1
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
2
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
3
|
Emelyanov AV, Barcenilla-Merino D, Loppin B, Fyodorov DV. APOLLO, a testis-specific Drosophila ortholog of importin-4, mediates the loading of protamine-like protein Mst77F into sperm chromatin. J Biol Chem 2023; 299:105212. [PMID: 37660905 PMCID: PMC10520872 DOI: 10.1016/j.jbc.2023.105212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
DNA in sperm is packed with small, charged proteins termed SNBPs (sperm nuclear basic proteins), including mammalian and Drosophila protamines. During spermiogenesis, somatic-type chromatin is taken apart and replaced with sperm chromatin in a multistep process leading to an extraordinary condensation of the genome. During fertilization, the ova face a similarly challenging task of SNBP eviction and reassembly of nucleosome-based chromatin. Despite its importance for the animal life cycle, sperm chromatin metabolism, including the biochemical machinery mediating the mutual replacement of histones and SNBPs, remains poorly studied. In Drosophila, Mst77F is one of the first SNBPs loaded into the spermatid nuclei. It persists in mature spermatozoa and is essential for sperm compaction and male fertility. Here, by using in vitro biochemical assays, we identify chaperones that can mediate the eviction and loading of Mst77F on DNA, thus facilitating the interconversions of chromatin forms in the male gamete. Unlike NAP1 and TAP/p32 chaperones that disassemble Mst77F-DNA complexes, ARTEMIS and APOLLO, orthologs of mammalian importin-4 (IPO4), mediate the deposition of Mst77F on DNA or oligonucleosome templates, accompanied by the dissociation of histone-DNA complexes. In vivo, a mutation of testis-specific Apollo brings about a defect of Mst77F loading, abnormal sperm morphology, and male infertility. We identify IPO4 ortholog APOLLO as a critical component of sperm chromatin assembly apparatus in Drosophila. We discover that in addition to recognized roles in protein traffic, a nuclear transport receptor (IPO4) can function directly in chromatin remodeling as a dual, histone- and SNBP-specific, chaperone.
Collapse
Affiliation(s)
- Alexander V Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daniel Barcenilla-Merino
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France.
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
4
|
Zhang X, Che Y, Mao L, Li D, Deng J, Guo Y, Zhao Q, Zhang X, Wang L, Gao X, Chen Y, Zhang T. H3.3B controls aortic dissection progression by regulating vascular smooth muscle cells phenotypic transition and vascular inflammation. Genomics 2023; 115:110685. [PMID: 37454936 DOI: 10.1016/j.ygeno.2023.110685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Aortic dissection is a devastating cardiovascular disease with a high lethality. Histone variants maintain the genomic integrity and play important roles in development and diseases. However, the role of histone variants in aortic dissection has not been well identified. In the present study, H3f3b knockdown reduced the synthetic genes expression of VSMCs, while overexpressing H3f3b exacerbated the cellular immune response of VSMCs induced by inflammatory cytokines. Combined RNA-seq and ChIP-seq analyses revealed that histone variant H3.3B directly bound to the genes related to extracellular matrix, VSMC synthetic phenotype, cytokine responses and TGFβ signaling pathway, and regulated their expressions. In addition, VSMC-specific H3f3b knockin aggravated aortic dissection development in mice, while H3f3b knockout significantly reduced the incidence of aortic dissection. In term of mechanisms, H3.3B regulated Spp1 and Ccl2 genes, inducing the apoptosis of VSMCs and recruiting macrophages. This study demonstrated the vital roles of H3.3B in phenotypic transition of VSMCs, loss of media VSMCs, and vascular inflammation in aortic dissection.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yang Che
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jianqing Deng
- Vascular Surgery Department, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Yilong Guo
- Vascular Surgery Department, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Xingzhong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration,Chinese Academy of Medical Sciences, Beijing 100037, China.
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yinan Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| | - Tao Zhang
- Vascular Surgery Department, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
5
|
McPherson JME, Grossmann LC, Salzler HR, Armstrong RL, Kwon E, Matera AG, McKay DJ, Duronio RJ. Reduced histone gene copy number disrupts Drosophila Polycomb function. Genetics 2023; 224:iyad106. [PMID: 37279945 PMCID: PMC10411577 DOI: 10.1093/genetics/iyad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
The chromatin of animal cells contains two types of histones: canonical histones that are expressed during S phase of the cell cycle to package the newly replicated genome, and variant histones with specialized functions that are expressed throughout the cell cycle and in non-proliferating cells. Determining whether and how canonical and variant histones cooperate to regulate genome function is integral to understanding how chromatin-based processes affect normal and pathological development. Here, we demonstrate that variant histone H3.3 is essential for Drosophila development only when canonical histone gene copy number is reduced, suggesting that coordination between canonical H3.2 and variant H3.3 expression is necessary to provide sufficient H3 protein for normal genome function. To identify genes that depend upon, or are involved in, this coordinate regulation we screened for heterozygous chromosome 3 deficiencies that impair development of flies bearing reduced H3.2 and H3.3 gene copy number. We identified two regions of chromosome 3 that conferred this phenotype, one of which contains the Polycomb gene, which is necessary for establishing domains of facultative chromatin that repress master regulator genes during development. We further found that reduction in Polycomb dosage decreases viability of animals with no H3.3 gene copies. Moreover, heterozygous Polycomb mutations result in de-repression of the Polycomb target gene Ubx and cause ectopic sex combs when either canonical or variant H3 gene copy number is reduced. We conclude that Polycomb-mediated facultative heterochromatin function is compromised when canonical and variant H3 gene copy number falls below a critical threshold.
Collapse
Affiliation(s)
- Jeanne-Marie E McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lucy C Grossmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Harmony R Salzler
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Esther Kwon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
McPherson JME, Grossmann LC, Armstrong RL, Kwon E, Salzler HR, Matera AG, McKay DJ, Duronio RJ. Reduced histone gene copy number disrupts Drosophila Polycomb function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534544. [PMID: 37034607 PMCID: PMC10081267 DOI: 10.1101/2023.03.28.534544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chromatin of animal cells contains two types of histones: canonical histones that are expressed during S phase of the cell cycle to package the newly replicated genome, and variant histones with specialized functions that are expressed throughout the cell cycle and in non-proliferating cells. Determining whether and how canonical and variant histones cooperate to regulate genome function is integral to understanding how chromatin-based processes affect normal and pathological development. Here, we demonstrate that variant histone H3.3 is essential for Drosophila development only when canonical histone gene copy number is reduced, suggesting that coordination between canonical H3.2 and variant H3.3 expression is necessary to provide sufficient H3 protein for normal genome function. To identify genes that depend upon, or are involved in, this coordinate regulation we screened for heterozygous chromosome 3 deficiencies that impair development of flies bearing reduced H3.2 and H3.3 gene copy number. We identified two regions of chromosome 3 that conferred this phenotype, one of which contains the Polycomb gene, which is necessary for establishing domains of facultative chromatin that repress master regulator genes during development. We further found that reduction in Polycomb dosage decreases viability of animals with no H3.3 gene copies. Moreover, heterozygous Polycomb mutations result in de-repression of the Polycomb target gene Ubx and cause ectopic sex combs when either canonical or variant H3 gene copy number is also reduced. We conclude that Polycomb-mediated facultative heterochromatin function is compromised when canonical and variant H3 gene copy number falls below a critical threshold.
Collapse
Affiliation(s)
- Jeanne-Marie E. McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lucy C. Grossmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin L. Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Esther Kwon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Harmony R. Salzler
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J. McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
8
|
Udugama M, Vinod B, Chan FL, Hii L, Garvie A, Collas P, Kalitsis P, Steer D, Das P, Tripathi P, Mann J, Voon HPJ, Wong L. Histone H3.3 phosphorylation promotes heterochromatin formation by inhibiting H3K9/K36 histone demethylase. Nucleic Acids Res 2022; 50:4500-4514. [PMID: 35451487 PMCID: PMC9071403 DOI: 10.1093/nar/gkac259] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022] Open
Abstract
Histone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved. The H3.3 S31 residue is phosphorylated (H3.3 S31Ph) at heterochromatin regions including telomeres and pericentric repeats. However, the role of H3.3 S31Ph in these regions remains unknown. In this study, we find that H3.3 S31Ph regulates heterochromatin accessibility at telomeres during replication through regulation of H3K9/K36 histone demethylase KDM4B. In mouse embryonic stem (ES) cells, substitution of S31 with an alanine residue (H3.3 A31 -phosphorylation null mutant) results in increased KDM4B activity that removes H3K9me3 from telomeres. In contrast, substitution with a glutamic acid (H3.3 E31, mimics S31 phosphorylation) inhibits KDM4B, leading to increased H3K9me3 and DNA damage at telomeres. H3.3 E31 expression also increases damage at other heterochromatin regions including the pericentric heterochromatin and Y chromosome-specific satellite DNA repeats. We propose that H3.3 S31Ph regulation of KDM4B is required to control heterochromatin accessibility of repetitive DNA and preserve chromatin integrity.
Collapse
Affiliation(s)
| | | | - F Lyn Chan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Hii
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew Garvie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Paul Kalitsis
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - David Steer
- Biomedical Proteomics Facility, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Partha P Das
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pratibha Tripathi
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey R Mann
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hsiao P J Voon
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lee H Wong
- To whom correspondence should be addressed.
| |
Collapse
|
9
|
Schoberleitner I, Bauer I, Huang A, Andreyeva EN, Sebald J, Pascher K, Rieder D, Brunner M, Podhraski V, Oemer G, Cázarez-García D, Rieder L, Keller MA, Winkler R, Fyodorov DV, Lusser A. CHD1 controls H3.3 incorporation in adult brain chromatin to maintain metabolic homeostasis and normal lifespan. Cell Rep 2021; 37:109769. [PMID: 34610319 PMCID: PMC8607513 DOI: 10.1016/j.celrep.2021.109769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
The ATP-dependent chromatin remodeling factor CHD1 is essential for the assembly of variant histone H3.3 into paternal chromatin during sperm chromatin remodeling in fertilized eggs. It remains unclear, however, if CHD1 has a similar role in normal diploid cells. Using a specifically tailored quantitative mass spectrometry approach, we show that Chd1 disruption results in reduced H3.3 levels in heads of Chd1 mutant flies. Chd1 deletion perturbs brain chromatin structure in a similar way as H3.3 deletion and leads to global de-repression of transcription. The physiological consequences are reduced food intake, metabolic alterations, and shortened lifespan. Notably, brain-specific CHD1 expression rescues these phenotypes. We further demonstrate a strong genetic interaction between Chd1 and H3.3 chaperone Hira. Thus, our findings establish CHD1 as a factor required for the assembly of H3.3-containing chromatin in adult cells and suggest a crucial role for CHD1 in the brain as a regulator of organismal health and longevity.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Anming Huang
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Evgeniya N Andreyeva
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Johanna Sebald
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Katharina Pascher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Melanie Brunner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Valerie Podhraski
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Daniel Cázarez-García
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato 36824, Mexico
| | - Leila Rieder
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato 36824, Mexico
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
10
|
Smith R, Pickering SJ, Kopakaki A, Thong KJ, Anderson RA, Lin CJ. HIRA contributes to zygote formation in mice and is implicated in human 1PN zygote phenotype. Reproduction 2021; 161:697-707. [PMID: 33835048 PMCID: PMC8188263 DOI: 10.1530/rep-20-0636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/08/2021] [Indexed: 11/08/2022]
Abstract
Elucidating the mechanisms underpinning fertilisation is essential to optimising IVF procedures. One of the critical steps involves paternal chromatin reprogramming, in which compacted sperm chromatin packed by protamines is removed by oocyte factors and new histones, including histone H3.3, are incorporated. HIRA is the main H3.3 chaperone governing this protamine-to-histone exchange. Failure of this step results in abnormally fertilised zygotes containing only one pronucleus (1PN), in contrast to normal two-pronuclei (2PN) zygotes. 1PN zygotes are frequently observed in IVF treatments, but the genotype-phenotype correlation remains elusive. We investigated the maternal functions of two other molecules of the HIRA complex, Cabin1 and Ubn1, in mouse. Loss-of-function Cabin1 and Ubn1 mouse models were developed: their zygotes displayed an abnormal 1PN zygote phenotype. We then studied human 1PN zygotes and found that the HIRA complex was absent in 1PN zygotes that lacked the male pronucleus. This shows that the role of the HIRA complex in male pronucleus formation potentially has coherence from mice to humans. Furthermore, rescue experiments in mouse showed that the abnormal 1PN phenotype derived from Hira mutants could be resolved by overexpression of HIRA. We have demonstrated that HIRA complex regulates male pronucleus formation in mice and is implicated in humans, that both CABIN1 and UBN1 components of the HIRA complex are equally essential for male pronucleus formation, and that rescue is feasible.
Collapse
Affiliation(s)
- Rowena Smith
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh, UK
| | - Sue J Pickering
- Edinburgh Fertility and Reproductive Endocrine Centre, Simpson’s Centre for Reproductive Health, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Anna Kopakaki
- Edinburgh Fertility and Reproductive Endocrine Centre, Simpson’s Centre for Reproductive Health, Edinburgh Royal Infirmary, Edinburgh, UK
| | - K J Thong
- Edinburgh Fertility and Reproductive Endocrine Centre, Simpson’s Centre for Reproductive Health, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh, UK
- Edinburgh Fertility and Reproductive Endocrine Centre, Simpson’s Centre for Reproductive Health, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Chih-Jen Lin
- MRC Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh, UK
| |
Collapse
|
11
|
Abstract
Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France;
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
12
|
Histone variant H3.3 residue S31 is essential for Xenopus gastrulation regardless of the deposition pathway. Nat Commun 2020; 11:1256. [PMID: 32152320 PMCID: PMC7062693 DOI: 10.1038/s41467-020-15084-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 02/09/2020] [Indexed: 01/04/2023] Open
Abstract
Vertebrates exhibit specific requirements for replicative H3 and non-replicative H3.3 variants during development. To disentangle whether this involves distinct modes of deposition or unique functions once incorporated into chromatin, we combined studies in Xenopus early development with chromatin assays. Here we investigate the extent to which H3.3 mutated at residues that differ from H3.2 rescue developmental defects caused by H3.3 depletion. Regardless of the deposition pathway, only variants at residue 31-a serine that can become phosphorylated-failed to rescue endogenous H3.3 depletion. Although an alanine substitution fails to rescue H3.3 depletion, a phospho-mimic aspartate residue at position 31 rescues H3.3 function. To explore mechanisms involving H3.3 S31 phosphorylation, we identified factors attracted or repulsed by the presence of aspartate at position 31, along with modifications on neighboring residues. We propose that serine 31-phosphorylated H3.3 acts as a signaling module that stimulates the acetylation of K27, providing a chromatin state permissive to the embryonic development program.
Collapse
|
13
|
Il’ina IA, Konev AY. The role of aTp-dependent chromatin remodeling factors in chromatin assembly in vivo. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chromatin assembly is a fundamental process essential for chromosome duplication subsequent to DNA replication. In addition, histone removal and incorporation take place constantly throughout the cell cycle in the course of DNA-utilizing processes, such as transcription, damage repair or recombination. In vitro studies have revealed that nucleosome assembly relies on the combined action of core histone chaperones and ATP-utilizing molecular motor proteins such as ACF or CHD1. Despite extensive biochemical characterization of ATP-dependent chromatin assembly and remodeling factors, it has remained unclear to what extent nucleosome assembly is an ATP-dependent process in vivo. Our original and published data about the functions of ATP-dependent chromatin assembly and remodeling factors clearly demonstrated that these proteins are important for nucleosome assembly and histone exchange in vivo. During male pronucleus reorganization after fertilization CHD1 has a critical role in the genomescale, replication-independent nucleosome assembly involving the histone variant H3.3. Thus, the molecular motor proteins, such as CHD1, function not only in the remodeling of existing nucleosomes but also in de novo nucleosome assembly from DNA and histones in vivo. ATP-dependent chromatin assembly and remodeling factors have been implicated in the process of histone exchange during transcription and DNA repair, in the maintenance of centromeric chromatin and in the loading and remodeling of nucleosomes behind a replication fork. Thus, chromatin remodeling factors are involved in the processes of both replication-dependent and replication-independent chromatin assembly. The role of these proteins is especially prominent in the processes of large-scale chromatin reorganization; for example, during male pronucleus formation or in DNA repair. Together, ATP-dependent chromatin assembly factors, histone chaperones and chromatin modifying enzymes form a “chromatin integrity network” to ensure proper maintenance and propagation of chromatin landscape.
Collapse
Affiliation(s)
- Iu. A. Il’ina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”
| | - A. Yu. Konev
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”
| |
Collapse
|
14
|
Pillidge Z, Bray SJ. SWI/SNF chromatin remodeling controls Notch-responsive enhancer accessibility. EMBO Rep 2019; 20:embr.201846944. [PMID: 30914409 DOI: 10.15252/embr.201846944] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Notch signaling plays a key role in many cell fate decisions during development by directing different gene expression programs via the transcription factor CSL, known as Su(H) in Drosophila Which target genes are responsive to Notch signaling is influenced by the chromatin state of enhancers, yet how this is regulated is not fully known. Detecting a specific increase in the histone variant H3.3 in response to Notch signaling, we tested which chromatin remodelers or histone chaperones are required for the changes in enhancer accessibility to Su(H) binding. We show a crucial role for the Brahma SWI/SNF chromatin remodeling complex, including the actin-related BAP55 subunit, in conferring enhancer accessibility and enabling the transcriptional response to Notch activity. The Notch-responsive regions have high levels of nucleosome turnover which depend on the Brahma complex, increase in magnitude with Notch signaling, and primarily involve histone H3.3. Together these results highlight the importance of SWI/SNF-mediated nucleosome turnover in rendering enhancers responsive to Notch.
Collapse
Affiliation(s)
- Zoe Pillidge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Leatham-Jensen M, Uyehara CM, Strahl BD, Matera AG, Duronio RJ, McKay DJ. Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genet 2019; 15:e1007932. [PMID: 30699116 PMCID: PMC6370247 DOI: 10.1371/journal.pgen.1007932] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/11/2019] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Proper determination of cell fates depends on epigenetic information that is used to preserve memory of decisions made earlier in development. Post-translational modification of histone residues is thought to be a central means by which epigenetic information is propagated. In particular, modifications of histone H3 lysine 27 (H3K27) are strongly correlated with both gene activation and gene repression. H3K27 acetylation is found at sites of active transcription, whereas H3K27 methylation is found at loci silenced by Polycomb group proteins. The histones bearing these modifications are encoded by the replication-dependent H3 genes as well as the replication-independent H3.3 genes. Owing to differential rates of nucleosome turnover, H3K27 acetylation is enriched on replication-independent H3.3 histones at active gene loci, and H3K27 methylation is enriched on replication-dependent H3 histones across silenced gene loci. Previously, we found that modification of replication-dependent H3K27 is required for Polycomb target gene silencing, but it is not required for gene activation. However, the contribution of replication-independent H3.3K27 to these functions is unknown. Here, we used CRISPR/Cas9 to mutate the endogenous replication-independent H3.3K27 to a non-modifiable residue. Surprisingly, we find that H3.3K27 is also required for Polycomb target gene silencing despite the association of H3.3 with active transcription. However, the requirement for H3.3K27 comes at a later stage of development than that found for replication-dependent H3K27, suggesting a greater reliance on replication-independent H3.3K27 in post-mitotic cells. Notably, we find no evidence of global transcriptional defects in H3.3K27 mutants, despite the strong correlation between H3.3K27 acetylation and active transcription. During development, naïve precursor cells acquire distinct identities through differential regulation of gene expression. The process of cell fate specification is progressive and depends on memory of prior developmental decisions. Maintaining cell identities over time is not dependent on changes in genome sequence. Instead, epigenetic mechanisms propagate information on cell identity by maintaining select sets of genes in either the on or off state. Chemical modifications of histone proteins, which package and organize the genome within cells, are thought to play a central role in epigenetic gene regulation. However, identifying which histone modifications are required for gene regulation, and defining the mechanisms through which they function in the maintenance of cell identity, remains a longstanding research challenge. Here, we focus on the role of histone H3 lysine 27 (H3K27). Modifications of H3K27 are associated with both gene activation and gene silencing (i.e. H3K27 acetylation and methylation, respectively). The histones bearing these modifications are encoded by different histone genes. One set of histone genes is only expressed during cell division, whereas the other set of histone genes is expressed in both dividing and non-dividing cells. Because most cells permanently stop dividing by the end of development, these “replication-independent” histone genes are potentially important for long-term maintenance of cell identity. In this study, we demonstrate that replication-independent H3K27 is required for gene silencing by the Polycomb group of epigenetic regulators. However, despite a strong correlation between replication-independent histones and active genes, we find that replication-independent H3K27 is not required for gene activation. As mutations in replication-independent H3K27 have recently been identified in human cancers, this work may help to inform the mechanisms by which histone mutations contribute to human disease.
Collapse
Affiliation(s)
- Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Christopher M. Uyehara
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - A. Gregory Matera
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Robert J. Duronio
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Daniel J. McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bachu M, Tamura T, Chen C, Narain A, Nehru V, Sarai N, Ghosh SB, Ghosh A, Kavarthapu R, Dufau ML, Ozato K. A versatile mouse model of epitope-tagged histone H3.3 to study epigenome dynamics. J Biol Chem 2018; 294:1904-1914. [PMID: 30552116 DOI: 10.1074/jbc.ra118.005550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/09/2018] [Indexed: 12/26/2022] Open
Abstract
The variant histone H3.3 is incorporated into the genome in a transcription-dependent manner. This histone is thus thought to play a role in epigenetic regulation. However, our understanding of how H3.3 controls gene expression and epigenome landscape has remained incomplete. This is partly because precise localization of H3.3 in the genome has been difficult to decipher particularly for cells in vivo To circumvent this difficulty, we generated knockin mice, by homologous recombination, to replace both of the two H3.3 loci (H3f3a and H3f3b) with the hemagglutinin-tagged H3.3 cDNA cassette, which also contained a GFP gene. We show here that the hemagglutinin-tagged H3.3 and GFP are expressed in the majority of cells in all adult tissues tested. ChIP-seq data, combined with RNA-seq, revealed a striking correlation between the level of transcripts and that of H3.3 accumulation in expressed genes. Finally, we demonstrate that H3.3 deposition is markedly enhanced upon stimulation by interferon on interferon-stimulated genes, highlighting transcription-coupled H3.3 dynamics. Together, these H3.3 knockin mice serve as a useful experimental model to study epigenome regulation in development and in various adult cells in vivo.
Collapse
Affiliation(s)
| | - Tomohiko Tamura
- From the Division of Developmental Biology and.,the Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Chao Chen
- From the Division of Developmental Biology and
| | | | | | | | | | - Anu Ghosh
- From the Division of Developmental Biology and
| | - Raghuveer Kavarthapu
- the Section on Molecular Endocrinology, NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Maria L Dufau
- the Section on Molecular Endocrinology, NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Keiko Ozato
- From the Division of Developmental Biology and
| |
Collapse
|
17
|
Horard B, Sapey-Triomphe L, Bonnefoy E, Loppin B. ASF1 is required to load histones on the HIRA complex in preparation of paternal chromatin assembly at fertilization. Epigenetics Chromatin 2018; 11:19. [PMID: 29751847 PMCID: PMC5946387 DOI: 10.1186/s13072-018-0189-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background Anti-Silencing Factor 1 (ASF1) is a conserved H3–H4 histone chaperone involved in both Replication-Coupled and Replication-Independent (RI) nucleosome assembly pathways. At DNA replication forks, ASF1 plays an important role in regulating the supply of H3.1/2 and H4 to the CAF-1 chromatin assembly complex. ASF1 also provides H3.3–H4 dimers to HIRA and DAXX chaperones for RI nucleosome assembly. The early Drosophila embryo is an attractive system to study chromatin assembly in a developmental context. The formation of a diploid zygote begins with the unique, genome-wide RI assembly of paternal chromatin following sperm protamine eviction. Then, within the same cytoplasm, syncytial embryonic nuclei undergo a series of rapid, synchronous S and M phases to form the blastoderm embryo. Here, we have investigated the implication of ASF1 in these two distinct assembly processes. Results We show that depletion of the maternal pool of ASF1 with a specific shRNA induces a fully penetrant, maternal effect embryo lethal phenotype. Unexpectedly, despite the depletion of ASF1 protein to undetectable levels, we show that asf1 knocked-down (KD) embryos can develop to various stages, thus demonstrating that ASF1 is not absolutely required for the amplification of cleavage nuclei. Remarkably, we found that ASF1 is required for the formation of the male pronucleus, although ASF1 protein does not reside in the decondensing sperm nucleus. In asf1 KD embryos, HIRA localizes to the male nucleus but is only capable of limited and insufficient chromatin assembly. Finally, we show that the conserved HIRA B domain, which is involved in ASF1-HIRA interaction, is dispensable for female fertility. Conclusions We conclude that ASF1 is critically required to load H3.3–H4 dimers on the HIRA complex prior to histone deposition on paternal DNA. This separation of tasks could optimize the rapid assembly of paternal chromatin within the gigantic volume of the egg cell. In contrast, ASF1 is surprisingly dispensable for the amplification of cleavage nuclei, although chromatin integrity is likely compromised in KD embryos. Electronic supplementary material The online version of this article (10.1186/s13072-018-0189-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France.
| | - Laure Sapey-Triomphe
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France
| | - Emilie Bonnefoy
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France
| | - Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
18
|
Zhou M, Pan Z, Cao X, Guo X, He X, Sun Q, Di R, Hu W, Wang X, Zhang X, Zhang J, Zhang C, Liu Q, Chu M. Single Nucleotide Polymorphisms in the HIRA Gene Affect Litter Size in Small Tail Han Sheep. Animals (Basel) 2018; 8:ani8050071. [PMID: 29734691 PMCID: PMC5981282 DOI: 10.3390/ani8050071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Litter size is one of the most important reproductive traits in sheep. Two single nucleotide polymorphisms (SNPs), g.71874104G>A and g.71833755T>C, in the Histone Cell Cycle Regulator (HIRA) gene, were identified by whole-genome sequencing (WGS) and may be correlated with litter size in sheep. The two SNPs were genotyped and expression patterns of HIRA was determined in sheep breeds with different fecundity and in groups of Small Tail Han sheep producing large or small litters. Association analysis indicated that both SNPs were significantly correlated with litter size in Small Tail Han sheep. Furthermore, high levels of HIRA expression may have a negative effect on litter size in Small Tail Han sheep. Abstract Maintenance of appropriate levels of fecundity is critical for efficient sheep production. Opportunities to increase sheep litter size include identifying single gene mutations with major effects on ovulation rate and litter size. Whole-genome sequencing (WGS) data of 89 Chinese domestic sheep from nine different geographical locations and ten Australian sheep were analyzed to detect new polymorphisms affecting litter size. Comparative genomic analysis of sheep with contrasting litter size detected a novel set of candidate genes. Two SNPs, g.71874104G>A and g.71833755T>C, were genotyped in 760 Small Tail Han sheep and analyzed for association with litter size. The two SNPs were significantly associated with litter size, being in strong linkage disequilibrium in the region 71.80–71.87 Mb. This haplotype block contains one gene that may affect litter size, Histone Cell Cycle Regulator (HIRA). HIRA mRNA levels in sheep with different lambing ability were significantly higher in ovaries of Small Tail Han sheep (high fecundity) than in Sunite sheep (low fecundity). Moreover, the expression levels of HIRA in eight tissues of uniparous Small Tail Han sheep were significantly higher than in multiparous Small Tail Han sheep (p < 0.05). HIRA SNPs significantly affect litter size in sheep and are useful as genetic markers for litter size.
Collapse
Affiliation(s)
- Mei Zhou
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhangyuan Pan
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China.
| | - Xiaohan Cao
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qing Sun
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Chunyuan Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
19
|
Shaping Chromatin in the Nucleus: The Bricks and the Architects. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:1-14. [PMID: 29208640 DOI: 10.1101/sqb.2017.82.033753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromatin organization in the nucleus provides a vast repertoire of information in addition to that encoded genetically. Understanding how this organization impacts genome stability and influences cell fate and tumorigenesis is an area of rapid progress. Considering the nucleosome, the fundamental unit of chromatin structure, the study of histone variants (the bricks) and their selective loading by histone chaperones (the architects) is particularly informative. Here, we report recent advances in understanding how relationships between histone variants and their chaperones contribute to tumorigenesis using cell lines and Xenopus development as model systems. In addition to their role in histone deposition, we also document interactions between histone chaperones and other chromatin factors that govern higher-order structure and control DNA metabolism. We highlight how a fine-tuned assembly line of bricks (H3.3 and CENP-A) and architects (HIRA, HJURP, and DAXX) is key in adaptation to developmental and pathological changes. An example of this conceptual advance is the exquisite sensitivity displayed by p53-null tumor cells to modulation of HJURP, the histone chaperone for CENP-A (CenH3 variant). We discuss how these findings open avenues for novel therapeutic paradigms in cancer care.
Collapse
|
20
|
Kimura S, Loppin B. The Drosophila chromosomal protein Mst77F is processed to generate an essential component of mature sperm chromatin. Open Biol 2017; 6:rsob.160207. [PMID: 27810970 PMCID: PMC5133442 DOI: 10.1098/rsob.160207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/05/2016] [Indexed: 01/26/2023] Open
Abstract
In most animals, the bulk of sperm DNA is packaged with sperm nuclear basic proteins (SNBPs), a diverse group of highly basic chromosomal proteins notably comprising mammalian protamines. The replacement of histones with SNBPs during spermiogenesis allows sperm DNA to reach an extreme level of compaction, but little is known about how SNBPs actually function in vivo. Mst77F is a Drosophila SNBP with unique DNA condensation properties in vitro, but its role during spermiogenesis remains unclear. Here, we show that Mst77F is required for the compaction of sperm DNA and the production of mature sperm, through its cooperation with protamine-like proteins Mst35Ba/b. We demonstrate that Mst77F is incorporated in spermatid chromatin as a precursor protein, which is subsequently processed through the proteolysis of its N-terminus. The cleavage of Mst77F is very similar to the processing of protamine P2 during human spermiogenesis and notably leaves the cysteine residues in the mature protein intact, suggesting that they participate in the formation of disulfide cross-links. Despite the rapid evolution of SNBPs, sperm chromatin condensation thus involves remarkably convergent mechanisms in distantly related animals.
Collapse
Affiliation(s)
- Shuhei Kimura
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
21
|
Shi L, Wen H, Shi X. The Histone Variant H3.3 in Transcriptional Regulation and Human Disease. J Mol Biol 2017; 429:1934-1945. [PMID: 27894815 PMCID: PMC5446305 DOI: 10.1016/j.jmb.2016.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/19/2023]
Abstract
Histone proteins wrap around DNA to form nucleosomes, which further compact into the higher-order structure of chromatin. In addition to the canonical histones, there are also variant histones that often have pivotal roles in regulating chromatin dynamics and in the accessibility of the underlying DNA. H3.3 is the most common non-centromeric variant of histone H3 that differs from the canonical H3 by just 4-5 aa. Here, we discuss the current knowledge of H3.3 in transcriptional regulation and the recent discoveries and molecular mechanisms of H3.3 mutations in human cancer.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Okada Y, Yamaguchi K. Epigenetic modifications and reprogramming in paternal pronucleus: sperm, preimplantation embryo, and beyond. Cell Mol Life Sci 2017; 74:1957-1967. [PMID: 28050628 PMCID: PMC11107594 DOI: 10.1007/s00018-016-2447-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
Pronuclear/zygotic stage is the very first stage of life. In this period, paternal pronucleus undergoes massive chromatin remodeling called "paternal reprogramming" including protamine-histone replacement and subsequent acquisition of epigenetic modifications. Although these consecutive events are required for the initiation of maternal-zygotic transition, the precise role of paternal reprogramming and its effect on subsequent embryonic development has been largely unknown to date. Recently, various new techniques, especially next-generation sequencing (NGS) and RNAi microinjection contribute to unveil the epigenetic transition from both paternal and maternal to early preimplantation embryos, suggesting not only the simple transcriptional regulation by transcription factors but also dynamic structural alteration of chromatin to initiate the wave of zygotic gene transcription. This review summarizes such recent progress for understanding the epigenetic transition in sperm and preimplantation embryos, and further argue about its transgenerational effect.
Collapse
Affiliation(s)
- Yuki Okada
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Kosuke Yamaguchi
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
- Graduate School of Art and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
23
|
The Drosophila DAXX-Like Protein (DLP) Cooperates with ASF1 for H3.3 Deposition and Heterochromatin Formation. Mol Cell Biol 2017; 37:MCB.00597-16. [PMID: 28320872 DOI: 10.1128/mcb.00597-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/09/2017] [Indexed: 01/22/2023] Open
Abstract
Histone variants are nonallelic isoforms of canonical histones, and they are deposited, in contrast to canonical histones, in a replication-independent (RI) manner. RI deposition of H3.3, a histone variant from the H3.3 family, is mediated in mammals by distinct pathways involving either the histone regulator A (HIRA) complex or the death-associated protein (DAXX)/α-thalassemia X-linked mental retardation protein (ATRX) complex. Here, we investigated the function of the Drosophila DAXX-like protein (DLP) by using both fly genetic approaches and protein biochemistry. DLP specifically interacts with H3.3 and shows a prominent localization on the base of the X chromosome, where it appears to act in concert with XNP, the Drosophila homolog of ATRX, in heterochromatin assembly and maintenance. The functional association between DLP and XNP is further supported by a series of experiments that illustrate genetic interactions and the DLP-XNP-dependent localization of specific chromosomal proteins. In addition, DLP both participates in the RI deposition of H3.3 and associates with anti-silencing factor 1 (ASF1). We suggest, in agreement with a recently proposed model, that DLP and ASF1 are part of a predeposition complex, which is recruited by XNP and is necessary to prevent DNA exposure in the nucleus.
Collapse
|
24
|
Wollmann H, Stroud H, Yelagandula R, Tarutani Y, Jiang D, Jing L, Jamge B, Takeuchi H, Holec S, Nie X, Kakutani T, Jacobsen SE, Berger F. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana. Genome Biol 2017; 18:94. [PMID: 28521766 PMCID: PMC5437678 DOI: 10.1186/s13059-017-1221-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/25/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. RESULTS We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. CONCLUSIONS We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.
Collapse
Affiliation(s)
- Heike Wollmann
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Present address: Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Hume Stroud
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ramesh Yelagandula
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, 411-8540, Japan
| | - Danhua Jiang
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Li Jing
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- College of Life Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District Wuhan, Hubei, 430070, China
| | - Bhagyshree Jamge
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Hidenori Takeuchi
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Sarah Holec
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Xin Nie
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
| | - Frédéric Berger
- Gregor Mendel Institute, Vienna Biocenter VBC, Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
25
|
Thioredoxin-dependent disulfide bond reduction is required for protamine eviction from sperm chromatin. Genes Dev 2016; 30:2651-2656. [PMID: 28031247 PMCID: PMC5238724 DOI: 10.1101/gad.290916.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022]
Abstract
Emelyanov and Fyodorov identify the Drosophila thioredoxin Deadhead (DHD) as the factor responsible for the reduction of intermolecular disulfide bonds in protamines and their eviction from sperm during fertilization. Cysteine oxidation in protamines leads to their oligomerization and contributes to sperm chromatin compaction. Here we identify the Drosophila thioredoxin Deadhead (DHD) as the factor responsible for the reduction of intermolecular disulfide bonds in protamines and their eviction from sperm during fertilization. Protamine chaperone TAP/p32 dissociates DNA–protamine complexes in vitro only when protamine oligomers are first converted to monomers by DHD. dhd-null embryos cannot decondense sperm chromatin and terminate development after the first pronuclear division. Therefore, the thioredoxin DHD plays a critical role in early development to facilitate the switch from protamine-based sperm chromatin structures to the somatic nucleosomal chromatin.
Collapse
|
26
|
Unlocking sperm chromatin at fertilization requires a dedicated egg thioredoxin in Drosophila. Nat Commun 2016; 7:13539. [PMID: 27876811 PMCID: PMC5122968 DOI: 10.1038/ncomms13539] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022] Open
Abstract
In most animals, the extreme compaction of sperm DNA is achieved after the massive replacement of histones with sperm nuclear basic proteins (SNBPs), such as protamines. In some species, the ultracompact sperm chromatin is stabilized by a network of disulfide bonds connecting cysteine residues present in SNBPs. Studies in mammals have established that the reduction of these disulfide crosslinks at fertilization is required for sperm nuclear decondensation and the formation of the male pronucleus. Here, we show that the Drosophila maternal thioredoxin Deadhead (DHD) is specifically required to unlock sperm chromatin at fertilization. In dhd mutant eggs, the sperm nucleus fails to decondense and the replacement of SNBPs with maternally-provided histones is severely delayed, thus preventing the participation of paternal chromosomes in embryo development. We demonstrate that DHD localizes to the sperm nucleus to reduce its disulfide targets and is then rapidly degraded after fertilization.
Collapse
|
27
|
A Molecular Prospective for HIRA Complex Assembly and H3.3-Specific Histone Chaperone Function. J Mol Biol 2016; 429:1924-1933. [PMID: 27871933 DOI: 10.1016/j.jmb.2016.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
Abstract
Incorporation of variant histone sequences, in addition to post-translational modification of histones, serves to modulate the chromatin environment. Different histone chaperone proteins mediate the storage and chromatin deposition of variant histones. Although the two non-centromeric histone H3 variants, H3.1 and H3.3, differ by only 5 aa, replacement of histone H3.1 with H3.3 can modulate the transcription for highly expressed and developmentally required genes, lead to the formation of repressive heterochromatin, or aid in DNA and chromatin repair. The human histone cell cycle regulator (HIRA) complex composed of HIRA, ubinuclein-1, CABIN1, and transiently anti-silencing function 1, forms one of the two complexes that bind and deposit H3.3/H4 into chromatin. A number of recent biochemical and structural studies have revealed important details underlying how these proteins assemble and function together as a multiprotein H3.3-specific histone chaperone complex. Here, we present a review of existing data and present a new model for the assembly of the HIRA complex and for the HIRA-mediated incorporation of H3.3/H4 into chromatin.
Collapse
|
28
|
Shih HT, Chen WY, Liu KY, Shih ZS, Chen YJ, Hsieh PC, Kuo KL, Huang KH, Hsu PH, Liu YW, Chan SP, Lee HH, Tsai YC, Wu JT. dBRWD3 Regulates Tissue Overgrowth and Ectopic Gene Expression Caused by Polycomb Group Mutations. PLoS Genet 2016; 12:e1006262. [PMID: 27588417 PMCID: PMC5010193 DOI: 10.1371/journal.pgen.1006262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/27/2016] [Indexed: 12/20/2022] Open
Abstract
To maintain a particular cell fate, a unique set of genes should be expressed while another set is repressed. One way to repress gene expression is through Polycomb group (PcG) proteins that compact chromatin into a silent configuration. In addition to cell fate maintenance, PcG proteins also maintain normal cell physiology, for example cell cycle. In the absence of PcG, ectopic activation of the PcG-repressed genes leads to developmental defects and malignant tumors. Little is known about the molecular nature of ectopic gene expression; especially what differentiates expression of a given gene in the orthotopic tissue (orthotopic expression) and the ectopic expression of the same gene due to PcG mutations. Here we present that ectopic gene expression in PcG mutant cells specifically requires dBRWD3, a negative regulator of HIRA/Yemanuclein (YEM)-mediated histone variant H3.3 deposition. dBRWD3 mutations suppress both the ectopic gene expression and aberrant tissue overgrowth in PcG mutants through a YEM-dependent mechanism. Our findings identified dBRWD3 as a critical regulator that is uniquely required for ectopic gene expression and aberrant tissue overgrowth caused by PcG mutations. Genetic information is stored in our genomic DNA, and different cells retrieve distinct sets of information from our genome. While it is important to activate genomic regions encoding proteins that are essential for a given cell type, it is equally important to silence genomic regions encoding proteins that are potentially harmful to this type of cells. One of the gene silencing mechanisms frequently used during and after development is mediated by the Polycomb group (PcG) proteins. If this guardian function does not perform correctly due to PcG mutations, genes that are normally silenced—such as oncogenes—are expressed aberrantly. Due to the activation of oncogenes and the loss of other PcG functions, PcG mutant cells often begin to display hallmarks of cancer, such as proliferating beyond control, acquiring stem-cell-like properties, and migrating to distant sites. If the transcriptional mechanisms underlying aberrant gene expression in PcG-mutant cancer cells differ from gene expression in normal cells, we may be able to selectively inhibit the growth of cancer cells without affecting their normal counterparts. Here we show that the difference between these two types of gene expression resides in their sensitivity to dBRWD3, a negative regulator of the deposition of histone H3 variant H3.3. Our results indicate that the inactivation of dBRWD3 or promotion of H3.3 deposition may selectively suppress ectopic gene expression and tumorigenesis driven by mutations in PcG.
Collapse
Affiliation(s)
- Hsueh-Tzu Shih
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Yu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kwei-Yan Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Zong-Siou Shih
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jyun Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Paul-Chen Hsieh
- Department of Anatomical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Kuan-Lin Kuo
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Tsai
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan
- * E-mail: (YCT); (JTW)
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (YCT); (JTW)
| |
Collapse
|
29
|
O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence. Proc Natl Acad Sci U S A 2016; 113:E3213-20. [PMID: 27217568 DOI: 10.1073/pnas.1600509113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The histone chaperone HIRA complex, consisting of histone cell cycle regulator (HIRA), Ubinuclein1 (UBN1), and calcineurin binding protein 1 (CABIN1), deposits histone variant H3.3 to genic regions and regulates gene expression in various cellular processes, including cellular senescence. How HIRA-mediated nucleosome assembly of H3.3-H4 is regulated remains not well understood. Here, we show that O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), an enzyme that catalyzes O-GlcNAcylation of serine or threonine residues, interacts with UBN1, modifies HIRA, and promotes nucleosome assembly of H3.3. Depletion of OGT or expression of the HIRA S231A O-GlcNAcylation-deficient mutant compromises formation of the HIRA-H3.3 complex and H3.3 nucleosome assembly. Importantly, OGT depletion or expression of the HIRA S231A mutant delays premature cellular senescence in primary human fibroblasts, whereas overexpression of OGT accelerates senescence. Taken together, these results support a model in which OGT modifies HIRA to regulate HIRA-H3.3 complex formation and H3.3 nucleosome assembly and reveal the mechanism by which OGT functions in cellular senescence.
Collapse
|
30
|
Abstract
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm-egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raphaëlle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
31
|
O'Farrell PH. Growing an Embryo from a Single Cell: A Hurdle in Animal Life. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a019042. [PMID: 26254311 DOI: 10.1101/cshperspect.a019042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A requirement that an animal be able to feed to grow constrains how a cell can grow into an animal, and it forces an alternation between growth (increase in mass) and proliferation (increase in cell number). A growth-only phase that transforms a stem cell of ordinary proportions into a huge cell, the oocyte, requires dramatic adaptations to help a nucleus direct a 10(5)-fold expansion of cytoplasmic volume. Proliferation without growth transforms the huge egg into an embryo while still accommodating an impotent nucleus overwhelmed by the voluminous cytoplasm. This growth program characterizes animals that deposit their eggs externally, but it is changed in mammals and in endoparasites. In these organisms, development in a nutritive environment releases the growth constraint, but growth of cells before gastrulation requires a new program to sustain pluripotency during this growth.
Collapse
Affiliation(s)
- Patrick H O'Farrell
- Department of Biochemistry, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
32
|
Boija A, Mannervik M. A time of change: Dynamics of chromatin and transcriptional regulation during nuclear programming in earlyDrosophiladevelopment. Mol Reprod Dev 2015; 82:735-46. [DOI: 10.1002/mrd.22517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Ann Boija
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Mattias Mannervik
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| |
Collapse
|
33
|
Ricketts MD, Frederick B, Hoff H, Tang Y, Schultz DC, Singh Rai T, Grazia Vizioli M, Adams PD, Marmorstein R. Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex. Nat Commun 2015; 6:7711. [PMID: 26159857 PMCID: PMC4510971 DOI: 10.1038/ncomms8711] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/01/2015] [Indexed: 01/01/2023] Open
Abstract
Histone chaperones bind specific histones to mediate their storage, eviction or deposition from/or into chromatin. The HIRA histone chaperone complex, composed of HIRA, ubinuclein-1 (UBN1) and CABIN1, cooperates with the histone chaperone ASF1a to mediate H3.3-specific binding and chromatin deposition. Here we demonstrate that the conserved UBN1 Hpc2-related domain (HRD) is a novel H3.3-specific-binding domain. Biochemical and biophysical studies show the UBN1-HRD preferentially binds H3.3/H4 over H3.1/H4. X-ray crystallographic and mutational studies reveal that conserved residues within the UBN1-HRD and H3.3 G90 as key determinants of UBN1–H3.3-binding specificity. Comparison of the structure with the unrelated H3.3-specific chaperone DAXX reveals nearly identical points of contact between the chaperone and histone in the proximity of H3.3 G90, although the mechanism for H3.3 G90 recognition appears to be distinct. This study points to UBN1 as the determinant of H3.3-specific binding and deposition by the HIRA complex. Ubinuclein-1 (UBN1) is a subunit of the HIRA histone chaperone complex that deposits histone H3.3 into chromatin. Here the authors use structural and biochemical studies to show that a conserved domain in UBN1 mediates H3.3-specific binding by the HIRA complex.
Collapse
Affiliation(s)
- M Daniel Ricketts
- 1] Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian Frederick
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Henry Hoff
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Yong Tang
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - David C Schultz
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Taranjit Singh Rai
- 1] Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Glasgow G61 1BD, UK [2] Institute of Biomedical and Environmental Health Research, University of West of Scotland, Paisley PA1 2BE, UK
| | - Maria Grazia Vizioli
- Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Glasgow G61 1BD, UK
| | - Peter D Adams
- Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Glasgow G61 1BD, UK
| | - Ronen Marmorstein
- 1] Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [3] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
34
|
Levine MT, Vander Wende HM, Malik HS. Mitotic fidelity requires transgenerational action of a testis-restricted HP1. eLife 2015; 4:e07378. [PMID: 26151671 PMCID: PMC4491702 DOI: 10.7554/elife.07378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/08/2015] [Indexed: 01/02/2023] Open
Abstract
Sperm-packaged DNA must undergo extensive reorganization to ensure its timely participation in embryonic mitosis. Whereas maternal control over this remodeling is well described, paternal contributions are virtually unknown. In this study, we show that Drosophila melanogaster males lacking Heterochromatin Protein 1E (HP1E) sire inviable embryos that undergo catastrophic mitosis. In these embryos, the paternal genome fails to condense and resolve into sister chromatids in synchrony with the maternal genome. This delay leads to a failure of paternal chromosomes, particularly the heterochromatin-rich sex chromosomes, to separate on the first mitotic spindle. Remarkably, HP1E is not inherited on mature sperm chromatin. Instead, HP1E primes paternal chromosomes during spermatogenesis to ensure faithful segregation post-fertilization. This transgenerational effect suggests that maternal control is necessary but not sufficient for transforming sperm DNA into a mitotically competent pronucleus. Instead, paternal action during spermiogenesis exerts post-fertilization control to ensure faithful chromosome segregation in the embryo. DOI:http://dx.doi.org/10.7554/eLife.07378.001 The genetic information of cells is packaged into structures called chromosomes, which are made up of long strands of DNA that are wrapped around proteins to form a structure called chromatin. The cells of most animals contain two copies of every chromosome, but the egg and sperm cells contain only one copy. This means that when an egg fuses with a sperm cell during fertilization, the resulting ‘zygote’ will contain two copies of each chromosome—one inherited from the mother, and one from the father. These chromosomes duplicate and divide many times within the developing embryo in a process known as mitosis. The first division of the zygote is particularly complicated, as the egg and sperm chromosomes must go through extensive—and yet different—chromatin reorganization processes. For instance, paternal DNA is inherited via sperm, where specialized sperm proteins package the DNA more tightly than in the maternal DNA, which is packaged by histone proteins used throughout development. For paternal DNA to participate in mitosis in the embryo, it must first undergo a transition to a histone-packaged state. Despite these differences, both maternal and paternal chromosomes must undergo mitosis at the same time if the zygote is to successfully divide. Although it is known that the egg cell contributes essential proteins that are incorporated into the sperm chromatin to help it reorganize, the importance of paternal proteins in coordinating this process remains poorly understood. Many members of a family of proteins called Heterochromatin Protein 1 (or HP1 for short) have previously been shown to control chromatin organization in plants and animals. In 2012, researchers found that several HP1 proteins are found only in the testes of the fruit fly species Drosophila melanogaster. They predicted that these proteins might help control the reorganization of the paternal chromosomes following fertilization. Levine et al.—including researchers involved in the 2012 study—have now used genetic and cell-based techniques to show that one member of the HP1 family (called HP1E) ensures that the paternal chromosomes are ready for cell division at the same time as the maternal chromosomes. Male flies that are unable to produce this protein do not have any offspring because, while these flies' sperm can fertilize eggs, the resulting zygotes cannot divide as normal. Further experiments revealed that HP1E is not inherited through the chromatin of mature sperm, but instead influences the structure of the chromosomes during the final stages of the development of the sperm cells in the fly testes. This study shows that both maternal and paternal proteins are needed to control how the paternal chromosomes reorganize in fruit fly embryos. Although difficult to discover and decipher, this work re-emphasizes the importance of paternal epigenetic contributions—changes that alter how DNA is read, without changing the DNA sequence itself—for ensuring the viability of resulting offspring. Future work will reveal both the molecular mechanism of this epigenetic transfer of information, as well as why certain Drosophila species are able to naturally overcome the loss of the essential HP1E protein. DOI:http://dx.doi.org/10.7554/eLife.07378.002
Collapse
Affiliation(s)
- Mia T Levine
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Helen M Vander Wende
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
35
|
Borg M, Berger F. Chromatin remodelling during male gametophyte development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:177-188. [PMID: 25892182 DOI: 10.1111/tpj.12856] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 05/28/2023]
Abstract
The plant life cycle alternates between a diploid sporophytic phase and haploid gametophytic phase, with the latter giving rise to the gametes. Male gametophyte development encompasses two mitotic divisions that results in a simple three-celled structure knows as the pollen grain, in which two sperm cells are encased within a larger vegetative cell. Both cell types exhibit a very different type of chromatin organization - highly condensed in sperm cell nuclei and highly diffuse in the vegetative cell. Distinct classes of histone variants have dynamic and differential expression in the two cell lineages of the male gametophyte. Here we review how the dynamics of histone variants are linked to reprogramming of chromatin activities in the male gametophyte, compaction of the sperm cell genome and zygotic transitions post-fertilization.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
36
|
Chen WY, Shih HT, Liu KY, Shih ZS, Chen LK, Tsai TH, Chen MJ, Liu H, Tan BCM, Chen CY, Lee HH, Loppin B, Aït-Ahmed O, Wu JT. Intellectual disability-associated dBRWD3 regulates gene expression through inhibition of HIRA/YEM-mediated chromatin deposition of histone H3.3. EMBO Rep 2015; 16:528-38. [PMID: 25666827 DOI: 10.15252/embr.201439092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 01/16/2015] [Indexed: 12/28/2022] Open
Abstract
Many causal mutations of intellectual disability have been found in genes involved in epigenetic regulations. Replication-independent deposition of the histone H3.3 variant by the HIRA complex is a prominent nucleosome replacement mechanism affecting gene transcription, especially in postmitotic neurons. However, how HIRA-mediated H3.3 deposition is regulated in these cells remains unclear. Here, we report that dBRWD3, the Drosophila ortholog of the intellectual disability gene BRWD3, regulates gene expression through H3.3, HIRA, and its associated chaperone Yemanuclein (YEM), the fly ortholog of mammalian Ubinuclein1. In dBRWD3 mutants, increased H3.3 levels disrupt gene expression, dendritic morphogenesis, and sensory organ differentiation. Inactivation of yem or H3.3 remarkably suppresses the global transcriptome changes and various developmental defects caused by dBRWD3 mutations. Our work thus establishes a previously unknown negative regulation of H3.3 and advances our understanding of BRWD3-dependent intellectual disability.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Institute of Molecular Medicine College of Medicine National Taiwan University, Taipei, Taiwan
| | - Hsueh-Tzu Shih
- Institute of Molecular Medicine College of Medicine National Taiwan University, Taipei, Taiwan
| | - Kwei-Yan Liu
- Institute of Molecular Medicine College of Medicine National Taiwan University, Taipei, Taiwan
| | - Zong-Siou Shih
- Institute of Molecular Medicine College of Medicine National Taiwan University, Taipei, Taiwan
| | - Li-Kai Chen
- Institute of Molecular Medicine College of Medicine National Taiwan University, Taipei, Taiwan
| | - Tsung-Han Tsai
- Institute of Molecular Medicine College of Medicine National Taiwan University, Taipei, Taiwan
| | - Mei-Ju Chen
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Hsuan Liu
- Department of Cell and Molecular Biology, College of Medicine Chang Gung University, Tao-Yuan, Taiwan Molecular Medicine Research Center Chang Gung University, Tao-Yuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Molecular Medicine Research Center Chang Gung University, Tao-Yuan, Taiwan Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine Chang Gung University, Tao-Yuan, Taiwan
| | - Chien-Yu Chen
- Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine College of Medicine National Taiwan University, Taipei, Taiwan
| | - Benjamin Loppin
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire CNRS UMR5534 Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Ounissa Aït-Ahmed
- Institute of Regenerative medicine and Biotherapy (IRMB) Inserm U1203 Saint-Eloi Hospital, CHRU Montpellier, France
| | - June-Tai Wu
- Institute of Molecular Medicine College of Medicine National Taiwan University, Taipei, Taiwan Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan Research Center for Developmental Biology and Regenerative Medicine National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Horard B, Loppin B. Histone storage and deposition in the early Drosophila embryo. Chromosoma 2015; 124:163-75. [PMID: 25563491 DOI: 10.1007/s00412-014-0504-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022]
Abstract
Drosophila development initiates with the formation of a diploid zygote followed by the rapid division of embryonic nuclei. This syncytial phase of development occurs almost entirely under maternal control and ends when the blastoderm embryo cellularizes and activates its zygotic genome. The biosynthesis and storage of histones in quantity sufficient for chromatin assembly of several thousands of genome copies represent a unique challenge for the developing embryo. In this article, we have reviewed our current understanding of the mechanisms involved in the production, storage, and deposition of histones in the fertilized egg and during the exponential amplification of cleavage nuclei.
Collapse
Affiliation(s)
- Béatrice Horard
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire-CNRS UMR5534, Université Claude Bernard Lyon 1, University of Lyon, 69100, Villeurbanne, France
| | | |
Collapse
|
38
|
Meyer RE, Algazeery A, Capri M, Brazier H, Ferry C, Aït-Ahmed O. Drosophila Yemanuclein associates with the cohesin and synaptonemal complexes. J Cell Sci 2014; 127:4658-66. [PMID: 25189620 DOI: 10.1242/jcs.152520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiosis is characterized by two chromosome segregation rounds (meiosis I and II), which follow a single round of DNA replication, resulting in haploid genome formation. Chromosome reduction occurs at meiosis I. It relies on key structures, such as chiasmata, which are formed by repair of double-strand breaks (DSBs) between the homologous chromatids. In turn, to allow for segregation of homologs, chiasmata rely on the maintenance of sister chromatid cohesion. In most species, chiasma formation requires the prior synapsis of homologous chromosome axes, which is mediated by the synaptonemal complex, a tripartite proteinaceous structure specific to prophase I of meiosis. Yemanuclein (Yem) is a maternal factor that is crucial for sexual reproduction. It is required in the zygote for chromatin assembly of the male pronucleus, where it acts as a histone H3.3 chaperone in complex with Hira. We report here that Yem associates with the synaptonemal complex and the cohesin complex. A genetic interaction between yem(1) (V478E) and the Spo11 homolog mei-W68, modified a yem(1) dominant effect on crossover distribution, suggesting that Yem has an early role in meiotic recombination. This is further supported by the impact of yem mutations on DSB kinetics. A Hira mutation gave a similar effect, presumably through disruption of Hira-Yem complex.
Collapse
Affiliation(s)
- Régis E Meyer
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| | - Ahmed Algazeery
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| | - Michèle Capri
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| | - Hélène Brazier
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| | - Christine Ferry
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France
| | - Ounissa Aït-Ahmed
- Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 34396 Montpellier, France Institute of Regenerative Medicine and Biotherapy (IRMB), INSERM U1040/Hôpital Saint-Eloi CHRU, 34295 Montpellier, France
| |
Collapse
|
39
|
Yang P, Wu W, Macfarlan TS. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. Bioessays 2014; 37:52-9. [PMID: 25328107 DOI: 10.1002/bies.201400072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian egg employs a wide spectrum of epigenome modification machinery to reprogram the sperm nucleus shortly after fertilization. This event is required for transcriptional activation of the paternal/zygotic genome and progression through cleavage divisions. Reprogramming of paternal nuclei requires replacement of sperm protamines with canonical and non-canonical histones, covalent modification of histone tails, and chemical modification of DNA (notably oxidative demethylation of methylated cytosines). In this essay we highlight the role maternal histone variants play during developmental reprogramming following fertilization. We discuss how reduced maternal histone variant incorporation in somatic nuclear transfer experiments may explain the reduced viability of resulting embryos and how knowledge of repressive and activating maternal factors may be used to improve somatic cell reprogramming.
Collapse
Affiliation(s)
- Peng Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
40
|
Filipescu D, Müller S, Almouzni G. Histone H3 Variants and Their Chaperones During Development and Disease: Contributing to Epigenetic Control. Annu Rev Cell Dev Biol 2014; 30:615-46. [DOI: 10.1146/annurev-cellbio-100913-013311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris, F-75248 France; , ,
| | | | | |
Collapse
|
41
|
Emelyanov AV, Rabbani J, Mehta M, Vershilova E, Keogh MC, Fyodorov DV. Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization. Genes Dev 2014; 28:2027-40. [PMID: 25228646 PMCID: PMC4173154 DOI: 10.1101/gad.248583.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine-DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32-null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32, Nlp, and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells.
Collapse
Affiliation(s)
- Alexander V Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Joshua Rabbani
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Monika Mehta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Elena Vershilova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Michael C Keogh
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
42
|
Nie X, Wang H, Li J, Holec S, Berger F. The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics. Biol Open 2014; 3:794-802. [PMID: 25086063 PMCID: PMC4163656 DOI: 10.1242/bio.20148680] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In animals, replication-independent incorporation of nucleosomes containing the histone variant H3.3 enables global reprogramming of histone modifications and transcriptional profiles. H3.3 enrichment over gene bodies correlates with gene transcription in animals and plants. In animals, H3.3 is deposited into chromatin by specific protein complexes, including the HIRA complex. H3.3 variants evolved independently and acquired similar properties in animals and plants, questioning how the H3.3 deposition machinery evolved in plants and what are its biological functions. We performed phylogenetic analyses in the plant kingdom and identified in Arabidopsis all orthologs of human genes encoding members of the HIRA complex. Genetic analyses, biochemical data and protein localisation suggest that these proteins form a complex able to interact with H3.3 in Arabidopsis in a manner similar to that described in mammals. In contrast to animals, where HIRA is required for fertilization and early development, loss of function of HIRA in Arabidopsis causes mild phenotypes in the adult plant and does not perturb sexual reproduction and embryogenesis. Rather, HIRA function is required for transcriptional reprogramming during dedifferentiation of plant cells that precedes vegetative propagation and for the appropriate transcription of genes responsive to biotic and abiotic factors. We conclude that the molecular function of the HIRA complex is conserved between plants and animals. Yet plants diversified HIRA functions to enable asexual reproduction and responsiveness to the environment in response to the plant sessile lifestyle.
Collapse
Affiliation(s)
- Xin Nie
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - Haifeng Wang
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - Jing Li
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - Sarah Holec
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Frédéric Berger
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
43
|
Kawashima T, Berger F. Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 2014; 15:613-24. [DOI: 10.1038/nrg3685] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Tai PWL, Zaidi SK, Wu H, Grandy RA, Montecino MM, van Wijnen AJ, Lian JB, Stein GS, Stein JL. The dynamic architectural and epigenetic nuclear landscape: developing the genomic almanac of biology and disease. J Cell Physiol 2014; 229:711-27. [PMID: 24242872 PMCID: PMC3996806 DOI: 10.1002/jcp.24508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Compaction of the eukaryotic genome into the confined space of the cell nucleus must occur faithfully throughout each cell cycle to retain gene expression fidelity. For decades, experimental limitations to study the structural organization of the interphase nucleus restricted our understanding of its contributions towards gene regulation and disease. However, within the past few years, our capability to visualize chromosomes in vivo with sophisticated fluorescence microscopy, and to characterize chromosomal regulatory environments via massively parallel sequencing methodologies have drastically changed how we currently understand epigenetic gene control within the context of three-dimensional nuclear structure. The rapid rate at which information on nuclear structure is unfolding brings challenges to compare and contrast recent observations with historic findings. In this review, we discuss experimental breakthroughs that have influenced how we understand and explore the dynamic structure and function of the nucleus, and how we can incorporate historical perspectives with insights acquired from the ever-evolving advances in molecular biology and pathology.
Collapse
Affiliation(s)
- Phillip W. L. Tai
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Sayyed K. Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Hai Wu
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Rodrigo A. Grandy
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Martin M. Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
45
|
Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 2014; 15:259-71. [PMID: 24614311 DOI: 10.1038/nrg3673] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite a conserved role for histones as general DNA packaging agents, it is now clear that another key function of these proteins is to confer variations in chromatin structure to ensure dynamic patterns of transcriptional regulation in eukaryotes. The incorporation of histone variants is particularly important to this process. Recent knockdown and knockout studies in various cellular systems, as well as direct mutational evidence from human cancers, now suggest a crucial role for histone variant regulation in processes as diverse as differentiation and proliferation, meiosis and nuclear reprogramming. In this Review, we provide an overview of histone variants in the context of their unique functions during mammalian germ cell and embryonic development, and examine the consequences of aberrant histone variant regulation in human disease.
Collapse
|
46
|
Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:155-68. [DOI: 10.1016/j.bbagrm.2013.08.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/25/2023]
|
47
|
Filipescu D, Szenker E, Almouzni G. Developmental roles of histone H3 variants and their chaperones. Trends Genet 2013; 29:630-40. [PMID: 23830582 DOI: 10.1016/j.tig.2013.06.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/14/2013] [Accepted: 06/03/2013] [Indexed: 11/27/2022]
Abstract
Animal development and lifetime potential exploit a balance between the stability and plasticity of cellular identity. Within the nucleus, this is controlled by an interplay involving lineage-specific transcription factors and chromatin dynamics. Histone H3 variants contribute to chromatin dynamics through the timing and sites of their incorporation, promoted by dedicated histone chaperones. Moreover, their individual modifications and binding partners provide distinct features at defined genomic loci. We highlight here the importance of the H3.3 replacement variant for the nuclear reprogramming that occurs during gametogenesis, fertilization, and germline establishment. Furthermore, we describe how the recently characterized H3.3 dynamics associated with gastrulation, myogenesis, or neurogenesis underline the role of chromatin changes in cell differentiation. Finally, we discuss the challenges of maintaining centromeric identity through propagation of the centromeric CenH3 variant in different cell types. Future challenges will be to gain a comprehensive picture of H3 variants and their chaperones during development and differentiation.
Collapse
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris F-75248 Cedex 05, France; CNRS, UMR218, Paris F-75248 Cedex 05, France
| | | | | |
Collapse
|