1
|
Bean EL, Smith JL, Grossman AD. Identification of insertion sites for the integrative and conjugative element Tn916 in the Bacillus subtilis chromosome. PLoS One 2025; 20:e0318964. [PMID: 40378350 PMCID: PMC12084037 DOI: 10.1371/journal.pone.0318964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
Integrative and conjugative elements (ICEs) are found in many bacterial species and are mediators of horizontal gene transfer. Tn916 is an ICE found in several Gram-positive genera, including Enterococcus, Staphylococcus, Streptococcus, and Clostridioides (previously Clostridium). In contrast to the many ICEs that preferentially integrate into a single site, Tn916 can integrate into many sites in the host chromosome. The consensus integration motif for Tn916, based on analyses of approximately 200 independent insertions, is an approximately 16 bp AT-rich sequence. Here, we describe the identification and mapping of approximately 105 independent Tn916 insertions in the Bacillus subtilis chromosome. The insertions were distributed between 1,554 chromosomal sites, and approximately 99% of the insertions were in 303 sites and 65% were in only ten sites. One region, between ykuC and ykyB (kre), was a 'hotspot' for integration with ~22% of the insertions in that single location. In almost all of the top 99% of sites, Tn916 was found with similar frequencies in both orientations relative to the chromosome and relative to the direction of transcription, with a few notable exceptions. Using the sequences of all insertion regions, we determined a consensus motif which is similar to that previously identified for C. difficile. The insertion sites are largely AT-rich, and some sites overlap with regions bound by the nucleoid-associated protein Rok, a functional analog of H-NS of Gram-negative bacteria. Rok functions as a negative regulator of at least some horizontally acquired genes. We found that the presence or absence of Rok had little or no effect on insertion site specificity of Tn916.
Collapse
Affiliation(s)
- Emily L. Bean
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.
| | - Janet L. Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.
| |
Collapse
|
2
|
McKeithen-Mead S, Anderson ME, García-Heredia A, Grossman AD. Activation and modulation of the host response to DNA damage by an integrative and conjugative element. J Bacteriol 2025; 207:e0046224. [PMID: 39846752 PMCID: PMC11841131 DOI: 10.1128/jb.00462-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Mobile genetic elements help drive horizontal gene transfer and bacterial evolution. Conjugative elements and temperate bacteriophages can be stably maintained in host cells. They can alter host physiology and regulatory responses and typically carry genes that are beneficial to their hosts. We found that ICEBs1, an integrative and conjugative element (ICE) of Bacillus subtilis, inhibits the host response to DNA damage (the SOS response). Activation of ICEBs1 before DNA damage reduced host cell lysis that was caused by SOS-mediated activation of two resident prophages. Further, activation of ICEBs1 itself activated the SOS response in a subpopulation of cells, and this activation was attenuated by the functions of the ICEBs1 genes ydcT and yddA (now ramT and ramA; ram for RecA modulator). Double-mutant analyses indicated that RamA functions to inhibit and RamT functions to both inhibit and activate the SOS response. Both RamT and RamA caused a reduction in RecA filaments, one of the early steps in activation of the SOS response. We suspect that there are several different mechanisms by which mobile genetic elements that generate single-stranded DNA (ssDNA) during their life cycle inhibit the host SOS response and RecA function, as RamT and RamA differ from the known SOS inhibitors encoded by conjugative elements.IMPORTANCEBacterial genomes typically contain mobile genetic elements, including bacteriophages (viruses) and integrative and conjugative elements, that affect host physiology. ICEs can excise from the chromosome and undergo rolling-circle replication, producing ssDNA, a signal that indicates DNA damage and activates the host SOS response. We found that following excision and replication, ICEBs1 of B. subtilis stimulates the host SOS response and that ICEBs1 encodes two proteins that limit the extent of this response. These proteins also reduce the amount of cell killing caused by resident prophages following their activation by DNA damage. These proteins are different from those previously characterized that inhibit the host SOS response and represent a new way in which ICEs can affect their host cells.
Collapse
Affiliation(s)
- Saria McKeithen-Mead
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mary E. Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alam García-Heredia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Bean EL, Smith JL, Grossman AD. Identification of insertion sites for the integrative and conjugative element Tn9 16 in the Bacillus subtilis chromosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635231. [PMID: 39975115 PMCID: PMC11838328 DOI: 10.1101/2025.01.28.635231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Integrative and conjugative elements (ICEs) are found in many bacterial species and are mediators of horizontal gene transfer. Tn916 is an ICE found in several Gram-positive genera, including Enterococcus, Staphylococcus, Streptococcus, and Clostridum. In contrast to the many ICEs that preferentially integrate into a single site, Tn916 can integrate into many sites in the host chromosome. The consensus integration motif for Tn916, based on analyses of approximately 200 independent insertions, is an approximately 16 bp AT-rich sequence. Here, we describe the identification and mapping of approximately 105 independent Tn916 insertions in the Bacillus subtilis chromosome. The insertions were distributed between 1,554 chromosomal sites, and approximately 99% of the insertions were in 303 sites and 65% were in only ten sites. One region, between ykuC and ykyB (kre), was a 'hotspot' for integration with ~22% of the insertions in that single location. In almost all of the top 99% of sites, Tn916 was found with similar frequencies in both orientations relative to the chromosome and relative to the direction of transcription, with a few notable exceptions. Using the sequences of all insertion regions, we determined a consensus motif which is similar to that previously identified for Clostridium difficile. The insertion sites are largely AT-rich, and some sites overlap with regions bound by the nucleoid-associated protein Rok, a functional analog of H-NS of Gram-negative bacteria. Rok functions as a negative regulator of at least some horizontally acquired genes. We found that the presence or absence of Rok had little or no effect on insertion site specificity of Tn916.
Collapse
Affiliation(s)
| | | | - Alan D. Grossman
- Department of Biology Massachusetts Institute of Technology Cambridge, MA 02139
| |
Collapse
|
4
|
Wirachman ES, Grossman AD. Transcription termination and antitermination are critical for the fitness and function of the integrative and conjugative element Tn916. PLoS Genet 2024; 20:e1011417. [PMID: 39652596 DOI: 10.1371/journal.pgen.1011417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Premature expression of genes in mobile genetic elements can be detrimental to their bacterial hosts. Tn916, the founding member of a large family of integrative and conjugative elements (ICEs; aka conjugative transposons), confers tetracycline-resistance and is found in several Gram-positive bacterial species. We identified a transcription terminator near one end of Tn916 that functions as an insulator that prevents expression of element genes when Tn916 is integrated downstream from an active host promoter. The terminator blocked expression of Tn916 genes needed for unwinding and rolling circle replication of the element DNA, and loss of the terminator caused a fitness defect for the host cells. Further, we identified an element-encoded antiterminator (named canT for conjugation-associated antitermination) that is essential for transcription of Tn916 genes after excision of the element from the host chromosome. We found that the antiterminator is orientation-specific, functions with heterologous promoters and terminators, is processive and is most likely a cis-acting RNA. Insulating gene expression in conjugative elements that are integrated in the chromosome is likely a key feature of the interplay between mobile genetic elements and their hosts and appears to be critical for the function and evolution of the large family of Tn916-like elements.
Collapse
Affiliation(s)
- Erika S Wirachman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
5
|
McKeithen-Mead S, Anderson ME, García-Heredia A, Grossman AD. Activation and modulation of the host response to DNA damage by an integrative and conjugative element. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617469. [PMID: 39416164 PMCID: PMC11482772 DOI: 10.1101/2024.10.09.617469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mobile genetic elements help drive horizontal gene transfer and bacterial evolution. Conjugative elements and temperate bacteriophages can be stably maintained in host cells. They can alter host physiology and regulatory responses and typically carry genes that are beneficial to their hosts. We found that ICEBs1, an integrative and conjugative element of Bacillus subtilis, inhibits the host response to DNA damage (the SOS response). Activation of ICEBs1 before DNA damage reduced host cell lysis that was caused by SOS-mediated activation of two resident prophages. Further, activation of ICEBs1 itself activated the SOS response in a subpopulation of cells, and this activation was attenuated by the functions of the ICEBs1 genes ydcT and yddA (now ramT and ramA, for RecA modulator). Double mutant analyses indicated that RamA functions to inhibit and RamT functions to both inhibit and activate the SOS response. Both RamT and RamA caused a reduction in RecA filaments, one of the early steps in activation of the SOS response. We suspect that there are several different mechanisms by which mobile genetic elements that generate ssDNA during their lifecycle inhibit the host SOS response and RecA function, as RamT and RamA differ from the known SOS inhibitors encoded by conjugative elements.
Collapse
Affiliation(s)
- Saria McKeithen-Mead
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Mary E. Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Alam García-Heredia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
6
|
Wippold JA, Chu M, Renberg R, Li Y, Adams B, Han A. XPORT ENTRAP: A droplet microfluidic platform for enhanced DNA transfer between microbial species. N Biotechnol 2024; 81:10-19. [PMID: 38408724 DOI: 10.1016/j.nbt.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
A significant hurdle for the widespread implementation and use of synthetic biology is the challenge of highly efficient introduction of DNA into microorganisms. This is especially a barrier for the utilization of non-model organisms and/or novel chassis species for a variety of applications, ranging from molecular biology to biotechnology and biomanufacturing applications. Common approaches to episomal and chromosomal gene editing, which employ techniques such as chemical competence and electroporation, are typically only amenable to a small subset of microbial species while leaving the vast majority of microorganisms in nature genetically inaccessible. To address this challenge, we have employed the previously described B. subtilis broad-host conjugation strain, XPORT, which was modularly designed for loading DNA cargo and conjugating such DNA into recalcitrant microbes. In this current work, we have leveraged and adapted the XPORT strain for use in a droplet microfluidic platform to enable increased efficiency of conjugation-based DNA transfer. The system named DNA ENTRAP (DNA ENhanced TRAnsfer Platform) utilizes cell-encapsulated water-in-oil emulsion droplets as pico-liter-volume bioreactors that allows controlled contacts between the donor and receiver cells within the emulsion bioreactor. This allowed enhanced XPORT-mediated genetic transfer over the current benchtop XPORT process, demonstrated using two different Bacillus subtilis strains (donor and receiver), as well as increased throughput (e.g., number of successfully conjugated cells) due to the automated assay steps inherent to microfluidic lab-on-a-chip systems. DNA ENTRAP paves the way for a streamlined automation of culturing and XPORT-mediated genetic transfer processes as well as future high-throughput cell engineering and screening applications.
Collapse
Affiliation(s)
- Jose A Wippold
- United States Combat Capabilities Development Command Army Research Laboratory - DEVCOM ARL, Adelphi, MD, USA
| | - Monica Chu
- United States Combat Capabilities Development Command Army Research Laboratory - DEVCOM ARL, Adelphi, MD, USA
| | - Rebecca Renberg
- United States Combat Capabilities Development Command Army Research Laboratory - DEVCOM ARL, Adelphi, MD, USA
| | - Yuwen Li
- Department of Electrical and Computer Engineering, USA
| | - Bryn Adams
- United States Combat Capabilities Development Command Army Research Laboratory - DEVCOM ARL, Adelphi, MD, USA.
| | - Arum Han
- Department of Electrical and Computer Engineering, USA; Department of Biomedical Engineering, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
Murthy AC, Aleksanyan N, Morton GM, Toyoda HC, Kalashyan M, Chen S, Ragucci AE, Broulidakis MP, Swerdlow KJ, Bui MNN, Muccioli M, Berkmen MB. Characterization of ConE, the VirB4 Homolog of the Integrative and Conjugative Element ICE Bs1 of Bacillus subtilis. J Bacteriol 2023; 205:e0003323. [PMID: 37219457 PMCID: PMC10294652 DOI: 10.1128/jb.00033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Conjugation is a major form of horizontal gene transfer, contributing to bacterial evolution and the acquisition of new traits. During conjugation, a donor cell transfers DNA to a recipient through a specialized DNA translocation channel classified as a type IV secretion system (T4SS). Here, we focused on the T4SS of ICEBs1, an integrative and conjugative element in Bacillus subtilis. ConE, encoded by ICEBs1, is a member of the VirB4 family of ATPases, the most conserved component of T4SSs. ConE is required for conjugation and localizes to the cell membrane, predominantly at the cell poles. In addition to Walker A and B boxes, VirB4 homologs have conserved ATPase motifs C, D, and E. Here, we created alanine substitutions in five conserved residues within or near ATPase motifs in ConE. Mutations in all five residues drastically decreased conjugation frequency but did not affect ConE protein levels or localization, indicating that an intact ATPase domain is critical for DNA transfer. Purified ConE is largely monomeric with some oligomers and lacks enzymatic activity, suggesting that ATP hydrolysis may be regulated or require special solution conditions. Finally, we investigated which ICEBs1 T4SS components interact with ConE using a bacterial two-hybrid assay. ConE interacts with itself, ConB, and ConQ, but these interactions are not required to stabilize ConE protein levels and largely do not depend on conserved residues within the ATPase motifs of ConE. The structure-function characterization of ConE provides more insight into this conserved component shared by all T4SSs. IMPORTANCE Conjugation is a major form of horizontal gene transfer and involves the transfer of DNA from one bacterium to another through the conjugation machinery. Conjugation contributes to bacterial evolution by disseminating genes involved in antibiotic resistance, metabolism, and virulence. Here, we characterized ConE, a protein component of the conjugation machinery of the conjugative element ICEBs1 of the bacterium Bacillus subtilis. We found that mutations in the conserved ATPase motifs of ConE disrupt mating but do not alter ConE localization, self-interaction, or levels. We also explored which conjugation proteins ConE interacts with and whether these interactions contribute to stabilizing ConE. Our work contributes to the understanding of the conjugative machinery of Gram-positive bacteria.
Collapse
Affiliation(s)
- Anastasia C. Murthy
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Naira Aleksanyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Georgeanna M. Morton
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Hunter C. Toyoda
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Meri Kalashyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Sirui Chen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Adelyn E. Ragucci
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
- Cancer Immunology and Virology Department, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew P. Broulidakis
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Kyle J. Swerdlow
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Minh N. N. Bui
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Maria Muccioli
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Melanie B. Berkmen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Arbel-Goren R, McKeithen-Mead SA, Voglmaier D, Afremov I, Teza G, Grossman A, Stavans J. Target search by an imported conjugative DNA element for a unique integration site along a bacterial chromosome during horizontal gene transfer. Nucleic Acids Res 2023; 51:3116-3129. [PMID: 36762480 PMCID: PMC10123120 DOI: 10.1093/nar/gkad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements that can transfer by conjugation to recipient cells. Some ICEs integrate into a unique site in the genome of their hosts. We studied quantitatively the process by which an ICE searches for its unique integration site in the Bacillus subtilis chromosome. We followed the motion of both ICEBs1 and the chromosomal integration site in real time within individual cells. ICEBs1 exhibited a wide spectrum of dynamical behaviors, ranging from rapid sub-diffusive displacements crisscrossing the cell, to kinetically trapped states. The chromosomal integration site moved sub-diffusively and exhibited pronounced dynamical asymmetry between longitudinal and transversal motions, highlighting the role of chromosomal structure and the heterogeneity of the bacterial interior in the search. The successful search for and subsequent recombination into the integration site is a key step in the acquisition of integrating mobile genetic elements. Our findings provide new insights into intracellular transport processes involving large DNA molecules.
Collapse
Affiliation(s)
- Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Dominik Voglmaier
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Idana Afremov
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gianluca Teza
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alan D Grossman
- Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
9
|
McKeithen-Mead SA, Grossman AD. Timing of integration into the chromosome is critical for the fitness of an integrative and conjugative element and its bacterial host. PLoS Genet 2023; 19:e1010524. [PMID: 36780569 PMCID: PMC9956884 DOI: 10.1371/journal.pgen.1010524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are major contributors to genome plasticity in bacteria. ICEs reside integrated in the chromosome of a host bacterium and are passively propagated during chromosome replication and cell division. When activated, ICEs excise from the chromosome and may be transferred through the ICE-encoded conjugation machinery into a recipient cell. Integration into the chromosome of the new host generates a stable transconjugant. Although integration into the chromosome of a new host is critical for the stable acquisition of ICEs, few studies have directly investigated the molecular events that occur in recipient cells during generation of a stable transconjugant. We found that integration of ICEBs1, an ICE of Bacillus subtilis, occurred several generations after initial transfer to a new host. Premature integration in new hosts led to cell death and hence decreased fitness of the ICE and transconjugants. Host lethality due to premature integration was caused by rolling circle replication that initiated in the integrated ICEBs1 and extended into the host chromosome, resulting in catastrophic genome instability. Our results demonstrate that the timing of integration of an ICE is linked to cessation of autonomous replication of the ICE, and that perturbing this linkage leads to a decrease in ICE and host fitness due to a loss of viability of transconjugants. Linking integration to cessation of autonomous replication appears to be a conserved regulatory scheme for mobile genetic elements that both replicate and integrate into the chromosome of their host.
Collapse
Affiliation(s)
- Saria A. McKeithen-Mead
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
10
|
Bean EL, McLellan LK, Grossman AD. Activation of the integrative and conjugative element Tn916 causes growth arrest and death of host bacteria. PLoS Genet 2022; 18:e1010467. [PMID: 36279314 PMCID: PMC9632896 DOI: 10.1371/journal.pgen.1010467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Integrative and conjugative elements (ICEs) serve as major drivers of bacterial evolution. These elements often confer some benefit to host cells, including antibiotic resistance, metabolic capabilities, or pathogenic determinants. ICEs can also have negative effects on host cells. Here, we investigated the effects of the ICE (conjugative transposon) Tn916 on host cells. Because Tn916 is active in a relatively small subpopulation of host cells, we developed a fluorescent reporter system for monitoring activation of Tn916 in single cells. Using this reporter, we found that cell division was arrested in cells of Bacillus subtilis and Enterococcus faecalis (a natural host for Tn916) that contained an activated (excised) Tn916. Furthermore, most of the cells with the activated Tn916 subsequently died. We also observed these phenotypes on the population level in B. subtilis utilizing a modified version of Tn916 that can be activated in the majority of cells. We identified two genes (orf17 and orf16) in Tn916 that were sufficient to cause growth defects in B. subtilis and identified a single gene, yqaR, that is in a defective phage (skin) in the B. subtilis chromosome that was required for this phenotype. These three genes were only partially responsible for the growth defect caused by Tn916, indicating that Tn916 possesses multiple mechanisms to affect growth and viability of host cells. These results highlight the complex relationships that conjugative elements have with their host cells and the interplay between mobile genetic elements.
Collapse
Affiliation(s)
- Emily L. Bean
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
| | - Lisa K. McLellan
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Biology and engineering of integrative and conjugative elements: Construction and analyses of hybrid ICEs reveal element functions that affect species-specific efficiencies. PLoS Genet 2022; 18:e1009998. [PMID: 35584135 PMCID: PMC9154091 DOI: 10.1371/journal.pgen.1009998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/31/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements that reside in a bacterial host chromosome and are prominent drivers of bacterial evolution. They are also powerful tools for genetic analyses and engineering. Transfer of an ICE to a new host involves many steps, including excision from the chromosome, DNA processing and replication, transfer across the envelope of the donor and recipient, processing of the DNA, and eventual integration into the chromosome of the new host (now a stable transconjugant). Interactions between an ICE and its host throughout the life cycle likely influence the efficiencies of acquisition by new hosts. Here, we investigated how different functional modules of two ICEs, Tn916 and ICEBs1, affect the transfer efficiencies into different host bacteria. We constructed hybrid elements that utilize the high-efficiency regulatory and excision modules of ICEBs1 and the conjugation genes of Tn916. These elements produced more transconjugants than Tn916, likely due to an increase in the number of cells expressing element genes and a corresponding increase in excision. We also found that several Tn916 and ICEBs1 components can substitute for one another. Using B. subtilis donors and three Enterococcus species as recipients, we found that different hybrid elements were more readily acquired by some species than others, demonstrating species-specific interactions in steps of the ICE life cycle. This work demonstrates that hybrid elements utilizing the efficient regulatory functions of ICEBs1 can be built to enable efficient transfer into and engineering of a variety of other species. Horizontal gene transfer helps drive microbial evolution, enabling bacteria to rapidly acquire new genes and traits. Integrative and conjugative elements (ICEs) are mobile genetic elements that reside in a bacterial host chromosome and are prominent drivers of horizontal gene transfer. They are also powerful tools for genetic analyses and engineering. Some ICEs carry genes that confer obvious properties to host bacteria, including antibiotic resistances, symbiosis, and pathogenesis. When activated, an ICE-encoded machine is made that can transfer the element to other cells, where it then integrates into the chromosome of the new host. Specific ICEs transfer more effectively into some bacterial species compared to others, yet little is known about the determinants of the efficiencies and specificity of acquisition by different bacterial species. We made and utilized hybrid ICEs, composed of parts of two different elements, to investigate determinants of transfer efficiencies. Our findings demonstrate that there are species-specific interactions that help determine efficiencies of stable acquisition, and that this explains, in part, the efficiencies of different ICEs. These hybrid elements are also useful in genetic engineering and synthetic biology to move genes and pathways into different bacterial species with greater efficiencies than can be achieved with naturally occurring ICEs.
Collapse
|
12
|
Zhao Y, Wang W, Yao J, Wang X, Liu D, Wang P. The HipAB Toxin-Antitoxin System Stabilizes a Composite Genomic Island in Shewanella putrefaciens CN-32. Front Microbiol 2022; 13:858857. [PMID: 35387082 PMCID: PMC8978831 DOI: 10.3389/fmicb.2022.858857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Composite genomic islands (GIs) are useful models for studying GI evolution if they can revert into the previous components. In this study, CGI48—a 48,135-bp native composite GI that carries GI21, whose homologies specifically integrated in the conserved yicC gene—were identified in Shewanella putrefaciens CN-32. CGI48 was integrated into the tRNATrp gene, which is a conserved gene locus for the integration of genomic islands in Shewanella. Upon expressing integrase and excisionase, CGI48 and GI21 are excised from chromosomes via site-specific recombination. The shorter attachment sites of GI21 facilitated the capture of GI21 into CGI48. Moreover, GI21 encodes a functional HipAB toxin–antitoxin system, thus contributing to the maintenance of CGI48 in the host bacteria. This study provides new insights into GI evolution by performing the excision process of the inserting GI and improves our understanding of the maintenance mechanisms of composite GI.
Collapse
Affiliation(s)
- Yi Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dong Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Johnson CM, Harden MM, Grossman AD. Interactions between mobile genetic elements: An anti-phage gene in an integrative and conjugative element protects host cells from predation by a temperate bacteriophage. PLoS Genet 2022; 18:e1010065. [PMID: 35157704 PMCID: PMC8880864 DOI: 10.1371/journal.pgen.1010065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 02/01/2022] [Indexed: 01/21/2023] Open
Abstract
Most bacterial genomes contain horizontally acquired and transmissible mobile genetic elements, including temperate bacteriophages and integrative and conjugative elements. Little is known about how these elements interact and co-evolved as parts of their host genomes. In many cases, it is not known what advantages, if any, these elements provide to their bacterial hosts. Most strains of Bacillus subtilis contain the temperate phage SPß and the integrative and conjugative element ICEBs1. Here we show that the presence of ICEBs1 in cells protects populations of B. subtilis from predation by SPß, likely providing selective pressure for the maintenance of ICEBs1 in B. subtilis. A single gene in ICEBs1 (yddK, now called spbK for SPß killing) was both necessary and sufficient for this protection. spbK inhibited production of SPß, during both activation of a lysogen and following de novo infection. We found that expression spbK, together with the SPß gene yonE constitutes an abortive infection system that leads to cell death. spbK encodes a TIR (Toll-interleukin-1 receptor)-domain protein with similarity to some plant antiviral proteins and animal innate immune signaling proteins. We postulate that many uncharacterized cargo genes in ICEs may confer selective advantage to cells by protecting against other mobile elements. Chromosomes from virtually all organisms contain genes that were horizontally acquired. In bacteria, many of the horizontally acquired genes are located in mobile genetic elements, elements that promote their own transfer from one cell to another. These elements include viruses and conjugative elements that are parts of the host genome and they can contain genes involved in metabolism, pathogenesis, symbiosis, and antibiotic resistances. Interactions between these elements are poorly understood. Furthermore, the majority of these elements confer no obvious benefit to host cells. We found that the presence of an integrative and conjugative element (ICE) in a bacterial genome protects host cells from predation by a bacteriophage (virus). There is a single gene in the integrative and conjugative element that confers this protection, and one gene in the bacteriophage that likely works together with the ICE gene. When expressed at the same time, these two genes cause cell death, before functional viruses can be made and released to kill other cells. We postulate that other ICEs may confer selective advantage to their host cells by protecting against other mobile elements.
Collapse
Affiliation(s)
- Christopher M. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - M. Michael Harden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Specificity and Selective Advantage of an Exclusion System in the Integrative and Conjugative Element ICE Bs1 of Bacillus subtilis. J Bacteriol 2021; 203:JB.00700-20. [PMID: 33649151 DOI: 10.1128/jb.00700-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements capable of transferring their own and other DNA. They contribute to the spread of antibiotic resistance and other important traits for bacterial evolution. Exclusion is a mechanism used by many conjugative plasmids and a few ICEs to prevent their host cell from acquiring a second copy of the cognate element. ICEBs1 of Bacillus subtilis has an exclusion mechanism whereby the exclusion protein YddJ in a potential recipient inhibits the activity of the ICEBs1-encoded conjugation machinery in a potential donor. The target of YddJ-mediated exclusion is the conjugation protein ConG (a VirB6 homolog). Here, we defined the regions of YddJ and ConG that confer exclusion specificity and determined the importance of exclusion to host cells. Using chimeras that had parts of ConG from ICEBs1 and the closely related ICEBat1, we identified a putative extracellular loop of ConG that conferred specificity for exclusion by the cognate YddJ. Using chimeras of YddJ from ICEBs1 and ICEBat1, we identified two regions in YddJ needed for exclusion specificity. We also found that YddJ-mediated exclusion reduced the death of donor cells following conjugation into recipients. Donor death was dependent on the ability of transconjugants to themselves become donors and was reduced under osmoprotective conditions, indicating that death was likely due to alterations in the donor cell envelope caused by excessive conjugation. We postulate that elements that can have high frequencies of transfer likely evolved exclusion mechanisms to protect the host cells from excessive death.IMPORTANCE Horizontal gene transfer is a driving force in bacterial evolution, responsible for the spread of many traits, including antibiotic and heavy metal resistance. Conjugation, one type of horizontal gene transfer, involves DNA transfer from donor to recipient cells through conjugation machinery and direct cell-cell contact. Exclusion mechanisms allow conjugative elements to prevent their host from acquiring additional copies of the element and are highly specific, enabling hosts to acquire heterologous elements. We defined regions of the exclusion protein and its target in the conjugation machinery that convey high specificity of exclusion. We found that exclusion protects donors from cell death during periods of high transfer. This is likely important for the element to enter new populations of cells.
Collapse
|
15
|
Jones JM, Grinberg I, Eldar A, Grossman AD. A mobile genetic element increases bacterial host fitness by manipulating development. eLife 2021; 10:65924. [PMID: 33655883 PMCID: PMC8032392 DOI: 10.7554/elife.65924] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 01/30/2023] Open
Abstract
Horizontal gene transfer is a major force in bacterial evolution. Mobile genetic elements are responsible for much of horizontal gene transfer and also carry beneficial cargo genes. Uncovering strategies used by mobile genetic elements to benefit host cells is crucial for understanding their stability and spread in populations. We describe a benefit that ICEBs1, an integrative and conjugative element of Bacillus subtilis, provides to its host cells. Activation of ICEBs1 conferred a frequency-dependent selective advantage to host cells during two different developmental processes: biofilm formation and sporulation. These benefits were due to inhibition of biofilm-associated gene expression and delayed sporulation by ICEBs1-containing cells, enabling them to exploit their neighbors and grow more prior to development. A single ICEBs1 gene, devI (formerly ydcO), was both necessary and sufficient for inhibition of development. Manipulation of host developmental programs allows ICEBs1 to increase host fitness, thereby increasing propagation of the element. Many bacteria can ‘have sex’ – that is, they can share their genetic information and trade off segments of DNA. While these mobile genetic elements can be parasites that use the resources of their host to make more of themselves, some carry useful genes which, for example, help bacteria to fight off antibiotics. Integrative and conjugative elements (or ICEs) are a type of mobile segments that normally stay inside the genetic information of their bacterial host but can sometimes replicate and be pumped out to another cell. ICEBs1 for instance, is an element found in the common soil bacterium Bacillus subtilis. Scientists know that ICEBs1 can rapidly spread in biofilms – the slimly, crowded communities where bacteria live tightly connected – but it is still unclear whether it helps or hinders its hosts. Using genetic manipulations and tracking the survival of different groups of cells, Jones et al. show that carrying ICEBs1 confers an advantage under many conditions. When B. subtilis forms biofilms, the presence of the devI gene in ICEBs1 helps the cells to delay the production of the costly mucus that keeps bacteria together, allowing the organisms to ‘cheat’ for a little while and benefit from the tight-knit community without contributing to it. As nutrients become scarce in biofilms, the gene also allows the bacteria to grow for longer before they start to form spores – the dormant bacterial form that can weather difficult conditions. Mobile elements can carry genes that make bacteria resistant to antibiotics, harmful to humans, or able to use new food sources; they could even be used to artificially introduce genes of interest in these cells. The work by Jones et al. helps to understand the way these elements influence the fate of their host, providing insight into how they could be harnessed for the benefit of human health.
Collapse
Affiliation(s)
- Joshua M Jones
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Ilana Grinberg
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avigdor Eldar
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
16
|
Pala L, Sirec T, Spitz U. Modified Enzyme Substrates for the Detection of Bacteria: A Review. Molecules 2020; 25:E3690. [PMID: 32823590 PMCID: PMC7465704 DOI: 10.3390/molecules25163690] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to detect, identify and quantify bacteria is crucial in clinical diagnostics, environmental testing, food security settings and in microbiology research. Recently, the threat of multidrug-resistant bacterial pathogens pushed the global scientific community to develop fast, reliable, specific and affordable methods to detect bacterial species. The use of synthetically modified enzyme substrates is a convenient approach to detect bacteria in a specific, economic and rapid manner. The method is based on the use of specific enzyme substrates for a given bacterial marker enzyme, conjugated to a signalogenic moiety. Following enzymatic reaction, the signalophor is released from the synthetic substrate, generating a specific and measurable signal. Several types of signalophors have been described and are defined by the type of signal they generate, such as chromogenic, fluorogenic, luminogenic, electrogenic and redox. Signalophors are further subdivided into groups based on their solubility in water, which is key in defining their application on solid or liquid media for bacterial culturing. This comprehensive review describes synthetic enzyme substrates and their applications for bacterial detection, showing their mechanism of action and their synthetic routes.
Collapse
Affiliation(s)
| | | | - Urs Spitz
- Biosynth Carbosynth, Axis House, High Street, Compton, Berkshire RG20 6NL, UK; (L.P.); (T.S.)
| |
Collapse
|
17
|
Botelho J, Schulenburg H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol 2020; 29:8-18. [PMID: 32536522 DOI: 10.1016/j.tim.2020.05.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Mobile genetic elements (MGEs), such as plasmids and integrative and conjugative elements (ICEs), are main drivers for the spread of antibiotic resistance (AR). Coevolution between bacteria and plasmids shapes the transfer and stability of plasmids across bacteria. Although ICEs outnumber conjugative plasmids, the dynamics of ICE-bacterium coevolution, ICE transfer rates, and fitness costs are as yet largely unexplored. Conjugative plasmids and ICEs are both transferred by type IV secretion systems, but ICEs are typically immune to segregational loss, suggesting that the evolution of ICE-bacterium associations varies from that of plasmid-bacterium associations. Considering the high abundance of ICEs among bacteria, ICE-bacterium dynamics represent a promising challenge for future research that will enhance our understanding of AR spread in human pathogens.
Collapse
Affiliation(s)
- João Botelho
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany.
| | - Hinrich Schulenburg
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
18
|
Wang Y, Zhang Y, Cui Y, Sun Z, Zhou Z, Hu S, Li S, Liu M, Meng X, Xiao Y, Shi D, Bi D, Li Z. Identification of an Integrase That Responsible for Precise Integration and Excision of Riemerella anatipestifer Genomic Island. Front Microbiol 2019; 10:2099. [PMID: 31616389 PMCID: PMC6764341 DOI: 10.3389/fmicb.2019.02099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Riemerella anatipestifer is a Gram-negative, pathogenic bacterium, which is harmful to poultry. However, the genomic islands (GIs) in R. anatipestifer are not well-studied. In this study, a 10K genomic island was predicted by the bioinformatics analysis of R. anatipestifer ATCC 11845, which is widely found in other R. anatipestifer genomes. We had first reported the genomic island integration and excision function in R. anatipestifer. We successfully constructed the integration plasmid by using the integrase and 53 bp attP elements. The 10K GI was found integrated at the 53 bp attB located in the Arg-tRNA of the R. anatipestifer RA-YM chromosome. We identified an integrase that helped in the precise integration and excision in R. anatipestifer and elucidated the molecular mechanism of the 10K genomic island integration and excision. Furthermore, we provided a new method for the gene expression and construction of complementary strain.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yijie Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhijian Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Mei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Xianrong Meng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
19
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Brophy JAN, Triassi AJ, Adams BL, Renberg RL, Stratis-Cullum DN, Grossman AD, Voigt CA. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat Microbiol 2018; 3:1043-1053. [PMID: 30127494 DOI: 10.1038/s41564-018-0216-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
Engineering microorganisms to promote human or plant health will require manipulation of robust bacteria that are capable of surviving in harsh, competitive environments. Genetic engineering of undomesticated bacteria can be limited by an inability to transfer DNA into the cell. Here we developed an approach based on the integrative and conjugative element from Bacillus subtilis (ICEBs1) to overcome this problem. A donor strain (XPORT) was built to transfer miniaturized integrative and conjugative elements (mini-ICEBs1) to undomesticated bacteria. The strain was engineered to enable inducible control over conjugation, to integrate delivered DNA into the chromosome of the recipient, to restrict spread of heterologous DNA through separation of the type IV secretion system from the transferred DNA, and to enable simple isolation of engineered bacteria through a D-alanine auxotrophy. Efficient DNA transfer (10-1 to 10-7 conjugation events per donor) is demonstrated using 35 Gram-positive strains isolated from humans (skin and gut) and soil. Mini-ICEBs1 was used to rapidly characterize the performance of an isopropyl-β-D-thiogalactoside (IPTG)-inducible reporter across dozens of strains and to transfer nitrogen fixation to four Bacillus species. Finally, XPORT was introduced to soil to demonstrate DNA transfer under non-ideal conditions.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander J Triassi
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
22
|
Haskett TL, Ramsay JP, Bekuma AA, Sullivan JT, O'Hara GW, Terpolilli JJ. Evolutionary persistence of tripartite integrative and conjugative elements. Plasmid 2017; 92:30-36. [DOI: 10.1016/j.plasmid.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
|
23
|
Azpiroz MF, Laviña M. Analysis of RecA-independent recombination events between short direct repeats related to a genomic island and to a plasmid in Escherichia coli K12. PeerJ 2017; 5:e3293. [PMID: 28503377 PMCID: PMC5426353 DOI: 10.7717/peerj.3293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 02/03/2023] Open
Abstract
RecA-independent recombination events between short direct repeats, leading to deletion of the intervening sequences, were found to occur in two genetic models in the Escherichia coli K12 background. The first model was a small E. coli genomic island which had been shown to be mobile in its strain of origin and, when cloned, also in the E. coli K12 context. However, it did not encode a site-specific recombinase as mobile genomic islands usually do. It was then deduced that the host cells should provide the recombination function. This latter was searched for by means of a PCR approach to detect the island excision in E. coli K12 mutants affected in a number of recombination functions, including the 16 E. coli K12 site-specific recombinases, the RecET system, and multiple proteins that participate in the RecA-dependent pathways of homologous recombination. None of these appeared to be involved in the island excision. The second model, analyzed in a RecA deficient context, was a plasmid construction containing a short direct repeat proceeding from Saccharomyces cerevisiae, which flanked the cat gene. The excision of this gene by recombination of the DNA repeats was confirmed by PCR and through the detection, recovery and characterization of the plasmid deleted form. In sum, we present new evidence on the occurrence of RecA-independent recombination events in E. coli K12. Although the mechanism underlying these processes is still unknown, their existence suggests that RecA-independent recombination may confer mobility to other genetic elements, thus contributing to genome plasticity.
Collapse
Affiliation(s)
- María F Azpiroz
- Fisiología y Genética Bacterianas, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magela Laviña
- Fisiología y Genética Bacterianas, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
24
|
Villa L, Feudi C, Fortini D, Brisse S, Passet V, Bonura C, Endimiani A, Mammina C, Ocampo AM, Jimenez JN, Doumith M, Woodford N, Hopkins K, Carattoli A. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genom 2017; 3:e000110. [PMID: 28785421 PMCID: PMC5506382 DOI: 10.1099/mgen.0.000110] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/22/2017] [Indexed: 02/05/2023] Open
Abstract
The global spread of Klebsiella pneumoniae producing Klebsiella pneumoniae carbapenemase (KPC) has been mainly associated with the dissemination of high-risk clones. In the last decade, hospital outbreaks involving KPC-producing K. pneumoniae have been predominantly attributed to isolates belonging to clonal group (CG) 258. However, results of recent epidemiological analysis indicate that KPC-producing sequence type (ST) 307, is emerging in different parts of the world and is a candidate to become a prevalent high-risk clone in the near future. Here we show that the ST307 genome encodes genetic features that may provide an advantage in adaptation to the hospital environment and the human host. Sequence analysis revealed novel plasmid-located virulence factors, including a cluster for glycogen synthesis. Glycogen production is considered to be one of the possible adaptive responses to long-term survival and growth in environments outside the host. Chromosomally-encoded virulence traits in the clone comprised fimbriae, an integrative conjugative element carrying the yersiniabactin siderophore, and two different capsular loci. Compared with the ST258 clone, capsulated ST307 isolates showed higher resistance to complement-mediated killing. The acquired genetic features identified in the genome of this new emerging clone may contribute to increased persistence of ST307 in the hospital environment and shed light on its potential epidemiological success.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Endimiani
- 4Institute of Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Ana Maria Ocampo
- 5Grupo de Microbiología Básica y Aplicada, Escuela de Microbiología Universidad de Antioquia, Medellín, Colombia
| | - Judy Natalia Jimenez
- 5Grupo de Microbiología Básica y Aplicada, Escuela de Microbiología Universidad de Antioquia, Medellín, Colombia
| | - Michel Doumith
- 6Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Neil Woodford
- 6Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Katie Hopkins
- 6Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | | |
Collapse
|
25
|
Grohmann E, Keller W, Muth G. Mechanisms of Conjugative Transfer and Type IV Secretion-Mediated Effector Transport in Gram-Positive Bacteria. Curr Top Microbiol Immunol 2017. [PMID: 29536357 DOI: 10.1007/978-3-319-75241-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Conjugative DNA transfer is the most important means to transfer antibiotic resistance genes and virulence determinants encoded by plasmids, integrative conjugative elements (ICE), and pathogenicity islands among bacteria. In gram-positive bacteria, there exist two types of conjugative systems, (i) type IV secretion system (T4SS)-dependent ones, like those encoded by the Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Clostridia mobile genetic elements and (ii) T4SS-independent ones, as those found on Streptomyces plasmids. Interestingly, very recently, on the Streptococcus suis genome, the first gram-positive T4SS not only involved in conjugative DNA transfer but also in effector translocation to the host was detected. Although no T4SS core complex structure from gram-positive bacteria is available, several structures from T4SS protein key factors from Enterococcus and Clostridia plasmids have been solved. In this chapter, we summarize the current knowledge on the molecular mechanisms and structure-function relationships of the diverse conjugation machineries and emerging research needs focused on combatting infections and spread of multiple resistant gram-positive pathogens.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Beuth University of Applied Sciences Berlin, Life Sciences and Technology, 13347, Berlin, Germany.
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed, University of Graz, 8010, Graz, Austria
| | - Günther Muth
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
26
|
Auchtung JM, Aleksanyan N, Bulku A, Berkmen MB. Biology of ICEBs1, an integrative and conjugative element in Bacillus subtilis. Plasmid 2016; 86:14-25. [PMID: 27381852 DOI: 10.1016/j.plasmid.2016.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/21/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Horizontal gene transfer plays a profound role in bacterial evolution by propelling the rapid transfer of genes and gene cassettes. Integrative and conjugative elements (ICEs) are one important mechanism driving horizontal gene transfer. ICEs, also known as conjugative transposons, reside on the host chromosome but can excise to form a conjugative DNA circle that is capable of transfer to other cells. Analysis of the large number of completed bacterial genome sequences has revealed many previously unrecognized ICEs, including ICEBs1, found in the Gram-positive model bacterium Bacillus subtilis. The discovery of ICEBs1 in an organism with such an impressive array of molecular tools for genetics and molecular biology was fortuitous. Significant insights into ICE biology have resulted since its discovery <15years ago. In this review, we describe aspects of ICEBs1 biology, such as excision, conjugative transfer, and reintegration, likely to be conserved across many ICEs. We will also highlight some of the more unexpected aspects of ICEBs1 biology, such as its ability to undergo plasmid-like replication after excision and its ability to mobilize plasmids lacking dedicated mobilization functions. A molecular understanding of ICEBs1 has led to additional insights into signals and mechanisms that promote horizontal gene transfer and shape bacterial evolution.
Collapse
Affiliation(s)
- Jennifer M Auchtung
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| | - Naira Aleksanyan
- Department of Chemistry and Biochemistry, Suffolk University, 8 Ashburton Place, Boston, MA 02108, USA.
| | - Artemisa Bulku
- Department of Chemistry and Biochemistry, Suffolk University, 8 Ashburton Place, Boston, MA 02108, USA.
| | - Melanie B Berkmen
- Department of Chemistry and Biochemistry, Suffolk University, 8 Ashburton Place, Boston, MA 02108, USA.
| |
Collapse
|
27
|
Carraro N, Libante V, Morel C, Charron-Bourgoin F, Leblond P, Guédon G. Plasmid-like replication of a minimal streptococcal integrative and conjugative element. MICROBIOLOGY-SGM 2016; 162:622-632. [PMID: 26825653 DOI: 10.1099/mic.0.000219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements encoding their own excision from a replicon of their bacterial host, transfer by conjugation to a recipient bacterium and reintegration for maintenance. The conjugation, recombination and regulation modules of ICEs of the ICESt3 family are grouped together in a region called the ICE 'core region'. In addition to this core region, elements belonging to this family carry a highly variable region including cargo genes that could be involved in bacterial adaptation or in the maintenance of the element. Although ICEs are a major class of mobile elements through bacterial genomes, the functionality of an element encoding only its excision, transfer, integration and regulation has never been demonstrated experimentally. We engineered MiniICESt3, an artificial ICE derived from ICESt3, devoid of its cargo genes and thus only harbouring the core region. The functionality of this minimal element was assessed. MiniICESt3 was found to be able to excise at a rate of 3.1 %, transfer with a frequency of 1.0 × 10- 5 transconjugants per donor cell and stably maintain by site-specific integration into the 3' end of the fda gene, the same as ICESt3. Furthermore, MiniICESt3 was found in ∼10 copies per chromosome, this multicopy state likely contributing to its stability for >100 generations even in the absence of selection. Therefore, although ICEs were primarily assumed to only replicate along with the chromosome, our results uncovered extrachromosomal rolling-circle replicating plasmid-like forms of MiniICESt3.
Collapse
Affiliation(s)
- Nicolas Carraro
- INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Virginie Libante
- INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Catherine Morel
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Florence Charron-Bourgoin
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Pierre Leblond
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Gérard Guédon
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
28
|
The Composition of the Cell Envelope Affects Conjugation in Bacillus subtilis. J Bacteriol 2016; 198:1241-9. [PMID: 26833415 DOI: 10.1128/jb.01044-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/27/2016] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Conjugation in bacteria is the contact-dependent transfer of DNA from one cell to another via donor-encoded conjugation machinery. It is a major type of horizontal gene transfer between bacteria. Conjugation of the integrative and conjugative element ICEBs1 into Bacillus subtilis is affected by the composition of phospholipids in the cell membranes of the donor and recipient. We found that reduction (or elimination) of lysyl-phosphatidylglycerol caused by loss of mpr F caused a decrease in conjugation efficiency. Conversely, alterations that caused an increase in lysyl-phosphatidylglycerol, including loss of ugtP or overproduction of mprF, caused an increase in conjugation efficiency. In addition, we found that mutations that alter production of other phospholipids, e.g., loss of clsA and yfnI, also affected conjugation, apparently without substantively altering levels of lysyl-phosphatidylglycerol, indicating that there are multiple pathways by which changes to the cell envelope affect conjugation. We found that the contribution of mprF to conjugation was affected by the chemical environment. Wild-type cells were generally more responsive to addition of anions that enhanced conjugation, whereas mprF mutant cells were more sensitive to combinations of anions that inhibited conjugation at pH 7. Our results indicate that mprF and lysyl-phosphatidylglycerol allow cells to maintain relatively consistent conjugation efficiencies under a variety of ionic conditions. IMPORTANCE Horizontal gene transfer is a driving force in microbial evolution, enabling cells that receive DNA to acquire new genes and phenotypes. Conjugation, the contact-dependent transfer of DNA from a donor to a recipient by a donor-encoded secretion machine, is a prevalent type of horizontal gene transfer. Although critically important, it is not well understood how the recipient influences the success of conjugation. We found that the composition of phospholipids in the membranes of donors and recipients influences the success of transfer of the integrative and conjugative element ICEBs1 in Bacillus subtilis Specifically, the presence of lysyl-phosphatidylglycerol enables relatively constant conjugation efficiencies in a range of diverse chemical environments.
Collapse
|
29
|
Gaca AO, Gilmore MS. Killing of VRE Enterococcus faecalis by commensal strains: Evidence for evolution and accumulation of mobile elements in the absence of competition. Gut Microbes 2016; 7:90-6. [PMID: 26939857 PMCID: PMC4856443 DOI: 10.1080/19490976.2015.1127482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enterococci are members of the gastrointestinal tract of humans and most animals that, over the past 3 decades, have emerged as leading causes of multidrug resistant hospital acquired infection (HAI). In addition to their general hardiness, many traits have entered enterococcal lineages through horizontal gene transfer, which has led to the evolution of pathogenic hospital-associated lineages uniquely adapted for survival and proliferation in the antibiotic perturbed ecology of the gastrointestinal tract. We recently observed that the accretion of mobile genetic elements in the prototype vancomycin resistant E. faecalis, clinical isolate V583, renders it unable to co-exist with native enterococci in healthy human fecal flora. In this addendum, we discuss how these findings inform our understanding of how multidrug resistant enterococci evolve, and the implications for the development of treatments that limit colonization and spread of highly antibiotic refractory microbes of this type.
Collapse
Affiliation(s)
- Anthony O. Gaca
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA,Department of Microbiology and Immunobiology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Michael S. Gilmore
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA,Department of Microbiology and Immunobiology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Abstract
Integrative and Conjugative Elements (ICEs) are bacterial mobile genetic elements that play a key role in bacterial genomes dynamics and evolution. ICEs are widely distributed among virtually all bacterial genera. Recent extensive studies have unraveled their high diversity and complexity. The present review depicts the general conserved features of ICEs and describes more precisely three major families of ICEs that have been extensively studied in the past decade for their biology, their evolution and their impact on genomes dynamics. First, the large SXT/R391 family of ICEs disseminates antibiotic resistance genes and drives the exchange of mobilizable genomic islands (MGIs) between many enteric pathogens such as Vibrio cholerae. Second, ICEBs1 of Bacillus subtilis is the most well understood ICE of Gram-positive bacteria, notably regarding the regulation of its dissemination and its initially unforeseen extrachromosomal replication, which could be a common feature of ICEs of both Gram-positive and Gram-negative bacteria. Finally, ICESt1 and ICESt3 of Streptococcus thermophilus are the prototypes of a large family of ICEs widely distributed among various streptococci. These ICEs carry an original regulation module that associates regulators related to those of both SXT/R391 and ICEBs1. Study of ICESt1 and ICESt3 uncovered the cis-mobilization of related genomic islands (CIMEs) by a mechanism called accretion-mobilization, which likely represents a paradigm for the evolution of many ICEs and genomic islands. These three major families of ICEs give a glimpse about ICEs dynamics and their high impact on bacterial adaptation.
Collapse
|
31
|
Abstract
Horizontal gene transfer plays a major role in microbial evolution, allowing microbes to acquire new genes and phenotypes. Integrative and conjugative elements (ICEs, a.k.a. conjugative transposons) are modular mobile genetic elements integrated into a host genome and are passively propagated during chromosomal replication and cell division. Induction of ICE gene expression leads to excision, production of the conserved conjugation machinery (a type IV secretion system), and the potential to transfer DNA to appropriate recipients. ICEs typically contain cargo genes that are not usually related to the ICE life cycle and that confer phenotypes to host cells. We summarize the life cycle and discovery of ICEs, some of the regulatory mechanisms, and how the types of cargo have influenced our view of ICEs. We discuss how ICEs can acquire new cargo genes and describe challenges to the field and various perspectives on ICE biology.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; ,
| | | |
Collapse
|
32
|
Wright LD, Johnson CM, Grossman AD. Identification of a Single Strand Origin of Replication in the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis. PLoS Genet 2015; 11:e1005556. [PMID: 26440206 PMCID: PMC4595007 DOI: 10.1371/journal.pgen.1005556] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/07/2015] [Indexed: 11/24/2022] Open
Abstract
We identified a functional single strand origin of replication (sso) in the integrative and conjugative element ICEBs1 of Bacillus subtilis. Integrative and conjugative elements (ICEs, also known as conjugative transposons) are DNA elements typically found integrated into a bacterial chromosome where they are transmitted to daughter cells by chromosomal replication and cell division. Under certain conditions, ICEs become activated and excise from the host chromosome and can transfer to neighboring cells via the element-encoded conjugation machinery. Activated ICEBs1 undergoes autonomous rolling circle replication that is needed for the maintenance of the excised element in growing and dividing cells. Rolling circle replication, used by many plasmids and phages, generates single-stranded DNA (ssDNA). In many cases, the presence of an sso enhances the conversion of the ssDNA to double-stranded DNA (dsDNA) by enabling priming of synthesis of the second DNA strand. We initially identified sso1 in ICEBs1 based on sequence similarity to the sso of an RCR plasmid. Several functional assays confirmed Sso activity. Genetic analyses indicated that ICEBs1 uses sso1 and at least one other region for second strand DNA synthesis. We found that Sso activity was important for two key aspects of the ICEBs1 lifecycle: 1) maintenance of the plasmid form of ICEBs1 in cells after excision from the chromosome, and 2) stable acquisition of ICEBs1 following transfer to a new host. We identified sequences similar to known plasmid sso's in several other ICEs. Together, our results indicate that many other ICEs contain at least one single strand origin of replication, that these ICEs likely undergo autonomous replication, and that replication contributes to the stability and spread of these elements. Mobile genetic elements facilitate movement of genes, including those conferring antibiotic resistance and other traits, between bacteria. Integrative and conjugative elements (ICEs) are a large family of mobile genetic elements that are typically found integrated in the chromosome of their host bacterium. Under certain conditions (e.g., DNA damage, high cell density, stationary phase) an ICE excises from the host chromosome to form a circle. A linear single strand of ICE DNA can be transferred to an appropriate recipient through the ICE-encoded conjugation machinery. In addition, following excision from the chromosome, at least some (perhaps most) ICEs undergo autonomous rolling circle replication, a mechanism used by many plasmids and phages. Rolling circle replication generates single-stranded DNA (ssDNA). We found that ICEBs1, from Bacillus subtilis, contains at least two regions that enable conversion of ssDNA to double-stranded DNA. At least one of these regions functions as an sso (single strand origin of replication). ICEBs1 Sso activity was important for the ability of transferred ICEBs1 to be acquired by recipients and for the ability of ICEBs1 to replicate autonomously after excising from its host’s chromosome. We identified putative sso's in several other ICEs, indicating that Sso activity is likely important for the replication, stability and spread of these elements.
Collapse
Affiliation(s)
- Laurel D. Wright
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Christopher M. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains. Proc Natl Acad Sci U S A 2015; 112:7273-8. [PMID: 26039987 PMCID: PMC4466700 DOI: 10.1073/pnas.1500553112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant enterococci are leading causes of hospital infection. The antibiotic-perturbed patient gut serves as a staging ground—small numbers of resistant hospital strains colonize and then, greatly amplify in the colon. Little is known of the colonization principles involved—whether hospital strains are competitive or noncompetitive with commensal enterococci or whether mobile elements comprising over 25% of the genome of the former impose significant fitness costs. We unexpectedly found that the prototype vancomycin-resistant Enterococcus faecalis strain V583 was actively killed by fecal organisms, and we traced that to pheromone production by commensal enterococci that trigger lethal mobile element cross-talk. This work highlights the importance of maintaining commensal enterococci in the gut of the hospitalized patient. Multidrug-resistant Enterococcus faecalis possess numerous mobile elements that encode virulence and antibiotic resistance traits as well as new metabolic pathways, often constituting over one-quarter of the genome. It was of interest to determine how this large accretion of mobile elements affects competitive growth in the gastrointestinal (GI) tract consortium. We unexpectedly observed that the prototype clinical isolate strain V583 was actively killed by GI tract flora, whereas commensal enterococci flourished. It was found that killing of V583 resulted from lethal cross-talk between accumulated mobile elements and that this cross-talk was induced by a heptapeptide pheromone produced by native E. faecalis present in the fecal consortium. These results highlight two important aspects of the evolution of multidrug-resistant enterococci: (i) the accretion of mobile elements in E. faecalis V583 renders it incompatible with commensal strains, and (ii) because of this incompatibility, multidrug-resistant strains sharing features found in V583 cannot coexist with commensal strains. The accumulation of mobile elements in hospital isolates of enterococci can include those that are inherently incompatible with native flora, highlighting the importance of maintaining commensal populations as means of preventing colonization and subsequent infection by multidrug-resistant strains.
Collapse
|
34
|
Johnson CM, Grossman AD. Identification of host genes that affect acquisition of an integrative and conjugative element in Bacillus subtilis. Mol Microbiol 2014; 93:1284-301. [PMID: 25069588 DOI: 10.1111/mmi.12736] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2014] [Indexed: 01/28/2023]
Abstract
Conjugation, a major type of horizontal gene transfer in bacteria, involves transfer of DNA from a donor to a recipient using donor-encoded conjugation machinery. Using a high-throughput screen (Tn-seq), we identified genes in recipients that contribute to acquisition of the integrative and conjugative element ICEBs1 by Bacillus subtilis. We found that null mutations in some genes caused an increase, and others a decrease in conjugation efficiency. Some mutations affected conjugation only when present in recipients. Other mutations affected conjugation when present in donors or recipients. Most of the genes identified are known or predicted to affect the cell envelope. Several encode enzymes involved in phospholipid biosynthesis and one encodes a homologue of penicillin-binding proteins. Two of the genes identified also affected conjugation of Tn916, indicating that their roles in conjugation may be general. We did not identify any genes in recipients that were essential for ICEBs1 conjugation, indicating that if there are such genes, then these are either essential for cell growth or redundant. Our results indicate that acquisition of ICEBs1, and perhaps other conjugative elements, is robust and not easily avoided by mutation and that several membrane-related functions affect the efficiency of conjugation.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | |
Collapse
|
35
|
Juhas M. Type IV secretion systems and genomic islands-mediated horizontal gene transfer in Pseudomonas and Haemophilus. Microbiol Res 2014; 170:10-7. [PMID: 25183653 DOI: 10.1016/j.micres.2014.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022]
Abstract
Bacterial secretion systems, such as type IV secretion systems (T4SSs) are multi-subunit machines transferring macromolecules across membranes. Besides proteins, T4SSs also transfer nucleoprotein complexes, thus having a significant impact on the evolution of bacterial species. By T4SS-mediated horizontal gene transfer bacteria can acquire a broad spectrum of fitness genes allowing them to thrive in the wide variety of environments. Furthermore, acquisition of antibiotic-resistance and virulence genes can lead to the emergence of novel 'superbugs'. This review provides an update on the investigation of T4SSs. It highlights the role T4SSs play in the horizontal gene transfer, particularly in the evolution of catabolic pathways, antibiotic-resistance and virulence in Haemophilus and Pseudomonas.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK.
| |
Collapse
|
36
|
Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720-60. [DOI: 10.1111/1574-6976.12058] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/15/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022] Open
|
37
|
Fischer W, Breithaupt U, Kern B, Smith SI, Spicher C, Haas R. A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity. BMC Genomics 2014; 15:310. [PMID: 24767410 PMCID: PMC4234485 DOI: 10.1186/1471-2164-15-310] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The human gastric pathogen Helicobacter pylori is a paradigm for chronic bacterial infections. Its persistence in the stomach mucosa is facilitated by several mechanisms of immune evasion and immune modulation, but also by an unusual genetic variability which might account for the capability to adapt to changing environmental conditions during long-term colonization. This variability is reflected by the fact that almost each infected individual is colonized by a genetically unique strain. Strain-specific genes are dispersed throughout the genome, but clusters of genes organized as genomic islands may also collectively be present or absent. RESULTS We have comparatively analysed such clusters, which are commonly termed plasticity zones, in a high number of H. pylori strains of varying geographical origin. We show that these regions contain fixed gene sets, rather than being true regions of genome plasticity, but two different types and several subtypes with partly diverging gene content can be distinguished. Their genetic diversity is incongruent with variations in the rest of the genome, suggesting that they are subject to horizontal gene transfer within H. pylori populations. We identified 40 distinct integration sites in 45 genome sequences, with a conserved heptanucleotide motif that seems to be the minimal requirement for integration. CONCLUSIONS The significant number of possible integration sites, together with the requirement for a short conserved integration motif and the high level of gene conservation, indicates that these elements are best described as integrating conjugative elements (ICEs) with an intermediate integration site specificity.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, D-80336 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
The bifunctional cell wall hydrolase CwlT is needed for conjugation of the integrative and conjugative element ICEBs1 in Bacillus subtilis and B. anthracis. J Bacteriol 2014; 196:1588-96. [PMID: 24532767 DOI: 10.1128/jb.00012-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobile genetic element ICEBs1 is an integrative and conjugative element (ICE) found in Bacillus subtilis. One of the ICEBs1 genes, cwlT, encodes a cell wall hydrolase with two catalytic domains, a muramidase and a peptidase. We found that cwlT is required for ICEBs1 conjugation. We examined the role of each of the two catalytic domains and found that the muramidase is essential, whereas the peptidase is partially dispensable for transfer of ICEBs1. We also found that the putative signal peptide in CwlT is required for CwlT to function in conjugation, consistent with the notion that CwlT is normally secreted from the cytoplasm. We found that alteration of the putative lipid attachment site on CwlT had no effect on its role in conjugation, indicating that if CwlT is a lipoprotein, the lipid attachment is not required for conjugation. Finally, we found conditions supporting efficient transfer of ICEBs1 into and out of Bacillus anthracis and that cwlT was needed for ICEBs1 to function in B. anthracis. The mature cell wall of B. anthracis is resistant to digestion by CwlT, indicating that CwlT might act during cell wall synthesis, before modifications of the peptidoglycan are complete.
Collapse
|
39
|
Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. Conjugative type IV secretion systems in Gram-positive bacteria. Plasmid 2013; 70:289-302. [PMID: 24129002 PMCID: PMC3913187 DOI: 10.1016/j.plasmid.2013.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
The conjugative transfer mechanism of broad-host-range, Enterococcus sex pheromone and Clostridium plasmids is reviewed. Comparisons with Gram-negative type IV secretion systems are presented. The current understanding of the unique Streptomyces double stranded DNA transfer mechanism is reviewed.
Bacterial conjugation presents the most important means to spread antibiotic resistance and virulence factors among closely and distantly related bacteria. Conjugative plasmids are the mobile genetic elements mainly responsible for this task. All the genetic information required for the horizontal transmission is encoded on the conjugative plasmids themselves. Two distinct concepts for horizontal plasmid transfer in Gram-positive bacteria exist, the most prominent one transports single stranded plasmid DNA via a multi-protein complex, termed type IV secretion system, across the Gram-positive cell envelope. Type IV secretion systems have been found in virtually all unicellular Gram-positive bacteria, whereas multicellular Streptomycetes seem to have developed a specialized system more closely related to the machinery involved in bacterial cell division and sporulation, which transports double stranded DNA from donor to recipient cells. This review intends to summarize the state of the art of prototype systems belonging to the two distinct concepts; it focuses on protein key players identified so far and gives future directions for research in this emerging field of promiscuous interbacterial transport.
Collapse
|