1
|
Zhao Z, Xiao M, Xu X, Song M, Dai D, Zhan S, Cao J, Guo J, Zhong T, Wang L, Li L, Zhang H. ADAR1 Promotes Myogenic Proliferation and Differentiation of Goat Skeletal Muscle Satellite Cells. Cells 2024; 13:1607. [PMID: 39404371 PMCID: PMC11475720 DOI: 10.3390/cells13191607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
As one of the most important economic traits for domestic animal husbandry, skeletal muscle is regulated by an intricate molecular network. Adenosine deaminase acting on RNA (ADAR1) involves various physiological processes and diseases, such as innate immunity and the development of lung adenocarcinoma, breast cancer, gastric cancer, etc. However, its role in skeletal muscle growth requires further clarification. Here, we explored the functions of ADAR1 in the myogenic process of goat skeletal muscle satellite cells (MuSCs). The ADAR1 transcripts were noticeably enriched in goat visceral tissues compared to skeletal muscle. Additionally, its levels in slow oxidative muscles like the psoas major and minor muscles were higher than in the fast oxidative glycolytic and fast glycolytic muscles. Among the two common isoforms from ADAR1, p110 is more abundant than p150. Moreover, overexpressing ADAR1 enhanced the proliferation and myogenic differentiation of MuSCs. The mRNA-seq performed on MuSCs' knockdown of ADAR1 obtained 146 differentially expressed genes (DEGs), 87 upregulated and 59 downregulated. These DEGs were concentrated in muscle development and process pathways, such as the MAPK and cAMP signaling pathways. Furthermore, many DEGs as the key nodes defined by protein-protein interaction networks (PPI), including STAT3, MYH3/8, TGFβ2, and ACTN4, were closely related to the myogenic process. Finally, RNA immunoprecipitation combined with qPCR (RIP-qPCR) showed that ADAR1 binds to PAX7 and MyoD mRNA. This study indicates that ADAR1 promotes the myogenic development of goat MuSCs, which provides a useful scientific reference for further exploring the ADAR1-related regulatory networks underlying mammal skeletal muscle growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Li Li
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (M.X.); (X.X.); (M.S.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (M.X.); (X.X.); (M.S.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
| |
Collapse
|
2
|
Šafranek M, Shumbusho A, Johansen W, Šarkanová J, Voško S, Bokor B, Jásik J, Demko V. Membrane-anchored calpains - hidden regulators of growth and development beyond plants? FRONTIERS IN PLANT SCIENCE 2023; 14:1289785. [PMID: 38173928 PMCID: PMC10762896 DOI: 10.3389/fpls.2023.1289785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Calpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution. Based on domain composition, we identified four types of membrane-anchored calpains. Type 1 and 2 show broad phylogenetic distribution among unicellular protists and streptophytes suggesting their ancient evolutionary origin. Type 3 and 4 diversified early and are present in brown algae and oomycetes. The plant DEK1 protein is the only representative of membrane-anchored calpains that has been functionally studied. Here, we present up to date knowledge about its structural features, putative regulation, posttranslational modifications, and biological role. Finally, we discuss potential model organisms and available tools for functional studies of membrane-anchored calpains with yet unknown biological role. Mechanistic understanding of membrane-anchored calpains may provide important insights into fundamental principles of cell polarization, cell fate control, and morphogenesis beyond plants.
Collapse
Affiliation(s)
- Martin Šafranek
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alain Shumbusho
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Wenche Johansen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Júlia Šarkanová
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stanislav Voško
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ján Jásik
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktor Demko
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
3
|
Miyazaki T. Calpain and Cardiometabolic Diseases. Int J Mol Sci 2023; 24:16782. [PMID: 38069105 PMCID: PMC10705917 DOI: 10.3390/ijms242316782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Calpain is defined as a member of the superfamily of cysteine proteases possessing the CysPC motif within the gene. Calpain-1 and -2, which are categorized as conventional isozymes, execute limited proteolysis in a calcium-dependent fashion. Accordingly, the calpain system participates in physiological and pathological phenomena, including cell migration, apoptosis, and synaptic plasticity. Recent investigations have unveiled the contributions of both conventional and unconventional calpains to the pathogenesis of cardiometabolic disorders. In the context of atherosclerosis, overactivation of conventional calpain attenuates the barrier function of vascular endothelial cells and decreases the immunosuppressive effects attributed to lymphatic endothelial cells. In addition, calpain-6 induces aberrant mRNA splicing in macrophages, conferring atheroprone properties. In terms of diabetes, polymorphisms of the calpain-10 gene can modify insulin secretion and glucose disposal. Moreover, conventional calpain reportedly participates in amino acid production from vascular endothelial cells to induce alteration of amino acid composition in the liver microenvironment, thereby facilitating steatohepatitis. Such multifaceted functionality of calpain underscores its potential as a promising candidate for pharmaceutical targets for the treatment of cardiometabolic diseases. Consequently, the present review highlights the pivotal role of calpains in the complications of cardiometabolic diseases and embarks upon a characterization of calpains as molecular targets.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| |
Collapse
|
4
|
Zhang Y, Han H, Qian Y, Wang Q, Jiang M. Advanced glycation end products promote the progression of chronic kidney diseases by targeting calpain 6. Amino Acids 2023:10.1007/s00726-023-03282-5. [PMID: 37243758 DOI: 10.1007/s00726-023-03282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Advanced glycation end products (AGEs) are produced by glycosylation or oxidation of proteins and lipids and are tightly involved in the chronic kidney disease (CKD) process. Calpain 6 (CAPN6) is a non-classical calpain that has been reported to be overexpressed in CKD. This study aimed to explore the effects of AGEs in CKD progress and their correlation with CAPN6. AGEs production was measured using ELISA. The CCK-8 assay was used to test cell proliferation. mRNA and protein levels were tested using qRT-PCR and western blot. The progress of glycolysis was tested by calculating the ATP and ECAR content in HK-2 cells. The expression of AGEs and CAPN6 was significantly increased in patients with CKD3, CKD4, and CKD5. AGEs treatment inhibited cell proliferation and glycolysis and accelerated apoptosis. Additionally, CAPN6 knockdown effectively reversed the effects of AGEs in HK-2 cells. In addition, overexpressed CAPN6 played similar role to AGEs, which suppressed cell proliferation and glycolysis and facilitated apoptosis. Moreover, the administration of 2-DG, a glycolysis inhibitor, counteracted the effects of CAPN6 silencing in HK-2 cells. Mechanistically, CAPN6 interacts with NF-κB and PDTC reduced CAPN6 expression in HK-2 cells. This investigation revealed that AGEs facilitate CKD development in vitro by modulating the expression of CAPN6.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of TCM, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China
| | - Haiqiong Han
- Shanghai Jiading District Jiangqiao Town Community Health Service Center, Rehabilitation Medicine Department, Jinyao Rd No. 100, Jiangqiao Town, Jiading District, Shanghai, China
| | - Yu Qian
- Department of Urology, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China
| | - Qiong Wang
- Department of Out-Patient Emergency, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China
| | - Minmin Jiang
- Geriatric Department, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China.
| |
Collapse
|
5
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
6
|
Gal J, Bondada V, Mashburn CB, Rodgers DW, Croall DE, Geddes JW. S-acylation regulates the membrane association and activity of Calpain-5. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119298. [PMID: 35643222 DOI: 10.1016/j.bbamcr.2022.119298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Calpain-5 (CAPN5) is a member of the calpain family of calcium-activated neutral thiol proteases. CAPN5 is partly membrane associated, despite its lack of a transmembrane domain. Unlike classical calpains, CAPN5 contains a C-terminal C2 domain. C2 domains often have affinity to lipids, mediating membrane association. We recently reported that the C2 domain of CAPN5 was essential for its membrane association and the activation of its autolytic activity. However, despite the removal of the C2 domain by autolysis, the N-terminal fragment of CAPN5 remained membrane associated. S-acylation, also referred to as S-palmitoylation, is a reversible post-translational lipid modification of cysteine residues that promotes membrane association of soluble proteins. In the present study several S-acylated cysteine residues were identified in CAPN5 with the acyl-PEG exchange method. Data reported here demonstrate that CAPN5 is S-acylated on up to three cysteine residues including Cys-4 and Cys-512, and likely Cys-507. The D589N mutation in a potential calcium binding loop within the C2 domain interfered with the S-acylation of CAPN5, likely preventing initial membrane association. Mutating specific cysteine residues of CAPN5 interfered with both its membrane association and the activation of CAPN5 autolysis. Taken together, our results suggest that the S-acylation of CAPN5 is critical for its membrane localization which appears to favor its enzymatic activity.
Collapse
Affiliation(s)
- Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - Charles B Mashburn
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Dorothy E Croall
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
7
|
Reichhardt CC, Stafford CD, Cuthbert JM, Dang DS, Motsinger LA, Taylor MJ, Briggs RK, Brady TJ, Thomas AJ, Garcia MD, Matarneh SK, Thornton KJ. Cattle breed type and anabolic implants impact calpastatin expression and abundance of mRNA associated with protein turnover in the longissimus thoracis of feedlot steers. J Anim Sci 2022; 100:6652317. [PMID: 35908782 PMCID: PMC9339321 DOI: 10.1093/jas/skac204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 12/19/2022] Open
Abstract
Two methods that the beef cattle industry can use to improve efficiency, sustainability, and economic viability are growth promotants and crossbreeding cattle of different breed types. In the United States, over 90% of cattle receive an anabolic implant at some point during production resulting in an overall increase in skeletal muscle growth. Recent research suggests that the two main cattle breed types, Bos indicus and Bos taurus, respond differently to anabolic implants. The objective of this study was to characterize changes that occur in skeletal muscle following implanting in Bos indicus influenced steers or Bos taurus steers. Twenty steers were stratified by initial weight in a 2 × 2 factorial design examining two different breeds: Angus (AN; n = 10) or Santa Gertrudis influenced (SG; n = 10), and two implant strategies: no implant (CON; n = 10) or a combined implant containing 120 mg TBA and 24 mg E2 (IMP; n = 10; Revalor-S, Merck Animal Health). Skeletal muscle biopsies were taken from the longissimus thoracis (LT) 2 and 10 d post-implantation. The mRNA abundance of 24 genes associated with skeletal muscle growth were examined, as well as the protein expression of µ-calpain and calpastatin. Succinate dehydrogenase mRNA abundance was impacted (P = 0.05) by a breed × treatment interaction 2 d post-implanting, with SG-CON having a greater increased abundance than all other steers. A tendency for a breed × treatment interaction was observed for calpain-6 mRNA (P = 0.07), with SG-CON having greater abundance than AN-CON and SG-IMP. Additionally, calpastatin protein expression was altered (P = 0.01) by a breed × treatment interaction, with SG-CON and SG-IMP steers having increased expression (P = 0.01) compared with AN-CON steers. At 2 d post-implanting, a breed × treatment interaction was observed with SG-CON steers having greater (P = 0.05) mRNA abundance of mitogen-activated protein kinase compared with AN-CON steers. Furthermore, breed affected (P = 0.05) calpastatin abundance with AN steers having increased (P = 0.05) abundance 2 d post-implanting compared with SG steers. Meanwhile, implants tended to affect (P = 0.09) muscle RING finger protein-1 mRNA abundance, with CON steers having increased (P = 0.09) abundance compared with that of IMP steers. These findings suggest that cattle breed type and anabolic implants impact calpastatin expression and mRNA abundance associated with protein turnover in the LT of feedlot steers 2 and 10 d post-implantation.
Collapse
Affiliation(s)
- Caleb C Reichhardt
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Chandler D Stafford
- Department of Nutrition, Dietetics and Food Science, Utah State University, Logan, UT 84322, USA
| | - Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA.,Department of Biology, Westminster College, Salt Lake City, UT 84105, USA
| | - David S Dang
- Department of Nutrition, Dietetics and Food Science, Utah State University, Logan, UT 84322, USA
| | - Laura A Motsinger
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Mackenzie J Taylor
- Department of Nutrition, Dietetics and Food Science, Utah State University, Logan, UT 84322, USA
| | - Reganne K Briggs
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Tevan J Brady
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Matthew D Garcia
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Science, Utah State University, Logan, UT 84322, USA
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
8
|
Gurevich M, Iocolano K, Martin IN, Singh G, Khan S, Bui DT, Dagum AB, Komatsu DE. Efficacy of leupeptin in treating ischemia in a rat hind limb model. Physiol Rep 2022; 10:e15411. [PMID: 35924300 PMCID: PMC9350425 DOI: 10.14814/phy2.15411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Prolonged tourniquet use can lead to tissue ischemia and can cause progressive muscle and nerve injuries. Such injuries are accompanied by calpain activation and subsequent Wallerian-like degeneration. Several known inhibitors, including leupeptin, are known to impede the activity of calpain and associated tissue damage. We hypothesize that employment of leupeptin in a rat model of prolonged hind limb ischemia can mitigate muscle and nerve injuries. Sprague-Dawley rats (n = 10) weighing between 300-400 g were employed in this study. Their left hind limbs were subjected to blood flow occlusion for a period of 2-h using a neonatal blood pressure cuff. Five rats were given twice weekly intramuscular leupeptin injections, while the other five received saline. After 2 weeks, the animals were euthanized, their sciatic nerves and gastrocnemius muscles were harvested, fixed, stained, and analyzed using NIH Image J software. The administration of leupeptin resulted in larger gastrocnemius muscle fiber cross-sectional areas for the right (non-tourniquet applied) hindlimb as compared to that treated with the saline (p = 0.0110). However, no statistically significant differences were found between these two groups for the injured left hindlimb (p = 0.1440). With regards to the sciatic nerve cross-sectional areas and sciatic functional index, no differences were detected between the leupeptin and control treated groups for both the healthy and injured hindlimbs. This research provides new insights on how to employ leupeptin to inhibit the degenerative effects of calpain and preserve tissues following ischemia resulting from orthopedic or plastic surgery procedures.
Collapse
Affiliation(s)
| | | | - Irene Nozal Martin
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStony Brook University HospitalStony BrookNew YorkUSA
| | - Gurtej Singh
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStony Brook University HospitalStony BrookNew YorkUSA
| | - Sami U. Khan
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStony Brook University HospitalStony BrookNew YorkUSA
| | - Duc T. Bui
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStony Brook University HospitalStony BrookNew YorkUSA
| | - Alexander B. Dagum
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStony Brook University HospitalStony BrookNew YorkUSA
| | - David E. Komatsu
- Department of Orthopaedics and RehabilitationStony Brook University HospitalNew YorkUSA
| |
Collapse
|
9
|
Decourtye L, McCallum-Loudeac JA, Zellhuber-McMillan S, Young E, Sircombe KJ, Wilson MJ. Characterization of a novel Lbx1 mouse loss of function strain. Differentiation 2021; 123:30-41. [PMID: 34906895 DOI: 10.1016/j.diff.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Adolescent Idiopathic Scoliosis (AIS) is the most common type of spine deformity affecting 2-3% of the population worldwide. The etiology of this disease is still poorly understood. Several GWAS studies have identified single nucleotide polymorphisms (SNPs) located near the gene LBX1 that is significantly correlated with AIS risk. LBX1 is a transcription factor with roles in myocyte precursor migration, cardiac neural crest specification, and neuronal fate determination in the neural tube. Here, we further investigated the role of LBX1 in the developing spinal cord of mouse embryos using a CRISPR-generated mouse model expressing a truncated version of LBX1 (Lbx1Δ). Homozygous mice died at birth, likely due to cardiac abnormalities. To further study the neural tube phenotype, we used RNA-sequencing to identify 410 genes differentially expressed between the neural tubes of E12.5 wildtype and Lbx1Δ/Δ embryos. Genes with increased expression in the deletion line were involved in neurogenesis and those with broad roles in embryonic development. Many of these genes have also been associated with scoliotic phenotypes. In comparison, genes with decreased expression were primarily involved in skeletal development. Subsequent skeletal and immunohistochemistry analysis further confirmed these results. This study aids in understanding the significance of links between LBX1 function and AIS susceptibility.
Collapse
Affiliation(s)
- Lyvianne Decourtye
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand
| | - Jeremy A McCallum-Loudeac
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand
| | - Sylvia Zellhuber-McMillan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand
| | - Emma Young
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand
| | - Kathleen J Sircombe
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand.
| |
Collapse
|
10
|
Zhang YY, Gu LJ, Zhu N, Wang L, Cai MC, Jia JS, Rong S, Yuan WJ. Calpain 6 inhibits autophagy in inflammatory environments: A preliminary study on myoblasts and a chronic kidney disease rat model. Int J Mol Med 2021; 48:194. [PMID: 34435644 PMCID: PMC8416137 DOI: 10.3892/ijmm.2021.5027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
A non-classical calpain, calpain 6 (CAPN6), can inhibit skeletal muscle differentiation and regeneration. In the present study, the role of CAPN6 in the regulation of the autophagy of myoblasts in vitro was investigated. The underlying molecular events and the CAPN6 level in atrophic skeletal muscle in a rat model of chronic kidney disease (CKD) were also investigated. In vitro, CAPN6 was overexpressed, or knocked down, in rat L6 myoblasts to assess autophagy and related gene expression and co-localization. Subsequently, myoblasts were treated with a mixture of cytokines, and relative gene expression and autophagy were assessed. A rat model of CKD for muscle atrophy was established, and blood chemical level and the expression of CAPN6 in muscle were assessed. The data revealed that the knockdown of CAPN6 in rat myoblasts resulted in increased microtubule-associated protein 1 light chain 3 (LC3) levels, while its overexpression decreased LC3 levels and impaired autophagy. Additionally, it was observed that the co-localization of mammalian target of rapamycin (mTOR) and lysosomal-associated membrane protein 1 (LAMP1), a lysosomal marker, proteins was increased. In addition, mTOR, Raptor and α-tubulin (a marker of microtubules) increased in the CAPN6 overexpression group. However, inflammatory cytokines, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (INF)-γ and lipopolysaccharides upregulated CAPN6 expression, inhibited L6 myoblast autophagy and stabilized mTOR activity. Furthermore, the animal model successfully mimicked human disease as regards an increase in body weight, and a reduction in muscle mass, cross-sectional area and blood biomarker concentrations; a slight increase in CAPN6 mRNA and protein levels in muscles was observed. Finally, the data of the present study suggested that CAPN6 reduced autophagy via the maintenance of mTOR signaling, which may play a role in CKD-related muscle atrophy. However, future studies are required to determine whether CAPN6 may be used as an intervention target for CKD-related skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yue Yue Zhang
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Li Jie Gu
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Nan Zhu
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Ling Wang
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Min Chao Cai
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Jie Shuang Jia
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Shu Rong
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Wei Jie Yuan
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
11
|
Yartseva V, Goldstein LD, Rodman J, Kates L, Chen MZ, Chen YJJ, Foreman O, Siebel CW, Modrusan Z, Peterson AS, Jovičić A. Heterogeneity of Satellite Cells Implicates DELTA1/NOTCH2 Signaling in Self-Renewal. Cell Rep 2021; 30:1491-1503.e6. [PMID: 32023464 DOI: 10.1016/j.celrep.2019.12.100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/27/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
How satellite cells and their progenitors balance differentiation and self-renewal to achieve sustainable tissue regeneration is not well understood. A major roadblock to understanding satellite cell fate decisions has been the difficulty of studying this process in vivo. By visualizing expression dynamics of myogenic transcription factors during early regeneration in vivo, we identify the time point at which cells undergo decisions to differentiate or self-renew. Single-cell RNA sequencing reveals heterogeneity of satellite cells, including a subpopulation enriched in Notch2 receptor expression, during both muscle homeostasis and regeneration. Furthermore, we reveal that differentiating cells express the Dll1 ligand. Using antagonistic antibodies, we demonstrate that the DLL1 and NOTCH2 signaling pair is required for satellite cell self-renewal. Thus, differentiating cells provide the self-renewing signal during regeneration, enabling proportional regeneration in response to injury while maintaining the satellite cell pool. These findings have implications for therapeutic control of muscle regeneration.
Collapse
Affiliation(s)
- Valeria Yartseva
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Leonard D Goldstein
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Julia Rodman
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lance Kates
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Mark Z Chen
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ying-Jiun J Chen
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Seven Rivers Genomic Medicines, MedGenome, Foster City, CA, USA
| | - Ana Jovičić
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
12
|
Chukai Y, Iwamoto T, Itoh K, Tomita H, Ozaki T. Characterization of mitochondrial calpain-5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118989. [PMID: 33607190 DOI: 10.1016/j.bbamcr.2021.118989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Calpain, a Ca2+-dependent cysteine protease, plays a significant role in gene expression, signal transduction, and apoptosis. Mutations in human calpain-5 cause autosomal dominant neovascular inflammatory vitreoretinopathy and the inhibition of calpain-5 activity may constitute an effective therapeutic strategy for this condition. Although calpain-5 is ubiquitously expressed in mammalian tissues and was recently found to be present in the mitochondria as well as in the cytosol, its physiological function and enzymological properties require further elucidation. The objective of the current study was to determine the characteristics of mitochondrial calpain-5 in porcine retinas, human HeLa cells, and C57BL/6J mice using subcellular fractionation. We found that mitochondrial calpain-5 was proteolyzed/autolyzed at low Ca2+ concentrations in mitochondria isolated from porcine retinas and by thapsigargin-induced endoplasmic reticulum (ER) stress in HeLa cells. Further, mitochondrial calpain-5, as opposed to cytosolic calpain-5, was activated during the early stages of ER stress in C57BL/6J mice. These results showed that mitochondrial calpain-5 was activated at low Ca2+ concentrations in vitro and in response to ER stress in vivo. The present study provides new insights into a novel calpain system in the mitochondria that includes stress responses during the early phases of ER stress. Further, activation of mitochondrial calpain-5 by treatment using low-molecular-weight compounds may have therapeutic potential for diseases related to ER stress, including neurodegenerative diseases, metabolic syndromes, diabetes, and cancer.
Collapse
Affiliation(s)
- Yusaku Chukai
- Laboratory of Cell Biochemistry, Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Takeshi Iwamoto
- Laboratory of Cell Biochemistry, Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifuchou, Hirosaki, Aomori 036-8562, Japan
| | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Taku Ozaki
- Laboratory of Cell Biochemistry, Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan.
| |
Collapse
|
13
|
Spinozzi S, Albini S, Best H, Richard I. Calpains for dummies: What you need to know about the calpain family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140616. [PMID: 33545367 DOI: 10.1016/j.bbapap.2021.140616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
This review was written in memory of our late friend, Dr. Hiroyuki Sorimachi, who, following the steps of his mentor Koichi Suzuki, a pioneer in calpain research, has made tremendous contributions to the field. During his career, Hiro also wrote several reviews on calpain, the last of which, published in 2016, was comprehensive. In this manuscript, we decided to put together a review with the basic information a novice may need to know about calpains. We also tried to avoid similarities with previous reviews and reported the most significant new findings, at the same time highlighting Hiro's contributions to the field. The review will cover a short history of calpain discovery, the presentation of the family, the life of calpain from transcription to activity, human diseases caused by calpain mutations and therapeutic perspectives.
Collapse
Affiliation(s)
- Simone Spinozzi
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Sonia Albini
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Heather Best
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Isabelle Richard
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France.
| |
Collapse
|
14
|
Ramalingam V, Harshavardhan M, Hwang I. Titanium decorated iron oxide (Ti@Fe2O3) regulates the proliferation of bovine muscle satellite cells through oxidative stress. Bioorg Chem 2020; 105:104459. [DOI: 10.1016/j.bioorg.2020.104459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/12/2023]
|
15
|
Chen L, Xiao D, Tang F, Gao H, Li X. CAPN6 in disease: An emerging therapeutic target (Review). Int J Mol Med 2020; 46:1644-1652. [PMID: 33000175 PMCID: PMC7521557 DOI: 10.3892/ijmm.2020.4734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
As a member of the calpain protein family, calpain6 (CAPN6) is highly expressed mainly in the placenta and embryos. It plays a number of important roles in cellular processes, such as the stabilization of microtubules, the main-tenance of cell stability, the control of cell movement and the inhibition of apoptosis. In recent years, various studies have found that CAPN6 is one of the contributing factors associated with the tumorigenesis of uterine tumors and osteosarcoma, and that CAPN6 participates in the development of tumors by promoting cell proliferation and angiogenesis, and by inhibiting apoptosis, which is mainly regulated by the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway. Due to its abnormal cellular expression, CAPN6 has also been found to be associated with a number of diseases, such as white matter damage and muscular dystrophy. Therefore, CAPN6 may be a novel therapeutic target for these diseases. In the present review, the role of CAPN6 in disease and its possible use as a target in various therapies are discussed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fajuan Tang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Goto S, Ozaki Y, Ozawa F, Mizutani E, Kitaori T, Suzumori N, Blomgren K, Furuno T, Sugiura-Ogasawara M. The investigation of calpain in human placenta with fetal growth restriction. Am J Reprod Immunol 2020; 85:e13325. [PMID: 32852077 DOI: 10.1111/aji.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 11/27/2022] Open
Abstract
PROBLEM The mechanism of fetal growth restriction (FGR) is not fully understood. In this study, we explored the contribution of the calpain-calpastatin system and the activated states of calpains in human FGR placenta. METHOD OF STUDY The placentas were collected from patients of FGR (n = 17) and controls (n = 23) at elective cesarean sections in Nagoya City University Hospital and used for experiments upon informed consent. The existence and the expression of calpains and calpastatin in human placenta were compared between FGR and controls using immunohistochemistry, SDS-PAGE, and Western blotting. RESULTS Staining of calpains (pre-, post-μ-calpain, pre-, post-m-calpain, and calpain-6) and calpastatin was observed in cytoplasm of trophoblast cells, both in FGR and control placenta. Pre-μ-calpain was located in the cytoplasm, and post-μ-calpain was located mainly in proximity to the cytoplasmic membrane. The expression of pre-μ-calpain was significantly higher (P < .001) and calpain-6 was significantly lower (P = .01) in FGR placentas. The inactive μ-calpain (80 kDa) was significantly elevated (P < .01), and active μ-calpain (76 kDa) was significantly decreased (P = .01) in FGR placentas. CONCLUSION The results demonstrate that activation of μ-calpain is suppressed in FGR placentas and that calpain-6 in human placenta is involved in the pathology of FGR.
Collapse
Affiliation(s)
- Shinobu Goto
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.,Division of Clinical and Molecular Genetics, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.,Research Center for Recurrent Pregnancy Loss, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhiko Ozaki
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.,Research Center for Recurrent Pregnancy Loss, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.,The Education and Research Center for Advanced Medicine, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Fumiko Ozawa
- Research Center for Recurrent Pregnancy Loss, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Tamao Kitaori
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.,Research Center for Recurrent Pregnancy Loss, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuhiro Suzumori
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.,Division of Clinical and Molecular Genetics, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Klas Blomgren
- Department of Women's and Children's Health, and Department of Pediatric Oncology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Tadahide Furuno
- Laboratory of Analytical Chemistry and Biophysics, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.,Research Center for Recurrent Pregnancy Loss, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
17
|
Non-proteolytic calpain-6 interacts with VEGFA and promotes angiogenesis by increasing VEGF secretion. Sci Rep 2019; 9:15771. [PMID: 31673071 PMCID: PMC6823460 DOI: 10.1038/s41598-019-52364-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is involved in both normal physiological and pathological conditions. Vascular endothelial growth factor (VEGF) is a major factor for promoting angiogenesis. The current anti-VEGF therapies have limited efficacy and significant adverse effects. To find novel targets of VEGFA for angiogenesis inhibition, we performed yeast two-hybrid screening and identified calpain-6 as a novel VEGFA-interaction partner and confirmed the endogenous VEGFA–calpain-6 interaction in mammalian placenta. A domain mapping study revealed that the Gly321–Asp500 domain in calpain-6 is required for the interaction with the C-terminus of the VEGFA protein. The functional significance of the VEGFA–calpain-6 interaction was explored by assessing its effect on angiogenesis in vitro. Whereas forced overexpression of calpain-6 increased the secretion of the VEGF protein and tube formation, knockdown of calpain-6 expression abrogated the calpain-6-mediated VEGF secretion and tube formation in HUVECs. Consistent with the domain mapping result, overexpressing calpain-6 without the VEGFA-interacting domain III (Gly321–Asp500) failed to increase the secretion of VEGF protein. Our results identify calpain-6, an unconventional non-proteolytic calpain, as a novel VEGFA-interacting protein and demonstrate that their interaction is necessary to enhance VEGF secretion. Thus, calpain-6 might be a potential molecular target for angiogenesis inhibition in many diseases.
Collapse
|
18
|
Abstract
The primary cilium is a microtubule-based structure projecting from a cell. Although the primary cilium shows no motility, it can recognize environmental stimuli. Thus, ciliary defects cause severe abnormalities called ciliopathies. Ciliogenesis is a very complex process and involves a myriad of components and regulators. In order to excavate the novel positive regulators of ciliogenesis, we performed mRNA microarray using starved NIH/3T3 cells. We selected 62 murine genes with corresponding human orthologs, with significantly upregulated expression at 24 h after serum withdrawal. Finally, calpain-6 was selected as a positive regulator of ciliogenesis. We found that calpain-6 deficiency reduced the percentage of ciliated cells and impaired sonic hedgehog signaling. It has been speculated that this defect might be associated with decreased levels of α-tubulin acetylation at lysine 40. This is the first study to report a novel role of calpain-6 in the formation of primary cilia.
Collapse
Affiliation(s)
- Bo Hye Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Do Yeon Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Sumin Oh
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Je Yeong Ko
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Gyuyeong Rah
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
19
|
Miyazaki T, Miyazaki A. Impact of Dysfunctional Protein Catabolism on Macrophage Cholesterol Handling. Curr Med Chem 2019; 26:1631-1643. [PMID: 29589525 DOI: 10.2174/0929867325666180326165234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/24/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022]
Abstract
Protein catabolism in macrophages, which is accomplished mainly through autophagy- lysosomal degradation, ubiquitin-proteasome system, and calpains, is disturbed in atheroprone vessels. Moreover, growing evidence suggests that defects in protein catabolism interfere with cholesterol handling in macrophages. Indeed, decreases in autophagy facilitate the deposition of cholesterol in atheroprone macrophages and the subsequent development of vulnerable atherosclerotic plaques due to impaired catabolism of lipid droplets and limited efferocytic clearance of dead cells. The proteasome is responsible for the degradation of ATP-binding cassette transporters, which leads to impaired cholesterol efflux from macrophages. Overactivation of conventional calpains contributes to excessive processing of functional proteins, thereby accelerating receptor-mediated uptake of oxidized low-density lipoproteins (LDLs) and slowing cholesterol efflux. Furthermore, calpain-6, an unconventional nonproteolytic calpain in macrophages, potentiates pinocytotic uptake of native LDL and attenuates the efferocytic clearance of dead cells. Herein, we focus on recent progress in understanding how defective protein catabolism is associated with macrophage cholesterol handling and subsequent atherogenesis.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
20
|
Translating genetic, biochemical and structural information to the calpain view of development. Mech Dev 2018; 154:240-250. [DOI: 10.1016/j.mod.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/30/2023]
|
21
|
Andrique C, Morardet L, Linares LK, Cissé MY, Merle C, Chibon F, Provot S, Haÿ E, Ea HK, Cohen-Solal M, Modrowski D. Calpain-6 controls the fate of sarcoma stem cells by promoting autophagy and preventing senescence. JCI Insight 2018; 3:121225. [PMID: 30185659 DOI: 10.1172/jci.insight.121225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Sarcomas are still unsolved therapeutic challenges. Cancer stem cells are believed to contribute to sarcoma development, but lack of specific markers prevents their characterization and targeting. Here, we show that calpain-6 expression is associated with cancer stem cell features. In mouse models of bone sarcoma, calpain-6-expressing cells have unique tumor-initiating and metastatic capacities. Calpain-6 levels are especially high in tumors that have been successfully propagated in mouse to establish patient-derived xenografts. We found that calpain-6 levels are increased by hypoxia in vitro and calpain-6 is detected within hypoxic areas in tumors. Furthermore, calpain-6 expression depends on the stem cell transcription network that involves Oct4, Nanog, and Sox2 and is activated by hypoxia. Calpain-6 knockdown blocks tumor development in mouse and induces depletion of the cancer stem cell population. Data from transcriptomic analyses reveal that calpain-6 expression in sarcomas inversely correlates with senescence markers. Calpain-6 knockdown suppresses hypoxia-dependent prevention of senescence entry and also promotion of autophagic flux. Together, our results demonstrate that calpain-6 identifies sarcoma cells with stem-like properties and is a mediator of hypoxia to prevent senescence, promote autophagy, and maintain the tumor-initiating cell population. These findings open what we believe is a novel therapeutic avenue for targeting sarcoma stem cells.
Collapse
Affiliation(s)
- Caroline Andrique
- Inserm UMR-1132, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Laetitia Morardet
- Inserm UMR-1132, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Institut du Cancer de Montpellier, (ICM), Montpellier, France
| | - Madi Y Cissé
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Candice Merle
- CRCT/UMR1037 INSERM-Université Toulouse 3, Toulouse France
| | - Frédéric Chibon
- CRCT/UMR1037 INSERM-Université Toulouse 3, Toulouse France.,ERL5294 CNRS, Toulouse France.,ICR-IUCT-ONCOPOLE, Toulouse, France
| | - Sylvain Provot
- Inserm UMR-1132, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eric Haÿ
- Inserm UMR-1132, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Hang-Korng Ea
- Inserm UMR-1132, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Cohen-Solal
- Inserm UMR-1132, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dominique Modrowski
- Inserm UMR-1132, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
22
|
Miyazaki T, Miyazaki A. Defective Protein Catabolism in Atherosclerotic Vascular Inflammation. Front Cardiovasc Med 2017; 4:79. [PMID: 29270409 PMCID: PMC5725411 DOI: 10.3389/fcvm.2017.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/23/2017] [Indexed: 01/08/2023] Open
Abstract
Vascular inflammation in atheroprone vessels propagates throughout the arterial tree in dyslipidemic patients, thereby accelerating atherosclerotic progression. To elucidate the mechanism of vascular inflammation, most previous studies have focused on inflammation-related signals that are sent in response to vasoactive stimuli. However, it is also important to understand how normal blood vessels become defective and start degenerating. Growing evidence suggests that major protein catabolism pathways, including the ubiquitin-proteasome, autophagy, and calpain systems, are disturbed in atheroprone vessels and contribute to the pathogenesis of atherosclerosis. Indeed, dysregulation of ubiquitin-proteasome pathways results in the accumulation of defective proteins in blood vessels, leading to vascular endothelial dysfunction and apoptosis in affected cells. Impaired autophagy-lysosomal degradation affects smooth muscle cell transformation and proliferation, as well as endothelial integrity and phagocytic clearance of cellular corpses. Dysregulation of the calpain system confers proatherogenic properties to endothelial cells, smooth muscle cells, and macrophages. In this review article, we will discuss the current information available on defective protein catabolism in atheroprone vessels and its potential interrelation with inflammation-related signals.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, School of Medicine, Showa University, Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
23
|
Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci Rep 2017. [PMID: 29170526 DOI: 10.1038/s41598-017-16286-5]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding driving patterns for resistant and sensitive tumors from the heterogeneous data, we combined gene co-expression modules with mutation modulators and proposed the method to identify driver patterns. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles through weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNV data and somatic mutation data, and a mutation network is constructed from the mutation matrix. Thirdly, candidate modulators are selected from significant genes by clustering vertexs of the mutation network. Finally, a regression tree model is utilized for module network learning, in which the obtained gene modules and candidate modulators are trained for the driving pattern identification and modulators regulatory exploration. Many identified candidate modulators are known to be involved in biological meaningful processes associated with ovarian cancer, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11, and so on.
Collapse
|
24
|
Lu X, Lu J, Liao B, Li X, Qian X, Li K. Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci Rep 2017. [PMID: 29170526 DOI: 10.1038/s41598-017-16286-5] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding driving patterns for resistant and sensitive tumors from the heterogeneous data, we combined gene co-expression modules with mutation modulators and proposed the method to identify driver patterns. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles through weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNV data and somatic mutation data, and a mutation network is constructed from the mutation matrix. Thirdly, candidate modulators are selected from significant genes by clustering vertexs of the mutation network. Finally, a regression tree model is utilized for module network learning, in which the obtained gene modules and candidate modulators are trained for the driving pattern identification and modulators regulatory exploration. Many identified candidate modulators are known to be involved in biological meaningful processes associated with ovarian cancer, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11, and so on.
Collapse
Affiliation(s)
- Xinguo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China.
| | - Jibo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Bo Liao
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xing Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xin Qian
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Keqin Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China.,Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA
| |
Collapse
|
25
|
Lu X, Lu J, Liao B, Li X, Qian X, Li K. Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci Rep 2017; 7:16188. [PMID: 29170526 PMCID: PMC5700962 DOI: 10.1038/s41598-017-16286-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023] Open
Abstract
Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding driving patterns for resistant and sensitive tumors from the heterogeneous data, we combined gene co-expression modules with mutation modulators and proposed the method to identify driver patterns. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles through weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNV data and somatic mutation data, and a mutation network is constructed from the mutation matrix. Thirdly, candidate modulators are selected from significant genes by clustering vertexs of the mutation network. Finally, a regression tree model is utilized for module network learning, in which the obtained gene modules and candidate modulators are trained for the driving pattern identification and modulators regulatory exploration. Many identified candidate modulators are known to be involved in biological meaningful processes associated with ovarian cancer, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11, and so on.
Collapse
Affiliation(s)
- Xinguo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China.
| | - Jibo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Bo Liao
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xing Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xin Qian
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Keqin Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
- Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA
| |
Collapse
|
26
|
Miyazaki T, Miyazaki A. Dysregulation of Calpain Proteolytic Systems Underlies Degenerative Vascular Disorders. J Atheroscler Thromb 2017; 25:1-15. [PMID: 28819082 PMCID: PMC5770219 DOI: 10.5551/jat.rv17008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic vascular diseases such as atherosclerosis, aneurysms, diabetic angiopathy/retinopathy as well as fibrotic and proliferative vascular diseases are generally complicated by the progression of degenerative insults, which are characterized by endothelial dysfunction, apoptotic/necrotic cell death in vascular/immune cells, remodeling of extracellular matrix or breakdown of elastic lamella. Increasing evidence suggests that dysfunctional calpain proteolytic systems and defective calpain protein metabolism in blood vessels contribute to degenerative disorders. In vascular endothelial cells, the overactivation of conventional calpains consisting of calpain-1 and -2 isozymes can lead to the disorganization of cell-cell junctions, dysfunction of nitric oxide synthase, sensitization of Janus kinase/signal transducer and activator of transcription cascades and depletion of prostaglandin I2, which contributes to degenerative disorders. In addition to endothelial cell dysfunctions, calpain overactivation results in inflammatory insults in macrophages and excessive fibrogenic/proliferative signaling in vascular smooth muscle cells. Moreover, calpain-6, a non-proteolytic unconventional calpain, is involved in the conversion of macrophages to a pro-atherogenic phenotype, leading to the pinocytotic deposition of low-density lipoprotein cholesterol in the cells. Here, we discuss the recent progress that has been made in our understanding of how calpain contributes to degenerative vascular disorders.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine
| |
Collapse
|
27
|
Miyazaki T, Miyazaki A. Emerging roles of calpain proteolytic systems in macrophage cholesterol handling. Cell Mol Life Sci 2017; 74:3011-3021. [PMID: 28432377 PMCID: PMC11107777 DOI: 10.1007/s00018-017-2528-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/21/2023]
Abstract
Calpains are Ca2+-dependent intracellular proteases that play central roles in the post-translational processing of functional proteins. In mammals, calpain proteolytic systems comprise the endogenous inhibitor calpastatin as well as 15 homologues of the catalytic subunits and two homologues of the regulatory subunits. Recent pharmacological and gene targeting studies in experimental animal models have revealed the contribution of conventional calpains, which consist of the calpain-1 and -2 isozymes, to atherosclerotic diseases. During atherogenesis, conventional calpains facilitate the CD36-dependent uptake of oxidized low-density lipoprotein (LDL), and block cholesterol efflux through ATP-binding cassette transporters in lesional macrophages, allowing the expansion of lipid-enriched atherosclerotic plaques. In addition, calpain-6, an unconventional non-proteolytic calpain, in macrophages reportedly potentiates pinocytotic uptake of native LDL, and attenuates the efferocytic clearance of apoptotic and necrotic cell corpses from the lesions. Herein, we discuss the recent progress that has been made in our understanding of how calpain contributes to atherosclerosis, in particular focusing on macrophage cholesterol handling.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
28
|
Xiang Y, Li F, Wang L, Zheng A, Zuo J, Li M, Wang Y, Xu Y, Chen C, Chen S, Xiao B, Tao Z. Decreased calpain 6 expression is associated with tumorigenesis and poor prognosis in HNSCC. Oncol Lett 2017; 13:2237-2243. [PMID: 28454386 PMCID: PMC5403261 DOI: 10.3892/ol.2017.5687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Calpains are a family of intracellular cysteine proteases involved in various biological processes. Previously, the family was identified to have abnormal expression in several types of malignant tumor. Calpain 6 was less well known; however, it was recently identified to be involved in the carcinogenesis of certain types of malignant tumor. However, the expression of calpain 6 in head and neck squamous cell carcinoma (HNSCC) remains unclear. A total of six datasets from the Gene Expression Omnibus (GEO) was analyzed and an association between calpain 6 expression levels and HNSCC was identified, with the expression of calpain 6 observed to be significantly decreased in HNSCC (P<0.01). However, the expression of calpain 6 may vary between distinct tumor stages of HNSCC. Furthermore, calpain 6 expression was positively associated with the survival rate in patients with HNSCC (P<0.05), with increased expression of calpain 6 associated with an improved survival outcome. Calpain 6 expression was analyzed using an HNSCC tissue microarray and these results were consistent with the statistical analysis of the bioinformatics data from the GEO, indicating that calpain 6 may be a tumor suppressor protein in HNSCC.
Collapse
Affiliation(s)
- Yinzhou Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Anyuan Zheng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jingjing Zuo
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yongping Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yong Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shiming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bokui Xiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
29
|
Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztányi Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Xenarios I, Yeh LS, Young SY, Mitchell AL. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 2016; 45:D190-D199. [PMID: 27899635 PMCID: PMC5210578 DOI: 10.1093/nar/gkw1107] [Citation(s) in RCA: 1073] [Impact Index Per Article: 119.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
InterPro (http://www.ebi.ac.uk/interpro/) is a freely available database used to classify protein sequences into families and to predict the presence of important domains and sites. InterProScan is the underlying software that allows both protein and nucleic acid sequences to be searched against InterPro's predictive models, which are provided by its member databases. Here, we report recent developments with InterPro and its associated software, including the addition of two new databases (SFLD and CDD), and the functionality to include residue-level annotation and prediction of intrinsic disorder. These developments enrich the annotations provided by InterPro, increase the overall number of residues annotated and allow more specific functional inferences.
Collapse
Affiliation(s)
- Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Patricia C Babbitt
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Peer Bork
- European Molecular Biology Laboratory, Biocomputing, Meyerhofstasse 1, 69117 Heidelberg, Germany
| | - Alan J Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Hsin-Yu Chang
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, Hungary
| | - Sara El-Gebali
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew Fraser
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Julian Gough
- Computer Science department, University of Bristol, Woodland Road, Bristol BS8 1UB, UK
| | - David Haft
- Bioinformatics Department, J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Gemma L Holliday
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | - Xiaosong Huang
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ivica Letunic
- Biobyte Solutions GmbH, Bothestr. 142, 69126 Heidelberg, Germany
| | - Rodrigo Lopez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Shennan Lu
- National Center for Biotechnology Information, National Library of Medicine, NIH Bldg, 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information, National Library of Medicine, NIH Bldg, 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Huaiyu Mi
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaina Mistry
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Darren A Natale
- Georgetown University Medical Center, 3300 Whitehaven St, NW, Washington, DC 20007, USA
| | - Marco Necci
- Department of Biomedical Sciences and CRIBI Biotech Center, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy
| | - Gift Nuka
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christine A Orengo
- Structural and Molecular Biology, University College London, Darwin Building, London WC1E 6BT, UK
| | - Youngmi Park
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sebastien Pesseat
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Damiano Piovesan
- Department of Biomedical Sciences and CRIBI Biotech Center, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy
| | - Simon C Potter
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Neil D Rawlings
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nicole Redaschi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Lorna Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Catherine Rivoire
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Amaia Sangrador-Vegas
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christian Sigrist
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Ian Sillitoe
- Structural and Molecular Biology, University College London, Darwin Building, London WC1E 6BT, UK
| | - Ben Smithers
- Computer Science department, University of Bristol, Woodland Road, Bristol BS8 1UB, UK
| | - Silvano Squizzato
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Granger Sutton
- Bioinformatics Department, J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Narmada Thanki
- National Center for Biotechnology Information, National Library of Medicine, NIH Bldg, 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Silvio C E Tosatto
- Department of Biomedical Sciences and CRIBI Biotech Center, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy.,CNR Institute of Neuroscience, via U. Bassi 58/b, 35131 Padua, Italy
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | - Ioannis Xenarios
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Lai-Su Yeh
- Georgetown University Medical Center, 3300 Whitehaven St, NW, Washington, DC 20007, USA
| | - Siew-Yit Young
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alex L Mitchell
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
30
|
Hata S, Kitamura F, Yamaguchi M, Shitara H, Murakami M, Sorimachi H. A Gastrointestinal Calpain Complex, G-calpain, Is a Heterodimer of CAPN8 and CAPN9 Calpain Isoforms, Which Play Catalytic and Regulatory Roles, Respectively. J Biol Chem 2016; 291:27313-27322. [PMID: 27881674 DOI: 10.1074/jbc.m116.763912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
Calpains (CAPN) are a family of Ca2+-dependent cysteine proteases that regulate various cellular functions by cleaving diverse substrates. Of the 15 mammalian calpains, CAPN8 and CAPN9 are two that are expressed predominantly in the gastrointestinal tract, where they interact to form a protease complex, termed G-calpain. However, because native G-calpain exhibits a highly restricted expression pattern, it has never been purified, and the interactions between CAPN8 and CAPN9 have not been characterized. Here, we clarified the molecular nature of G-calpain by using recombinant proteins and transgenic mice expressing FLAG-tagged CAPN8 (CAPN8-FLAG). Recombinant mouse CAPN8 and CAPN9 co-expressed in eukaryotic expression systems exhibited the same mobility as native mouse G-calpain in Blue Native-PAGE gels, and CAPN8-FLAG immunoprecipitation from stomach homogenates of the transgenic mice showed that CAPN9 was the only protein that associated with CAPN8-FLAG. These results indicated that G-calpain is a heterodimer of CAPN8 and CAPN9. In addition, active recombinant G-calpain was expressed and purified using an in vitro translation system, and the purified protease exhibited enzymatic properties that were comparable with that of calpain-2. We found that an active-site mutant of CAPN8, but not CAPN9, compromised G-calpain's substrate cleavage activity, and that the N-terminal helix region of CAPN8 and the C-terminal EF-hands of CAPN8 and CAPN9 were involved in CAPN8/9 dimerization. Furthermore, CAPN8 protein in Capn9-/- mice was almost completely lost, whereas CAPN9 was only partially lost in Capn8-/- mice. Collectively, these results demonstrated that CAPN8 and CAPN9 function as catalytic and chaperone-like subunits, respectively, in G-calpain.
Collapse
Affiliation(s)
| | | | - Midori Yamaguchi
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, and
| | | |
Collapse
|
31
|
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 2016; 15:854-876. [PMID: 27833121 DOI: 10.1038/nrd.2016.212] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
32
|
Miyazaki T, Tonami K, Hata S, Aiuchi T, Ohnishi K, Lei XF, Kim-Kaneyama JR, Takeya M, Itabe H, Sorimachi H, Kurihara H, Miyazaki A. Calpain-6 confers atherogenicity to macrophages by dysregulating pre-mRNA splicing. J Clin Invest 2016; 126:3417-32. [PMID: 27525442 DOI: 10.1172/jci85880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/07/2016] [Indexed: 01/10/2023] Open
Abstract
Macrophages contribute to the development of atherosclerosis through pinocytotic deposition of native LDL-derived cholesterol in macrophages in the vascular wall. Inhibiting macrophage-mediated lipid deposition may have protective effects in atheroprone vasculature, and identifying mechanisms that potentiate this process may inform potential therapeutic interventions for atherosclerosis. Here, we report that dysregulation of exon junction complex-driven (EJC-driven) mRNA splicing confers hyperpinocytosis to macrophages during atherogenesis. Mechanistically, we determined that inflammatory cytokines induce an unconventional nonproteolytic calpain, calpain-6 (CAPN6), which associates with the essential EJC-loading factor CWC22 in the cytoplasm. This association disturbs the nuclear localization of CWC22, thereby suppressing the splicing of target genes, including those related to Rac1 signaling. CAPN6 deficiency in LDL receptor-deficient mice restored CWC22/EJC/Rac1 signaling, reduced pinocytotic deposition of native LDL in macrophages, and attenuated macrophage recruitment into the lesions, generating an atheroprotective phenotype in the aorta. In macrophages, the induction of CAPN6 in the atheroma interior limited macrophage movements, resulting in a decline in cell clearance from the lesions. Consistent with this finding, we observed that myeloid CAPN6 contributed to atherogenesis in a murine model of bone marrow transplantation. Furthermore, macrophages from advanced human atheromas exhibited increased CAPN6 induction and impaired CWC22 nuclear localization. Together, these results indicate that CAPN6 promotes atherogenicity in inflamed macrophages by disturbing CWC22/EJC systems.
Collapse
|
33
|
Szcześniak KA, Ciecierska A, Ostaszewski P, Sadkowski T. Transcriptomic profile adaptations following exposure of equine satellite cells to nutriactive phytochemical gamma-oryzanol. GENES & NUTRITION 2016; 11:5. [PMID: 27482297 PMCID: PMC4959553 DOI: 10.1186/s12263-016-0523-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adult skeletal muscle myogenesis depends on the activation of satellite cells that have the potential to differentiate into new fibers. Gamma-oryzanol (GO), a commercially available nutriactive phytochemical, has gained global interest on account of its muscle-building and regenerating effects. Here, we investigated GO for its potential influence on myogenesis, using equine satellite cell culture model, since the horse is a unique animal, bred and exercised for competitive sport. To our knowledge, this is the first report where the global gene expression in cultured equine satellite cells has been described. METHODS Equine satellite cells were isolated from semitendinosus muscle and cultured until the second day of differentiation. Differentiating cells were incubated with GO for the next 24 h. Subsequently, total RNA from GO-treated and control cells was isolated, amplified, labeled, and hybridized to two-color Horse Gene Expression Microarray slides. Quantitative PCR was used for the validation of microarray data. RESULTS Our results revealed 58 genes with changed expression in GO-treated vs. control cells. Analysis of expression changes suggests that various processes are reinforced by GO in differentiating equine satellite cells, including inhibition of myoblast differentiation, increased proliferation and differentiation, stress response, and increased myogenic lineage commitment. CONCLUSIONS The present study may confirm putative muscle-enhancing abilities of GO; however, the collective role of GO in skeletal myogenesis remains equivocal. The diversity of these changes is likely due to heterogenous growth rate of cells in primary culture. Genes identified in our study, modulated by the presence of GO, may become potential targets of future research investigating impact of this supplement in skeletal muscle on proteomic and biochemical level.
Collapse
Affiliation(s)
- K A Szcześniak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - A Ciecierska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - P Ostaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - T Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
34
|
Shen Y, Zuo S, Wang Y, Shi H, Yan S, Chen D, Xiao B, Zhang J, Gong Y, Shi M, Tang J, Kong D, Lu L, Yu Y, Zhou B, Duan SZ, Schneider C, Funk CD, Yu Y. Thromboxane Governs the Differentiation of Adipose-Derived Stromal Cells Toward Endothelial Cells In Vitro and In Vivo. Circ Res 2016; 118:1194-207. [PMID: 26957525 DOI: 10.1161/circresaha.115.307853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/08/2016] [Indexed: 12/30/2022]
Abstract
RATIONALE Autologous adipose-derived stromal cells (ASCs) offer great promise as angiogenic cell therapy for ischemic diseases. Because of their limited self-renewal capacity and pluripotentiality, the therapeutic efficacy of ASCs is still relatively low. Thromboxane has been shown to play an important role in the maintenance of vascular homeostasis. However, little is known about the effects of thromboxane on ASC-mediated angiogenesis. OBJECTIVE To explore the role of the thromboxane-prostanoid receptor (TP) in mediating the angiogenic capacity of ASCs in vivo. METHODS AND RESULTS ASCs were prepared from mouse epididymal fat pads and induced to differentiate into endothelial cells (ECs) by vascular endothelial growth factor. Cyclooxygenase-2 expression, thromboxane production, and TP expression were upregulated in ASCs on vascular endothelial growth factor treatment. Genetic deletion or pharmacological inhibition of TP in mouse or human ASCs accelerated EC differentiation and increased tube formation in vitro, enhanced angiogenesis in in vivo Matrigel plugs and ischemic mouse hindlimbs. TP deficiency resulted in a significant cellular accumulation of β-catenin by suppression of calpain-mediated degradation in ASCs. Knockdown of β-catenin completely abrogated the enhanced EC differentiation of TP-deficient ASCs, whereas inhibition of calpain reversed the suppressed angiogenic capacity of TP re-expressed ASCs. Moreover, TP was coupled with Gαq to induce calpain-mediated suppression of β-catenin signaling through calcium influx in ASCs. CONCLUSION Thromboxane restrained EC differentiation of ASCs through TP-mediated repression of the calpain-dependent β-catenin signaling pathway. These results indicate that TP inhibition could be a promising strategy for therapy utilizing ASCs in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Yujun Shen
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Shengkai Zuo
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Yuanyang Wang
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Hongfei Shi
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Shuai Yan
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Di Chen
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Bing Xiao
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Jian Zhang
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Yanjun Gong
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Maohua Shi
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Juan Tang
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Deping Kong
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Luheng Lu
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Yu Yu
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Bin Zhou
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Sheng-Zhong Duan
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Claudio Schneider
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Colin D Funk
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.)
| | - Ying Yu
- From the Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.S., S.Z., Y.W., S.Y., D.C., B.X., J.Z., Y.G., M.S., J.T., D.K., L.L., Y.Y., B.Z., S.-Z.D., Y.Y.); Department of Nutrition, The NO.2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China (Y.S., H.S.); Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, AREA Science Park, Trieste, Italy (C.S.); Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy (C.S.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.F.).
| |
Collapse
|
35
|
Almeida CF, Martins PC, Vainzof M. Comparative transcriptome analysis of muscular dystrophy models Large(myd), Dmd(mdx)/Large(myd) and Dmd(mdx): what makes them different? Eur J Hum Genet 2016; 24:1301-9. [PMID: 26932192 DOI: 10.1038/ejhg.2016.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of Mendelian diseases. The underlying pathophysiology and phenotypic variability in each form are much more complex, suggesting the involvement of many other genes. Thus, here we studied the whole genome expression profile in muscles from three mice models for MD, at different time points: Dmd(mdx) (mutation in dystrophin gene), Large(myd-/-) (mutation in Large) and Dmd(mdx)/Large(myd-/-) (both mutations). The identification of altered biological functions can contribute to understand diseases and to find prognostic biomarkers and points for therapeutic intervention. We identified a substantial number of differentially expressed genes (DEGs) in each model, reflecting diseases' complexity. The main biological process affected in the three strains was immune system, accounting for the majority of enriched functional categories, followed by degeneration/regeneration and extracellular matrix remodeling processes. The most notable differences were in 21-day-old Dmd(mdx), with a high proportion of DEGs related to its regenerative capacity. A higher number of positive embryonic myosin heavy chain (eMyHC) fibers confirmed this. The new Dmd(mdx)/Large(myd-/-) model did not show a highly different transcriptome from the parental lineages, with a profile closer to Large(myd-/-), but not bearing the same regenerative potential as Dmd(mdx). This is the first report about transcriptome profile of a mouse model for congenital MD and Dmd(mdx)/Large(myd). By comparing the studied profiles, we conclude that alterations in biological functions due to the dystrophic process are very similar, and that the intense regeneration in Dmd(mdx) involves a large number of activated genes, not differentially expressed in the other two strains.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Poliana Cm Martins
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 2016; 122:169-87. [DOI: 10.1016/j.biochi.2015.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/07/2015] [Indexed: 01/09/2023]
|
37
|
Liu X, Du Y, Trakooljul N, Brand B, Muráni E, Krischek C, Wicke M, Schwerin M, Wimmers K, Ponsuksili S. Muscle Transcriptional Profile Based on Muscle Fiber, Mitochondrial Respiratory Activity, and Metabolic Enzymes. Int J Biol Sci 2015; 11:1348-62. [PMID: 26681915 PMCID: PMC4671993 DOI: 10.7150/ijbs.13132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is a highly metabolically active tissue that both stores and consumes energy. Important biological pathways that affect energy metabolism and metabolic fiber type in muscle cells may be identified through transcriptomic profiling of the muscle, especially ante mortem. Here, gene expression was investigated in malignant hyperthermia syndrome (MHS)-negative Duroc and Pietrian (PiNN) pigs significantly differing for the muscle fiber types slow-twitch-oxidative fiber (STO) and fast-twitch-oxidative fiber (FTO) as well as mitochondrial activity (succinate-dependent state 3 respiration rate). Longissimus muscle samples were obtained 24 h before slaughter and profiled using cDNA microarrays. Differential gene expression between Duroc and PiNN muscle samples were associated with protein ubiquitination, stem cell pluripotency, amyloid processing, and 3-phosphoinositide biosynthesis and degradation pathways. In addition, weighted gene co-expression network analysis within both breeds identified several co-expression modules that were associated with the proportion of different fiber types, mitochondrial respiratory activity, and ATP metabolism. In particular, Duroc results revealed strong correlations between mitochondrion-associated co-expression modules and STO (r = 0.78), fast-twitch glycolytic fiber (r = -0.98), complex I (r=0.72) and COX activity (r = 0.86). Other pathways in the protein-kinase-activity enriched module were positively correlated with STO (r=0.93), while negatively correlated with FTO (r = -0.72). In contrast to PiNN, co-expression modules enriched in macromolecule catabolic process, actin cytoskeleton, and transcription activator activity were associated with fiber types, mitochondrial respiratory activity, and metabolic enzyme activities. Our results highlight the importance of mitochondria for the oxidative capacity of porcine muscle and for breed-dependent molecular pathways in muscle cell fibers.
Collapse
Affiliation(s)
- Xuan Liu
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Yang Du
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Bodo Brand
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Eduard Muráni
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Carsten Krischek
- 2. 2 Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany
| | - Michael Wicke
- 3. 3 Department of Animal Science, Quality of Food of Animal Origin, Georg-August-University Goettingen, D-37075 Goettingen, Germany
| | - Manfred Schwerin
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| |
Collapse
|
38
|
Meyer SU, Krebs S, Thirion C, Blum H, Krause S, Pfaffl MW. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells. PLoS One 2015; 10:e0139520. [PMID: 26447881 PMCID: PMC4598026 DOI: 10.1371/journal.pone.0139520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction TNF-α levels are increased during muscle wasting and chronic muscle degeneration and regeneration processes, which are characteristic for primary muscle disorders. Pathologically increased TNF-α levels have a negative effect on muscle cell differentiation efficiency, while IGF1 can have a positive effect; therefore, we intended to elucidate the impact of TNF-α and IGF1 on gene expression during the early stages of skeletal muscle cell differentiation. Methodology/Principal Findings This study presents gene expression data of the murine skeletal muscle cells PMI28 during myogenic differentiation or differentiation with TNF-α or IGF1 exposure at 0 h, 4 h, 12 h, 24 h, and 72 h after induction. Our study detected significant coregulation of gene sets involved in myoblast differentiation or in the response to TNF-α. Gene expression data revealed a time- and treatment-dependent regulation of signaling pathways, which are prominent in myogenic differentiation. We identified enrichment of pathways, which have not been specifically linked to myoblast differentiation such as doublecortin-like kinase pathway associations as well as enrichment of specific semaphorin isoforms. Moreover to the best of our knowledge, this is the first description of a specific inverse regulation of the following genes in myoblast differentiation and response to TNF-α: Aknad1, Cmbl, Sepp1, Ndst4, Tecrl, Unc13c, Spats2l, Lix1, Csdc2, Cpa1, Parm1, Serpinb2, Aspn, Fibin, Slc40a1, Nrk, and Mybpc1. We identified a gene subset (Nfkbia, Nfkb2, Mmp9, Mef2c, Gpx, and Pgam2), which is robustly regulated by TNF-α across independent myogenic differentiation studies. Conclusions This is the largest dataset revealing the impact of TNF-α or IGF1 treatment on gene expression kinetics of early in vitro skeletal myoblast differentiation. We identified novel mRNAs, which have not yet been associated with skeletal muscle differentiation or response to TNF-α. Results of this study may facilitate the understanding of transcriptomic networks underlying inhibited muscle differentiation in inflammatory diseases.
Collapse
Affiliation(s)
- Swanhild U Meyer
- Physiology Weihenstephan, ZIEL Research Center for Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, University of Munich, Ludwig-Maximilians-Universität München, München, Germany
| | | | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, University of Munich, Ludwig-Maximilians-Universität München, München, Germany
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Michael W Pfaffl
- Physiology Weihenstephan, ZIEL Research Center for Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
39
|
Stoppel WL, Ghezzi CE, McNamara SL, Black LD, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 2015; 43:657-80. [PMID: 25537688 PMCID: PMC8196399 DOI: 10.1007/s10439-014-1206-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/26/2014] [Indexed: 01/05/2023]
Abstract
Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.
Collapse
Affiliation(s)
- Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Stephanie L. McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- The Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
40
|
Ramayo-Caldas Y, Fortes MRS, Hudson NJ, Porto-Neto LR, Bolormaa S, Barendse W, Kelly M, Moore SS, Goddard ME, Lehnert SA, Reverter A. A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle. J Anim Sci 2014; 92:2832-45. [PMID: 24778332 DOI: 10.2527/jas.2013-7484] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
High intramuscular fat (IMF) awards price premiums to beef producers and is associated with meat quality and flavor. Studying gene interactions and pathways that affect IMF might unveil causative physiological mechanisms and inform genomic selection, leading to increased accuracy of predictions of breeding value. To study gene interactions and pathways, a gene network was derived from genetic markers associated with direct measures of IMF, other fat phenotypes, feedlot performance, and a number of meat quality traits relating to body conformation, development, and metabolism that might be plausibly expected to interact with IMF biology. Marker associations were inferred from genomewide association studies (GWAS) based on high density genotypes and 29 traits measured on 10,181 beef cattle animals from 3 breed types. For the network inference, SNP pairs were assessed according to the strength of the correlation between their additive association effects across the 29 traits. The co-association inferred network was formed by 2,434 genes connected by 28,283 edges. Topological network parameters suggested a highly cohesive network, in which the genes are strongly functionally interconnected. Pathway and network analyses pointed towards a trio of transcription factors (TF) as key regulators of carcass IMF: PPARGC1A, HNF4G, and FOXP3. Importantly, none of these genes would have been deemed as significantly associated with IMF from the GWAS. Instead, a total of 313 network genes show significant co-association with the 3 TF. These genes belong to a wide variety of biological functions, canonical pathways, and genetic networks linked to IMF-related phenotypes. In summary, our GWAS and network predictions are supported by the current literature and suggest a cooperative role for the 3 TF and other interacting genes including CAPN6, STC2, MAP2K4, EYA1, COPS5, XKR4, NR2E1, TOX, ATF1, ASPH, TGS1, and TTPA as modulators of carcass and meat quality traits in beef cattle.
Collapse
Affiliation(s)
- Y Ramayo-Caldas
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia Departament de Ciencia Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain INRA, UMR1313 Génétique Animale et Biologie Intégrative (GABI), Domaine de Vilvert, Bâtiment GABI-320, 78352 Jouy-en-Josas, France
| | - M R S Fortes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Center for Animal Science, QLD 4062, Australia
| | - N J Hudson
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - L R Porto-Neto
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - S Bolormaa
- Victorian Department of Environment and Primary Industries, Bundoora, VIC 3083, Australia
| | - W Barendse
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - M Kelly
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Center for Animal Science, QLD 4062, Australia
| | - S S Moore
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Center for Animal Science, QLD 4062, Australia
| | - M E Goddard
- Victorian Department of Environment and Primary Industries, Bundoora, VIC 3083, Australia School of Land and Environment, University of Melbourne, Parkville, VIC 3010, Australia
| | - S A Lehnert
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - A Reverter
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| |
Collapse
|