1
|
Wu G, Ma T, Hancock CE, Gonzalez S, Aryal B, Vaz S, Chan G, Palarca-Wong M, Allen N, Chung CI, Shu X, Liu Q. Opposing GPCR signaling programs protein intake setpoint in Drosophila. Cell 2024; 187:5376-5392.e17. [PMID: 39197448 PMCID: PMC11437785 DOI: 10.1016/j.cell.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
Animals defend a target level for their fundamental needs, including food, water, and sleep. Deviation from the target range, or "setpoint," triggers motivated behaviors to eliminate that difference. Whether and how the setpoint itself is encoded remains enigmatic for all motivated behaviors. Employing a high-throughput feeding assay in Drosophila, we demonstrate that the protein intake setpoint is set to different values in male, virgin female, and mated female flies to meet their varying protein demands. Leveraging this setpoint variability, we found, remarkably, that the information on the intake setpoint is stored within the protein hunger neurons as the resting membrane potential. Two RFamide G protein-coupled receptor (GPCR) pathways, by tuning the resting membrane potential in opposite directions, coordinately program and adjust the protein intake setpoint. Together, our studies map the protein intake setpoint to a single trackable physiological parameter and elucidate the cellular and molecular mechanisms underlying setpoint determination and modulation.
Collapse
Affiliation(s)
- Guangyan Wu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tianji Ma
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clare E Hancock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Santiago Gonzalez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Binod Aryal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sharon Vaz
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabrielle Chan
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madison Palarca-Wong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nick Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Wasilewicz LJ, Gagnon ZE, Jung J, Mercier AJ. Investigating postsynaptic effects of a Drosophila neuropeptide on muscle contraction. J Neurophysiol 2024; 131:137-151. [PMID: 38150542 DOI: 10.1152/jn.00246.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023] Open
Abstract
The Drosophila neuropeptide, DPKQDFMRFamide, was previously shown to enhance excitatory junctional potentials (EJPs) and muscle contraction by both presynaptic and postsynaptic actions. Since the peptide acts on both sides of the synaptic cleft, it has been difficult to examine postsynaptic modulatory mechanisms, particularly when contractions are elicited by nerve stimulation. Here, postsynaptic actions are examined in 3rd instar larvae by applying peptide and the excitatory neurotransmitter, l-glutamate, in the bathing solution to elicit contractions after silencing motor output by removing the central nervous system (CNS). DPKQDFMRFamide enhanced glutamate-evoked contractions at low concentrations (EC50 1.3 nM), consistent with its role as a neurohormone, and the combined effect of both substances was supra-additive. Glutamate-evoked contractions were also enhanced when transmitter release was blocked in temperature-sensitive (Shibire) mutants, confirming the peptide's postsynaptic action. The peptide increased membrane depolarization in muscle when co-applied with glutamate, and its effects were blocked by nifedipine, an L-type channel blocker, indicating effects at the plasma membrane involving calcium influx. DPKQDFMRFamide also enhanced contractions induced by caffeine in the absence of extracellular calcium, suggesting increased calcium release from the sarcoplasmic reticulum (SR) or effects downstream of calcium release from the SR. The peptide's effects do not appear to involve calcium/calmodulin-dependent protein kinase II (CaMKII), previously shown to mediate presynaptic effects. The approach used here might be useful for examining postsynaptic effects of neurohormones and cotransmitters in other systems.NEW & NOTEWORTHY Distinguishing presynaptic and postsynaptic effects of neurohormones is a long-standing challenge in many model organisms. Here, postsynaptic actions of DPKQDFMRFamide are demonstrated by assessing its ability to potentiate contractions elicited by direct application of the neurotransmitter, glutamate, when axons are silent and when transmitter release is blocked. The peptide acts at multiple sites to increase contraction, increasing glutamate-induced depolarization at the cell membrane, acting on L-type channels, and acting downstream of calcium release from the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Lucas J Wasilewicz
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Zoe E Gagnon
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - JaeHwan Jung
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - A Joffre Mercier
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
3
|
Mitra R, Richhariya S, Hasan G. Orai-mediated calcium entry determines activity of central dopaminergic neurons by regulation of gene expression. eLife 2024; 12:RP88808. [PMID: 38289659 PMCID: PMC10945566 DOI: 10.7554/elife.88808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Maturation and fine-tuning of neural circuits frequently require neuromodulatory signals that set the excitability threshold, neuronal connectivity, and synaptic strength. Here, we present a mechanistic study of how neuromodulator-stimulated intracellular Ca2+ signals, through the store-operated Ca2+ channel Orai, regulate intrinsic neuronal properties by control of developmental gene expression in flight-promoting central dopaminergic neurons (fpDANs). The fpDANs receive cholinergic inputs for release of dopamine at a central brain tripartite synapse that sustains flight (Sharma and Hasan, 2020). Cholinergic inputs act on the muscarinic acetylcholine receptor to stimulate intracellular Ca2+ release through the endoplasmic reticulum (ER) localised inositol 1,4,5-trisphosphate receptor followed by ER-store depletion and Orai-mediated store-operated Ca2+ entry (SOCE). Analysis of gene expression in fpDANs followed by genetic, cellular, and molecular studies identified Orai-mediated Ca2+ entry as a key regulator of excitability in fpDANs during circuit maturation. SOCE activates the transcription factor trithorax-like (Trl), which in turn drives expression of a set of genes, including Set2, that encodes a histone 3 lysine 36 methyltransferase (H3K36me3). Set2 function establishes a positive feedback loop, essential for receiving neuromodulatory cholinergic inputs and sustaining SOCE. Chromatin-modifying activity of Set2 changes the epigenetic status of fpDANs and drives expression of key ion channel and signalling genes that determine fpDAN activity. Loss of activity reduces the axonal arborisation of fpDANs within the MB lobe and prevents dopamine release required for the maintenance of long flight.
Collapse
Affiliation(s)
- Rishav Mitra
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
4
|
Kim MJ, O'Connor MB. Expression of Drosophila VDRC GD RNAi lines in larval skeletal muscle often leads to abnormal proteostasis. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000904. [PMID: 37602283 PMCID: PMC10436074 DOI: 10.17912/micropub.biology.000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
In Drosophila , multiple transgenic RNAi libraries have been generated to facilitate large-scale genetic screens in vivo . Although those libraries have helped generate many new discoveries, certain libraries are associated with technical drawbacks requiring caution in interpreting the results. Here, we report an unexpected effect of VDRC GD lines on proteostasis. When expressed in the larval skeletal muscle, 17 out of 20 GD lines induced protein aggregates enriched around the myonuclei while VDRC KK or TRiP counterparts had no effect. By contrast, the same GD lines failed to induce protein aggregates when expressed in the epidermal cells. Because the GD lines tested in this study target diverse classes of molecules and since the KK or TRiP counterparts exhibited no effect, we conclude that VDRC GD lines, for unknown reasons, tend to interfere with proteostasis in a tissue-specific and target-independent manner.
Collapse
Affiliation(s)
- Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael B. O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
5
|
Bansal S, Lin S. Transcriptional Genetically Encoded Calcium Indicators in Drosophila. Cold Spring Harb Protoc 2023; 2023:8-18. [PMID: 36167674 DOI: 10.1101/pdb.top107797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Knowing which neurons are active during behavior is a crucial step toward understanding how nervous systems work. Neuronal activation is generally accompanied by an increase in intracellular calcium levels. Therefore, intracellular calcium levels are widely used as a proxy for neuronal activity. Many types of synthetic components and bioluminescent or fluorescent proteins that report transient and long-term changes in intracellular calcium levels have been developed over the past 60 years. Calcium indicators that enable imaging of the dynamic activity of a large ensemble of neurons in behaving animals have revolutionized the field of neuroscience. Among these, transcription-based genetically encoded calcium indicators (transcriptional GECIs) have proven easy to use and do not depend on sophisticated imaging systems, offering unique advantages over other types of calcium indicators. Here, we describe the two currently available fly transcriptional GECIs-calcium-dependent nuclear import of LexA (CaLexA) and transcriptional reporter of intracellular calcium (TRIC)-and review studies that have used them. In the accompanying protocol, we present step-by-step details for generating CaLexA- and TRIC-ready flies and for imaging CaLexA and TRIC signals in dissected brains after experimental manipulations of intact free-moving flies.
Collapse
Affiliation(s)
- Sonia Bansal
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
6
|
Doyle T, Jimenez‐Guri E, Hawkes WLS, Massy R, Mantica F, Permanyer J, Cozzuto L, Hermoso Pulido T, Baril T, Hayward A, Irimia M, Chapman JW, Bass C, Wotton KR. Genome-wide transcriptomic changes reveal the genetic pathways involved in insect migration. Mol Ecol 2022; 31:4332-4350. [PMID: 35801824 PMCID: PMC9546057 DOI: 10.1111/mec.16588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Insects are capable of extraordinary feats of long-distance movement that have profound impacts on the function of terrestrial ecosystems. The ability to undertake these movements arose multiple times through the evolution of a suite of traits that make up the migratory syndrome, however the underlying genetic pathways involved remain poorly understood. Migratory hoverflies (Diptera: Syrphidae) are an emerging model group for studies of migration. They undertake seasonal movements in huge numbers across large parts of the globe and are important pollinators, biological control agents and decomposers. Here, we assembled a high-quality draft genome of the marmalade hoverfly (Episyrphus balteatus). We leveraged this genomic resource to undertake a genome-wide transcriptomic comparison of actively migrating Episyrphus, captured from a high mountain pass as they flew south to overwinter, with the transcriptomes of summer forms which were non-migratory. We identified 1543 genes with very strong evidence for differential expression. Interrogation of this gene set reveals a remarkable range of roles in metabolism, muscle structure and function, hormonal regulation, immunity, stress resistance, flight and feeding behaviour, longevity, reproductive diapause and sensory perception. These features of the migrant phenotype have arisen by the integration and modification of pathways such as insulin signalling for diapause and longevity, JAK/SAT for immunity, and those leading to octopamine production and fuelling to boost flight capabilities. Our results provide a powerful genomic resource for future research, and paint a comprehensive picture of global expression changes in an actively migrating insect, identifying key genomic components involved in this important life-history strategy.
Collapse
Affiliation(s)
- Toby Doyle
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Eva Jimenez‐Guri
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Will L. S. Hawkes
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Richard Massy
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Federica Mantica
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jon Permanyer
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luca Cozzuto
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Toni Hermoso Pulido
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Tobias Baril
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Alex Hayward
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Manuel Irimia
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
| | - Jason W. Chapman
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
- Environment and Sustainability InstituteUniversity of Exeter, Cornwall CampusPenrynUK
- Department of Entomology, College of Plant ProtectionNanjing Agricultural UniversityNanjingPeople's Republic of China
| | - Chris Bass
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Karl R. Wotton
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| |
Collapse
|
7
|
Neuronal role of taxi is imperative for flight in Drosophila melanogaster. Gene X 2022; 833:146593. [PMID: 35597528 DOI: 10.1016/j.gene.2022.146593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Extensive studies in Drosophila have led to the elucidation of the roles of many molecular players involved in the sensorimotor coordination of flight. However, the identification and characterisation of new players can add novel perspectives to the process. In this paper, we show that the extant mutant, jumper, is a hypermorphic allele of the taxi/delilah gene, which encodes a transcription factor. The defective flight of jumper flies results from the insertion of an I-element in the 5'-UTR of taxi gene, leading to an over-expression of the taxi. We also show that the molecular lesion responsible for the taxi1 allele results from a 25 bp deletion leading to a shift in the reading frame at the C-terminus of the taxi coding sequence. Thus, the last 20 residues are replaced by 32 disparate residues in taxi1. Both taxi1, a hypomorphic allele, and the CRISPR-Cas9 knock-out (taxiKO) null allele, show a defective flight phenotype. Electrophysiological studies show taxi hypermorphs, hypomorphs, and knock out flies show abnormal neuronal firing. We further show that neuronal-specific knock-down or over-expression of taxi cause a defect in the brain's inputs to the flight muscles, leading to reduced flight ability. Through transcriptomic analysis of the taxiKO fly head, we have identified several putative targets of Taxi that may play important roles in flight. In conclusion, from molecularly characterising jumper to establishing Taxi's role during Drosophila flight, our work shows that the forward genetics approach still can lead to the identification of novel molecular players required for neuronal transmission.
Collapse
|
8
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
9
|
Sharma A, Hasan G. Modulation of flight and feeding behaviours requires presynaptic IP 3Rs in dopaminergic neurons. eLife 2020; 9:e62297. [PMID: 33155978 PMCID: PMC7647402 DOI: 10.7554/elife.62297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Innate behaviours, although robust and hard wired, rely on modulation of neuronal circuits, for eliciting an appropriate response according to internal states and external cues. Drosophila flight is one such innate behaviour that is modulated by intracellular calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs). Cellular mechanism(s) by which IP3Rs modulate neuronal function for specific behaviours remain speculative, in vertebrates and invertebrates. To address this, we generated an inducible dominant negative form of the IP3R (IP3RDN). Flies with neuronal expression of IP3RDN exhibit flight deficits. Expression of IP3RDN helped identify key flight-modulating dopaminergic neurons with axonal projections in the mushroom body. Flies with attenuated IP3Rs in these presynaptic dopaminergic neurons exhibit shortened flight bouts and a disinterest in seeking food, accompanied by reduced excitability and dopamine release upon cholinergic stimulation. Our findings suggest that the same neural circuit modulates the drive for food search and for undertaking longer flight bouts.
Collapse
Affiliation(s)
- Anamika Sharma
- National Centre for Biological Sciences, TIFRBangaloreIndia
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFRBangaloreIndia
| |
Collapse
|
10
|
Hasan G, Sharma A. Regulation of neuronal physiology by Ca2+ release through the IP3R. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Allen AM, Neville MC, Birtles S, Croset V, Treiber CD, Waddell S, Goodwin SF. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 2020; 9:e54074. [PMID: 32314735 PMCID: PMC7173974 DOI: 10.7554/elife.54074] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ventral nerve cord (VNC) receives and processes descending signals from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory information from the periphery and sends ascending signals to the brain. We used single-cell transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100 transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types reflect shared developmental histories based on the neuroblast from which cells were derived, as well as their birth order. The relative position of cells along the anterior-posterior axis could also be assigned using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC will be a valuable resource for future studies of neurodevelopment and behavior.
Collapse
Affiliation(s)
- Aaron M Allen
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Sebastian Birtles
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Vincent Croset
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
12
|
Ayub M, Hermiz M, Lange AB, Orchard I. SIFamide Influences Feeding in the Chagas Disease Vector, Rhodnius prolixus. Front Neurosci 2020; 14:134. [PMID: 32153356 PMCID: PMC7047498 DOI: 10.3389/fnins.2020.00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/03/2020] [Indexed: 11/13/2022] Open
Abstract
SIFamides are a family of highly conserved neuropeptides in arthropods, and in insects are mainly expressed in four medial neurons in the pars intercerebralis of the brain. Although SIFamide has been shown to influence sexual behavior, feeding, and sleep regulation in holometabolous insects such as Drosophila melanogaster, little is known about its role in hemimetabolous insects, including the blood-sucking bug, Rhodnius prolixus. In this study, we confirm the nucleotide sequence for R. prolixus SIFamide (Rhopr-SIFa) and find characteristic phenotypic expression of SIFamide in four cells of the pars intercerebralis in the brain. In addition to extensive SIFa projections throughout the entire central nervous system, SIFamidergic processes also enter into the corpus cardiacum, and project along the dorsal vessel, suggestive of Rhopr-SIFa acting as a neurohormone. Physiologically, Rhopr-SIFamide induces dose-dependent increases in heartbeat frequency in vitro suggesting the presence of peripheral receptors, and thereby indicating Rhopr-SIFa is released to act upon peripheral targets. We also explore the function of Rhopr-SIFa in R. prolixus, specifically in relation to feeding, since R. prolixus is a blood-gorging insect and a vector for Chagas disease. The intensity of SIFamide-like staining in the neurons in the brain is diminished 2 h following feeding, and restocking of those cells is finished 24 h later, indicating Rhopr-SIFa may be released at feeding. The results of temporal qPCR analysis were consistent with the immunohistochemical findings, showing an increase in Rhopr-SIFa transcript expression in the brain 2 h after feeding. We also observed enhanced feeding (size of meal) in insects injected with Rhopr-SIFa whereas insects with RNAi-mediated knockdown of the Rhopr-SIFa transcript consumed a significantly smaller blood meal relative to controls. These data suggest that the four SIFamidergic neurons and associated arborizations may play an important function in the neuronal circuitry controlling R. prolixus feeding, with Rhopr-SIFa acting as a central and peripheral neuromodulator/neurohormone.
Collapse
Affiliation(s)
- Mahnoor Ayub
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Mariam Hermiz
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
13
|
Blanco-Redondo B, Nuwal N, Kneitz S, Nuwal T, Halder P, Liu Y, Ehmann N, Scholz N, Mayer A, Kleber J, Kähne T, Schmitt D, Sadanandappa MK, Funk N, Albertova V, Helfrich-Förster C, Ramaswami M, Hasan G, Kittel RJ, Langenhan T, Gerber B, Buchner E. Implications of the Sap47 null mutation for synapsin phosphorylation, longevity, climbing proficiency and behavioural plasticity in adult Drosophila. ACTA ACUST UNITED AC 2019; 222:jeb.203505. [PMID: 31488622 DOI: 10.1242/jeb.203505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
The Sap47 gene of Drosophila melanogaster encodes a highly abundant 47 kDa synaptic vesicle-associated protein. Sap47 null mutants show defects in synaptic plasticity and larval olfactory associative learning but the molecular function of Sap47 at the synapse is unknown. We demonstrate that Sap47 modulates the phosphorylation of another highly abundant conserved presynaptic protein, synapsin. Site-specific phosphorylation of Drosophila synapsin has repeatedly been shown to be important for behavioural plasticity but it was not known where these phospho-synapsin isoforms are localized in the brain. Here, we report the distribution of serine-6-phosphorylated synapsin in the adult brain and show that it is highly enriched in rings of synapses in the ellipsoid body and in large synapses near the lateral triangle. The effects of knockout of Sap47 or synapsin on olfactory associative learning/memory support the hypothesis that both proteins operate in the same molecular pathway. We therefore asked if this might also be true for other aspects of their function. We show that knockout of Sap47 but not synapsin reduces lifespan, whereas knockout of Sap47 and synapsin, either individually or together, affects climbing proficiency, as well as plasticity in circadian rhythms and sleep. Furthermore, electrophysiological assessment of synaptic properties at the larval neuromuscular junction (NMJ) reveals increased spontaneous synaptic vesicle fusion and reduced paired pulse facilitation in Sap47 and synapsin single and double mutants. Our results imply that Sap47 and synapsin cooperate non-uniformly in the control of synaptic properties in different behaviourally relevant neuronal networks of the fruitfly.
Collapse
Affiliation(s)
- Beatriz Blanco-Redondo
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany .,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany.,Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Nidhi Nuwal
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Susanne Kneitz
- Department of Physiological Chemistry, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Tulip Nuwal
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Partho Halder
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Yiting Liu
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Nadine Ehmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany.,Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Annika Mayer
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Jörg Kleber
- Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Dominique Schmitt
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Madhumala K Sadanandappa
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Natalja Funk
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Viera Albertova
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany.,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Mani Ramaswami
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, 04103 Leipzig, Germany.,Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Bertram Gerber
- Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany.,Institute of Biology, University of Magdeburg, 39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| | - Erich Buchner
- Institute of Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany .,Department of Neurobiology and Genetics, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
14
|
Wegener C, Hasan G. ER-Ca2+ sensor STIM regulates neuropeptides required for development under nutrient restriction in Drosophila. PLoS One 2019; 14:e0219719. [PMID: 31295329 PMCID: PMC6622525 DOI: 10.1371/journal.pone.0219719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
Neuroendocrine cells communicate via neuropeptides to regulate behaviour and physiology. This study examines how STIM (Stromal Interacting Molecule), an ER-Ca2+ sensor required for Store-operated Ca2+ entry, regulates neuropeptides required for Drosophila development under nutrient restriction (NR). We find two STIM-regulated peptides, Corazonin and short Neuropeptide F, to be required for NR larvae to complete development. Further, a set of secretory DLP (Dorso lateral peptidergic) neurons which co-express both peptides was identified. Partial loss of dSTIM caused peptide accumulation in the DLPs, and reduced systemic Corazonin signalling. Upon NR, larval development correlated with increased peptide levels in the DLPs, which failed to occur when dSTIM was reduced. Comparison of systemic and cellular phenotypes associated with reduced dSTIM, with other cellular perturbations, along with genetic rescue experiments, suggested that dSTIM primarily compromises neuroendocrine function by interfering with neuropeptide release. Under chronic stimulation, dSTIM also appears to regulate neuropeptide synthesis.
Collapse
Affiliation(s)
- Christian Wegener
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Am Hubland, Würzburg, Germany
| | - Gaiti Hasan
- National Centre For Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| |
Collapse
|
15
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
16
|
Jayakumar S, Richhariya S, Deb BK, Hasan G. A Multicomponent Neuronal Response Encodes the Larval Decision to Pupariate upon Amino Acid Starvation. J Neurosci 2018; 38:10202-10219. [PMID: 30301757 PMCID: PMC6246885 DOI: 10.1523/jneurosci.1163-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Organisms need to coordinate growth with development, particularly in the context of nutrient availability. Thus, multiple ways have evolved to survive extrinsic nutrient deprivation during development. In Drosophila, growth occurs during larval development. Larvae are thus critically dependent on nutritional inputs; but after critical weight, they pupariate even when starved. How nutrient availability is coupled to the internal metabolic state for the decision to pupariate needs better understanding. We had earlier identified glutamatergic interneurons in the ventral ganglion that regulate pupariation on a protein-deficient diet. Here we report that Drosophila third instar larvae (either sex) sense arginine to evaluate their nutrient environment using an amino acid transporter Slimfast. The glutamatergic interneurons integrate external protein availability with internal metabolic state through neuropeptide signals. IP3-mediated calcium release and store-operated calcium entry are essential in these glutamatergic neurons for such integration and alter neuronal function by reducing the expression of multiple ion channels.SIGNIFICANCE STATEMENT Coordinating growth with development, in the context of nutrient availability is a challenge for all organisms in nature. After attainment of "critical weight," insect larvae can pupariate, even in the absence of nutrition. Mechanism(s) that stimulate appropriate cellular responses and allow normal development on a nutritionally deficient diet remain to be understood. Here, we demonstrate that nutritional deprivation, in postcritical weight larvae, is sensed by special sensory neurons through an amino acid transporter that detects loss of environmental arginine. This information is integrated by glutamatergic interneurons with the internal metabolic state through neuropeptide signals. These glutamatergic interneurons require calcium-signaling-regulated expression of a host of neuronal channels to generate complex calcium signals essential for pupariation on a protein-deficient diet.
Collapse
Affiliation(s)
| | | | - Bipan Kumar Deb
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| |
Collapse
|
17
|
Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet 2018; 32:183-194. [PMID: 30303434 DOI: 10.1080/01677063.2018.1502761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past four decades, Drosophila melanogaster has become an increasingly important model system for studying the modulation of chemical synapses and muscle contraction by cotransmitters and neurohormones. This review describes how advantages provided by Drosophila have been utilized to investigate synaptic modulation, and it discusses key findings from investigations of cotransmitters and neurohormones that act on body wall muscles of 3rd instar Drosophila larvae. These studies have contributed much to our understanding of how neuromuscular systems are modulated by neuropeptides and biogenic amines, but there are still gaps in relating these peripheral modulatory effects to behavior.
Collapse
Affiliation(s)
- Kiel G Ormerod
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - JaeHwan Jung
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| | - A Joffre Mercier
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| |
Collapse
|
18
|
Wang G, Dong Y, Liu X, Yao G, Yu X, Yang M. The Current Status and Development of Insect-Resistant Genetically Engineered Poplar in China. FRONTIERS IN PLANT SCIENCE 2018; 9:1408. [PMID: 30298085 PMCID: PMC6160562 DOI: 10.3389/fpls.2018.01408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 09/05/2018] [Indexed: 05/03/2023]
Abstract
Poplar is one of the main afforestation tree species in China, and the use of a single, or only a few, clones with low genetic diversity in poplar plantations has led to increasing problems with insect pests. The use of genetic engineering to cultivate insect-resistant poplar varieties has become a hot topic. Over the past 20 years, there have been remarkable achievements in this area. To date, nearly 22 insect-resistant poplar varieties have been created and approved for small-scale field testing, environmental release, or pilot-scale production. Here, we comprehensively review the development of insect-resistant genetically modified (GM) poplars in China. This review mostly addresses issues surrounding the regulation and commercialization of Bt poplar in China, the various insecticidal genes used, the effects of transgenic poplars on insects, toxic protein expression, multigene transformation, the stability of insect resistance, and biosafety. The efficacy of GM poplars for pest control differed among different transgenic poplar clones, larval instars, and insect species. The Bt protein analysis revealed that the expression level of Cry3A was significantly higher than that of Cry1Ac. Temporal and spatial studies of Bt protein showed that its expression varied with the developmental stage and tissue. The inheritance and expression of the exogenous gene were reviewed in transgenic hybrid poplar progeny lines and grafted sections. Biosafety issues, in terms of transgene stability and the effects on soil microorganisms, natural enemies of insects, and arthropod communities are also discussed.
Collapse
Affiliation(s)
- Guiying Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Langfang Academy of Agriculture and Forestry Sciences, Langfang, China
| | - Yan Dong
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Xiaojie Liu
- Langfang Academy of Agriculture and Forestry Sciences, Langfang, China
| | - Guosheng Yao
- Langfang Academy of Agriculture and Forestry Sciences, Langfang, China
| | - Xiaoyue Yu
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Minsheng Yang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| |
Collapse
|
19
|
Deb BK, Hasan G. SEPT7-mediated regulation of Ca 2+ entry through Orai channels requires other septin subunits. Cytoskeleton (Hoboken) 2018; 76:104-114. [PMID: 30004181 DOI: 10.1002/cm.21476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 11/12/2022]
Abstract
Orai channels are plasma membrane resident Ca2+ channels that allow extracellular Ca2+ uptake after depletion of ER-Ca2+ stores by a process called store-operated Ca2+ entry (SOCE). Septins of the SEPT2 subgroup act as positive regulators of SOCE in human nonexcitable cells. SEPT2 subgroup septins form the central core of hetero-hexameric or hetero-octameric complexes with SEPT6, SEPT7 and SEPT9 subgroup septins. The presence of fewer septin encoding genes coupled with ease of genetic manipulation allows for better understanding of septin subgroup function in Drosophila. Our earlier findings show that although dSEPT7 reduction does not alter Orai-mediated Ca2+ entry during SOCE, it results in constitutive activation of Orai channels in resting neurons. Here, we have investigated the role of other septin subgroup members in regulating Orai channel activation in Drosophila neurons by both cellular and functional assays. We show that dSEPT1, a SEPT2 subgroup septin can exist in a complex with dSEPT2 and dSEPT7 in the central nervous system (CNS) of Drosophila. Our findings suggest that the nature of septin filaments and heteromers obtained after reducing septins of different subgroups alters their ability to regulate Orai channel opening. The molecular mechanisms underlying this complex regulation of Orai function by septins require further cellular investigations.
Collapse
Affiliation(s)
- Bipan K Deb
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Gaiti Hasan
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
20
|
Ravi P, Trivedi D, Hasan G. FMRFa receptor stimulated Ca2+ signals alter the activity of flight modulating central dopaminergic neurons in Drosophila melanogaster. PLoS Genet 2018; 14:e1007459. [PMID: 30110323 PMCID: PMC6110513 DOI: 10.1371/journal.pgen.1007459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/27/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide signaling influences animal behavior by modulating neuronal activity and thus altering circuit dynamics. Insect flight is a key innate behavior that very likely requires robust neuromodulation. Cellular and molecular components that help modulate flight behavior are therefore of interest and require investigation. In a genetic RNAi screen for G-protein coupled receptors that regulate flight bout durations, we earlier identified several receptors, including the receptor for the neuropeptide FMRFa (FMRFaR). To further investigate modulation of insect flight by FMRFa we generated CRISPR-Cas9 mutants in the gene encoding the Drosophila FMRFaR. The mutants exhibit significant flight deficits with a focus in dopaminergic cells. Expression of a receptor specific RNAi in adult central dopaminergic neurons resulted in progressive loss of sustained flight. Further, genetic and cellular assays demonstrated that FMRFaR stimulates intracellular calcium signaling through the IP3R and helps maintain neuronal excitability in a subset of dopaminergic neurons for positive modulation of flight bout durations.
Collapse
Affiliation(s)
- Preethi Ravi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Deepti Trivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
21
|
NonA and CPX Link the Circadian Clockwork to Locomotor Activity in Drosophila. Neuron 2018; 99:768-780.e3. [PMID: 30057203 DOI: 10.1016/j.neuron.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/27/2018] [Accepted: 07/01/2018] [Indexed: 11/20/2022]
Abstract
Drosophila NonA and its mammalian ortholog NONO are members of the Drosophila behavior and human splicing (DBHS) family. NONO also has a strong circadian connection: it associates with the circadian repressor protein PERIOD (PER) and contributes to circadian timekeeping. Here, we investigate NonA, which is required for proper levels of evening locomotor activity as well as a normal free-running period in Drosophila. NonA is associated with the positive transcription factor CLOCK/CYCLE (CLK/CYC), interacts directly with complexin (cpx) pre-mRNA, and upregulates gene expression, including the gene cpx. Downregulation of cpx expression in circadian neurons phenocopies NonA downregulation, whereas cpx overexpression rescues the nonA RNAi phenotypes, indicating that cpx is an important NonA target gene. As the cpx protein contributes to proper neurotransmitter and neuropeptide release in response to calcium, these results and others indicate that this control is important for the normal circadian regulation of locomotor activity.
Collapse
|
22
|
Lismont E, Mortelmans N, Verlinden H, Vanden Broeck J. Molecular cloning and characterization of the SIFamide precursor and receptor in a hymenopteran insect, Bombus terrestris. Gen Comp Endocrinol 2018; 258:39-52. [PMID: 29127004 DOI: 10.1016/j.ygcen.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 01/09/2023]
Abstract
SIFamides (SIFa) are a family of neuropeptides that are highly conserved among arthropods. In insects, this peptide is mainly expressed in four medial interneurons in the pars intercerebralis and affects sexual behavior, sleep regulation and pupal mortality. Furthermore, an influence on the hatching rate has been observed. The first SIFa receptor (SIFR) was pharmacologically characterized in Drosophila melanogaster and is homologous to the vertebrate gonadotropin-inhibitory hormone (GnIH) receptor (NPFFR). In this study, we pharmacologically characterized the SIFR of the buff-tailed bumblebee Bombus terrestris. We demonstrated an intracellular increase in calcium ions and cyclic AMP (cAMP) upon ligand binding with an EC50 value in the picomolar and nanomolar range, respectively. In addition, we studied the agonistic properties of a range of related and modified peptides. By means of quantitative real time PCR (qPCR), we examined the relative transcript levels of Bomte-SIFa and Bomte-SIFR in a variety of tissues.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Nele Mortelmans
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
23
|
Jarabo P, Martin FA. Neurogenetics of Drosophila circadian clock: expect the unexpected. J Neurogenet 2017; 31:250-265. [DOI: 10.1080/01677063.2017.1370466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Chakraborty S, Hasan G. Spontaneous Ca 2+ Influx in Drosophila Pupal Neurons Is Modulated by IP 3-Receptor Function and Influences Maturation of the Flight Circuit. Front Mol Neurosci 2017; 10:111. [PMID: 28473752 PMCID: PMC5398029 DOI: 10.3389/fnmol.2017.00111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 11/14/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are Ca2+ channels on the neuronal endoplasmic reticulum (ER) membrane. They are gated by IP3, produced upon external stimulation and activation of G protein-coupled receptors on the plasma membrane (PM). IP3-mediated Ca2+ release, and the resulting depletion of the ER store, triggers entry of extracellular Ca2+ by store-operated Ca2+ entry (SOCE). Mutations in IP3R attenuate SOCE. Compromised IP3R function and SOCE during pupal development of Drosophila leads to flight deficits and mimics suppression of neuronal activity during pupal or adult development. To understand the effect of compromised IP3R function on pupal neuronal calcium signaling, we examined the effects of mutations in the IP3R gene (itpr) on Ca2+ signals in cultured neurons derived from Drosophila pupae. We observed increased spontaneous Ca2+ influx across the PM of isolated pupal neurons with mutant IP3R and also a loss of SOCE. Both spontaneous Ca2+ influx and reduced SOCE were reversed by over-expression of dOrai and dSTIM, which encode the SOCE Ca2+ channel and the ER Ca2+-sensor that regulates it, respectively. Expression of voltage-gated Ca2+ channels (cac, Ca-α1D and Ca-αT) was significantly reduced in itpr mutant neurons. However, expression of trp mRNAs and transient receptor potential (TRP) protein were increased, suggesting that TRP channels might contribute to the increased spontaneous Ca2+ influx in neurons with mutant IP3R. Thus, IP3R/SOCE modulates spontaneous Ca2+ influx and expression of PM Ca2+ channels in Drosophila pupal neurons. Spontaneous Ca2+ influx compensates for the loss of SOCE in Drosophilaitpr mutant neurons.
Collapse
Affiliation(s)
- Sumita Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangalore, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangalore, India
| |
Collapse
|
25
|
Richhariya S, Jayakumar S, Abruzzi K, Rosbash M, Hasan G. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons. Sci Rep 2017; 7:42586. [PMID: 28195208 PMCID: PMC5307359 DOI: 10.1038/srep42586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.
Collapse
Affiliation(s)
- Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Siddharth Jayakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Manipal University, Manipal 576104, India
| | - Katharine Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
26
|
Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock. Sci Rep 2017; 7:41560. [PMID: 28134281 PMCID: PMC5278502 DOI: 10.1038/srep41560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023] Open
Abstract
Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit.
Collapse
|
27
|
Stengl M, Arendt A. Peptidergic circadian clock circuits in the Madeira cockroach. Curr Opin Neurobiol 2016; 41:44-52. [PMID: 27575405 DOI: 10.1016/j.conb.2016.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 01/29/2023]
Abstract
Circadian clocks control physiology and behavior of organisms in synchrony with external light dark cycles in changing photoperiods. The Madeira cockroach Rhyparobia maderae was the first model organism in which an endogenous circadian clock in the brain was identified. About 240 neurons constitute the cockroach circadian pacemaker network in the accessory medulla. The expression of high concentrations of neuropeptides, among them the most prominent circadian coupling factor pigment-dispersing factor, as well as their ability to generate endogenous ultradian and circadian rhythms in electrical activity and clock gene expression distinguish these pacemaker neurons. We assume that entrainment to light-dark cycles and the control of 24h rest-activity rhythms is achieved via peptidergic circuits forming autoreceptive labeled lines.
Collapse
Affiliation(s)
- Monika Stengl
- University of Kassel, Biology, Animal Physiology, Heinrich Plett Str. 40, 34132 Kassel, Germany.
| | - Andreas Arendt
- University of Kassel, Biology, Animal Physiology, Heinrich Plett Str. 40, 34132 Kassel, Germany
| |
Collapse
|
28
|
An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease. J Neurosci 2016; 36:1445-55. [PMID: 26843629 DOI: 10.1523/jneurosci.0256-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The role that glia play in neurological disease is poorly understood but increasingly acknowledged to be critical in a diverse group of disorders. Here we use a simple genetic model of Alexander disease, a progressive and severe human degenerative nervous system disease caused by a primary astroglial abnormality, to perform an in vivo screen of 1987 compounds, including many FDA-approved drugs and natural products. We identify four compounds capable of dose-dependent inhibition of nervous system toxicity. Focusing on one of these hits, glycopyrrolate, we confirm the role for muscarinic cholinergic signaling in pathogenesis using additional pharmacologic reagents and genetic approaches. We further demonstrate that muscarinic cholinergic signaling works through downstream Gαq to control oxidative stress and death of neurons and glia. Importantly, we document increased muscarinic cholinergic receptor expression in Alexander disease model mice and in postmortem brain tissue from Alexander disease patients, and that blocking muscarinic receptors in Alexander disease model mice reduces oxidative stress, emphasizing the translational significance of our findings. We have therefore identified glial muscarinic signaling as a potential therapeutic target in Alexander disease, and possibly in other gliopathic disorders as well. SIGNIFICANCE STATEMENT Despite the urgent need for better treatments for neurological diseases, drug development for these devastating disorders has been challenging. The effectiveness of traditional large-scale in vitro screens may be limited by the lack of the appropriate molecular, cellular, and structural environment. Using a simple Drosophila model of Alexander disease, we performed a moderate throughput chemical screen of FDA-approved drugs and natural compounds, and found that reducing muscarinic cholinergic signaling ameliorated clinical symptoms and oxidative stress in Alexander disease model flies and mice. Our work demonstrates that small animal models are valuable screening tools for therapeutic compound identification in complex human diseases and that existing drugs can be a valuable resource for drug discovery given their known pharmacological and safety profiles.
Collapse
|
29
|
Deb BK, Pathak T, Hasan G. Store-independent modulation of Ca(2+) entry through Orai by Septin 7. Nat Commun 2016; 7:11751. [PMID: 27225060 PMCID: PMC4894974 DOI: 10.1038/ncomms11751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/26/2016] [Indexed: 01/07/2023] Open
Abstract
Orai channels are required for store-operated Ca2+ entry (SOCE) in multiple cell types. Septins are a class of GTP-binding proteins that function as diffusion barriers in cells. Here we show that Septin 7 acts as a ‘molecular brake’ on activation of Orai channels in Drosophila neurons. Lowering Septin 7 levels results in dOrai-mediated Ca2+ entry and higher cytosolic Ca2+ in resting neurons. This Ca2+ entry is independent of depletion of endoplasmic reticulum Ca2+ stores and Ca2+ release through the inositol-1,4,5-trisphosphate receptor. Importantly, store-independent Ca2+ entry through Orai compensates for reduced SOCE in the Drosophila flight circuit. Moreover, overexpression of Septin 7 reduces both SOCE and flight duration, supporting its role as a negative regulator of Orai channel function in vivo. Septin 7 levels in neurons can, therefore, alter neural circuit function by modulating Orai function and Ca2+ homeostasis. Orai channels are well known to mediate store-operated calcium entry. Here authors show that in neurons of the Drosophila flight circuit, Septin 7 acts as a negative regulator of Orai channels, surprisingly, by modulating store-independent calcium entry through Orai.
Collapse
Affiliation(s)
- Bipan Kumar Deb
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Trayambak Pathak
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India.,Manipal University, Manipal, Karnataka 576104, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| |
Collapse
|
30
|
Klose M, Duvall L, Li W, Liang X, Ren C, Steinbach JH, Taghert PH. Functional PDF Signaling in the Drosophila Circadian Neural Circuit Is Gated by Ral A-Dependent Modulation. Neuron 2016; 90:781-794. [PMID: 27161526 DOI: 10.1016/j.neuron.2016.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 01/13/2016] [Accepted: 03/20/2016] [Indexed: 12/18/2022]
Abstract
The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness and does not require endogenous ligand (PDF) signaling or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additionally, cell-autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus, RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling.
Collapse
Affiliation(s)
- Markus Klose
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Laura Duvall
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Weihua Li
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Xitong Liang
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Chi Ren
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Joe Henry Steinbach
- Dept. of Anesthesiology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Paul H Taghert
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| |
Collapse
|
31
|
Store-Operated Calcium Entry through Orai Is Required for Transcriptional Maturation of the Flight Circuit in Drosophila. J Neurosci 2016; 35:13784-99. [PMID: 26446229 DOI: 10.1523/jneurosci.1680-15.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Store operated calcium entry (SOCE) is thought to primarily regulate calcium homeostasis in neurons. Subsequent to identification of Orai as the SOCE channel in nonexcitable cells, investigation of Orai function in neurons demonstrated a requirement for SOCE in Drosophila flight. Here, by analysis of an Orai mutant and by controlled expression of a dominant-negative Drosophila Orai transgene, we show that Orai-mediated SOCE is required in dopaminergic interneurons of the flight circuit during pupal development. Expression of dominant-negative Orai in dopaminergic neurons of pupae abolished flight. The loss of Orai-mediated SOCE alters transcriptional regulation of dopaminergic neurons, leading to downregulation of the enzyme tyrosine hydroxylase, which is essential for dopamine synthesis, and the dopamine transporter, which is required for dopamine uptake after synaptic release. These studies suggest that modulation of SOCE could serve as a novel mechanism for restoring dopamine levels in dopaminergic neurons. SIGNIFICANCE STATEMENT The specificity of an animal's response to an environmental stimulus is determined in part by the release of neurotransmitters, which are sensed by responding neurons through cognate receptors on their surface. One way by which neurons respond is through release of calcium from intracellular stores followed by store refilling from extracellular calcium sources. This mechanism is called store-operated calcium entry (SOCE). The function of SOCE in neurons has been debated. Here we describe a new function for SOCE in the regulation of neurotransmitter levels in Drosophila flight neurons. This cell-signaling mechanism is required to maintain optimal levels of a key enzyme for dopamine synthesis and may serve as a mechanism for restoring dopamine levels in relevant pathological conditions.
Collapse
|
32
|
Langenhan T, Barr MM, Bruchas MR, Ewer J, Griffith LC, Maiellaro I, Taghert PH, White BH, Monk KR. Model Organisms in G Protein-Coupled Receptor Research. Mol Pharmacol 2015; 88:596-603. [PMID: 25979002 PMCID: PMC4551050 DOI: 10.1124/mol.115.098764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022] Open
Abstract
The study of G protein-coupled receptors (GPCRs) has benefited greatly from experimental approaches that interrogate their functions in controlled, artificial environments. Working in vitro, GPCR receptorologists discovered the basic biologic mechanisms by which GPCRs operate, including their eponymous capacity to couple to G proteins; their molecular makeup, including the famed serpentine transmembrane unit; and ultimately, their three-dimensional structure. Although the insights gained from working outside the native environments of GPCRs have allowed for the collection of low-noise data, such approaches cannot directly address a receptor's native (in vivo) functions. An in vivo approach can complement the rigor of in vitro approaches: as studied in model organisms, it imposes physiologic constraints on receptor action and thus allows investigators to deduce the most salient features of receptor function. Here, we briefly discuss specific examples in which model organisms have successfully contributed to the elucidation of signals controlled through GPCRs and other surface receptor systems. We list recent examples that have served either in the initial discovery of GPCR signaling concepts or in their fuller definition. Furthermore, we selectively highlight experimental advantages, shortcomings, and tools of each model organism.
Collapse
Affiliation(s)
- Tobias Langenhan
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Maureen M Barr
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Michael R Bruchas
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - John Ewer
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Leslie C Griffith
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Isabella Maiellaro
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Paul H Taghert
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Benjamin H White
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| | - Kelly R Monk
- Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Division of Basic Research, Department of Anesthesiology, Washington University Pain Center (M.R.B.), Division of Biological and Biomedical Sciences, Department of Anatomy and Neurobiology (M.R.B., P.H.T.), and Department of Developmental Biology, Hope Center for Neurologic Disorders, (K.R.M.), Washington University School of Medicine, St. Louis, Missouri; Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile (J.E.); National Center of Behavioral Genomics, Volen Center for Complex Systems, and Department of Biology, Brandeis University, Waltham, Massachusetts (L.C.G.); and Laboratory of Molecular Biology, National Institutes of Health National Institute of Mental Health, Bethesda, Maryland (B.H.W.)
| |
Collapse
|
33
|
Agrawal T, Hasan G. Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca²⁺ signaling. eLife 2015; 4. [PMID: 25955970 PMCID: PMC4451221 DOI: 10.7554/elife.07046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/07/2015] [Indexed: 12/02/2022] Open
Abstract
The final identity of a differentiated neuron is determined by multiple signaling events, including activity dependent calcium transients. Non-canonical Frizzled2 (Fz2) signaling generates calcium transients that determine neuronal polarity, neuronal migration, and synapse assembly in the developing vertebrate brain. Here, we demonstrate a requirement for Fz2/Ca2+ signaling in determining the final differentiated state of a set of central brain dopaminergic neurons in Drosophila, referred to as the protocerebral anterior medial (PAM) cluster. Knockdown or inhibition of Fz2/Ca2+ signaling during maturation of the flight circuit in pupae reduces Tyrosine Hydroxylase (TH) expression in the PAM neurons and affects maintenance of flight. Thus, we demonstrate that Fz2/Ca2+ transients during development serve as a pre-requisite for normal adult behavior. Our results support a neural mechanism where PAM neuron send projections to the α' and β' lobes of a higher brain centre, the mushroom body, and function in dopaminergic re-inforcement of flight. DOI:http://dx.doi.org/10.7554/eLife.07046.001 The fruit fly Drosophila melanogaster is an aerial acrobat. These insects can suddenly change direction in less than one hundredth of a second, explaining why a moving fly can be so difficult to swat. To perform their aerial manoeuvres, the flies continually combine information from multiple senses, including vision, hearing and smell, and use these data to control the activity of the neural circuits that support flight. These flight circuits are established during the pupal stage of fly development, during which the fly transforms from a larva into its adult form. In 2013, researchers showed that a protein called dFrizzled2 must be present in pupae for flight circuits to mature correctly. This protein forms part of a pathway that ultimately controls which specific chemicals—called neurotransmitters—are released by neurons to communicate with other cells. Agrawal and Hasan—who worked on the 2013 study—now extend their findings to investigate the role of dFrizzled2 in more detail. The new experiments show that for the flight circuits to mature, dFrizzled2 must be active in a cluster of neurons known collectively as PAM. Specifically, dFrizzled2 is needed to make an enzyme that helps to produce a neurotransmitter called dopamine. This in turn enables the PAM neurons to communicate with a region of the fruit fly brain called the mushroom body, which it thought to play an important role in complex behaviors such as reward-based learning. The absence of dFrizzled2 results in adult flies that rarely remain airborne for more than 20 s at a time, whereas normal flies can typically fly for over 700 s. Given that dopamine is known to signal reward, one possibility is that the dopamine signals from the PAM neurons to the mushroom body serve as a reward to encourage continuous flight. Mutant flies that lack dFrizzled2—and thus these dopamine signals—lose their motivation to fly after only a few seconds. Overall, Agrawal and Hasan's findings suggest that the mushroom body has an important role in coordinating a fly's movements with information from it senses. Future research will be needed to determine exactly how the mushroom body performs this role. DOI:http://dx.doi.org/10.7554/eLife.07046.002
Collapse
Affiliation(s)
- Tarjani Agrawal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
34
|
Sadaf S, Reddy OV, Sane SP, Hasan G. Neural control of wing coordination in flies. Curr Biol 2014; 25:80-6. [PMID: 25496964 DOI: 10.1016/j.cub.2014.10.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 10/13/2014] [Accepted: 10/29/2014] [Indexed: 11/24/2022]
Abstract
At the onset of each flight bout in flies, neural circuits in the CNS must rapidly integrate multimodal sensory stimuli and synchronously engage hinges of the left and right wings for coordinated wing movements. Whereas anatomical and physiological investigations of flight have been conducted on larger flies, molecular genetic studies in Drosophila have helped identify neurons that mediate various levels of flight control. However, neurons that might mediate bilateral coordination of wing movements to precisely synchronize left and right wing engagement at flight onset and maintain their movement in perfect coordination at rapid frequencies during flight maneuvers remain largely unexplored. Wing coordination could be directly modulated via bilateral sensory inputs to motoneurons of steering muscles and/or through central interneurons. Using a Ca(2+)-activity-based GFP reporter, we identified three flight-activated central dopaminergic interneurons in the ventral ganglion, which connect to and activate motoneurons that innervate a pair of direct-steering flight muscles. The activation of these newly identified dopaminergic interneurons is context specific. Whereas bilateral wing engagement for flight requires these neurons, they do not control unilateral wing extension during courtship. Thus, independent central circuits function in the context of different natural behaviors to control the motor circuit for Drosophila wing movement.
Collapse
Affiliation(s)
- Sufia Sadaf
- National Centre for Biological Sciences, TIFR, Bellary Road, Bangalore 560065, India
| | - O Venkateswara Reddy
- National Centre for Biological Sciences, TIFR, Bellary Road, Bangalore 560065, India; Manipal University, Manipal, Karnataka 576104, India
| | - Sanjay P Sane
- National Centre for Biological Sciences, TIFR, Bellary Road, Bangalore 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFR, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
35
|
Balakrishnan SS, Basu U, Raghu P. Phosphoinositide signalling in Drosophila. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:770-84. [PMID: 25449646 DOI: 10.1016/j.bbalip.2014.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 01/28/2023]
Abstract
Phosphoinositides (PtdInsPs) are lipids that mediate a range of conserved cellular processes in eukaryotes. These include the transduction of ligand binding to cell surface receptors, vesicular transport and cytoskeletal function. The nature and functions of PtdInsPs were initially elucidated through biochemical experiments in mammalian cells. However, over the years, genetic and cell biological analysis in a range of model organisms including S. cerevisiae, D. melanogaster and C. elegans have contributed to an understanding of the involvement of PtdInsPs in these cellular events. The fruit fly Drosophila is an excellent genetic model for the analysis of cell and developmental biology as well as physiological processes, particularly analysis of the complex relationship between the cell types of a metazoan in mediating animal physiology. PtdInsP signalling pathways are underpinned by enzymes that synthesise and degrade these molecules and also by proteins that bind to these lipids in cells. In this review we provide an overview of the current understanding of PtdInsP signalling in Drosophila. We provide a comparative genomic analysis of the PtdInsP signalling toolkit between Drosophila and mammalian systems. We also review some areas of cell and developmental biology where analysis in Drosophila might provide insights into the role of this lipid-signalling pathway in metazoan biology. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Sruthi S Balakrishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Urbashi Basu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
36
|
Wei H, Yasar H, Funk NW, Giese M, Baz ES, Stengl M. Signaling of pigment-dispersing factor (PDF) in the Madeira cockroach Rhyparobia maderae. PLoS One 2014; 9:e108757. [PMID: 25269074 PMCID: PMC4182629 DOI: 10.1371/journal.pone.0108757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022] Open
Abstract
The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca²⁺ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca²⁺ baseline concentration and frequency of oscillating Ca²⁺ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca²⁺ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1-4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca²⁺ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K⁺ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K⁺ and Na⁺ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance.
Collapse
Affiliation(s)
- Hongying Wei
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Hanzey Yasar
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Nico W. Funk
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Maria Giese
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - El-Sayed Baz
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Monika Stengl
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
- * E-mail:
| |
Collapse
|
37
|
Schendzielorz J, Schendzielorz T, Arendt A, Stengl M. Bimodal oscillations of cyclic nucleotide concentrations in the circadian system of the Madeira cockroach Rhyparobia maderae. J Biol Rhythms 2014; 29:318-31. [PMID: 25231947 DOI: 10.1177/0748730414546133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigment-dispersing factor (PDF) is the most important coupling factor of the circadian system in insects, comparable to its functional ortholog vasoactive intestinal polypeptide of the mammalian circadian clock. In Drosophila melanogaster, PDF signals via activation of adenylyl cyclases, controlling circadian locomotor activity rhythms at dusk and dawn. In addition, PDF mediates circadian rhythms of the visual system and is involved in entrainment to different photoperiods. We examined whether PDF daytime-dependently elevates cAMP levels in the Madeira cockroach Rhyparobia maderae and whether cAMP mimics PDF effects on locomotor activity rhythms. To determine time windows of PDF release, we searched for circadian rhythms in concentrations of cAMP and its functional opponent cGMP in the accessory medulla (AMe), the insect circadian pacemaker controlling locomotor activity rhythms, and in the optic lobes, as the major input and output area of the circadian clock. Enzyme-linked immunosorbent assays detected PDF-dependent increases of cAMP in optic lobes and daytime-dependent oscillations of cAMP and cGMP baseline levels in the AMe, both with maxima at dusk and dawn. Although these rhythms disappeared at the first day in constant conditions (DD1), cAMP but not cGMP oscillations returned at the second day in constant conditions (DD2). Whereas in light-dark cycles the cAMP baseline level remained constant in other optic lobe neuropils, it oscillated in phase with the AMe at DD2. To determine whether cAMP and cGMP mimic PDF-dependent control of locomotor activity rhythms, both cyclic nucleotides were injected at different times of the circadian day using running-wheel assays. Whereas cAMP injections generated delays at dusk and advances at dawn, cGMP only delayed locomotor activity at dusk. For the first time we found PDF-dependent phase advances at dawn in addition to previously described phase delays at dusk. Thus, we hypothesize that PDF release at dusk and dawn controls locomotor activity rhythms and visual system processing cAMP-dependently.
Collapse
Affiliation(s)
- Julia Schendzielorz
- Department of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | | | - Andreas Arendt
- Department of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- Department of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| |
Collapse
|
38
|
Shafer OT, Yao Z. Pigment-Dispersing Factor Signaling and Circadian Rhythms in Insect Locomotor Activity. CURRENT OPINION IN INSECT SCIENCE 2014; 1:73-80. [PMID: 25386391 PMCID: PMC4224320 DOI: 10.1016/j.cois.2014.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Though expressed in relatively few neurons in insect nervous systems, pigment-dispersing factor (PDF) plays many roles in the control of behavior and physiology. PDF's role in circadian timekeeping is its best-understood function and the focus of this review. Here we recount the isolation and characterization of insect PDFs, review the evidence that PDF acts as a circadian clock output factor, and discuss emerging models of how PDF functions within circadian clock neuron network of Drosophila, the species in which this peptide's circadian roles are best understood.
Collapse
|
39
|
Helfrich-Förster C. From neurogenetic studies in the fly brain to a concept in circadian biology. J Neurogenet 2014; 28:329-47. [PMID: 24655073 DOI: 10.3109/01677063.2014.905556] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper is dedicated to Karl-Friedrich Fischbach, who has always shared with me the interest in the function of the fly brain, especially that of its optic lobes. He has accompanied me during my first steps in scientific research. The paper tells the story how our first common attempts to localize the circadian clock in the fly brain finally helped in phrasing the two-oscillator principle of circadian clocks that seems to be valid far beyond the fly circadian system. I hope that Karl-Friedrich will take this story as praise for his generosity in supporting younger scientists outside his own lab, even without the reward of a common paper.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Biocenter, Theodor-Boveri Institute, University of Würzburg , Würzburg , Germany
| |
Collapse
|
40
|
Park S, Sonn JY, Oh Y, Lim C, Choe J. SIFamide and SIFamide receptor defines a novel neuropeptide signaling to promote sleep in Drosophila. Mol Cells 2014; 37:295-301. [PMID: 24658384 PMCID: PMC4012077 DOI: 10.14348/molcells.2014.2371] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/25/2014] [Accepted: 03/04/2014] [Indexed: 01/16/2023] Open
Abstract
SIFamide receptor (SIFR) is a Drosophila G protein-coupled receptor for the neuropeptide SIFamide (SIFa). Although the sequence and spatial expression of SIFa are evolutionarily conserved among insect species, the physiological function of SIFa/SIFR signaling remains elusive. Here, we provide genetic evidence that SIFa and SIFR promote sleep in Drosophila. Either genetic ablation of SIFa-expressing neurons in the pars intercerebralis (PI) or pan-neuronal depletion of SIFa expression shortened baseline sleep and reduced sleep-bout length, suggesting that it caused sleep fragmentation. Consistently, RNA interference- mediated knockdown of SIFR expression caused short sleep phenotypes as observed in SIFa-ablated or depleted flies. Using a panel of neuron-specific Gal4 drivers, we further mapped SIFR effects to subsets of PI neurons. Taken together, these results reveal a novel physiological role of the neuropeptide SIFa/SIFR pathway to regulate sleep through sleep-promoting neural circuits in the PI of adult fly brains.
Collapse
Affiliation(s)
- Sangjin Park
- Department of Biological Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Jun Young Sonn
- Department of Biological Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Yangkyun Oh
- Department of Biological Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Chunghun Lim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798,
Korea
| | - Joonho Choe
- Department of Biological Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| |
Collapse
|
41
|
Mohr SE. RNAi screening in Drosophila cells and in vivo. Methods 2014; 68:82-8. [PMID: 24576618 DOI: 10.1016/j.ymeth.2014.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/07/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022] Open
Abstract
Here, I discuss how RNAi screening can be used effectively to uncover gene function. Specifically, I discuss the types of high-throughput assays that can be done in Drosophila cells and in vivo, RNAi reagent design and available reagent collections, automated screen pipelines, analysis of screen results, and approaches to RNAi results verification.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|