuscular volume (MCV) is an important indicator used to determine the etiology of anemia and is associated with a variety of diseases. However, the link between thyroid function and MCV has yet to be clarified. This study was thus developed to assess relationships between thyroid function and MCV in a population of adults in the US. Results from the National Health and Nutrition Examination Survey study performed from 2007 to 2012 were used to conduct a cross-sectional analysis. Key thyroid-related variables included in this analysis were thyroid-stimulating hormone, total thyroxine (TT4), free triiodothyronine (FT3), total triiodothyronine (TT3), free thyroxine (FT4), antithyroglobulin, thyroglobulin, and antithyroid peroxidase levels. Generalized linear regression models were employed when estimating associations between MCV quartiles and thyroid parameters in 8104 adults 18 + years of age. In these participants, the weighted mean (SD) MCV was 89.36 (0.16) fL, with thyroid-stimulating hormone levels of 1.86 (0.03) mIU/mL, FT3 levels of 3.20 (0.01) pg/mL, FT4 levels of 0.80 (0.01) ng/dL, TT3 levels of 115.09 (0.64) ng/dL, and TT4 levels of 7.81 (0.04) μg/dL. When analyses were not adjusted, higher MCV values were related to reduced serum levels of FT3, TT3, or TT4. Following adjustment for possible confounding variables, this significant negative correlation between MCV and levels of FT3, TT3, and TT4 remained, and subgroup analysis revealed that this negative correlation was present in the male group and in the age group >50 years, but not in the female group and in the age group less than or equal to 50 years. These results suggest a significant negative correlation between MCV and FT3, TT3, and TT4, and this negative correlation originated more from the male population and those older than 50 years of age. The underlying mechanisms warrant additional investigation.
Collapse
Affiliation(s)
- Mingzheng Wang
- Department of Breast and Thyroid, Jinhua Central Hospital, Jinhua, China
| | - Xiaofeng Lu
- Department of Breast and Thyroid, Jinhua Central Hospital, Jinhua, China
| | - Xiaogang Zheng
- Department of Breast and Thyroid, Jinhua Central Hospital, Jinhua, China
| | - Xiaotao Zhu
- Department of Breast and Thyroid, Jinhua Central Hospital, Jinhua, China
| | - Junru Liu
- Department of Endocrinology and Metabolism, Jinhua People’s Hospital, Jinhua, China
| |
Collapse
|
13
|
Bertotto LB, Lampson-Stixrud D, Sinha A, Rohani NK, Myer I, Zorrilla EP. Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats. Cells 2024; 13:321. [PMID: 38391934 PMCID: PMC10886814 DOI: 10.3390/cells13040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior. We hypothesized that inhibiting phosphodiesterase 10A (PDE10A), enriched in striatal MSNs, would reduce EtOH self-administration in rats with a history of chronic intermittent ethanol exposure. To test this, Wistar rats (n = 10/sex) with a history of chronic intermittent EtOH (CIE) vapor exposure received MR1916 (i.p., 0, 0.05, 0.1, 0.2, and 0.4 µmol/kg), a PDE10A inhibitor, before operant EtOH self-administration sessions. We determined whether MR1916 altered the expression of MSN markers (Pde10a, Drd1, Drd2, Penk, and Tac1) and immediate-early genes (IEG) (Fos, Fosb, ΔFosb, and Egr1) in EtOH-naïve (n = 5-6/grp) and post-CIE (n = 6-8/grp) rats. MR1916 reduced the EtOH self-administration of high-drinking, post-CIE males, but increased it at a low, but not higher, doses, in females and low-drinking males. MR1916 increased Egr1, Fos, and FosB in the DLS, modulated by sex and alcohol history. MR1916 elicited dMSN vs. iMSN markers differently in ethanol-naïve vs. post-CIE rats. High-drinking, post-CIE males showed higher DLS Drd1 and VMS IEG expression. Our results implicate a role and potential striatal bases of PDE10A inhibitors to influence post-dependent drinking.
Collapse
Affiliation(s)
| | | | | | | | | | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.B.B.); (D.L.-S.); (A.S.); (N.K.R.); (I.M.)
| |
Collapse
|
14
|
Kang HS, Grimm SA, Liao XH, Jetten AM. GLIS3 expression in the thyroid gland in relation to TSH signaling and regulation of gene expression. Cell Mol Life Sci 2024; 81:65. [PMID: 38281222 PMCID: PMC10822819 DOI: 10.1007/s00018-024-05113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time at which GLIS3 target genes, such as Slc5a5 (Nis), become expressed. This, together with observations showing that ubiquitous Glis3KO mice do not display major changes in prenatal thyroid gland morphology, indicated that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of GLIS3 in postnatal thyroid suggested a link between GLIS3 protein expression and blood TSH levels. This was supported by data showing that treatment with TSH, cAMP, or adenylyl cyclase activators or expression of constitutively active PKA enhanced GLIS3 protein stability and transcriptional activity, indicating that GLIS3 activity is regulated at least in part by TSH/TSHR-mediated activation of PKA. The TSH-dependent increase in GLIS3 transcriptional activity would be critical for the induction of GLIS3 target gene expression, including several thyroid hormone (TH) biosynthetic genes, in thyroid follicular cells of mice fed a low iodine diet (LID) when blood TSH levels are highly elevated. Like TH biosynthetic genes, the expression of cell cycle genes is suppressed in ubiquitous Glis3KO mice fed a LID; however, in thyroid-specific Glis3 knockout mice, the expression of cell cycle genes was not repressed, in contrast to TH biosynthetic genes. This indicated that the inhibition of cell cycle genes in ubiquitous Glis3KO mice is dependent on changes in gene expression in GLIS3 target tissues other than the thyroid.
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, Research Triangle Park, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
15
|
Tian Z, Li X, Yu X, Yan S, Sun J, Ma W, Zhu X, Tang Y. The role of primary cilia in thyroid diseases. Front Endocrinol (Lausanne) 2024; 14:1306550. [PMID: 38260150 PMCID: PMC10801159 DOI: 10.3389/fendo.2023.1306550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Primary cilia (PC) are non-motile and microtube-based organelles protruding from the surface of almost all thyroid follicle cells. They maintain homeostasis in thyrocytes and loss of PC can result in diverse thyroid diseases. The dysfunction of structure and function of PC are found in many patients with common thyroid diseases. The alterations are associated with the cause, development, and recovery of the diseases and are regulated by PC-mediated signals. Restoring normal PC structure and function in thyrocytes is a promising therapeutic strategy to treat thyroid diseases. This review explores the function of PC in normal thyroid glands. It summarizes the pathology caused by PC alterations in thyroid cancer (TC), autoimmune thyroid diseases (AITD), hypothyroidism, and thyroid nodules (TN) to provide comprehensive references for further study.
Collapse
Affiliation(s)
- Zijiao Tian
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xinlin Li
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Shuxin Yan
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Sun
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Wenxin Ma
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Tang
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Abstract
Thyroid hormones have vital roles in development, growth and energy metabolism. Within the past two decades, disturbances in thyroid hormone action have been implicated in ageing and the development of age-related diseases. This Review will consider results from biomedical studies that have identified the importance of precise temporospatial regulation of thyroid hormone action for local tissue maintenance and repair. Age-related disturbances in the maintenance of tissue homeostasis are thought to be important drivers of age-related disease. In most iodine-proficient human populations without thyroid disease, the mean, median and 97.5 centile for circulating concentrations of thyroid-stimulating hormone are progressively higher in adults over 80 years of age compared with middle-aged (50-59 years) and younger (20-29 years) adults. This trend has been shown to extend into advanced ages (over 100 years). Here, potential causes and consequences of the altered thyroid status observed in old age and its association with longevity will be discussed. In about 5-20% of adults at least 65 years of age, thyroid-stimulating hormone concentrations are elevated but circulating concentrations of thyroid hormone are within the population reference range, a condition referred to as subclinical hypothyroidism. Results from randomized clinical trials that have tested the clinical benefit of thyroid hormone replacement therapy in older adults with mild subclinical hypothyroidism will be discussed, as well as the implications of these findings for screening and treatment of subclinical hypothyroidism in older adults.
Collapse
Affiliation(s)
- Diana van Heemst
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
17
|
Lucotte EA, Asgari Y, Sugier PE, Karimi M, Domenighetti C, Lesueur F, Boland-Augé A, Ostroumova E, de Vathaire F, Zidane M, Guénel P, Deleuze JF, Boutron-Ruault MC, Severi G, Liquet B, Truong T. Investigation of common genetic risk factors between thyroid traits and breast cancer. Hum Mol Genet 2023; 33:38-47. [PMID: 37740403 PMCID: PMC10729861 DOI: 10.1093/hmg/ddad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Breast cancer (BC) risk is suspected to be linked to thyroid disorders, however observational studies exploring the association between BC and thyroid disorders gave conflicting results. We proposed an alternative approach by investigating the shared genetic risk factors between BC and several thyroid traits. We report a positive genetic correlation between BC and thyroxine (FT4) levels (corr = 0.13, p-value = 2.0 × 10-4) and a negative genetic correlation between BC and thyroid-stimulating hormone (TSH) levels (corr = -0.09, p-value = 0.03). These associations are more striking when restricting the analysis to estrogen receptor-positive BC. Moreover, the polygenic risk scores (PRS) for FT4 and hyperthyroidism are positively associated to BC risk (OR = 1.07, 95%CI: 1.00-1.13, p-value = 2.8 × 10-2 and OR = 1.04, 95%CI: 1.00-1.08, p-value = 3.8 × 10-2, respectively), while the PRS for TSH is inversely associated to BC risk (OR = 0.93, 95%CI: 0.89-0.97, p-value = 2.0 × 10-3). Using the PLACO method, we detected 49 loci associated to both BC and thyroid traits (p-value < 5 × 10-8), in the vicinity of 130 genes. An additional colocalization and gene-set enrichment analyses showed a convincing causal role for a known pleiotropic locus at 2q35 and revealed an additional one at 8q22.1 associated to both BC and thyroid cancer. We also found two new pleiotropic loci at 14q32.33 and 17q21.31 that were associated to both TSH levels and BC risk. Enrichment analyses and evidence of regulatory signals also highlighted brain tissues and immune system as candidates for obtaining associations between BC and TSH levels. Overall, our study sheds light on the complex interplay between BC and thyroid traits and provides evidence of shared genetic risk between those conditions.
Collapse
Affiliation(s)
- Elise A Lucotte
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Yazdan Asgari
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Pierre-Emmanuel Sugier
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
- Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA, 64013 Pau, France
| | - Mojgan Karimi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Cloé Domenighetti
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, 75006 Paris, France
| | - Anne Boland-Augé
- National Centre of Human Genomics Research, François Jacob Institute of Biology, Commissariat à l’Energie Atomique, Paris-Saclay University, 91000 Evry, France
| | | | - Florent de Vathaire
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team of Epidemiology of radiations, 94807 Villejuif, France
| | - Monia Zidane
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team of Epidemiology of radiations, 94807 Villejuif, France
| | - Pascal Guénel
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Jean-François Deleuze
- National Centre of Human Genomics Research, François Jacob Institute of Biology, Commissariat à l’Energie Atomique, Paris-Saclay University, 91000 Evry, France
| | | | - Gianluca Severi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
- Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, 50121 Florence, Italy
| | - Benoît Liquet
- Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA, 64013 Pau, France
- School of Mathematical and Physical Sciences, Macquarie University, 2109 Sydney, Australia
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| |
Collapse
|
18
|
Nethander M, Movérare-Skrtic S, Kämpe A, Coward E, Reimann E, Grahnemo L, Borbély É, Helyes Z, Funck-Brentano T, Cohen-Solal M, Tuukkanen J, Koskela A, Wu J, Li L, Lu T, Gabrielsen ME, Mägi R, Hoff M, Lerner UH, Henning P, Ullum H, Erikstrup C, Brunak S, Langhammer A, Tuomi T, Oddsson A, Stefansson K, Pettersson-Kymmer U, Ostrowski SR, Pedersen OBV, Styrkarsdottir U, Mäkitie O, Hveem K, Richards JB, Ohlsson C. An atlas of genetic determinants of forearm fracture. Nat Genet 2023; 55:1820-1830. [PMID: 37919453 PMCID: PMC10632131 DOI: 10.1038/s41588-023-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.
Collapse
Grants
- Wellcome Trust
- IngaBritt och Arne Lundbergs Forskningsstiftelse (Ingabritt and Arne Lundberg Research Foundation)
- Novo Nordisk Fonden (Novo Nordisk Foundation)
- Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
- the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-720331 and ALFGBG-965235)
- the Hungarian Brain research Program 3.0, Hungarian National Research, Development and Innovation Office (OTKA K- 138046, OTKA FK-137951, TKP2021-EGA-16), New National Excellence Program of the Ministry for Innovation and Technology (ÚNKP-22-5-PTE-1447), János Bolyai János Scholarship (BO/00496/21/5) of the Hungarian Academy of Sciences, Eotvos Lorad Research Network, National Laboratory for Drug Research and Development.
- Vetenskapsrådet (Swedish Research Council)
- Svenska Läkaresällskapet (Swedish Society of Medicine)
- Kempestiftelserna (Kempe Foundations)
- the Swedish Sports Research Council (87/06) the Medical Faculty of Umeå University (ALFVLL:968:22-2005, ALFVLL: 937-2006, ALFVLL:223:11-2007, ALFVLL:78151-2009) the county council of Västerbotten (Spjutspetsanslag VLL:159:33-2007)
Collapse
Affiliation(s)
- Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Eivind Coward
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ene Reimann
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Eotvos Lorand Research Network, Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - Thomas Funck-Brentano
- BIOSCAR UMRS 1132, Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France
| | - Martine Cohen-Solal
- BIOSCAR UMRS 1132, Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Antti Koskela
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Jianyao Wu
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lei Li
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mari Hoff
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Rheumatology, St Olavs Hospital, Trondheim, Norway
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kari Stefansson
- deCODE genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen Hospital Biobank Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koege, Denmark
| | | | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, and Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden.
| |
Collapse
|
19
|
Williams AT, Chen J, Coley K, Batini C, Izquierdo A, Packer R, Abner E, Kanoni S, Shepherd DJ, Free RC, Hollox EJ, Brunskill NJ, Ntalla I, Reeve N, Brightling CE, Venn L, Adams E, Bee C, Wallace SE, Pareek M, Hansell AL, Esko T, Stow D, Jacobs BM, van Heel DA, Hennah W, Rao BS, Dudbridge F, Wain LV, Shrine N, Tobin MD, John C. Genome-wide association study of thyroid-stimulating hormone highlights new genes, pathways and associations with thyroid disease. Nat Commun 2023; 14:6713. [PMID: 37872160 PMCID: PMC10593800 DOI: 10.1038/s41467-023-42284-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Thyroid hormones play a critical role in regulation of multiple physiological functions and thyroid dysfunction is associated with substantial morbidity. Here, we use electronic health records to undertake a genome-wide association study of thyroid-stimulating hormone (TSH) levels, with a total sample size of 247,107. We identify 158 novel genetic associations, more than doubling the number of known associations with TSH, and implicate 112 putative causal genes, of which 76 are not previously implicated. A polygenic score for TSH is associated with TSH levels in African, South Asian, East Asian, Middle Eastern and admixed American ancestries, and associated with hypothyroidism and other thyroid disease in South Asians. In Europeans, the TSH polygenic score is associated with thyroid disease, including thyroid cancer and age-of-onset of hypothyroidism and hyperthyroidism. We develop pathway-specific genetic risk scores for TSH levels and use these in phenome-wide association studies to identify potential consequences of pathway perturbation. Together, these findings demonstrate the potential utility of genetic associations to inform future therapeutics and risk prediction for thyroid diseases.
Collapse
Affiliation(s)
- Alexander T Williams
- Department of Population Health Sciences, University of Leicester, Leicester, UK.
| | - Jing Chen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Kayesha Coley
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Chiara Batini
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Abril Izquierdo
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Richard Packer
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David J Shepherd
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Robert C Free
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Nigel J Brunskill
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Ioanna Ntalla
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Nicola Reeve
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Christopher E Brightling
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester, UK
| | - Laura Venn
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Emma Adams
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Catherine Bee
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Susan E Wallace
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Manish Pareek
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Anna L Hansell
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Daniel Stow
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Benjamin M Jacobs
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - William Hennah
- Orion Pharma, Espoo, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Frank Dudbridge
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Nick Shrine
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Martin D Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Catherine John
- Department of Population Health Sciences, University of Leicester, Leicester, UK.
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK.
| |
Collapse
|
20
|
Biondi B, Celi FS, McAninch EA. Critical Approach to Hypothyroid Patients With Persistent Symptoms. J Clin Endocrinol Metab 2023; 108:2708-2716. [PMID: 37071856 PMCID: PMC10686697 DOI: 10.1210/clinem/dgad224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
Hypothyroidism is a common condition, and numerous studies have been published over the last decade to assess the potential risks associated with this disorder when inappropriately treated. The standard of care for treatment of hypothyroidism remains levothyroxine (LT4) at doses to achieve biochemical and clinical euthyroidism. However, about 15% of hypothyroid patients experience residual hypothyroid symptoms. Some population-based studies and international population-based surveys have confirmed dissatisfaction with LT4 treatment in some hypothyroid patients. It is well established that hypothyroid patients treated with LT4 exhibit higher serum thyroxine:triiodothyronine ratios and can have a persistent increase in cardiovascular risk factors. Moreover, variants in deiodinases and thyroid hormone transporter genes have been associated with subnormal T3 concentrations, persistent symptoms in LT4-treated patients, and improvement in response to the addition of liothyronine to LT4 therapy. The American (ATA) and European Thyroid Association (ETA) guidelines have recently evolved in their recognition of the potential limitations of LT4. This shift is reflected in prescribing patterns: Physicians' use of combination therapy is prevalent and possibly increasing. Randomized clinical trials have recently been published and, while they have found no improvement in treating hypothyroid patients, a number of important limitations did not allow generalizability. Meta-analyses have reported a preference rate for combination therapy in 46.2% hypothyroid patients treated with LT4. To promote discussions about an optimal study design, the ATA, ETA, and British Thyroid Association have recently published a consensus document. Our study provides a useful counterpoint on the controversial benefits of treating hypothyroid patients with combination therapy.
Collapse
Affiliation(s)
- Bernadette Biondi
- Division of Internal Medicine and Cardiovascular Endocrinology, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy
| | - Francesco S Celi
- Division of Endocrinology and Metabolism, Department of Medicine UConn Health, Farmington, CT 06030-8075, USA
| | - Elizabeth A McAninch
- Division of Endocrinology, Metabolism and Gerontology, Stanford University Medical Center, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Zamwar UM, Muneshwar KN. Epidemiology, Types, Causes, Clinical Presentation, Diagnosis, and Treatment of Hypothyroidism. Cureus 2023; 15:e46241. [PMID: 37908940 PMCID: PMC10613832 DOI: 10.7759/cureus.46241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Hypothyroidism means an underactive thyroid gland. This leads to a decrease in the functioning of the thyroid gland. It is a very common endocrine disorder that causes under-secretion of thyroid hormones, mainly thyroxine (T4) and triiodothyronine (T3). It affects people of every age group but is more commonly found in women and older people. The symptoms of hypothyroidism can go unnoticed, may not be specific, and may overlap with other conditions, which makes it harder to diagnose it in some cases. Common symptoms include fatigue, weight gain, increased sensitivity to cold (cold intolerance), irregular bowel movements (constipation), and dry skin (xeroderma). These conditions are mostly the result of a low metabolic rate in the body. Weight gain occurs due to a decrease in fat-burning rate and cold intolerance due to a decrease in heat production by the body. This condition can be caused by a variety of factors, including autoimmune diseases, radiation therapy, thyroid gland removal surgeries, and certain medications. The diagnosis of hypothyroidism is based on laboratory tests that measure the levels of thyroid hormones (T3 and T4) in the blood. Treatment typically involves lifelong hormone replacement therapy with synthetic thyroid hormone replacement medication, such as levothyroxine, to help regulate hormone levels in the body. People with hypothyroidism may need to have their medication dosage adjusted over time. If hypothyroidism is left untreated, it can lead to severe complications like mental retardation, delayed milestones, etc., in infants and heart failure, infertility, myxedema coma, etc., in adults. With appropriate treatment, the symptoms of hypothyroidism can be effectively managed, and most people with the condition can lead normal, healthy lives. Lifestyle modifications like eating healthy food and exercising regularly can help manage the symptoms and improve the quality of life.
Collapse
Affiliation(s)
- Udit M Zamwar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Komal N Muneshwar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
22
|
Kang HS, Grimm SA, Liao XH, Jetten AM. Role of GLIS3 in thyroid development and in the regulation of gene expression in thyroid specific Glis3KO mice. RESEARCH SQUARE 2023:rs.3.rs-3044388. [PMID: 37461635 PMCID: PMC10350233 DOI: 10.21203/rs.3.rs-3044388/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time when GLIS3 target genes, such as Slc5a5 (Nis), become also expressed. We further show that Glis3KO mice do not display any major changes in prenatal thyroid gland morphology indicating that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of thyroid-specific Glis3 knockout (Glis3-Pax8Cre) mice fed either a normal or low-iodine diet (ND or LID) revealed that, in contrast to ubiquitous Glis3KO mice, thyroid follicular cell proliferation and the expression of cell cycle genes were not repressed suggesting that the inhibition of thyroid follicular cell proliferation in ubiquitous Glis3KO mice is related to loss of GLIS3 function in other cell types. However, the expression of several thyroid hormone biosynthesis-, extracellular matrix (ECM)-, and inflammation-related genes was still suppressed in Glis3-Pax8Cre mice particularly under conditions of high blood levels of thyroid stimulating hormone (TSH). We further demonstrate that treatment with TSH, protein kinase A (PKA) or adenylyl cyclase activators or expression of constitutively active PKA enhances GLIS3 protein and activity, suggesting that GLIS3 transcriptional activity is regulated in part by TSH/TSHR-mediated activation of the PKA pathway. This mechanism of regulation provides an explanation for the dramatic increase in GLIS3 protein expression and the subsequent induction of GLIS3 target genes, including several thyroid hormone biosynthetic genes, in thyroid follicular cells of mice fed a LID.
Collapse
|
23
|
Causal Inference of Central Nervous System-Regulated Hormones in COVID-19: A Bidirectional Two-Sample Mendelian Randomization Study. J Clin Med 2023; 12:jcm12041681. [PMID: 36836216 PMCID: PMC9961400 DOI: 10.3390/jcm12041681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
We assessed the causal association of three COVID-19 phenotypes with insulin-like growth factor 1, estrogen, testosterone, dehydroepiandrosterone (DHEA), thyroid-stimulating hormone, thyrotropin-releasing hormone, luteinizing hormone (LH), and follicle-stimulating hormone. We used bidirectional two-sample univariate and multivariable Mendelian randomization (MR) analyses to evaluate the direction, specificity, and causality of the association between CNS-regulated hormones and COVID-19 phenotypes. Genetic instruments for CNS-regulated hormones were selected from the largest publicly available genome-wide association studies of the European population. Summary-level data on COVID-19 severity, hospitalization, and susceptibility were obtained from the COVID-19 host genetic initiative. DHEA was associated with increased risks of very severe respiratory syndrome (odds ratio [OR] = 4.21, 95% confidence interval [CI]: 1.41-12.59), consistent with multivariate MR results (OR = 3.72, 95% CI: 1.20-11.51), and hospitalization (OR = 2.31, 95% CI: 1.13-4.72) in univariate MR. LH was associated with very severe respiratory syndrome (OR = 0.83; 95% CI: 0.71-0.96) in univariate MR. Estrogen was negatively associated with very severe respiratory syndrome (OR = 0.09, 95% CI: 0.02-0.51), hospitalization (OR = 0.25, 95% CI: 0.08-0.78), and susceptibility (OR = 0.50, 95% CI: 0.28-0.89) in multivariate MR. We found strong evidence for the causal relationship of DHEA, LH, and estrogen with COVID-19 phenotypes.
Collapse
|
24
|
Tasnim S, Nyholt DR. Migraine and thyroid dysfunction: Co-occurrence, shared genes and biological mechanisms. Eur J Neurol 2023; 30:1815-1827. [PMID: 36807966 DOI: 10.1111/ene.15753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AND PURPOSE Migraine and thyroid dysfunction, particularly hypothyroidism, are common medical conditions and are known to have high heritability. Thyroid function measures, thyroid stimulating hormone (TSH) and free thyroxine (fT4), are also known to be genetically influenced. Although observational epidemiological studies report an increased co-occurrence of migraine and thyroid dysfunction, a clear and combined interpretation of the findings is currently lacking. A narrative review is provided of the epidemiological and genetic association evidence linking migraine, hypothyroidism, hyperthyroidism and thyroid hormones TSH and fT4. METHODS An extensive literature search was conducted in the PubMed database for epidemiological, candidate gene and genome-wide association studies using the terms migraine, headache, thyroid hormones, TSH, fT4, thyroid function, hypothyroidism and hyperthyroidism. RESULTS Epidemiological studies suggest a bidirectional relationship between migraine and thyroid dysfunction. However, the nature of the relationship remains unclear, with some studies suggesting migraine increases the risk for thyroid dysfunction whilst other studies suggest the reverse. Early candidate gene studies have provided nominal evidence for MTHFR and APOE, whilst more recently genome-wide association studies have provided robust evidence for THADA and ITPK1 being associated with both migraine and thyroid dysfunction. CONCLUSIONS These genetic associations improve our understanding of the genetic relationship between migraine and thyroid dysfunction, provide an opportunity to develop biomarkers to identify migraine patients most likely to benefit from thyroid hormone therapy, and indicate that further cross-trait genetic studies have excellent potential to provide biological insight into their relationship and inform clinical interventions.
Collapse
Affiliation(s)
- Sana Tasnim
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Kang HS, Grimm SA, Jothi R, Santisteban P, Jetten AM. GLIS3 regulates transcription of thyroid hormone biosynthetic genes in coordination with other thyroid transcription factors. Cell Biosci 2023; 13:32. [PMID: 36793061 PMCID: PMC9930322 DOI: 10.1186/s13578-023-00979-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Loss of the transcription factor GLI-Similar 3 (GLIS3) function causes congenital hypothyroidism (CH) in both humans and mice due to decreased expression of several thyroid hormone (TH) biosynthetic genes in thyroid follicular cells. Whether and to what extent, GLIS3 regulates thyroid gene transcription in coordination with other thyroid transcriptional factors (TFs), such as PAX8, NKX2.1 and FOXE1, is poorly understood. METHODS PAX8, NKX2.1, and FOXE1 ChIP-Seq analysis with mouse thyroid glands and rat thyrocyte PCCl3 cells was performed and compared to that of GLIS3 to analyze the co-regulation of gene transcription in thyroid follicular cells by these TFs. RESULTS Analysis of the PAX8, NKX2.1, and FOXE1 cistromes identified extensive overlaps between these TF binding loci and those of GLIS3 indicating that GLIS3 shares many of the same regulatory regions with PAX8, NKX2.1, and FOXE1, particularly in genes associated with TH biosynthesis, induced by thyroid stimulating hormone (TSH), and suppressed in Glis3KO thyroid glands, including Slc5a5 (Nis), Slc26a4, Cdh16, and Adm2. ChIP-QPCR analysis showed that loss of GLIS3 did not significantly affect PAX8 or NKX2.1 binding and did not cause major alterations in H3K4me3 and H3K27me3 epigenetic signals. CONCLUSIONS Our study indicates that GLIS3 regulates transcription of TH biosynthetic and TSH-inducible genes in thyroid follicular cells in coordination with PAX8, NKX2.1, and FOXE1 by binding within the same regulatory hub. GLIS3 does not cause major changes in chromatin structure at these common regulatory regions. GLIS3 may induce transcriptional activation by enhancing the interaction of these regulatory regions with other enhancers and/or RNA Polymerase II (Pol II) complexes.
Collapse
Affiliation(s)
- Hong Soon Kang
- grid.280664.e0000 0001 2110 5790Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709 USA
| | - Sara A. Grimm
- grid.280664.e0000 0001 2110 5790Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709 USA
| | - Raja Jothi
- grid.280664.e0000 0001 2110 5790Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709 USA
| | - Pilar Santisteban
- grid.5515.40000000119578126Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Anton M. Jetten
- grid.280664.e0000 0001 2110 5790Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709 USA
| |
Collapse
|
26
|
Drogge SC, Frank M, Girschik C, Jöckel KH, Führer-Sakel D, Schmidt B. Modification of TSH-related genetic effects by indicators of socioeconomic position. Endocr Connect 2023; 12:EC-22-0127. [PMID: 36547002 PMCID: PMC9874972 DOI: 10.1530/ec-22-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Thyroid-stimulating hormone (TSH) is influenced by genetic and environmental factors such as socioeconomic position (SEP). However, interactions between TSH-related genetic factors and indicators of SEP have not been investigated to date. The aim of the study was to determine whether education and income as SEP indicators may interact with TSH-related genetic effect allele sum scores (GESTSH_2013 and GESTSH_2020) based on two different GWAS meta-analyses that affect TSH values in a population-based study. METHODS In 4085 participants of the Heinz Nixdorf Recall Study associations between SEP indicators, GESTSH and TSH were quantified using sex- and age-adjusted linear regression models. Interactions between SEP indicators and GESTSH were assessed by GESTSH × SEP interaction terms, single reference joint effects and calculating genetic effects stratified by SEP group. RESULTS Participants within the highest education group showed the strongest genetic effect with on average 1.109-fold (95% CI: 1.067-1.155) higher TSH values per GESTSH_2013 SD, while in the lowest education group, the genetic effect was less strong (1.061-fold (95% CI: 1.022-1.103)). In linear regression models including interaction terms, some weak indication for a positive GESTSH_2013 by education interaction was observed showing an interaction effect size estimate of 1.005 (95% CI: 1.000-1.010) per year of education and GESTSH_2013 SD. No indication for interaction was observed for using income as SEP indicator. Using the GESTSH_2020, similar results were observed. CONCLUSION Our results gave some indication that education may affect the expression of TSH-related genetic effects. Stronger genetic effects in high-education groups may be explained by environmental factors that have an impact on gene expression and are more prevalent in high SEP groups.
Collapse
Affiliation(s)
- Sophie-Charlotte Drogge
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mirjam Frank
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carolin Girschik
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dagmar Führer-Sakel
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Correspondence should be addressed to B Schmidt:
| |
Collapse
|
27
|
Abstract
Genetic factors are involved in the etiology of most diseases, but prior to 2000, the methods for identifying such factors were very limited. Genome-wide association study (GWAS), developed in the 2000s, is an analytical method that can be applied to most diseases, including endocrine disorders. GWAS has provided a wealth of information on disease risks and the molecular pathogenesis of many human diseases. This review summarizes key findings from GWAS for thyroid physiology and diseases, and illustrates how GWAS is a powerful research tool to elucidate the molecular mechanisms of the diseases.
Collapse
Affiliation(s)
- Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
28
|
Xie T, Su M, Feng J, Pan X, Wang C, Tang T. The reference intervals for thyroid hormones: A four year investigation in Chinese population. Front Endocrinol (Lausanne) 2023; 13:1046381. [PMID: 36686466 PMCID: PMC9852975 DOI: 10.3389/fendo.2022.1046381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction The reference intervals (RIs) are of great importance for physicans to determine whether or not an individual is healthy. However, many clinical laboratories in China still adopted the default RI provided by the manufacturers; and these "uncalibrated" RIs might lead to the misdiagnosis of diseases. In the present study, we enroll reference people with the purpose of determining the RIs of serum triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4) and thyroid-stimulating hormone (TSH) in Chinese population, and explore the possible roles of age and sex on the levels of biomarkers. Methods Serum samples from 66,609 individuals who met the inclusion criteria were analyzed using an Roche Cobas E 601 hormone analyzer. The dynamic trends of biomarker were visually assessed by their concentrations over age and sex. Specific partitions were determined by the method of Harris and Boyd. RIs, corresponding to the 2.5th and 97.5th percentiles, as well as the 0.5th, 25th, 50th, 75th and 99.5th percentiles were calculated for each reference partition using a non-parametric rank approach. Results The serum level of T3, T4, FT4 or TSH showed a right-skewed distribution in both males and females while FT3 presented an approximate normal distribution. Females had a higher mode value of serum T3 or T4, but a lower mode value of serum TSH, FT3 or FT4. All five biomarkers did not need age partitioning according to the approach of harris and boyd, while T3 and FT3 need sex partitioning. Conclusions The present study not only determined the age- and sex-specific trends of the five thyroid hormones, but provided sex-stratified RIs for T3 and FT3, valuably contributing to the current literature and timely evaluation of thyroid health and disease.
Collapse
Affiliation(s)
- Tiancheng Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingchuan Su
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoying Pan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Grassi ES, Rurale G, de Filippis T, Gentilini D, Carbone E, Coscia F, Uraghi S, Bullock M, Clifton-Bligh RJ, Gupta AK, Persani L. The length of FOXE1 polyalanine tract in congenital hypothyroidism: Evidence for a pathogenic role from familial, molecular and cohort studies. Front Endocrinol (Lausanne) 2023; 14:1127312. [PMID: 37008944 PMCID: PMC10060985 DOI: 10.3389/fendo.2023.1127312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION FOXE1 is required for thyroid function and its homozygous mutations cause a rare syndromic form of congenital hypothyroidism (CH). FOXE1 has a polymorphic polyalanine tract whose involvement in thyroid pathology is controversial. Starting from genetic studies in a CH family, we explored the functional role and involvement of FOXE1 variations in a large CH population. METHODS We applied NGS screening to a large CH family and a cohort of 1752 individuals and validated these results by in silico modeling and in vitro experiments. RESULTS A new heterozygous FOXE1 variant segregated with 14-Alanine tract homozygosity in 5 CH siblings with athyreosis. The p.L107V variant demonstrated to significantly reduce the FOXE1 transcriptional activity. The 14-Alanine-FOXE1 displayed altered subcellular localization and significantly impaired synergy with other transcription factors, when compared with the more common 16-Alanine-FOXE1. The CH group with thyroid dysgenesis was largely and significantly enriched with the 14-Alanine-FOXE1 homozygosity. DISCUSSION We provide new evidence that disentangle the pathophysiological role of FOXE1 polyalanine tract, thereby significantly broadening the perspective on the role of FOXE1 in the complex pathogenesis of CH. FOXE1 should be therefore added to the group of polyalanine disease-associated transcription factors.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giuditta Rurale
- Laboratory of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Tiziana de Filippis
- Laboratory of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bioinformatics and Statistical Genomics Unit, Milano, Italy
| | - Erika Carbone
- Laboratory of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | | | - Sarah Uraghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Roderick J. Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Abhinav K. Gupta
- Department of Diabetes and Endocrine Sciences, CK Birla Hospitals, Jaipur, Rajasthan, India
| | - Luca Persani
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- *Correspondence: Luca Persani,
| |
Collapse
|
30
|
Yang J, Ding W, Wang H, Shi Y. Association Between Sensitivity to Thyroid Hormone Indices and Diabetic Retinopathy in Euthyroid Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:535-545. [PMID: 36874555 PMCID: PMC9984276 DOI: 10.2147/dmso.s399910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/27/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE Normal thyroid hormone (TH) levels and their relation to microvascular complications in patients with type 2 diabetes mellitus (T2DM) have been studied. However, the relationship between TH sensitivity and diabetic retinopathy (DR) remains unclear. Thus, this study aimed to investigate the relationship between TH sensitivity and the risk of DR in euthyroid T2DM patients. METHODS This retrospective study analyzed 422 T2DM patients and calculated their sensitivity to TH indices. Multivariable logistic regression, generalized additive model, and subgroup analysis were performed to examine the association between sensitivity to TH indices and DR risk. RESULTS After adjusting for covariates, the binary logistic regression model showed no statistically significant association between the sensitivity of TH indices and the risk of DR in euthyroid T2DM patients. However, a non-linear relationship was found between sensitivity to TH indices (thyroid-stimulating hormone index, thyroid feedback quantile index [TFQI]) and the risk of DR in the crude model; TFQI and DR in the adjusted model. The inflection point of the TFQI was 0.23. The effect size (odds ratio) on the left and right of the inflection point were 3.19 (95% confidence interval [CI]: 1.24 to 8.17 p=0.02) and 0.11 (95% CI: 0.01, 0.93 p=0.04), respectively. Moreover, this relationship was maintained by men stratified by sex. In euthyroid patients with T2DM, an approximate inverted U-shaped relationship and a threshold effect were demonstrated between TH index sensitivity and DR risk with sex differences. This study provided an in-depth understanding of the relationship between thyroid function and DR, which has important clinical implications for risk stratification and individual prediction.
Collapse
Affiliation(s)
- Jie Yang
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, People’s Republic of China
- Correspondence: Jie Yang, Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, People’s Republic of China, Email
| | - Wencui Ding
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, People’s Republic of China
| | - Haiying Wang
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, People’s Republic of China
| | - Yanan Shi
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, People’s Republic of China
| |
Collapse
|
31
|
Tasnim S, Wilson SG, Walsh JP, Nyholt DR. Cross-Trait Genetic Analyses Indicate Pleiotropy and Complex Causal Relationships between Headache and Thyroid Function Traits. Genes (Basel) 2022; 14:16. [PMID: 36672757 PMCID: PMC9858525 DOI: 10.3390/genes14010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have reported a comorbid relationship between headache and thyroid traits; however, little is known about the shared genetics and causality that contributes to this association. We investigated the genetic overlap and associations between headache and thyroid function traits using genome-wide association study (GWAS) data. We found a significant genetic correlation (rg) with headache and hypothyroidism (rg = 0.09, p = 2.00 × 10−4), free thyroxine (fT4) (rg = 0.08, p = 5.50 × 10−3), and hyperthyroidism (rg = −0.14, p = 1.80 × 10−3), a near significant genetic correlation with secondary hypothyroidism (rg = 0.20, p = 5.24 × 10−2), but not with thyroid stimulating hormone (TSH). Pairwise-GWAS analysis revealed six, 14, four and five shared (pleiotropic) loci with headache and hypothyroidism, hyperthyroidism, secondary hypothyroidism, and fT4, respectively. Cross-trait GWAS meta-analysis identified novel genome-wide significant loci for headache: five with hypothyroidism, three with secondary hypothyroidism, 12 with TSH, and nine with fT4. Of the genes at these loci, six (FAF1, TMX2-CTNND1, AARSD1, PLCD3, ZNF652, and C20orf203; headache-TSH) and six (HMGB1P45, RPL30P1, ZNF462, TMX2-CTNND1, ITPK1, SECISBP2L; headache-fT4) were significant in our gene-based analysis (pFisher’s combined p-value < 2.09 × 10−6). Our causal analysis suggested a positive causal relationship between headache and secondary hypothyroidism (p = 3.64 × 10−4). The results also suggest a positive causal relationship between hypothyroidism and headache (p = 2.45 × 10−3) and a negative causal relationship between hyperthyroidism and headache (p = 1.16 × 10−13). These findings suggest a strong evidence base for a genetic correlation and complex causal relationships between headache and thyroid traits.
Collapse
Affiliation(s)
- Sana Tasnim
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Scott G. Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Nedlands, WA 6009, Australia
| | - Dale R. Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
32
|
Nethander M, Coward E, Reimann E, Grahnemo L, Gabrielsen ME, Wibom C, Mägi R, Funck-Brentano T, Hoff M, Langhammer A, Pettersson-Kymmer U, Hveem K, Ohlsson C. Assessment of the genetic and clinical determinants of hip fracture risk: Genome-wide association and Mendelian randomization study. Cell Rep Med 2022; 3:100776. [PMID: 36260985 PMCID: PMC9589021 DOI: 10.1016/j.xcrm.2022.100776] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/07/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Hip fracture is the clinically most important fracture, but the genetic architecture of hip fracture is unclear. Here, we perform a large-scale hip fracture genome-wide association study meta-analysis and Mendelian randomization study using five cohorts from European biobanks. The results show that five genetic signals associate with hip fractures. Among these, one signal associates with falls, but not with bone mineral density (BMD), while four signals are in loci known to be involved in bone biology. Mendelian randomization analyses demonstrate a strong causal effect of decreased femoral neck BMD and moderate causal effects of Alzheimer's disease and having ever smoked regularly on risk of hip fractures. The substantial causal effect of decreased femoral neck BMD on hip fractures in both young and old subjects and in both men and women supports the use of change in femoral neck BMD as a surrogate outcome for hip fractures in clinical trials.
Collapse
Affiliation(s)
- Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Vita Stråket 11, 41345 Gothenburg, Sweden; Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eivind Coward
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ene Reimann
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Vita Stråket 11, 41345 Gothenburg, Sweden
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Carl Wibom
- Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Thomas Funck-Brentano
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Vita Stråket 11, 41345 Gothenburg, Sweden; Department of Rheumatology, Lariboisière Hospital, INSERM U1132, Université de Paris, Paris, France
| | - Mari Hoff
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Rheumatology, St Olavs Hospital, Trondheim, Norway
| | - Arnulf Langhammer
- HUNT Research Centre, Forskningsveien 2, 7600 Levanger, Norway"; Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | | | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway; HUNT Research Centre, Forskningsveien 2, 7600 Levanger, Norway"; Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Vita Stråket 11, 41345 Gothenburg, Sweden; Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
33
|
Luo L, Cai Y, Zhang Y, Hsu CG, Korshunov VA, Long X, Knight PA, Berk BC, Yan C. Role of PDE10A in vascular smooth muscle cell hyperplasia and pathological vascular remodelling. Cardiovasc Res 2022; 118:2703-2717. [PMID: 34550322 PMCID: PMC9890476 DOI: 10.1093/cvr/cvab304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS Intimal hyperplasia is a common feature of vascular remodelling disorders. Accumulation of synthetic smooth muscle cell (SMC)-like cells is the main underlying cause. Current therapeutic approaches including drug-eluting stents are not perfect due to the toxicity on endothelial cells and novel therapeutic strategies are needed. Our preliminary screening for dysregulated cyclic nucleotide phosphodiesterases (PDEs) in growing SMCs revealed the alteration of PDE10A expression. Herein, we investigated the function of PDE10A in SMC proliferation and intimal hyperplasia both in vitro and in vivo. METHODS AND RESULTS RT-qPCR, immunoblot, and in situ proximity ligation assay were performed to determine PDE10A expression in synthetic SMCs and injured vessels. We found that PDE10A mRNA and/or protein levels are up-regulated in cultured SMCs upon growth stimulation, as well as in intimal cells in injured mouse femoral arteries. To determine the cellular functions of PDE10A, we focused on its role in SMC proliferation. The anti-mitogenic effects of PDE10A on SMCs were evaluated via cell counting, BrdU incorporation, and flow cytometry. We found that PDE10A deficiency or inhibition arrested the SMC cell cycle at G1-phase with a reduction of cyclin D1. The anti-mitotic effect of PDE10A inhibition was dependent on cGMP-dependent protein kinase Iα (PKGIα), involving C-natriuretic peptide (CNP) and particulate guanylate cyclase natriuretic peptide receptor 2 (NPR2). In addition, the effects of genetic depletion and pharmacological inhibition of PDE10A on neointimal formation were examined in a mouse model of femoral artery wire injury. Both PDE10A knockout and inhibition decreased injury-induced intimal thickening in femoral arteries by at least 50%. Moreover, PDE10A inhibition decreased ex vivo remodelling of cultured human saphenous vein segments. CONCLUSIONS Our findings indicate that PDE10A contributes to SMC proliferation and intimal hyperplasia at least partially via antagonizing CNP/NPR2/cGMP/PKG1α signalling and suggest that PDE10A may be a novel drug target for treating vascular occlusive disease.
Collapse
Affiliation(s)
- Lingfeng Luo
- Department of Biochemistry and Biophysics, University of Rochester School
of Medicine and Dentistry, Rochester, NY,
USA
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Yujun Cai
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Yishuai Zhang
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Chia G Hsu
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Vyacheslav A Korshunov
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Xiaochun Long
- Department of Vascular Biology Center and Medicine, Medical College of
Georgia, Augusta, GA, USA
| | - Peter A Knight
- Department of Surgery, University of Rochester School of Medicine and
Dentistry, Rochester, NY, USA
| | - Bradford C Berk
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Chen Yan
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| |
Collapse
|
34
|
Khunsriraksakul C, Markus H, Olsen NJ, Carrel L, Jiang B, Liu DJ. Construction and Application of Polygenic Risk Scores in Autoimmune Diseases. Front Immunol 2022; 13:889296. [PMID: 35833142 PMCID: PMC9271862 DOI: 10.3389/fimmu.2022.889296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genetic variants associated with autoimmune diseases and provided unique mechanistic insights and informed novel treatments. These individual genetic variants on their own typically confer a small effect of disease risk with limited predictive power; however, when aggregated (e.g., via polygenic risk score method), they could provide meaningful risk predictions for a myriad of diseases. In this review, we describe the recent advances in GWAS for autoimmune diseases and the practical application of this knowledge to predict an individual’s susceptibility/severity for autoimmune diseases such as systemic lupus erythematosus (SLE) via the polygenic risk score method. We provide an overview of methods for deriving different polygenic risk scores and discuss the strategies to integrate additional information from correlated traits and diverse ancestries. We further advocate for the need to integrate clinical features (e.g., anti-nuclear antibody status) with genetic profiling to better identify patients at high risk of disease susceptibility/severity even before clinical signs or symptoms develop. We conclude by discussing future challenges and opportunities of applying polygenic risk score methods in clinical care.
Collapse
Affiliation(s)
- Chachrit Khunsriraksakul
- Graduate Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Havell Markus
- Graduate Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nancy J. Olsen
- Department of Medicine, Division of Rheumatology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Bibo Jiang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Dajiang J. Liu
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, United States
- *Correspondence: Dajiang J. Liu,
| |
Collapse
|
35
|
Salvatore D, Porcelli T, Ettleson MD, Bianco AC. The relevance of T 3 in the management of hypothyroidism. Lancet Diabetes Endocrinol 2022; 10:366-372. [PMID: 35240052 PMCID: PMC9987447 DOI: 10.1016/s2213-8587(22)00004-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022]
Abstract
Levothyroxine monotherapy has been the standard of care for treatment of hypothyroidism for more than 40 years. However, patients treated with levothyroxine have relatively lower serum tri-iodothyronine (T3) concentrations than the general population, and symptoms of hypothyroidism persist for some patients despite normalisation of thyroid-stimulating hormone (TSH) concentrations. The understanding that maintenance of normal T3 concentrations is the priority for the thyroid axis has redirected the clinical focus to serum T3 concentrations in patients with hypothyroidism. This Personal View explores whether it is currently feasible to identify patients who could be considered for liothyronine supplementation in combination with levothyroxine. Genetic profiling stands out as a potential future tool to identify patients who do not respond well to levothyroxine due to suboptimal peripheral thyroxine (T4) activation. Moreover, new slow-release liothyronine preparations are being developed to be trialled in these symptomatic patients, in an attempt to restore T3 concentrations and provide conclusive results for the use of T4 plus T3 combination therapy.
Collapse
Affiliation(s)
- Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Matthew D Ettleson
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, Illinois, IL, USA
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, Illinois, IL, USA
| |
Collapse
|
36
|
Chen G, Lv H, Zhang X, Gao Y, Liu X, Gu C, Xue R, Wang Q, Chen M, Zhai J, Yue W, Yu H. Assessment of the relationships between genetic determinants of thyroid functions and bipolar disorder: A mendelian randomization study. J Affect Disord 2022; 298:373-380. [PMID: 34728293 DOI: 10.1016/j.jad.2021.10.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Thyroid functions (TFs) have been implicated in the initiation and propagation of psychiatric disorders. Observational studies have shown associations of TFs with psychiatric disorders. However, the relationship between TFs and psychiatric diseases were still unclear. METHODS Genetic instruments for 6 TF-realted indexes, including free thyroxine (FT4), triiodothyronine (FT3):FT4 ratio, thyrotropin (TSH), thyroid peroxidase antibodies (TPOAb) concentration, hypothyroidism, and hyperthyroidism, were obtained from several genome-wide association studies (GWASs). Their associations with BD were evaluated using Psychiatric Genomics Consortium (PGC) datasets (41,917 cases and 371,549 controls). All GWAS summary statitics were from European ancestry. Mendelian randomization (MR) estimates from each genetic instrument were combined using inverse variance weighted (IVW) meta-analysis, with complementary methods (eg, weighted median and MR Egger). We also multiple sensitivity analyses to examine horizontal pleiotropy and heterogeneity. RESULTS Genetically predicted level of FT4 was significantly associated with BD (odds ratio (OR)=0.89, 95% confidence interval (CI): 0.83-0.95; P=4.65 × 10-3), survived after the Bonferroni correction (P<0.05/6=0.008). Consistent directional effects for all sensitivity analyses were observed in the weighted median and MR Egger methods. Furthermore, our sensitive test suggested no significant horizontal pleiotropy (intercept=-0.01, P=0.12) and no notable heterogeneity (Q = 29.9; P=0.09). However, other TF indexes (FT3:FT4 ratio [OR=1.24, P=0.10], TSH [OR=1.01, P=0.61], TPOAb concentration [OR=1.20, P=0.54], hypothyroidism [OR=1.00, P=0.91], and hyperthyroidism [OR=0.99, P=0.57]) were not associated with BD. CONCLUSIONS Our results provide further evidence that higher FT4 level is associated with a reduced risk of BD, and suggest the importance of FT4 level in BD risk assessment and potential therapeutic targets development.
Collapse
Affiliation(s)
- Guoqing Chen
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Honggang Lv
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Xiao Zhang
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China
| | - Yan Gao
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Xia Liu
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China
| | - Chuanzheng Gu
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China
| | - Ranran Xue
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China
| | - Qiuling Wang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China
| | - Min Chen
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Jinguo Zhai
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Weihua Yue
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China.
| |
Collapse
|
37
|
Gu Y, Meng G, Zhang Q, Liu L, Wu H, Zhang S, Wang Y, Zhang T, Wang X, Sun S, Wang X, Jia Q, Song K, Liu Q, Niu K. Association of longitudinal trends in thyroid function with incident carotid atherosclerosis in middle-aged and older euthyroid subjects: the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) cohort study. Age Ageing 2022; 51:6514233. [PMID: 35077556 DOI: 10.1093/ageing/afab276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Previous studies have posited that an association exists between thyroid function and the heart and vasculature. It remains unclear, however, whether longitudinal trends in thyroid function contribute to the development of atherosclerosis. We conducted a cohort study to examine the association of longitudinal trends in thyroid function with incident carotid atherosclerosis (CA) in middle-aged and older euthyroid subjects. METHODS This cohort study's participants were recruited from the Tianjin Chronic Low-grade Systemic Inflammation and Health Cohort Study in Tianjin, China. Free triiodothyronine (FT3), thyroxine (FT4) and thyroid-stimulating hormone (TSH) were measured using chemiluminescence immunoassay. CA was assessed using carotid ultrasonography. Thyroid function and ultrasonography were assessed yearly during follow-up. Multivariable Cox proportional hazards regression models were used to assess the association between thyroid function and incident CA. RESULTS A total of 3,181 participants were enrolled in the cohort study. Within 7,762 person-years of follow-up, 944 participants developed CA, the incidence rate of CA was 122 per 1,000 person-years. The fully adjusted hazards ratios (95% confidence interval) of CA for per 1-unit increase in changes of FT3, FT4 and TSH were 1.34(1.22-1.47), 1.22(1.19-1.26) and 0.92 (0.77-1.09) (P < 0.0001, <0.0001 and = 0.32, respectively), respectively. Similar significant associations between mean levels of FT3 and FT4 and incident CA were observed. However, baseline thyroid function was not associated with incident CA. CONCLUSIONS These findings suggest that higher mean levels and higher values of changes in thyroid hormones were associated with a higher risk of incident CA in middle-aged and older euthyroid subjects.
Collapse
|
38
|
Genetic Variation and Mendelian Randomization Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:327-342. [DOI: 10.1007/978-3-031-11836-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Yu L, Li Z, Yang R, Pan G, Cheng Q, He Y, Liu Y, Liu F, Ma M, Yang T, Wang Y, Su J, Zheng Y, Gao S, Xu Q, Li L, Yu C. Impaired Sensitivity to Thyroid Hormones Is Associated With Elevated Blood Glucose in Coronary Heart Disease. Front Endocrinol (Lausanne) 2022; 13:895843. [PMID: 35784545 PMCID: PMC9240192 DOI: 10.3389/fendo.2022.895843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
CONTEXT Thyroid hormones influence glucose homeostasis through central and peripheral regulation. To date, the association between thyroid hormone sensitivity and elevated blood glucose (EBG) in patients with coronary heart disease (CHD) remains unknown. The purpose of this study was to investigate the association between thyroid hormone sensitivity and risk of EBG in patients with CHD, and to further explore their association in different sexes and ages. METHODS This large multicenter retrospective study included 30,244 patients with CHD (aged 30-80 years) between 1 January 2014 and 30 September 2020. Parameters representing central and peripheral sensitivity to thyroid hormones were calculated. Central sensitivity to thyroid hormones was assessed by calculating the Thyroid Feedback Quantile-based Index (TFQI), Thyroid-stimulating Hormone Index (TSHI), and Thyrotropin Thyroxine Resistance Index (TT4RI), and Parametric Thyroid Feedback Quantile-based Index (PTFQI); peripheral sensitivity to thyroid hormones was evaluated using the ratio of free triiodothyronine (FT3) /free thyroxine (FT4). Taking normal glucose tolerance (NGT) as a reference, logistic regression was used to analyse the relationship between central and peripheral thyroid hormone sensitivity and EBG in patients with CHD. RESULTS Among the 30,244 participants, 15,493 (51.23%) had EBG. The risk of EBG was negatively correlated with TSHI (OR: 0.91; 95%CI: 0.91 to 0.92; P < 0.001), TT4RI (OR: 0.99; 95% CI: 0.99 to 0.99; P<0.001), TFQI (OR: 0.82; 95%CI: 0.80 to 0.84; P <0.001) and PTFQI (OR: 0.76; 95%CI: 0.74 to 0.78; P<0.001). Compared to males and patients aged 60 and below, the OR value for EBG was lower in females and in patients aged over 60 years old. Conversely, EBG risk was positively associated with FT3/FT4 (OR: 1.08; 95% CI: 1.07 to 1.09; P <0.001) and in the sex-categorized subgroups, males had higher OR values than females. CONCLUSIONS This study showed that thyroid hormone sensitivity is significantly associated with EBG in patients with CHD. This association is higher in females than in males, and the association in those aged over 60 years old is higher than that in patients aged 60 years and below.
Collapse
Affiliation(s)
- Lu Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rongrong Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangwei Pan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Cheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan He
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijia Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanfan Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mei Ma
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tong Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinyu Su
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanchao Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiang Xu
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Chunquan Yu, ; Lin Li, ; Qiang Xu,
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Chunquan Yu, ; Lin Li, ; Qiang Xu,
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Chunquan Yu, ; Lin Li, ; Qiang Xu,
| |
Collapse
|
40
|
Phenotypic effect of a single nucleotide polymorphism on SSC7 on fetal outcomes in PRRSV-2 infected gilts. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Ke X, Tian X, Yao S, Wu H, Duan YY, Wang NN, Shi W, Yang TL, Dong SS, Huang D, Guo Y. Transcriptome-wide association study identifies multiple genes and pathways associated with thyroid function. Hum Mol Genet 2021; 31:1871-1883. [PMID: 34962261 DOI: 10.1093/hmg/ddab371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022] Open
Abstract
Thyroid dysfunction is a common endocrine disease measured by thyroid-stimulating hormone (TSH) level. Although more than 70 genetic loci associated with TSH have been reported through genome-wide association studies (GWASs), the variants can only explain a small fraction of the thyroid function heritability. To identify novel candidate genes for thyroid function, we conducted the first large-scale transcriptome-wide association study (TWAS) for thyroid function using GWAS-summary data for TSH levels in up to 119 715 individuals combined with pre-computed gene expression weights of six panels from four tissue types. The candidate genes identified by TWAS were further validated by TWAS replication and gene expression profiles. We identified 74 conditionally independent genes significantly associated with thyroid function, such as PDE8B (P = 1.67 × 10-282), PDE10A (P = 7.61 × 10-119), NR3C2 (P = 1.50 × 10-92), and CAPZB (P = 3.13 × 10-79). After TWAS replication using UKBB datasets, 26 genes were replicated for significant associations with thyroid-relevant diseases/traits. Among them, 16 gene were causal for their associations to thyroid-relevant diseases/traits and further validated in differential expression analyses, including two novel genes (MFSD6 and RBM47) that did not implicate in previous GWASs. Enrichment analyses detected several pathways associated with thyroid function, such as the cAMP signaling pathway (P = 7.27 × 10-4), hemostasis (P = 3.74 × 10-4), and platelet activation, signaling, and aggregation (P = 9.98 × 10-4). Our study identified multiple candidate genes and pathways associated with thyroid function, providing novel clues for revealing the genetic mechanisms of thyroid function and disease.
Collapse
Affiliation(s)
- Xin Ke
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
| | - Xin Tian
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Shi Yao
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710004
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
| | - Nai-Ning Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
| | - Wei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049.,National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710004
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049.,Research Institute of Xi'an Jiaotong University, Hangzhou, Zhejiang, P. R. China
| | - Dageng Huang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049.,Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
42
|
Sadeghi S, Kalhor H, Panahi M, Abolhasani H, Rahimi B, Kalhor R, Mehrabi A, Vahdatinia M, Rahimi H. Keratinocyte growth factor in focus: A comprehensive review from structural and functional aspects to therapeutic applications of palifermin. Int J Biol Macromol 2021; 191:1175-1190. [PMID: 34606789 DOI: 10.1016/j.ijbiomac.2021.09.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Palifermin (Kepivance™) is the first therapeutic approved by the Food and Drug Administration for preventing and managing the oral mucositis provoked by myelotoxic and mucotoxic therapies. Palifermin is a recombinant protein generated from human keratinocyte growth factor (KGF) and imitates the function of endogenous KGF. KGF is an epithelial mitogen involved in various biological processes which belongs to the FGF family. KGF possesses a high level of receptor specificity and plays an important role in tissue repair and maintaining of the mucosal barrier integrity. Based on these unique features, palifermin was developed to enhance the growth of damaged epithelial tissues. Administration of palifermin has shown success in the reduction of toxicities of chemotherapy and radiotherapy, and improvement of the patient's quality of life. Notwithstanding all merits, the clinical application of palifermin is limited owing to its instability and production challenges. Hence, a growing number of ongoing researches are designed to deal with these problems and enhance the physicochemical and pharmaceutical properties of palifermin. In the current review, we discuss KGF structure and function, potential therapeutic applications of palifermin, as well as the latest progress in the production of recombinant human KGF and its challenges ahead.
Collapse
Affiliation(s)
- Solmaz Sadeghi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hourieh Kalhor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Department of Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Applied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Department of Genetics, Colleague of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Amirmehdi Mehrabi
- Department of Pharmacoeconomy & Administrative Pharmacy, School Of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahsa Vahdatinia
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
43
|
Soto-Pedre E, Siddiqui MK, Mordi I, Maroteau C, Soto-Hernaez J, Palmer CN, Pearson ER, Leese GP. Evidence of a Causal Relationship between Serum Thyroid-Stimulating Hormone and Osteoporotic Bone Fractures. Eur Thyroid J 2021; 10:439-446. [PMID: 34950598 PMCID: PMC8647109 DOI: 10.1159/000518058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/02/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We aimed to validate the association of genome-wide association study (GWAS)-identified loci and polygenic risk score with serum thyroid-stimulating hormone (TSH) concentrations and the diagnosis of hypothyroidism. Then, the causal relationship between serum TSH and osteoporotic bone fracture risk was tested. METHODS A cross-sectional study was done among patients of European Caucasian ethnicity recruited in Tayside (Scotland, UK). Electronic medical records (EMRs) were used to identify patients and average serum TSH concentration and linked to genetic biobank data. Genetic associations were performed by linear and logistic regression models. One-sample Mendelian randomization (MR) was used to test causality of serum TSH on bone fracture risk. RESULTS Replication in 9,452 euthyroid individuals confirmed known loci previously reported. The 58 polymorphisms accounted for 11.08% of the TSH variation (p < 1e-04). TSH-GRS was directly associated with the risk of hypothyroidism with an odds ratio (OR) of 1.98 for the highest quartile compared to the first quartile (p = 2.2e-12). MR analysis of 5,599 individuals showed that compared with those in the lowest tertile of the TSH-GRS, men in the highest tertile had a decreased risk of osteoporotic bone fracture (OR = 0.59, p = 2.4e-03), while no difference in a similar comparison was observed in women (OR = 0.93, p = 0.61). Sensitivity analysis yielded similar results. CONCLUSIONS EMRs linked to genomic data in large populations allow replication of GWAS discoveries without additional genotyping costs. This study suggests that genetically raised serum TSH concentrations are causally associated with decreased bone fracture risk in men.
Collapse
Affiliation(s)
- Enrique Soto-Pedre
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
- *Enrique Soto-Pedre,
| | - Moneeza K. Siddiqui
- Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Ify Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Cyrielle Maroteau
- Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | | | - Colin N.A. Palmer
- Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Ewan R. Pearson
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Graham P. Leese
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
- Department of Endocrinology and Diabetes, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
44
|
Ellervik C, Mora S, Kuś A, Åsvold B, Marouli E, Deloukas P, Sterenborg RB, Teumer A, Burgess S, Sabater-Lleal M, Huffman J, Johnson AD, Trégouet DA, Smith NL, Medici M, DeVries PS, Chasman DI, Kjaergaard AD. Effects of Thyroid Function on Hemostasis, Coagulation, and Fibrinolysis: A Mendelian Randomization Study. Thyroid 2021; 31:1305-1315. [PMID: 34210154 PMCID: PMC8558080 DOI: 10.1089/thy.2021.0055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Untreated hypothyroidism is associated with acquired von Willebrand syndrome, and hyperthyroidism is associated with increased thrombosis risk. However, the causal effects of thyroid function on hemostasis, coagulation, and fibrinolysis are unknown. Methods: In a two-sample Mendelian randomization (MR) study with genome-wide association variants, we assessed causality of genetically predicted hypothyroidism (N = 134,641), normal-range thyrotropin (TSH; N = 54,288) and free thyroxine (fT4) (N = 49,269), hyperthyroidism (N = 51,823), and thyroid peroxidase antibody positivity (N = 25,821) on coagulation (activated partial thromboplastin time, von Willebrand factor [VWF], factor VIII [FVIII], prothrombin time, factor VII, fibrinogen) and fibrinolysis (D-dimer, tissue plasminogen activator [TPA], plasminogen activator inhibitor-1) from the CHARGE Hemostasis Consortium (N = 2583-120,246). Inverse-variance-weighted random effects were the main MR analysis followed by sensitivity analyses. Two-sided p < 0.05 was nominally significant, and p < 0.0011[ = 0.05/(5 exposures × 9 outcomes)] was Bonferroni significant for the main MR analysis. Results: Genetically increased TSH was associated with decreased VWF [β(SE) = -0.020(0.006), p = 0.001] and with decreased fibrinogen [β(SE) = -0.008(0.002), p = 0.001]. Genetically increased fT4 was associated with increased VWF [β(SE) = 0.028(0.011), p = 0.012]. Genetically predicted hyperthyroidism was associated with increased VWF [β(SE) = 0.012(0.004), p = 0.006] and increased FVIII [β(SE) = 0.013(0.005), p = 0.007]. Genetically predicted hypothyroidism and hyperthyroidism were associated with decreased TPA [β(SE) = -0.009(0.024), p = 0.024] and increased TPA [β(SE) = 0.022(0.008), p = 0.008], respectively. MR sensitivity analyses showed similar direction but lower precision. Other coagulation and fibrinolytic factors were inconclusive. Conclusions: In the largest genetic studies currently available, genetically increased TSH and fT4 may be associated with decreased and increased synthesis of VWF, respectively. Since Bonferroni correction may be too conservative given the correlation between the analyzed traits, we cannot reject nominal associations of thyroid traits with coagulation or fibrinolytic factors.
Collapse
Affiliation(s)
- Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Data and Data Support, Region Zealand, Sorø, Denmark
- Address correspondence to: Christina Ellervik, MD, PhD, Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine; Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Aleksander Kuś
- Department of Internal Medicine, Academic Center for Thyroid Diseases; Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Bjørn Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rosalie B.T.M. Sterenborg
- Department of Internal Medicine, Academic Center for Thyroid Diseases; Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Maria Sabater-Lleal
- Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Huffman
- Scientific Director for Genomics Research, Center for Population Genomics, Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Andrew D. Johnson
- National Heart, Lung and Blood Institute's The Framingham Heart Study, Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - David-Alexandre Trégouet
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Nicolas L. Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Kaiser Permamente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington, USA
| | - Marco Medici
- Department of Internal Medicine, Academic Center for Thyroid Diseases; Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul S. DeVries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniel I. Chasman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
45
|
Truong T, Lesueur F, Sugier PE, Guibon J, Xhaard C, Karimi M, Kulkarni O, Lucotte EA, Bacq-Daian D, Boland-Auge A, Mulot C, Laurent-Puig P, Schvartz C, Guizard AV, Ren Y, Adjadj E, Rachédi F, Borson-Chazot F, Ortiz RM, Lence-Anta JJ, Pereda CM, Comiskey DF, He H, Liyanarachchi S, de la Chapelle A, Elisei R, Gemignani F, Thomsen H, Forsti A, Herzig AF, Leutenegger AL, Rubino C, Ostroumova E, Kesminiene A, Boutron-Ruault MC, Deleuze JF, Guénel P, de Vathaire F. Multiethnic genome-wide association study of differentiated thyroid cancer in the EPITHYR consortium. Int J Cancer 2021; 148:2935-2946. [PMID: 33527407 DOI: 10.1002/ijc.33488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 02/05/2023]
Abstract
Incidence of differentiated thyroid carcinoma (DTC) varies considerably between ethnic groups, with particularly high incidence rates in Pacific Islanders. DTC is one of the cancers with the highest familial risk suggesting a major role of genetic risk factors, but only few susceptibility loci were identified so far. In order to assess the contribution of known DTC susceptibility loci and to identify new ones, we conducted a multiethnic genome-wide association study (GWAS) in individuals of European ancestry and of Oceanian ancestry from Pacific Islands. Our study included 1554 cases/1973 controls of European ancestry and 301 cases/348 controls of Oceanian ancestry from seven population-based case-control studies participating to the EPITHYR consortium. All participants were genotyped using the OncoArray-500K Beadchip (Illumina). We confirmed the association with the known DTC susceptibility loci at 2q35, 8p12, 9q22.33 and 14q13.3 in the European ancestry population and suggested two novel signals at 1p31.3 and 16q23.2, which were associated with thyroid-stimulating hormone levels in previous GWAS. We additionally replicated an association with 5p15.33 reported previously in Chinese and European populations. Except at 1p31.3, all associations were in the same direction in the population of Oceanian ancestry. We also observed that the frequencies of risk alleles at 2q35, 5p15.33 and 16q23.2 were significantly higher in Oceanians than in Europeans. However, additional GWAS and epidemiological studies in Oceanian populations are needed to fully understand the highest incidence observed in these populations.
Collapse
Affiliation(s)
- Thérèse Truong
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Exposome and Heredity", Villejuif, France
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Pierre-Emmanuel Sugier
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Exposome and Heredity", Villejuif, France
| | - Julie Guibon
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Exposome and Heredity", Villejuif, France
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Constance Xhaard
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Epidemiology of radiations", Villejuif, France
- University of Lorraine, INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, Nancy, France
| | - Mojgan Karimi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Exposome and Heredity", Villejuif, France
| | - Om Kulkarni
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Elise A Lucotte
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Exposome and Heredity", Villejuif, France
| | - Delphine Bacq-Daian
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Anne Boland-Auge
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Claire Mulot
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, EPIGENETEC, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, EPIGENETEC, Paris, France
| | - Claire Schvartz
- Registre des Cancers Thyroïdiens, Institut GODINOT, Reims, France
| | - Anne-Valérie Guizard
- Registre Général des tumeurs du Calvados, Centre François Baclesse, Caen, France
- Inserm U1086 -UCN "ANTICIPE", Caen, France
| | - Yan Ren
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Epidemiology of radiations", Villejuif, France
| | - Elisabeth Adjadj
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Epidemiology of radiations", Villejuif, France
| | - Frédérique Rachédi
- Endocrinology Unit, Territorial Hospital Taaone, Papeete, Tahiti, French Polynesia
| | - Francoise Borson-Chazot
- Fédération d'endocrinologie, Hôpital Louis Pradel, Hospices Civils de Lyon, EA 7425, Université Lyon 1, Lyon, France
| | | | | | | | - Daniel F Comiskey
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Huiling He
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Sandya Liyanarachchi
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Albert de la Chapelle
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | - Asta Forsti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anthony F Herzig
- Inserm, U1078, GGB, Université de Bretagne Occidentale, EFS, Brest, France
| | | | - Carole Rubino
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Epidemiology of radiations", Villejuif, France
| | | | | | | | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Pascal Guénel
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Exposome and Heredity", Villejuif, France
| | - Florent de Vathaire
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Epidemiology of radiations", Villejuif, France
| |
Collapse
|
46
|
Dom G, Dmitriev P, Lambot MA, Van Vliet G, Glinoer D, Libert F, Lefort A, Dumont JE, Maenhaut C. Transcriptomic Signature of Human Embryonic Thyroid Reveals Transition From Differentiation to Functional Maturation. Front Cell Dev Biol 2021; 9:669354. [PMID: 34249923 PMCID: PMC8270686 DOI: 10.3389/fcell.2021.669354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
The human thyroid gland acquires a differentiation program as early as weeks 3-4 of embryonic development. The onset of functional differentiation, which manifests by the appearance of colloid in thyroid follicles, takes place during gestation weeks 10-11. By 12-13 weeks functional differentiation is accomplished and the thyroid is capable of producing thyroid hormones although at a low level. During maturation, thyroid hormones yield increases and physiological mechanisms of thyroid hormone synthesis regulation are established. In the present work we traced the process of thyroid functional differentiation and maturation in the course of human development by performing transcriptomic analysis of human thyroids covering the period of gestation weeks 7-11 and comparing it to adult human thyroid. We obtained specific transcriptomic signatures of embryonic and adult human thyroids by comparing them to non-thyroid tissues from human embryos and adults. We defined a non-TSH (thyroid stimulating hormone) dependent transition from differentiation to maturation of thyroid. The study also sought to shed light on possible factors that could replace TSH, which is absent in this window of gestational age, to trigger transition to the emergence of thyroid function. We propose a list of possible genes that may also be involved in abnormalities in thyroid differentiation and/or maturation, hence leading to congenital hypothyroidism. To our knowledge, this study represent the first transcriptomic analysis of human embryonic thyroid and its comparison to adult thyroid.
Collapse
Affiliation(s)
- Geneviève Dom
- School of Medicine, IRIBHM, Université libre de Bruxelles, Brussels, Belgium
- Institute of Interdisciplinary Research in Human and Molecular Biology, Brussels, Belgium
| | - Petr Dmitriev
- School of Medicine, IRIBHM, Université libre de Bruxelles, Brussels, Belgium
- Institute of Interdisciplinary Research in Human and Molecular Biology, Brussels, Belgium
| | | | - Guy Van Vliet
- Département de Pédiatrie, Université de Montréal, Montreal, QC, Canada
- CHU Sainte-Justine, Montreal, QC, Canada
| | - Daniel Glinoer
- Hôpital Saint-Pierre, Université libre de Bruxelles, Brussels, Belgium
| | | | - Anne Lefort
- School of Medicine, IRIBHM, Université libre de Bruxelles, Brussels, Belgium
| | - Jacques E. Dumont
- School of Medicine, IRIBHM, Université libre de Bruxelles, Brussels, Belgium
- Institute of Interdisciplinary Research in Human and Molecular Biology, Brussels, Belgium
| | - Carine Maenhaut
- School of Medicine, IRIBHM, Université libre de Bruxelles, Brussels, Belgium
- Institute of Interdisciplinary Research in Human and Molecular Biology, Brussels, Belgium
| |
Collapse
|
47
|
Zhang RJ, Zhang JX, Du WH, Sun F, Fang Y, Zhang CX, Wang Z, Wu FY, Han B, Liu W, Zhao SX, Liang J, Song HD. Molecular and clinical genetics of the transcription factor GLIS3 in Chinese congenital hypothyroidism. Mol Cell Endocrinol 2021; 528:111223. [PMID: 33667596 DOI: 10.1016/j.mce.2021.111223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
The transcription factor GLIS3 is an important factor in hormone biosynthesis and thyroid development, and mutations in GLIS3 are relatively rare. Deletions of more than one of the 11 exons of GLIS3 occur in most patients with various extrathyroidal abnormalities and congenital hypothyroidism (CH), and only 18 missense variants of GLIS3 related to thyroid disease have been reported. The aim of this study was to report the family history and molecular basis of patients with CH who carry GLIS3 variants. Three hundred and fifty-three non-consanguineous infants with CH were recruited and subjected to targeted exome sequencing of CH-related genes. The transcriptional activity and cellular localization of the variants in GLIS3 were investigated in vitro. We identified 20 heterozygous GLIS3 exonic missense variants, including eight novel sites, in 19 patients with CH. One patient carried compound heterozygous GLIS3 variants (p.His34Arg and p.Pro835Leu). None of the variants affected the nuclear localization. However, three variants (p.His34Arg, p.Pro835Leu, and p.Ser893Phe) located in the N-terminal and C-terminal regions of the GLIS3 protein downregulated the transcriptional activation of several genes required for thyroid hormone (TH) biosynthesis. This study of patients with CH extends the current knowledge surrounding the spectrum of GLIS3 variants and the mechanisms by which they cause TH biosynthesis defects.
Collapse
Affiliation(s)
- Rui-Jia Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jun-Xiu Zhang
- Department of Endocrinology, Maternal and Child Health Institute of Bozhou, Bozhou, 236800, China
| | - Wen-Hua Du
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Feng Sun
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ya Fang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Cao-Xu Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zheng Wang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng-Yao Wu
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bing Han
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wei Liu
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, 221109, China
| | - Huai-Dong Song
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
48
|
Lafontaine N, Campbell PJ, Castillo-Fernandez JE, Mullin S, Lim EM, Kendrew P, Lewer M, Brown SJ, Huang RC, Melton PE, Mori TA, Beilin LJ, Dudbridge F, Spector TD, Wright MJ, Martin NG, McRae AF, Panicker V, Zhu G, Walsh JP, Bell JT, Wilson SG. Epigenome-Wide Association Study of Thyroid Function Traits Identifies Novel Associations of fT3 With KLF9 and DOT1L. J Clin Endocrinol Metab 2021; 106:e2191-e2202. [PMID: 33484127 PMCID: PMC8063248 DOI: 10.1210/clinem/dgaa975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Circulating concentrations of free triiodothyronine (fT3), free thyroxine (fT4), and thyrotropin (TSH) are partly heritable traits. Recent studies have advanced knowledge of their genetic architecture. Epigenetic modifications, such as DNA methylation (DNAm), may be important in pituitary-thyroid axis regulation and action, but data are limited. OBJECTIVE To identify novel associations between fT3, fT4, and TSH and differentially methylated positions (DMPs) in the genome in subjects from 2 Australian cohorts. METHOD We performed an epigenome-wide association study (EWAS) of thyroid function parameters and DNAm using participants from: Brisbane Systems Genetics Study (median age 14.2 years, n = 563) and the Raine Study (median age 17.0 years, n = 863). Plasma fT3, fT4, and TSH were measured by immunoassay. DNAm levels in blood were assessed using Illumina HumanMethylation450 BeadChip arrays. Analyses employed generalized linear mixed models to test association between DNAm and thyroid function parameters. Data from the 2 cohorts were meta-analyzed. RESULTS We identified 2 DMPs with epigenome-wide significant (P < 2.4E-7) associations with TSH and 6 with fT3, including cg00049440 in KLF9 (P = 2.88E-10) and cg04173586 in DOT1L (P = 2.09E-16), both genes known to be induced by fT3. All DMPs had a positive association between DNAm and TSH and a negative association between DNAm and fT3. There were no DMPs significantly associated with fT4. We identified 23 differentially methylated regions associated with fT3, fT4, or TSH. CONCLUSIONS This study has demonstrated associations between blood-based DNAm and both fT3 and TSH. This may provide insight into mechanisms underlying thyroid hormone action and/or pituitary-thyroid axis function.
Collapse
Affiliation(s)
- Nicole Lafontaine
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Correspondence: Nicole Lafontaine, MBBS, BMedSci, RACP, Department of Endocrinology & Diabetes, Level 1, Building C, QEII Medical Centre, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, WA 6009, Australia.
| | - Purdey J Campbell
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | | | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Ee Mun Lim
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Pathwest Laboratory Medicine, Nedlands, WA, Australia
| | | | | | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Phillip E Melton
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Lawrence J Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | | | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Vijay Panicker
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
49
|
Park S, Kim GU, Kim H. Physical Comorbidity According to Diagnoses and Sex among Psychiatric Inpatients in South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4187. [PMID: 33920944 PMCID: PMC8071239 DOI: 10.3390/ijerph18084187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022]
Abstract
People with mental disorders are susceptible to physical comorbidities. Mind-body interventions are important for improving health outcomes. We examined the prevalence of physical comorbidities and their differences by diagnoses and sex among psychiatric inpatients. The dataset, from National Health Insurance claims data, included 48,902 adult inpatients admitted to psychiatric wards for at least 2 days in 2016 treated for schizophrenia, schizotypal and delusional disorders, or mood disorders. We identified 26 physical comorbidities using the Elixhauser comorbidity measure. Among schizophrenia-related disorders, other neurological disorders were most common, then liver disease and chronic pulmonary disease. Among mood disorders, liver disease was most common, then uncomplicated hypertension and chronic pulmonary disease. Most comorbid physical diseases (except other neurological disorders) were more prevalent in mood disorders than schizophrenia-related disorders. Male and female patients with schizophrenia-related disorders showed similar comorbidity prevalence patterns by sex. Among patients with mood disorders, liver disease was most prevalent in males and third-most in females. In both diagnostic groups, liver disease and uncomplicated diabetes mellitus were more prevalent in males, and hypothyroidism in females. Mental health professionals should refer to a specialist to manage physical diseases via early assessments and optimal interventions for physical comorbidities in psychiatric patients.
Collapse
Affiliation(s)
- Suin Park
- College of Nursing, Kosin University, Busan 49267, Korea;
| | - Go-Un Kim
- College of Nursing, Yonsei University, Seoul 03722, Korea
| | - Hyunlye Kim
- Department of Nursing, College of Medicine, Chosun University, Gwangju 61452, Korea;
| |
Collapse
|
50
|
Assessment of causal association between thyroid function and lipid metabolism: a Mendelian randomization study. Chin Med J (Engl) 2021; 134:1064-1069. [PMID: 33942801 PMCID: PMC8116035 DOI: 10.1097/cm9.0000000000001505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Thyroid dysfunction is associated with cardiovascular diseases. However, the role of thyroid function in lipid metabolism remains partly unknown. The present study aimed to investigate the causal association between thyroid function and serum lipid metabolism via a genetic analysis termed Mendelian randomization (MR). Methods: The MR approach uses a genetic variant as the instrumental variable in epidemiological studies to mimic a randomized controlled trial. A two-sample MR was performed to assess the causal association, using summary statistics from the Atrial Fibrillation Genetics Consortium (n = 537,409) and the Global Lipids Genetics Consortium (n = 188,577). The clinical measures of thyroid function include thyrotropin (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) levels, FT3:FT4 ratio and concentration of thyroid peroxidase antibodies (TPOAb). The serum lipid metabolism traits include total cholesterol (TC) and triglycerides, high-density lipoprotein, and low-density lipoprotein (LDL) levels. The MR estimate and MR inverse variance-weighted method were used to assess the association between thyroid function and serum lipid metabolism. Results: The results demonstrated that increased TSH levels were significantly associated with higher TC (β = 0.052, P = 0.002) and LDL (β = 0.041, P = 0.018) levels. In addition, the FT3:FT4 ratio was significantly associated with TC (β = 0.240, P = 0.033) and LDL (β = 0.025, P = 0.027) levels. However, no significant differences were observed between genetically predicted FT4 and TPOAb and serum lipids. Conclusion: Taken together, the results of the present study suggest an association between thyroid function and serum lipid metabolism, highlighting the importance of the pituitary-thyroid-cardiac axis in dyslipidemia susceptibility.
Collapse
|