1
|
Blackburn PR, Eldomery MK, Pastor Loyola V, Shi Z, Arnoldo A, Malik F, Santiago T, Chami R. Novel ACTB::FER Promoter Swap Fusion Characterizes Rare Superficial Myoid/Myofibroblastic Tumors. Genes Chromosomes Cancer 2025; 64:e70050. [PMID: 40346937 PMCID: PMC12065055 DOI: 10.1002/gcc.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/12/2025] Open
Abstract
Pediatric fibroblastic, myofibroblastic, and myoid tumors encompass several entities, many with characteristic gene fusions that are now emerging as molecularly defined tumor groups. Here, we present two cases of spindle cell neoplasms with novel ACTB::FER promoter swap fusions. Both tumors presented in the extremities of pediatric patients (9-year-old and 6-year-old females) as superficial skin nodules with slow growth. Histologically, both tumors showed monomorphic spindle cell proliferation in short fascicles, but without significantly increased mitotic activity, high-grade atypia, or necrosis. Both cases showed diffuse positivity for SMA with patchy desmin expression. RNA sequencing confirmed fusion breakpoints, revealing transcriptional upregulation of FER. Neither patient has had evidence of interval growth or recurrence to date. While the biological significance of ACTB::FER fusions remains unclear, their recurrence and the absence of other clear oncogenic drivers suggest a distinct molecular pathway that may define a novel entity. Fusions of ACTB and FER genes with different partners have been observed in rare aggressive mesenchymal tumors; however, the ACTB::FER promoter swap fusion is currently unrecognized in soft tissue tumors. We report the first two cases of soft tissue tumors harboring ACTB::FER fusions and expand the molecular spectrum of mesenchymal tumors with kinase gene alterations. Further, we highlight the importance of target-agnostic approaches for the detection of rare kinase fusions, which may not be included on targeted next-generation sequencing panels.
Collapse
Affiliation(s)
| | | | | | - Zonggao Shi
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Anthony Arnoldo
- Division of PathologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Faizan Malik
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Teresa Santiago
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Rose Chami
- Division of PathologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
2
|
Zhou K, Zhang M, Zhai D, Wang Z, Liu T, Xie Y, Shi Y, Shi H, Chen Q, Li X, Xu J, Cai Z, Zhang Y, Shao N, Lin Y. Genomic and transcriptomic profiling of inflammatory breast cancer reveals distinct molecular characteristics to non-inflammatory breast cancers. Breast Cancer Res Treat 2024; 208:441-459. [PMID: 39030466 DOI: 10.1007/s10549-024-07437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
PURPOSE Inflammatory breast cancer (IBC), a rare and highly aggressive form of breast cancer, accounts for 10% of breast cancer-related deaths. Previous omics studies of IBC have focused solely on one of genomics or transcriptomics and did not discover common differences that could distinguish IBC from non-IBC. METHODS Seventeen IBC patients and five non-IBC patients as well as additional thirty-three Asian breast cancer samples from TCGA-BRCA were included for the study. We performed whole-exon sequencing (WES) to investigate different somatic genomic alterations, copy number variants, and large structural variants between IBC and non-IBC. Bulk RNA sequencing (RNA-seq) was performed to examine the differentially expressed genes, pathway enrichment, and gene fusions. WES and RNA-seq data were further investigated in combination to discover genes that were dysregulated in both genomics and transcriptomics. RESULTS Copy number variation analysis identified 10 cytobands that showed higher frequency in IBC. Structural variation analysis showed more frequent deletions in IBC. Pathway enrichment and immune infiltration analysis indicated increased immune activation in IBC samples. Gene fusions including CTSC-RAB38 were found to be more common in IBC. We demonstrated more commonly dysregulated RAS pathway in IBC according to both WES and RNA-seq. Inhibitors targeting RAS signaling and its downstream pathways were predicted to possess promising effects in IBC treatment. CONCLUSION We discovered differences unique in Asian women that could potentially explain IBC etiology and presented RAS signaling pathway as a potential therapeutic target in IBC treatment.
Collapse
Affiliation(s)
- Kaiwen Zhou
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengmeng Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zilin Wang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ting Liu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianjun Chen
- Department of Breast Oncology, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Xiaoping Li
- Department of Breast Oncology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Juan Xu
- Department of Breast Oncology, Maternal and Child Health Care Hospital of Guangdong Province, Guangzhou, China
| | - Zhenhai Cai
- Department of Breast Oncology, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Yunjian Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
3
|
Lazarevic V, Lilljebjörn H, Olsson-Arvidsson L, Orsmark-Pietras C, Ågerstam H. TLE3 Is a Novel Fusion Partner of JAK2 in Myeloid/Lymphoid Neoplasm With Eosinophilia Responding to JAK2 Inhibition. Genes Chromosomes Cancer 2024; 63:e23261. [PMID: 39105620 DOI: 10.1002/gcc.23261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Chromosomal rearrangements involving Janus kinase 2 (JAK2) are rare but recurrent findings in lymphoid or myeloid neoplasia. Detection of JAK2 fusion genes is important as patients with aberrantly activated JAK2 may benefit from treatment with tyrosine kinase inhibitors such as ruxolitinib. Here, we report a novel fusion gene between the transcriptional co-repressor-encoding gene transducin-like enhancer of split 3 (TLE3) and JAK2 in a patient initially diagnosed with chronic eosinophilic leukemia with additional mutations in PTPN11 and NRAS. The patient was successfully treated with the JAK2 inhibitor ruxolitinib for 8 months before additional somatic mutations were acquired and the disease progressed into an acute lymphoblastic T-cell leukemia/lymphoma. The present case shows similarities to previously reported cases with PCM1::JAK2 and BCR::JAK2 with regard to disease phenotype and response to ruxolitinib, and importantly, provides an example that also patients harboring other JAK2 fusion genes may benefit from treatment with JAK2 inhibitors.
Collapse
Affiliation(s)
- Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | | - Linda Olsson-Arvidsson
- Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| | - Christina Orsmark-Pietras
- Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| | - Helena Ågerstam
- Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| |
Collapse
|
4
|
Mulet-Lazaro R, van Herk S, Nuetzel M, Sijs-Szabo A, Díaz N, Kelly K, Erpelinck-Verschueren C, Schwarzfischer-Pfeilschifter L, Stanewsky H, Ackermann U, Glatz D, Raithel J, Fischer A, Pohl S, Rijneveld A, Vaquerizas JM, Thiede C, Plass C, Wouters BJ, Delwel R, Rehli M, Gebhard C. Epigenetic alterations affecting hematopoietic regulatory networks as drivers of mixed myeloid/lymphoid leukemia. Nat Commun 2024; 15:5693. [PMID: 38972954 PMCID: PMC11228033 DOI: 10.1038/s41467-024-49811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Stanley van Herk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Margit Nuetzel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Aniko Sijs-Szabo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Katherine Kelly
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Erpelinck-Verschueren
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ute Ackermann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dagmar Glatz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Raithel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Pohl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Anita Rijneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital 8 Campus, London, United Kingdom
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas J Wouters
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Claudia Gebhard
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| |
Collapse
|
5
|
Ayub A, Hasan MK, Mahmud Z, Hossain MS, Kabir Y. Dissecting the multifaceted roles of autophagy in cancer initiation, growth, and metastasis: from molecular mechanisms to therapeutic applications. Med Oncol 2024; 41:183. [PMID: 38902544 DOI: 10.1007/s12032-024-02417-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.
Collapse
Affiliation(s)
- Afia Ayub
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St. W., Hamilton, L8S 4K1, Canada.
- Department of Public Health, North South University, Dhaka, Bangladesh.
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Sabbir Hossain
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
6
|
Suske T, Sorger H, Manhart G, Ruge F, Prutsch N, Zimmerman MW, Eder T, Abdallah DI, Maurer B, Wagner C, Schönefeldt S, Spirk K, Pichler A, Pemovska T, Schweicker C, Pölöske D, Hubanic E, Jungherz D, Müller TA, Aung MMK, Orlova A, Pham HTT, Zimmel K, Krausgruber T, Bock C, Müller M, Dahlhoff M, Boersma A, Rülicke T, Fleck R, de Araujo ED, Gunning PT, Aittokallio T, Mustjoki S, Sanda T, Hartmann S, Grebien F, Hoermann G, Haferlach T, Staber PB, Neubauer HA, Look AT, Herling M, Moriggl R. Hyperactive STAT5 hijacks T cell receptor signaling and drives immature T cell acute lymphoblastic leukemia. J Clin Invest 2024; 134:e168536. [PMID: 38618957 PMCID: PMC11014662 DOI: 10.1172/jci168536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.
Collapse
Affiliation(s)
| | | | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frank Ruge
- Institute of Animal Breeding and Genetics and
| | - Nicole Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Eder
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Diaaeldin I. Abdallah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | - Alexander Pichler
- Department of Medicine I, Clinical Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Tea Pemovska
- Department of Medicine I, Clinical Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Carmen Schweicker
- Department of Medicine I, Clinical Division of Hematology, Medical University of Vienna, Vienna, Austria
| | | | | | - Dennis Jungherz
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, Cologne, Germany
| | - Tony Andreas Müller
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, Cologne, Germany
| | | | - Anna Orlova
- Institute of Animal Breeding and Genetics and
| | | | | | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | | | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Auke Boersma
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Elvin Dominic de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Thomas Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Janpix, London, United Kingdom
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Satu Mustjoki
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Takaomi Sanda
- Cancer Science Institute of Singapore and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | | | | | - Philipp Bernhard Staber
- Department of Medicine I, Clinical Division of Hematology, Medical University of Vienna, Vienna, Austria
| | | | - Alfred Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, Cologne, Germany
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics and
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
7
|
Alabed HBR, Pellegrino RM, Buratta S, Lema Fernandez AG, La Starza R, Urbanelli L, Mecucci C, Emiliani C, Gorello P. Metabolic Profiling as an Approach to Differentiate T-Cell Acute Lymphoblastic Leukemia Cell Lines Belonging to the Same Genetic Subgroup. Int J Mol Sci 2024; 25:3921. [PMID: 38612731 PMCID: PMC11011837 DOI: 10.3390/ijms25073921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive tumor mainly affecting children and adolescents. It is driven by multiple genetic mutations that together define the leukemic phenotype. Interestingly, based on genetic alterations and/or deregulated expression, at least six genetic subgroups have been recognized. The TAL/LMO subgroup is one of the most represented genetic subgroups, characterizing 30-45% of pediatric T-ALL cases. The study of lipid and metabolic profiles is increasingly recognized as a valuable tool for comprehending the development and progression of tumors. In this study, metabolic and lipidomic analysis via LC/MS have been carried out on four T-ALL cell lines belonging to the TAL/LMO subgroup (Jurkat, Molt-4, Molt-16, and CCRF-CEM) to identify new potential metabolic biomarkers and to provide a subclassification of T-ALL cell lines belonging to the same subgroup. A total of 343 metabolites were annotated, including 126 polar metabolites and 217 lipid molecules. The statistical analysis, for both metabolic and lipid profiles, shows significant differences and similarities among the four cell lines. The Molt-4 cell line is the most distant cell line and CCRF-CEM shows a high activity in specific pathways when compared to the other cell lines, while Molt-16 and Jurkat show a similar metabolic profile. Additionally, this study highlighted the pathways that differ in each cell line and the possible enzymes involved using bioinformatic tools, capable of predicting the pathways involved by studying the differences in the metabolic profiles. This experiment offers an approach to differentiate T-ALL cell lines and could open the way to verify and confirm the obtained results directly in patients.
Collapse
Affiliation(s)
- Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Anair Graciela Lema Fernandez
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Paolo Gorello
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
8
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
9
|
Lahera A, Vela-Martín L, Fernández-Navarro P, Llamas P, López-Lorenzo JL, Cornago J, Santos J, Fernández-Piqueras J, Villa-Morales M. The JAK3 Q988P mutation reveals oncogenic potential and resistance to ruxolitinib. Mol Carcinog 2024; 63:5-10. [PMID: 37712558 DOI: 10.1002/mc.23632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) arises from the malignant transformation of T-cell progenitors at various differentiation stages. Given that patients who relapse have a dismal prognosis, there is an urgent need to identify the molecular alterations that are present in such patients and promote leukemogenesis to implement personalized therapies with higher efficacy and fewer adverse effects. In the present manuscript, we identified the JAK3Q988P mutation in a T-ALL patient who did not achieve a durable response after the conventional treatment and whose tumor cells at relapse presented constitutive activation of the JAK/STAT pathway. Although JAK3Q988P has been previously identified in T-ALL patients from different studies, the functional consequences exerted by this mutation remain unexplored. Through the combination of different hematopoietic cellular models, we functionally characterize JAK3Q988P as an oncogenic mutation that contributes to leukemogenesis. Notably, JAK3Q988P not only promotes constitutive activation of the JAK/STAT pathway in the absence of cytokines and growth factors, as is the case for other JAK3 mutations that have been functionally characterized as oncogenic, but also functions independently of JAK1 and IL2RG, resulting in high oncogenic potential as well as resistance to ruxolitinib. Our results indicate that ruxolitinib may not be efficient for future patients bearing the JAK3Q988P mutation who instead may obtain greater benefits from treatments involving other pharmacological inhibitors such as tofacitinib.
Collapse
Affiliation(s)
- Antonio Lahera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Laura Vela-Martín
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Pablo Fernández-Navarro
- Division of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
- Division of Epidemiology and Control of Chronic Diseases, Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Llamas
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José L López-Lorenzo
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Cornago
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
- Division of Genome Dynamics and Function, Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - José Fernández-Piqueras
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
- Division of Genome Dynamics and Function, Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
- Division of Genome Dynamics and Function, Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
10
|
Panelli P, De Santis E, Colucci M, Tamiro F, Sansico F, Miroballo M, Murgo E, Padovano C, Gusscott S, Ciavarella M, Chavez EA, Bianchi F, Rossi G, Carella AM, Steidl C, Weng AP, Giambra V. Noncanonical β-catenin interactions promote leukemia-initiating activity in early T-cell acute lymphoblastic leukemia. Blood 2023; 141:1597-1609. [PMID: 36315912 PMCID: PMC10651788 DOI: 10.1182/blood.2022017079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a T-cell malignancy characterized by cell subsets and enriched with leukemia-initiating cells (LICs). β-Catenin modulates LIC activity in T-ALL. However, its role in maintaining established leukemia stem cells remains largely unknown. To identify functionally relevant protein interactions of β-catenin in T-ALL, we performed coimmunoprecipitation followed by liquid chromatography-mass spectrometry. Here, we report that a noncanonical functional interaction of β-catenin with the Forkhead box O3 (FOXO3) transcription factor positively regulates LIC-related genes, including the cyclin-dependent kinase 4, which is a crucial modulator of cell cycle and tumor maintenance. We also confirm the relevance of these findings using stably integrated fluorescent reporters of β-catenin and FOXO3 activity in patient-derived xenografts, which identify minor subpopulations with enriched LIC activity. In addition, gene expression data at the single-cell level of leukemic cells of primary patients at the time of diagnosis and minimal residual disease (MRD) up to 30 days after the standard treatments reveal that the expression of β-catenin- and FOXO3-dependent genes is present in the CD82+CD117+ cell fraction, which is substantially enriched with LICs in MRD as well as in early T-cell precursor ALL. These findings highlight key functional roles for β-catenin and FOXO3 and suggest novel therapeutic strategies to eradicate aggressive cell subsets in T-ALL.
Collapse
Affiliation(s)
- Patrizio Panelli
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elisabetta De Santis
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mattia Colucci
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Tamiro
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesca Sansico
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mattia Miroballo
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuele Murgo
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Costanzo Padovano
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Sam Gusscott
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | - Michele Ciavarella
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Fabrizio Bianchi
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giovanni Rossi
- Department of Hematology and Stem Cell Transplant Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo M. Carella
- Department of Hematology and Stem Cell Transplant Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
11
|
Transcription factor NKX2-1 drives serine and glycine synthesis addiction in cancer. Br J Cancer 2023; 128:1862-1878. [PMID: 36932191 PMCID: PMC10147615 DOI: 10.1038/s41416-023-02216-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND One-third of cancers activate endogenous synthesis of serine/glycine, and can become addicted to this pathway to sustain proliferation and survival. Mechanisms driving this metabolic rewiring remain largely unknown. METHODS NKX2-1 overexpressing and NKX2-1 knockdown/knockout T-cell leukaemia and lung cancer cell line models were established to study metabolic rewiring using ChIP-qPCR, immunoblotting, mass spectrometry, and proliferation and invasion assays. Findings and therapeutic relevance were validated in mouse models and confirmed in patient datasets. RESULTS Exploring T-cell leukaemia, lung cancer and neuroendocrine prostate cancer patient datasets highlighted the transcription factor NKX2-1 as putative driver of serine/glycine metabolism. We demonstrate that transcription factor NKX2-1 binds and transcriptionally upregulates serine/glycine synthesis enzyme genes, enabling NKX2-1 expressing cells to proliferate and invade in serine/glycine-depleted conditions. NKX2-1 driven serine/glycine synthesis generates nucleotides and redox molecules, and is associated with an altered cellular lipidome and methylome. Accordingly, NKX2-1 tumour-bearing mice display enhanced tumour aggressiveness associated with systemic metabolic rewiring. Therapeutically, NKX2-1-expressing cancer cells are more sensitive to serine/glycine conversion inhibition by repurposed anti-depressant sertraline, and to etoposide chemotherapy. CONCLUSION Collectively, we identify NKX2-1 as a novel transcriptional regulator of serine/glycine synthesis addiction across cancers, revealing a therapeutic vulnerability of NKX2-1-driven cancers. Transcription factor NKX2-1 fuels cancer cell proliferation and survival by hyperactivating serine/glycine synthesis, highlighting this pathway as a novel therapeutic target in NKX2-1-positive cancers.
Collapse
|
12
|
Eadie LN, Rehn JA, Breen J, Osborn MP, Jessop S, Downes CEJ, Heatley SL, McClure BJ, Yeung DT, Revesz T, Saxon B, White DL. Case Report: Rare IKZF1 Gene Fusions Identified in Neonate with Congenital KMT2A-Rearranged Acute Lymphoblastic Leukemia. Genes (Basel) 2023; 14:genes14020264. [PMID: 36833191 PMCID: PMC9956107 DOI: 10.3390/genes14020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Chromosomal rearrangements involving the KMT2A gene occur frequently in acute lymphoblastic leukaemia (ALL). KMT2A-rearranged ALL (KMT2Ar ALL) has poor long-term survival rates and is the most common ALL subtype in infants less than 1 year of age. KMT2Ar ALL frequently occurs with additional chromosomal abnormalities including disruption of the IKZF1 gene, usually by exon deletion. Typically, KMT2Ar ALL in infants is accompanied by a limited number of cooperative le-sions. Here we report a case of aggressive infant KMT2Ar ALL harbouring additional rare IKZF1 gene fusions. Comprehensive genomic and transcriptomic analyses were performed on sequential samples. This report highlights the genomic complexity of this particular disease and describes the novel gene fusions IKZF1::TUT1 and KDM2A::IKZF1.
Collapse
Affiliation(s)
- Laura N. Eadie
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Jacqueline A. Rehn
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - James Breen
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- South Australian Genomics Centre (SAGC), Adelaide, SA 5000, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Michael P. Osborn
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australian & New Zealand Children’s Haematology/Oncology Group, Clayton, VIC 3168, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC 3121, Australia
- Department of Haematology & Oncology, Women’s & Children’s Hospital, Adelaide, SA 5000, Australia
- Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Sophie Jessop
- Australian & New Zealand Children’s Haematology/Oncology Group, Clayton, VIC 3168, Australia
- Department of Haematology & Oncology, Women’s & Children’s Hospital, Adelaide, SA 5000, Australia
| | - Charlotte E. J. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA 5000, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australian & New Zealand Children’s Haematology/Oncology Group, Clayton, VIC 3168, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC 3121, Australia
- Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Tamas Revesz
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australian & New Zealand Children’s Haematology/Oncology Group, Clayton, VIC 3168, Australia
- Department of Haematology & Oncology, Women’s & Children’s Hospital, Adelaide, SA 5000, Australia
| | - Benjamin Saxon
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Haematology & Oncology, Women’s & Children’s Hospital, Adelaide, SA 5000, Australia
- Clinical Services and Research Division, Australian Red Cross Blood Service, Adelaide, SA 5000, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australian & New Zealand Children’s Haematology/Oncology Group, Clayton, VIC 3168, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC 3121, Australia
- Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA 5000, Australia
- Australian Genomics Health Alliance, Parkville, VIC 3052, Australia
- Correspondence:
| |
Collapse
|
13
|
García‐Hernández V, Arambilet D, Guillén Y, Lobo‐Jarne T, Maqueda M, Gekas C, González J, Iglesias A, Vega‐García N, Sentís I, Trincado JL, Márquez‐López I, Heyn H, Camós M, Espinosa L, Bigas A. β-Catenin activity induces an RNA biosynthesis program promoting therapy resistance in T-cell acute lymphoblastic leukemia. EMBO Mol Med 2023; 15:e16554. [PMID: 36597789 PMCID: PMC9906382 DOI: 10.15252/emmm.202216554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Understanding the molecular mechanisms that contribute to the appearance of chemotherapy resistant cell populations is necessary to improve cancer treatment. We have now investigated the role of β-catenin/CTNNB1 in the evolution of T-cell Acute Lymphoblastic Leukemia (T-ALL) patients and its involvement in therapy resistance. We have identified a specific gene signature that is directly regulated by β-catenin, TCF/LEF factors and ZBTB33/Kaiso in T-ALL cell lines, which is highly and significantly represented in five out of six refractory patients from a cohort of 40 children with T-ALL. By subsequent refinement of this gene signature, we found that a subset of β-catenin target genes involved with RNA-processing function are sufficient to segregate T-ALL refractory patients in three independent cohorts. We demonstrate the implication of β-catenin in RNA and protein synthesis in T-ALL and provide in vitro and in vivo experimental evidence that β-catenin is crucial for the cellular response to chemotherapy, mainly in the cellular recovery phase after treatment. We propose that combination treatments involving chemotherapy plus β-catenin inhibitors will enhance chemotherapy response and prevent disease relapse in T-ALL patients.
Collapse
Affiliation(s)
- Violeta García‐Hernández
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain
| | - David Arambilet
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain
| | - Yolanda Guillén
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain
| | - Teresa Lobo‐Jarne
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain
| | - María Maqueda
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain
| | - Christos Gekas
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain
| | - Jessica González
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain
| | - Arnau Iglesias
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain
| | - Nerea Vega‐García
- Hematology LaboratoryHospital Sant Joan de Déu BarcelonaBarcelonaSpain,Developmental Tumor Biology Group, Leukemia and Other Pediatric HemopathiesInstitut de Recerca Sant Joan de Déu, CIBERERBarcelonaSpain
| | - Inés Sentís
- CNAG‐CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Juan L Trincado
- CNAG‐CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Ian Márquez‐López
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain
| | - Holger Heyn
- CNAG‐CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain,Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Mireia Camós
- Hematology LaboratoryHospital Sant Joan de Déu BarcelonaBarcelonaSpain,Developmental Tumor Biology Group, Leukemia and Other Pediatric HemopathiesInstitut de Recerca Sant Joan de Déu, CIBERERBarcelonaSpain
| | - Lluis Espinosa
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain
| | - Anna Bigas
- Program in Cancer ResearchInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONCBarcelonaSpain,Josep Carreras Leukemia Research Institute (IJC)BarcelonaSpain
| |
Collapse
|
14
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
15
|
Singh A, Mishra A. Molecular modelling study to discover novel JAK2 signaling pathway inhibitor. J Biomol Struct Dyn 2022:1-12. [PMID: 35838147 DOI: 10.1080/07391102.2022.2097314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The JAK2/STAT signaling cascades facilitates receptor signals which is responsible for cell growth, survival and homeostasis. Ligand binding to JAKs causes phosphorylation other proteins known as STATs, which translocate to the nucleus and regulate transcription of several important proteins. Growth hormone, prolactin and γ-interferon known agonists of JAK STAT receptors, signal to the nucleus by a more direct manner than the receptor tyrosine kinases. Mutations in JAKs may be responsible for immunodeficiency and myeloproliferative disorders because of its important role in cytokine signaling and making the pathway a therapeutic target for various disease. The present study screened Zinc database to find novel JAK2 inhibitors using virtual high throughput screening techniques. Selection of compound for further study was on the basis of docking score, free energy and binding pattern of the compound. Molecular simulation and MM/GBSA free energy was evaluated for the binding interactions and the stability of docked conformations. Several parameters which determine protein ligand interaction like RMSD, RMSF, Rg and binding pattern were observed. Hydrogen bonds (Glu 930, 932 and Asp 994) after 150 ns simulation were observed between identified compound INC000096136346 and it was similar to known inhibitor ruxolitinib. MM/GBSA free energy was comparable to known inhibitor ruxolitinib. ZINC000096136346 qualify Lipinski's rule of five, rule of three, WDI like rule and there is one violation in lead like rule.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
16
|
Belhocine M, Simonin M, Abad Flores JD, Cieslak A, Manosalva I, Pradel L, Smith C, Mathieu EL, Charbonnier G, Martens JHA, Stunnenberg HG, Maqbool MA, Mikulasova A, Russell LJ, Rico D, Puthier D, Ferrier P, Asnafi V, Spicuglia S. Dynamics of broad H3K4me3 domains uncover an epigenetic switch between cell identity and cancer-related genes. Genome Res 2022; 32:1328-1342. [PMID: 34162697 PMCID: PMC9341507 DOI: 10.1101/gr.266924.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/05/2021] [Indexed: 01/03/2023]
Abstract
Broad domains of H3K4 methylation have been associated with consistent expression of tissue-specific, cell identity, and tumor suppressor genes. Here, we identified broad domain-associated genes in healthy human thymic T cell populations and a collection of T cell acute lymphoblastic leukemia (T-ALL) primary samples and cell lines. We found that broad domains are highly dynamic throughout T cell differentiation, and their varying breadth allows the distinction between normal and neoplastic cells. Although broad domains preferentially associate with cell identity and tumor suppressor genes in normal thymocytes, they flag key oncogenes in T-ALL samples. Moreover, the expression of broad domain-associated genes, both coding and noncoding, is frequently deregulated in T-ALL. Using two distinct leukemic models, we showed that the ectopic expression of T-ALL oncogenic transcription factor preferentially impacts the expression of broad domain-associated genes in preleukemic cells. Finally, an H3K4me3 demethylase inhibitor differentially targets T-ALL cell lines depending on the extent and number of broad domains. Our results show that the regulation of broad H3K4me3 domains is associated with leukemogenesis, and suggest that the presence of these structures might be used for epigenetic prioritization of cancer-relevant genes, including long noncoding RNAs.
Collapse
Affiliation(s)
- Mohamed Belhocine
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
- Molecular Biology and Genetics Laboratory, Dubai, United Arab Emirates
| | - Mathieu Simonin
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - José David Abad Flores
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Iris Manosalva
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Lydie Pradel
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Charlotte Smith
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Eve-Lyne Mathieu
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Guillaume Charbonnier
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Joost H A Martens
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Muhammad Ahmad Maqbool
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Aderley Park, Macclesfield SK104TG, United Kingdom
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Lisa J Russell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Denis Puthier
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Pierre Ferrier
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13288 Marseille, France
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| |
Collapse
|
17
|
Azatyan A, Zaphiropoulos PG. Circular and Fusion RNAs in Medulloblastoma Development. Cancers (Basel) 2022; 14:cancers14133134. [PMID: 35804907 PMCID: PMC9264760 DOI: 10.3390/cancers14133134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Expression of circular RNAs is known to be deregulated in cancer. Here the most comprehensive set of differentially expressed RNA circles in medulloblastoma compared to cerebellum is provided. Additionally, fusion RNAs are also identified in both cancerous and normal cerebellar tissue. Some of the fusions detected in medulloblastoma are generated by genomic rearrangements that link different genes. However, fusion RNAs are also detected in normal cerebellum. In fact, there are cases where the same fusion RNA is also found in medulloblastoma. This observation underscores that the formation of fusion transcripts may not be limited to chromosomal events but could also result from mechanisms that act at the RNA level. These include read-through transcription of neighboring genes and intermolecular splicing of pre-mRNAs from different genes Importantly, these RNA “recombination” events occur not only in normal but also in cancerous tissue. Abstract Background. The cerebellar cancer medulloblastoma is the most common childhood cancer in the brain. Methods. RNA sequencing of 81 human biospecimens of medulloblastoma using pipelines to detect circular and fusion RNAs. Validation via PCR and Sanger sequencing. Results. 27, 56, 28 and 11 RNA circles were found to be uniquely up-regulated, while 149, 7, 20 and 15 uniquely down-regulated in the SHH, WNT, Group 3, and Group 4 medulloblastoma subtypes, respectively. Moreover, linear and circular fusion RNAs containing exons from distinct genes joined at canonical splice sites were also identified. These were generally expressed less than the circular RNAs, however the expression of both the linear and the circular fusions was comparable. Importantly, the expression of the fusions in medulloblastoma was also comparable to that of cerebellum. Conclusions. A significant number of fusions in tumor may be generated by mechanisms similar to the ones generating fusions in normal tissue. Some fusions could be rationalized by read-through transcription of two neighboring genes. However, for other fusions, e.g., a linear fusion with an exon from a downstream gene joined 5′ to 3′ with an exon from an upstream gene, more complicated splicing mechanisms, e.g., trans-splicing, have to be postulated.
Collapse
|
18
|
Santisukwongchote S, Thorner PS, Desudchit T, Techavichit P, Jittapiromsak N, Amornfa J, Shuangshoti S, Shuangshoti S, Teerapakpinyo C. Pediatric fibromyxoid tumor with PLAG1 fusion: An emerging entity with a novel intracranial location. Neuropathology 2022; 42:315-322. [PMID: 35723650 DOI: 10.1111/neup.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Translocations involving PLAG1 occur in several tumors, most commonly pleomorphic adenoma and lipoblastoma. Recently, a distinctive soft tissue tumor with a PLAG1 fusion has been reported in the pediatric age group. These are low grade tumors with a fibroblastic or mixed fibroblastic and myxoid morphology but no other lines of differentiation. They are typically immunopositive for desmin and CD34. The partner genes for these tumors have included YWHAZ, EEF1A1, ZFHX4l, CHCHD7, and PCMTD1. We report another case of this fibromyxoid tumor with a PLAG1 fusion, this time with COL3A1 as the partner gene. The fusion placed expression of a full-length PLAG1 protein under the control of the constitutively active COL3A1 promoter. Overexpression of PLAG1 was confirmed by diffusely positive immunostaining for PLAG1. The most novel aspect of this tumor is the intracranial location. Opinion has been divided over whether these tumors are a specific entity, or related to lipoblastoma, since that tumor also typically occurs in soft tissue in the pediatric age group and shows many of the same gene fusions. However, lipoblastoma has never been reported in an intracranial location and, thus, our case provides compelling evidence that this fibromyxoid tumor is indeed a distinct entity.
Collapse
Affiliation(s)
- Sakun Santisukwongchote
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Paul Scott Thorner
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Tayard Desudchit
- Integrative and Innovative Hematology/Oncology Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piti Techavichit
- Integrative and Innovative Hematology/Oncology Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nutchawan Jittapiromsak
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Jiraporn Amornfa
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Somruetai Shuangshoti
- Institute of Pathology, Dept of Medical Services, Ministry of Public Health, Bangkok, Thailand
| | - Shanop Shuangshoti
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Chulalongkorn GenePRO Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
19
|
Oncohistone interactome profiling uncovers contrasting oncogenic mechanisms and identifies potential therapeutic targets in high grade glioma. Acta Neuropathol 2022; 144:1027-1048. [PMID: 36070144 PMCID: PMC9547787 DOI: 10.1007/s00401-022-02489-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 01/26/2023]
Abstract
Histone H3 mutations at amino acids 27 (H3K27M) and 34 (H3G34R) are recurrent drivers of pediatric-type high-grade glioma (pHGG). H3K27M mutations lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, their broader oncogenic mechanisms remain unclear. We characterized the H3.1K27M, H3.3K27M and H3.3G34R interactomes, finding that H3K27M is associated with epigenetic and transcription factor changes; in contrast H3G34R removes a break on cryptic transcription, limits DNA methyltransferase access, and alters mitochondrial metabolism. All 3 mutants had altered interactions with DNA repair proteins and H3K9 methyltransferases. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. H3K9 methyltransferase inhibition was lethal to H3.1K27M, H3.3K27M and H3.3G34R pHGG cells, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it as an attractive therapeutic target.
Collapse
|
20
|
Van Thillo Q, De Bie J, Seneviratne JA, Demeyer S, Omari S, Balachandran A, Zhai V, Tam WL, Sweron B, Geerdens E, Gielen O, Provost S, Segers H, Boeckx N, Marshall GM, Cheung BB, Isobe K, Kato I, Takita J, Amos TG, Deveson IW, McCalmont H, Lock RB, Oxley EP, Garwood MM, Dickins RA, Uyttebroeck A, Carter DR, Cools J, de Bock CE. Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia. Nat Commun 2021; 12:4164. [PMID: 34230493 PMCID: PMC8260768 DOI: 10.1038/s41467-021-24442-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the β-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/β-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/β-catenin interaction.
Collapse
Affiliation(s)
- Quentin Van Thillo
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Jolien De Bie
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Human Genetics, UZ Leuven, Leuven, Belgium
| | - Janith A Seneviratne
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sofie Demeyer
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Sofia Omari
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Anushree Balachandran
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Vicki Zhai
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wai L Tam
- Technology Innovation Lab, VIB, Gent, Belgium
| | - Bram Sweron
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ellen Geerdens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Olga Gielen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sarah Provost
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| | - Glenn M Marshall
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Belamy B Cheung
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kiyotaka Isobe
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Timothy G Amos
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ethan P Oxley
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Maximilian M Garwood
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Anne Uyttebroeck
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium
| | - Daniel R Carter
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
| | - Jan Cools
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium.
| | - Charles E de Bock
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Yan Z, Fan G, Li H, Jiao Y, Fu W, Weng J, Huo R, Wang J, Xu H, Wang S, Cao Y, Zhao J. The CTSC-RAB38 Fusion Transcript Is Associated With the Risk of Hemorrhage in Brain Arteriovenous Malformations. J Neuropathol Exp Neurol 2021; 80:71-78. [PMID: 33120410 DOI: 10.1093/jnen/nlaa126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are congenital anomalies of blood vessels that cause intracranial hemorrhage in children and young adults. Chromosomal rearrangements and fusion genes play an important role in tumor pathogenesis, though the role of fusion genes in bAVM pathophysiological processes is unclear. The aim of this study was to identify fusion transcripts in bAVMs and analyze their effects. To identify fusion transcripts associated with bAVM, RNA sequencing was performed on 73 samples, including 66 bAVM and 7 normal cerebrovascular samples, followed by STAR-Fusion analysis. Reverse transcription polymerase chain reaction and Sanger sequencing were applied to verify fusion transcripts. Functional pathway analysis was performed to identify potential effects of different fusion types. A total of 21 fusion transcripts were detected. Cathepsin C (CTSC)-Ras-Related Protein Rab-38 (RAB38) was the most common fusion and was detected in 10 of 66 (15%) bAVM samples. In CTSC-RAB38 fusion-positive samples, CTSC and RAB38 expression was significantly increased and activated immune/inflammatory signaling. Clinically, CTSC-RAB38 fusion bAVM cases had a higher hemorrhage rate than non-CTSC-RAB38 bAVM cases (p < 0.05). Our study identified recurrent CTSC-RAB38 fusion transcripts in bAVMs, which may be associated with bAVM hemorrhage by promoting immune/inflammatory signaling.
Collapse
Affiliation(s)
- Zihan Yan
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Guangming Fan
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease.,Chaoyang Central Hospital, Liaoning Province, China
| | - Hao Li
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Yuming Jiao
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Weilun Fu
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Jiancong Weng
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Ran Huo
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Jie Wang
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Hongyuan Xu
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Shuo Wang
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Yong Cao
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Jizong Zhao
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,China National Clinical Research Center for Neurological Diseases.,Center of Stroke, Beijing Institute for Brain Disorders.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Lim HJ, Lee JH, Lee SY, Choi HW, Choi HJ, Kee SJ, Shin JH, Shin MG. Diagnostic Validation of a Clinical Laboratory-Oriented Targeted RNA Sequencing System for Detecting Gene Fusions in Hematologic Malignancies. J Mol Diagn 2021; 23:1015-1029. [PMID: 34082071 DOI: 10.1016/j.jmoldx.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022] Open
Abstract
Targeted RNA sequencing (RNA-seq) is a highly accurate method for sequencing transcripts of interest with a high resolution and throughput. However, RNA-seq has not been widely performed in clinical molecular laboratories because of the complexity of data processing and interpretation. We developed and validated a customized RNA-seq panel and data processing protocol for fusion detection using 4 analytical validation samples and 51 clinical samples, covering seven types of hematologic malignancies. Analytical validation showed that the results for target gene coverage and between- and within-run precision and linearity tests were reliable. Using clinical samples, RNA-seq based on filtering and prioritization strategies detected all 25 known fusions previously found by multiplex reverse transcriptase-PCR and fluorescence in situ hybridization. It also detected nine novel fusions. Known fusions detected by RNA-seq included two IGH rearrangements supported by expression analysis. Novel fusions included six that targeted just one partner gene. In addition, 18 disease- and drug resistance-associated transcript variants in ABL1, GATA2, IKZF1, JAK2, RUNX1, and WT1 were designated simultaneously. Expression analysis showed distinct clustering according to subtype and lineage. In conclusion, this study showed that our customized RNA-seq system had a reliable and stable performance for fusion detection, with enhanced diagnostic yield for hematologic malignancies in a clinical diagnostic setting.
Collapse
Affiliation(s)
- Ha Jin Lim
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Jun Hyung Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Seung Yeob Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Hyun-Woo Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Hyun-Jung Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea; Brain Korea 21 Plus Project, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
23
|
Chung CT, Antonescu CR, Dickson BC, Chami R, Marrano P, Fan R, Shago M, Hameed M, Thorner PS. Pediatric fibromyxoid soft tissue tumor with PLAG1 fusion: A novel entity? Genes Chromosomes Cancer 2021; 60:263-271. [PMID: 33300192 PMCID: PMC8358975 DOI: 10.1002/gcc.22926] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
The classification of undifferentiated soft tissue tumors continues to evolve with the expanded application of molecular analysis in clinical practice. We report three cases of a unique soft tissue tumor in young children (5 months to 2 years old) displaying a purely fibromyxoid histology, with positive staining for desmin and CD34. In two cases, RNA sequencing detected a YWHAZ-PLAG1 gene fusion, while in the third case, a previously unreported EEF1A1-PLAG1 fusion was identified. PLAG1 fusions have been reported in several pathologic entities including pleomorphic adenoma, myoepithelial tumors of skin and soft tissue, and lipoblastoma, the latter occurring preferentially in young children. In these tumors, expression of a full length PLAG1 protein comes under the control of the constitutively active promoter of the partner gene in the fusion, and the current cases conform to that model. Overexpression of PLAG1 was confirmed by diffusely positive immunostaining for PLAG1 in all three cases. Our findings raise the possibility of a novel fibromyxoid neoplasm in childhood associated with these rare PLAG1 fusion variants. The only other report of a PLAG1-YWHAZ fusion occurred in a pediatric tumor diagnosed as a "fibroblastic lipoblastoma." This finding raises the possibility of a relationship with our three cases, even though our cases lacked any fat component. Further studies with regard to a shared pathogenesis are required.
Collapse
Affiliation(s)
- Catherine T. Chung
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Rose Chami
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Paula Marrano
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada
| | - Rong Fan
- Division of Pediatric Pathology, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana
| | - Mary Shago
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul S. Thorner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Abstract
Cancer is a complex disease characterized by loss of cellular homeostasis through genetic and epigenetic alterations. Emerging evidence highlights a role for histone variants and their dedicated chaperones in cancer initiation and progression. Histone variants are involved in processes as diverse as maintenance of genome integrity, nuclear architecture and cell identity. On a molecular level, histone variants add a layer of complexity to the dynamic regulation of transcription, DNA replication and repair, and mitotic chromosome segregation. Because these functions are critical to ensure normal proliferation and maintenance of cellular fate, cancer cells are defined by their capacity to subvert them. Hijacking histone variants and their chaperones is emerging as a common means to disrupt homeostasis across a wide range of cancers, particularly solid tumours. Here we discuss histone variants and histone chaperones as tumour-promoting or tumour-suppressive players in the pathogenesis of cancer.
Collapse
Affiliation(s)
| | - Dan Filipescu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
25
|
Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. Nat Commun 2020; 11:6216. [PMID: 33277484 PMCID: PMC7718276 DOI: 10.1038/s41467-020-19972-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Histone H3 lysine 27 (H3K27M) mutations represent the canonical oncohistone, occurring frequently in midline gliomas but also identified in haematopoietic malignancies and carcinomas. H3K27M functions, at least in part, through widespread changes in H3K27 trimethylation but its role in tumour initiation remains obscure. To address this, we created a transgenic mouse expressing H3.3K27M in diverse progenitor cell populations. H3.3K27M expression drives tumorigenesis in multiple tissues, which is further enhanced by Trp53 deletion. We find that H3.3K27M epigenetically activates a transcriptome, enriched for PRC2 and SOX10 targets, that overrides developmental and tissue specificity and is conserved between H3.3K27M-mutant mouse and human tumours. A key feature of the H3K27M transcriptome is activation of a RAS/MYC axis, which we find can be targeted therapeutically in isogenic and primary DIPG cell lines with H3.3K27M mutations, providing an explanation for the common co-occurrence of alterations in these pathways in human H3.3K27M-driven cancer. Taken together, these results show how H3.3K27M-driven transcriptome remodelling promotes tumorigenesis and will be critical for targeting cancers with these mutations. Histone H3 at lysine 27 (H3K27M) is often mutated in cancer but its role in tumour initiation is unclear. Here, the authors generated a transgenic model expressing H3.3K27M from the Fabp7 gene promoter, demonstrating that H3.3K27M can initiate diverse tumorigesis on its own, acting through a RAS/MYC transcriptomic programme.
Collapse
|
26
|
Ferrand J, Rondinelli B, Polo SE. Histone Variants: Guardians of Genome Integrity. Cells 2020; 9:E2424. [PMID: 33167489 PMCID: PMC7694513 DOI: 10.3390/cells9112424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.
Collapse
Affiliation(s)
| | | | - Sophie E. Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, 75013 Paris, France; (J.F.); (B.R.)
| |
Collapse
|
27
|
Pagliaro L, Sorrentino C, Roti G. Targeting Notch Trafficking and Processing in Cancers. Cells 2020; 9:E2212. [PMID: 33003595 PMCID: PMC7600097 DOI: 10.3390/cells9102212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch family comprises a group of four ligand-dependent receptors that control evolutionarily conserved developmental and homeostatic processes and transmit signals to the microenvironment. NOTCH undergoes remodeling, maturation, and trafficking in a series of post-translational events, including glycosylation, ubiquitination, and endocytosis. The regulatory modifications occurring in the endoplasmic reticulum/Golgi precede the intramembrane γ-secretase proteolysis and the transfer of active NOTCH to the nucleus. Hence, NOTCH proteins coexist in different subcellular compartments and undergo continuous relocation. Various factors, including ion concentration, enzymatic activity, and co-regulatory elements control Notch trafficking. Interfering with these regulatory mechanisms represents an innovative therapeutic way to bar oncogenic Notch signaling. In this review, we briefly summarize the role of Notch signaling in cancer and describe the protein modifications required for NOTCH to relocate across different subcellular compartments. We focus on the functional relationship between these modifications and the corresponding therapeutic options, and our findings could support the development of trafficking modulators as a potential alternative to the well-known γ-secretase inhibitors.
Collapse
Affiliation(s)
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (C.S.)
| |
Collapse
|
28
|
Spurr LF, Alomran N, Bousounis P, Reece-Stremtan D, Prashant NM, Liu H, Słowiński P, Li M, Zhang Q, Sein J, Asher G, Crandall KA, Tsaneva-Atanasova K, Horvath A. ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data. Bioinformatics 2020; 36:1351-1359. [PMID: 31589315 PMCID: PMC7058180 DOI: 10.1093/bioinformatics/btz750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA). VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets. RESULTS We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL analyses are computationally feasible and can identify a subset of expressed eQTL loci. AVAILABILITY AND IMPLEMENTATION A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/ReQTL. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Liam F Spurr
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center
| | - Nawaf Alomran
- Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center
| | - Pavlos Bousounis
- Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center
| | - Dacian Reece-Stremtan
- Computer Applications Support Services, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - N M Prashant
- Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center
| | - Hongyu Liu
- Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center
| | - Piotr Słowiński
- Department of Mathematics & Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Muzi Li
- Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center
| | - Qianqian Zhang
- Department of Biochemistry and Molecular Medicine.,Department of Biostatistics and Bioinformatics, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Justin Sein
- Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center
| | - Gabriel Asher
- Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics & Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.,EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter EX4 4QJ, UK
| | - Anelia Horvath
- Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center.,Department of Biochemistry and Molecular Medicine.,Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
29
|
TBL1XR1-JAK2: a novel fusion in a pediatric T cell acute lymphoblastic leukemia patient with increased absolute eosinophil count. J Hematop 2020. [DOI: 10.1007/s12308-020-00413-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Wong J, Wall M, Corboy GP, Taubenheim N, Gregory GP, Opat S, Shortt J. Failure of tofacitinib to achieve an objective response in a DDX3X-MLLT10 T-lymphoblastic leukemia with activating JAK3 mutations. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004994. [PMID: 32843425 PMCID: PMC7476415 DOI: 10.1101/mcs.a004994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/05/2020] [Indexed: 02/01/2023] Open
Abstract
T-cell lymphoblastic lymphoma/T-cell acute lymphoblastic leukemia (T-LBL/T ALL) is an aggressive hematological malignancy arising from malignant transformation of T-cell progenitors with poor prognosis in adult patients. Outcomes are particularly dismal in the relapsed/refractory setting, and therapeutic options are limited in this context. Genomic profiling has shown frequent aberrations in the JAK-STAT pathway, including recurrent mutations in JAK3 (15%–20% of T-ALL cases), suggesting that JAK kinase inhibition may be a promising therapeutic approach. Activating JAK3 mutations are capable of transforming cytokine-dependent progenitor cells in vitro and causing T-ALL-like disease when expressed in hematopoietic progenitors in vivo. We describe a case of relapsed T-ALL in an adult patient, with two JAK3 activating mutations identified by whole-exome sequencing (WES), leading to hypothesis-based treatment with the JAK1 and JAK3 inhibitor, tofacitinib, following failure of salvage chemotherapy reinduction. Despite the molecularly targeted rationale, tofacitinib did not induce an objective clinical response. Our report suggests that the presence of activating JAK3 mutations does not necessarily confer sensitivity to pharmacological JAK3 inhibition.
Collapse
Affiliation(s)
- Jonathan Wong
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Meaghan Wall
- School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia.,Victorian Cancer Cytogenetics Service, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia.,St Vincent's Institute, Fitzroy, 3065, Victoria, Australia.,Monash Pathology, Monash Health, Clayton, 3168, Victoria, Australia
| | - Gregory Philip Corboy
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Nadine Taubenheim
- Monash Pathology, Monash Health, Clayton, 3168, Victoria, Australia.,Center for Cancer Research, Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia
| | - Gareth Peter Gregory
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Stephen Opat
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Jake Shortt
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| |
Collapse
|
31
|
|
32
|
IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood 2020; 135:252-260. [PMID: 31821407 DOI: 10.1182/blood.2019000813] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
Improved personalized adjustment of primary therapy to the perceived risk of relapse by using new prognostic markers for treatment stratification may be beneficial to patients with acute lymphoblastic leukemia (ALL). Here, we review the advances that have shed light on the role of IKZF1 aberration as prognostic factor in pediatric ALL and summarize emerging concepts in this field. Continued research on the interplay of disease biology with exposure and response to treatment will be key to further improve treatment strategies.
Collapse
|
33
|
Othman MAK, Đurišić M, Samardzija G, Vujić D, Lakic N, Zecevic Z, Al-Shaheri F, Aroutiounian R, Melo JB, Carreira IM, Meyer B, Liehr T. Complex karyotype with cryptic FUS gene rearrangement and deletion of NR3C1 and VPREB1 genes in childhood B-cell acute lymphoblastic leukemia: A case report. Oncol Lett 2020; 19:2957-2962. [PMID: 32218851 DOI: 10.3892/ol.2020.11387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a hematopoietic malignancy characterized by overproduction of immature B-lymphoblasts. B-ALL is the most common pediatric tumor and remains the leading cause of mortality in children and adolescents. Molecular and cytogenetic analyses of B-ALL revealed recurrent genetic and structural genomic alterations which are routinely applied for diagnosis, prognosis and choice of treatment regimen. The present case report describes a 4-year-old female diagnosed with B-ALL. GTG-banding at low resolution revealed an abnormal clone with 46,XX,?t(X;19)(q13;q13.3),der(9) besides normal cells. Molecular cytogenetics demonstrated a balanced translocation between chromosomes 16 and 19, and an unbalanced translocation involving chromosomes 5 and 9. A locus-specific probe additionally identified that the FUS gene in 16p11.2 was split and its 5' region was translocated to subband 19q13.33, whereas the 3' region of the FUS gene remained on the derivative chromosome 16. Overall, this complex karyotype included four different chromosomes and five break events. Further analyses, including array-comparative genomic hybridization, additionally revealed biallelic deletion of the tumor suppressor genes CDKN2A/B, and deletion of the NR3C1 and VPREB1 genes. The patient passed away under treatment due to sepsis.
Collapse
Affiliation(s)
- Moneeb A K Othman
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, D-07747 Jena, Germany
| | - Marina Đurišić
- Mother and Child Health Care Institute of Serbia 'Dr Vukan Cupic', 11070 Belgrade, Serbia
| | - Gordana Samardzija
- Mother and Child Health Care Institute of Serbia 'Dr Vukan Cupic', 11070 Belgrade, Serbia
| | - Dragana Vujić
- Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Nina Lakic
- Mother and Child Health Care Institute of Serbia 'Dr Vukan Cupic', 11070 Belgrade, Serbia
| | - Zeljko Zecevic
- Mother and Child Health Care Institute of Serbia 'Dr Vukan Cupic', 11070 Belgrade, Serbia
| | - Fawaz Al-Shaheri
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, D-07747 Jena, Germany
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, 0025 Yerevan, Armenia
| | - Joana B Melo
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,CIMAGO, Center for Research in The Environment, Genetics and Oncobiology, 3000-548 Coimbra, Portugal
| | - Isabel M Carreira
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,CIMAGO, Center for Research in The Environment, Genetics and Oncobiology, 3000-548 Coimbra, Portugal
| | | | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, D-07747 Jena, Germany
| |
Collapse
|
34
|
Bunda S, Heir P, Li ASC, Mamatjan Y, Zadeh G, Aldape K. c-Src Phosphorylates and Inhibits the Function of the CIC Tumor Suppressor Protein. Mol Cancer Res 2020; 18:774-786. [PMID: 32029440 DOI: 10.1158/1541-7786.mcr-18-1370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/28/2019] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Capicua (CIC) is a transcriptional repressor that counteracts activation of genes in response to receptor tyrosine kinase (RTK)/Ras/ERK signaling. Following activation of RTK, ERK enters the nucleus and serine-phosphorylates CIC, releasing it from its targets to permit gene expression. We recently showed that ERK triggers ubiquitin-mediated degradation of CIC in glioblastoma (GBM). In this study, we examined whether another important downstream effector of RTK/EGFR, the non-RTK c-Src, affects CIC repressor function in GBM. We found that c-Src binds and tyrosine-phosphorylates CIC on residue 1455 to promote nuclear export of CIC. On the other hand, CIC-mutant allele (CIC-Y1455F), that escapes c-Src-mediated tyrosine phosphorylation, remains localized to the nucleus and retains strong repressor function against CIC targets, the oncogenic transcription factors ETV1 and ETV5. Furthermore, we show that the orally available Src family kinase inhibitor, dasatinib, which prevents EGF-mediated tyrosine phosphorylation of CIC and attenuates elevated ETV1 and ETV5 levels, reduces viability of GBM cells and glioma stem cells (GSC), but not of their control cells with undetectable c-Src activity. In fact, GBM cells and GSC expressing the tyrosine-defective CIC mutant (Y1455F) lose sensitivity to dasatinib, further endorsing the effect of dasatinib on Src-mediated tyrosine phosphorylation of CIC. These findings elucidate important mechanisms of CIC regulation and provide the rationale to target c-Src alongside ERK pathway inhibitors as a way to fully restore CIC tumor suppressor function in neoplasms such as GBM. IMPLICATIONS: c-Src tyrosine-phosphorylates CIC exports to cytoplasm and inactivates its repressor function in GBM.
Collapse
Affiliation(s)
- Severa Bunda
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Pardeep Heir
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Annie Si Cong Li
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Yasin Mamatjan
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Ontario, Canada. .,Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.,Institute of Medical Science, Toronto, Ontario, Canada
| | - Kenneth Aldape
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Ontario, Canada. .,Laboratory of Pathology, NCI, Bethesda, Maryland
| |
Collapse
|
35
|
Sanachai K, Mahalapbutr P, Choowongkomon K, Poo-arporn RP, Wolschann P, Rungrotmongkol T. Insights into the Binding Recognition and Susceptibility of Tofacitinib toward Janus Kinases. ACS OMEGA 2020; 5:369-377. [PMID: 31956784 PMCID: PMC6964278 DOI: 10.1021/acsomega.9b02800] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/04/2019] [Indexed: 05/06/2023]
Abstract
Janus kinases (JAKs) are enzymes involved in signaling pathways that affect hematopoiesis and immune cell functions. JAK1, JAK2, and JAK3 play different roles in numerous diseases of the immune system and have also been considered as potential targets for cancer therapy. In the present study, the susceptibility of the oral JAK inhibitor tofacitinib against these three JAKs was elucidated using the 500-ns molecular dynamics (MD) simulations and free energy calculations based on MM-PB(GB)SA, QM/MM-GBSA (PM3 and SCC-DFTB), and SIE methods. The obtained results revealed that tofacitinib could interact with all JAKs at the ATP-binding site via electrostatic attraction, hydrogen bond formation, and in particular van der Waals interaction. The conserved glutamate and leucine residues (E957 and L959 of JAK1, E930 and L932 of JAK2, and E903 and L905 of JAK3) located in the hinge region stabilized tofacitinib binding through strongly formed hydrogen bonds. Complexation with the incoming tofacitinib led to a closed conformation of the ATP-binding site and a decreased protein fluctuation at the glycine loop of the JAK protein. The binding affinities of tofacitinib/JAKs were ranked in the order of JAK3 > JAK2 ∼ JAK1, which are in line with the reported experimental data.
Collapse
Affiliation(s)
- Kamonpan Sanachai
- Structural
and Computational Biology Research Unit, Department of
Biochemistry, Faculty of Science and Program in Bioinformatics and Computational
Biology, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Structural
and Computational Biology Research Unit, Department of
Biochemistry, Faculty of Science and Program in Bioinformatics and Computational
Biology, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Rungtiva P. Poo-arporn
- Biological
Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Peter Wolschann
- Department of Pharmaceutical Chemistry,
Faculty of Life Sciences and Institute of Theoretical
Chemistry, University of Vienna, Vienna 1090, Austria
| | - Thanyada Rungrotmongkol
- Structural
and Computational Biology Research Unit, Department of
Biochemistry, Faculty of Science and Program in Bioinformatics and Computational
Biology, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- E-mail: , . Tel: +66 2 2185426. Fax: +66 22185418
| |
Collapse
|
36
|
Kim B, Kim E, Lee ST, Cheong JW, Lyu CJ, Min YH, Choi JR. Detection of recurrent, rare, and novel gene fusions in patients with acute leukemia using next-generation sequencing approaches. Hematol Oncol 2020; 38:82-88. [PMID: 31875988 DOI: 10.1002/hon.2709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023]
Abstract
Identification of gene fusion is an essential part in the management of patients with acute leukemia, not only for diagnosis but also in predicting the treatment outcome and selecting appropriate treatment. Adopting next-generation sequencing (NGS) technology for identification of gene fusion in patients with acute leukemia can be a good alternative to conventional tests. In the present study, the NGS RNA fusion gene panel test was applied to diagnostic samples of patients with acute leukemia to identify fusion genes more efficiently. Among 134 patients with acute leukemia, 53 gene fusions were detected in 52 patients. In addition to the recurrent gene fusions specified in the WHO diagnostic criteria, 11 rare or novel gene fusions were identified. Of those, two were gene fusions associated with Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL), two were novel gene fusions, three were gene fusions with novel partner genes, and six were rare gene fusions from previous reports. We confirmed the clinical utility of the NGS test in identifying clinically significant gene fusions such as gene fusions involving KMT2A that has a large number of partners. Notably, Ph-like ALL-associated gene fusions could be easily identified despite the wide variety of genes involved. The results from the present study may contribute toward a better understanding of the genomic landscape of acute leukemia as well as patient management.
Collapse
Affiliation(s)
- Borahm Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Esl Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Chuhl Joo Lyu
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoo Hong Min
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
The effect of co-occurring lesions on leukaemogenesis and drug response in T-ALL and ETP-ALL. Br J Cancer 2019; 122:455-464. [PMID: 31792348 PMCID: PMC7028932 DOI: 10.1038/s41416-019-0647-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Despite advances in the management of acute lymphoblastic leukaemia (ALL), current regimens fail to significantly transform outcomes for patients with high-risk subtypes. Advances in genomic analyses have identified novel lesions including mutations in genes that encode chromatin modifiers and those that influence cytokine and kinase signalling, rendering many of these alterations potentially targetable by tyrosine kinase and epigenetic inhibitors currently in clinical use. Although specific genomic lesions, gene expression patterns, and immunophenotypic profiles have been associated with specific clinical outcomes in some cancers, the application of precision medicine approaches based on these data has been slow. This approach is complicated by the reality that patients often harbour multiple mutations, and in many cases, the precise functional significance and interaction of these mutations in driving leukaemia and drug responsiveness/resistance remains unknown. Given that signalling pathways driving leukaemic pathogenesis could plausibly result from the co-existence of specific lesions and the resultant perturbation of protein interactions, the use of combined therapeutics that target multiple aberrant pathways, according to an individual’s mutational profile, might improve outcomes and lower a patient’s risk of relapse. Here we outline the genomic alterations that occur in T cell ALL (T-ALL) and early T cell precursor (ETP)-ALL and review studies highlighting the possible effects of co-occurring lesions on leukaemogenesis and drug response.
Collapse
|
38
|
de Araujo ED, Orlova A, Neubauer HA, Bajusz D, Seo HS, Dhe-Paganon S, Keserű GM, Moriggl R, Gunning PT. Structural Implications of STAT3 and STAT5 SH2 Domain Mutations. Cancers (Basel) 2019; 11:E1757. [PMID: 31717342 PMCID: PMC6895964 DOI: 10.3390/cancers11111757] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Src Homology 2 (SH2) domains arose within metazoan signaling pathways and are involved in protein regulation of multiple pleiotropic cascades. In signal transducer and activator of transcription (STAT) proteins, SH2 domain interactions are critical for molecular activation and nuclear accumulation of phosphorylated STAT dimers to drive transcription. Sequencing analysis of patient samples has revealed the SH2 domain as a hotspot in the mutational landscape of STAT proteins although the functional impact for the vast majority of these mutations remains poorly characterized. Despite several well resolved structures for SH2 domain-containing proteins, structural data regarding the distinctive STAT-type SH2 domain is limited. Here, we review the unique features of STAT-type SH2 domains in the context of all currently reported STAT3 and STAT5 SH2 domain clinical mutations. The genetic volatility of specific regions in the SH2 domain can result in either activating or deactivating mutations at the same site in the domain, underscoring the delicate evolutionary balance of wild type STAT structural motifs in maintaining precise levels of cellular activity. Understanding the molecular and biophysical impact of these disease-associated mutations can uncover convergent mechanisms of action for mutations localized within the STAT SH2 domain to facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elvin D. de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; (H.-S.S.); (S.D.-P.)
- Department of Biological Chemistry, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; (H.-S.S.); (S.D.-P.)
- Department of Biological Chemistry, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Patrick T. Gunning
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
39
|
The use of PanDrugs to prioritize anticancer drug treatments in a case of T-ALL based on individual genomic data. BMC Cancer 2019; 19:1005. [PMID: 31655559 PMCID: PMC6815385 DOI: 10.1186/s12885-019-6209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Acute T-cell lymphoblastic leukaemia (T-ALL) is an aggressive disorder derived from immature thymocytes. The variability observed in clinical responses on this type of tumours to treatments, the high toxicity of current protocols and the poor prognosis of patients with relapse or refractory make it urgent to find less toxic and more effective therapies in the context of a personalized medicine of precision. METHODS Whole exome sequencing and RNAseq were performed on DNA and RNA respectively, extracted of a bone marrow sample from a patient diagnosed with tumour primary T-ALL and double negative thymocytes from thymus control samples. We used PanDrugs, a computational resource to propose pharmacological therapies based on our experimental results, including lists of variants and genes. We extend the possible therapeutic options for the patient by taking into account multiple genomic events potentially sensitive to a treatment, the context of the pathway and the pharmacological evidence already known by large-scale experiments. RESULTS As a proof-of-principle we used next-generation-sequencing technologies (Whole Exome Sequencing and RNA-Sequencing) in a case of diagnosed Pro-T acute lymphoblastic leukaemia. We identified 689 disease-causing mutations involving 308 genes, as well as multiple fusion transcript variants, alternative splicing, and 6652 genes with at least one principal isoform significantly deregulated. Only 12 genes, with 27 pathogenic gene variants, were among the most frequently mutated ones in this type of lymphoproliferative disorder. Among them, 5 variants detected in CTCF, FBXW7, JAK1, NOTCH1 and WT1 genes have not yet been reported in T-ALL pathogenesis. CONCLUSIONS Personalized genomic medicine is a therapeutic approach involving the use of an individual's information data to tailor drug therapy. Implementing bioinformatics platform PanDrugs enables us to propose a prioritized list of anticancer drugs as the best theoretical therapeutic candidates to treat this patient has been the goal of this article. Of note, most of the proposed drugs are not being yet considered in the clinical practice of this type of cancer opening up the approach of new treatment possibilities.
Collapse
|
40
|
Correia NC, Barata JT. MicroRNAs and their involvement in T-ALL: A brief overview. Adv Biol Regul 2019; 74:100650. [PMID: 31548132 PMCID: PMC6899521 DOI: 10.1016/j.jbior.2019.100650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy in which the transformed clone is arrested during T-cell development. Several genetic and epigenetic events have been implicated in this transformation. MicroRNAs (miRNAs) are small, non-coding RNAs that primarily function as endogenous translational repressors of protein-coding genes. The involvement of miRNAs in the regulation of cancer progression is well-established, namely by down-regulating the expression of key oncogenes or tumor suppressors and thereby preventing or promoting tumorigenesis, respectively. Similar to other cancers, several miRNA genes have been identified and implicated in the context of T-ALL. In this review we focused on the most studied microRNAs associated with T-ALL pathogenesis.
Collapse
Affiliation(s)
- Nádia C Correia
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
41
|
Mutant H3 histones drive human pre-leukemic hematopoietic stem cell expansion and promote leukemic aggressiveness. Nat Commun 2019; 10:2891. [PMID: 31253791 PMCID: PMC6599207 DOI: 10.1038/s41467-019-10705-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 05/23/2019] [Indexed: 01/01/2023] Open
Abstract
Our ability to manage acute myeloid leukemia (AML) is limited by our incomplete understanding of the epigenetic disruption central to leukemogenesis, including improper histone methylation. Here we examine 16 histone H3 genes in 434 primary AML samples and identify Q69H, A26P, R2Q, R8H and K27M/I mutations (1.6%), with higher incidence in secondary AML (9%). These mutations occur in pre-leukemic hematopoietic stem cells (HSCs) and exist in the major leukemic clones in patients. They increase the frequency of functional HSCs, alter differentiation, and amplify leukemic aggressiveness. These effects are dependent on the specific mutation. H3K27 mutation increases the expression of genes involved in erythrocyte and myeloid differentiation with altered H3K27 tri-methylation and K27 acetylation. The functional impact of histone mutations is independent of RUNX1 mutation, although they at times co-occur. This study establishes that H3 mutations are drivers of human pre-cancerous stem cell expansion and important early events in leukemogenesis.
Collapse
|
42
|
Active repurposing of drug candidates for melanoma based on GWAS, PheWAS and a wide range of omics data. Mol Med 2019; 25:30. [PMID: 31221082 PMCID: PMC6584997 DOI: 10.1186/s10020-019-0098-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background Drug repurposing is a swift, safe, and cheap drug discovery method. Melanoma disorders present low survival and high mortality rates and are challenging to diagnose and treat. Moreover, there is a high volume of worldwide investigations that are attempting to find melanoma-related genes of influence, which can be identified as responsive targets for reliable treatment. Method In this study, we used a wide range of data analyses to analyze over 1100 genes and proteins of influence with respect to cutaneous malignant melanoma. Our analysis included various investigational results from genome- and phenome-wide association studies (GWAS and PheWAS, respectively), biomedical, transcriptomic, and metabolomic datasets. We then researched the DrugBank for potential melanoma targets from the selected list. We excluded known melanoma targets to obtain a list of druggable proteins. We performed a precise analysis of the drugs’ pathogenesis and checked the expression profiles of the selected drugs having high associations with known anti-melanoma drugs. Result We found 35 drugs that interacted with 20 unique targets. These drugs appear to have high melanoma treatment potentials. We confirmed our results with previous studies and found supporting references for 30 of these drugs. In conclusion, this investigation can be applied to various diseases for the efficient and economical repurposing of various drug compounds. For further validation, the results may be applicable for in vivo tests and clinical trials.
Collapse
|
43
|
Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells. Nat Commun 2019; 10:2542. [PMID: 31186416 PMCID: PMC6559966 DOI: 10.1038/s41467-019-10508-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Somatic ribosomal protein mutations have recently been described in cancer, yet their impact on cellular transcription and translation remains poorly understood. Here, we integrate mRNA sequencing, ribosome footprinting, polysomal RNA sequencing and mass spectrometry datasets from a mouse lymphoid cell model to characterize the T-cell acute lymphoblastic leukemia (T-ALL) associated ribosomal RPL10 R98S mutation. Surprisingly, RPL10 R98S induces changes in protein levels primarily through transcriptional rather than translation efficiency changes. Phosphoserine phosphatase (PSPH), encoding a key serine biosynthesis enzyme, was the only gene with elevated transcription and translation leading to protein overexpression. PSPH upregulation is a general phenomenon in T-ALL patient samples, associated with elevated serine and glycine levels in xenograft mice. Reduction of PSPH expression suppresses proliferation of T-ALL cell lines and their capacity to expand in mice. We identify ribosomal mutation driven induction of serine biosynthesis and provide evidence supporting dependence of T-ALL cells on PSPH. The ribosomal protein RPL10 is frequently mutated in T-cell acute lymphoblastic leukemia (T-ALL). Here, the authors show that it promotes proliferation of T-ALL cells by upregulating the serine biosynthesis enzyme phosphoserine phosphatase which in turn modulates serine and glycine metabolism.
Collapse
|
44
|
de Araujo ED, Erdogan F, Neubauer HA, Meneksedag-Erol D, Manaswiyoungkul P, Eram MS, Seo HS, Qadree AK, Israelian J, Orlova A, Suske T, Pham HTT, Boersma A, Tangermann S, Kenner L, Rülicke T, Dong A, Ravichandran M, Brown PJ, Audette GF, Rauscher S, Dhe-Paganon S, Moriggl R, Gunning PT. Structural and functional consequences of the STAT5B N642H driver mutation. Nat Commun 2019; 10:2517. [PMID: 31175292 PMCID: PMC6555848 DOI: 10.1038/s41467-019-10422-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/10/2019] [Indexed: 11/30/2022] Open
Abstract
Hyper-activated STAT5B variants are high value oncology targets for pharmacologic intervention. STAT5BN642H, a frequently-occurring oncogenic driver mutation, promotes aggressive T-cell leukemia/lymphoma in patient carriers, although the molecular origins remain unclear. Herein, we emphasize the aggressive nature of STAT5BN642H in driving T-cell neoplasia upon hematopoietic expression in transgenic mice, revealing evidence of multiple T-cell subset organ infiltration. Notably, we demonstrate STAT5BN642H-driven transformation of γδ T-cells in in vivo syngeneic transplant models, comparable to STAT5BN642H patient γδ T-cell entities. Importantly, we present human STAT5B and STAT5BN642H crystal structures, which propose alternative mutation-mediated SH2 domain conformations. Our biophysical data suggests STAT5BN642H can adopt a hyper-activated and hyper-inactivated state with resistance to dephosphorylation. MD simulations support sustained interchain cross-domain interactions in STAT5BN642H, conferring kinetic stability to the mutant anti-parallel dimer. This study provides a molecular explanation for the STAT5BN642H activating potential, and insights into pre-clinical models for targeted intervention of hyper-activated STAT5B.
Collapse
Affiliation(s)
- Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Fettah Erdogan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
| | - Deniz Meneksedag-Erol
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Mohammad S Eram
- Dalriada Drug Discovery, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Abdul K Qadree
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
| | - Tobias Suske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Ha T T Pham
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
| | - Auke Boersma
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Manimekalai Ravichandran
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Gerald F Audette
- Department of Chemistry, York University, 327C Life Sciences Building, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7, Canada
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria.
- Medical University of Vienna, 1090, Vienna, Austria.
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
45
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
46
|
Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, Taghon T, Cools J, de Strooper B. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med 2019; 11:11/494/eaau6246. [DOI: 10.1126/scitranslmed.aau6246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Given the high frequency of activating NOTCH1 mutations in T cell acute lymphoblastic leukemia (T-ALL), inhibition of the γ-secretase complex remains an attractive target to prevent ligand-independent release of the cytoplasmic tail and oncogenic NOTCH1 signaling. However, four different γ-secretase complexes exist, and available inhibitors block all complexes equally. As a result, these cause severe “on-target” gastrointestinal tract, skin, and thymus toxicity, limiting their therapeutic application. Here, we demonstrate that genetic deletion or pharmacologic inhibition of the presenilin-1 (PSEN1) subclass of γ-secretase complexes is highly effective in decreasing leukemia while avoiding dose-limiting toxicities. Clinically, T-ALL samples were found to selectively express only PSEN1-containing γ-secretase complexes. The conditional knockout of Psen1 in developing T cells attenuated the development of a mutant NOTCH1-driven leukemia in mice in vivo but did not abrogate normal T cell development. Treatment of T-ALL cell lines with the selective PSEN1 inhibitor MRK-560 effectively decreased mutant NOTCH1 processing and led to cell cycle arrest. These observations were extended to T-ALL patient-derived xenografts in vivo, demonstrating that MRK-560 treatment decreases leukemia burden and increased overall survival without any associated gut toxicity. Therefore, PSEN1-selective compounds provide a potential therapeutic strategy for safe and effective targeting of T-ALL and possibly also for other diseases in which NOTCH signaling plays a role.
Collapse
|
47
|
Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF. Histone H3 Mutations: An Updated View of Their Role in Chromatin Deregulation and Cancer. Cancers (Basel) 2019; 11:E660. [PMID: 31086012 PMCID: PMC6562757 DOI: 10.3390/cancers11050660] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023] Open
Abstract
In this review, we describe the attributes of histone H3 mutants identified in cancer. H3 mutants were first identified in genes encoding H3.3, in pediatric high-grade glioma, and subsequently in chondrosarcomas and giant cell tumors of bone (GCTB) in adolescents. The most heavily studied are the lysine to methionine mutants K27M and K36M, which perturb the target site for specific lysine methyltransferases and dominantly perturb methylation of corresponding lysines in other histone H3 proteins. We discuss recent progress in defining the consequences of these mutations on chromatin, including a newly emerging view of the central importance of the disruption of H3K36 modification in many distinct K to M histone mutant cancers. We also review new work exploring the role of H3.3 G34 mutants identified in pediatric glioma and GCTB. G34 is not itself post-translationally modified, but G34 mutation impinges on the modification of H3K36. Here, we ask if G34R mutation generates a new site for methylation on the histone tail. Finally, we consider evidence indicating that histone mutations might be more widespread in cancer than previously thought, and if the perceived bias towards mutation of H3.3 is real or reflects the biology of tumors in which the histone mutants were first identified.
Collapse
Affiliation(s)
- Brandon R Lowe
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| | - Lily A Maxham
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| | - Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| |
Collapse
|
48
|
Levavi H, Tripodi J, Marcellino B, Mascarenhas J, Jones AV, Cross NCP, Gruenstein D, Najfeld V. A Novel t(1;9)(p36;p24.1) JAK2 Translocation and Review of the Literature. Acta Haematol 2019; 142:105-112. [PMID: 31063994 DOI: 10.1159/000498945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/10/2019] [Indexed: 11/19/2022]
Abstract
The JAK2V617F point mutation has been implicated in the pathogenesis of the vast majority of myeloproliferative neoplasms (MPNs), but translocations involving JAK2 have increasingly been identified in patients with JAK2V617F-negativeMPNs. Here, we present a case of a patient diagnosed with JAK2V617F-negativepolycythemia vera (PV) that transformed to the MPN-blast phase. Cytogenetic and FISH analysis revealed a novel translocation of t(1;9)(p36;p24.1), causing a PEX14-JAK2 gene fusion product. The t(1;9)(p36;p24.1) represents a new addition to the list of known translocations involving JAK2that have been identified in hematologic malignancies. Although the prognostic and treatment implications of JAK2 translocations in MPNs have not been elucidated, positive outcomes have been described in case reports describing the use of JAK inhibitors in these patients. Further research into the role of JAK2 translocations in the pathogenesis and outcomes of hematologic malignancies is warranted.
Collapse
Affiliation(s)
- Hannah Levavi
- Departments of Medicine and Pathology, Tumor Cytogenomics, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | | | - Bridget Marcellino
- Departments of Medicine and Pathology, Tumor Cytogenomics, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - John Mascarenhas
- Departments of Medicine and Pathology, Tumor Cytogenomics, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Amy V Jones
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nicholas C P Cross
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Diana Gruenstein
- Departments of Medicine and Pathology, Tumor Cytogenomics, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Vesna Najfeld
- Departments of Medicine and Pathology, Tumor Cytogenomics, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA,
- Tisch Cancer Institute, New York, New York, USA,
| |
Collapse
|
49
|
Detection of novel fusion-transcripts by RNA-Seq in T-cell lymphoblastic lymphoma. Sci Rep 2019; 9:5179. [PMID: 30914738 PMCID: PMC6435891 DOI: 10.1038/s41598-019-41675-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Fusions transcripts have been proven to be strong drivers for neoplasia-associated mutations, although their incidence in T-cell lymphoblastic lymphoma needs to be determined yet. Using RNA-Seq we have selected 55 fusion transcripts identified by at least two of three detection methods in the same tumour. We confirmed the existence of 24 predicted novel fusions that had not been described in cancer or normal tissues yet, indicating the accuracy of the prediction. Of note, one of them involves the proto oncogene TAL1. Other confirmed fusions could explain the overexpression of driver genes such as COMMD3-BMI1, LMO1 or JAK3. Five fusions found exclusively in tumour samples could be considered pathogenic (NFYG-TAL1, RIC3-TCRBC2, SLC35A3-HIAT1, PICALM MLLT10 and MLLT10-PICALM). However, other fusions detected simultaneously in normal and tumour samples (JAK3-INSL3, KANSL1-ARL17A/B and TFG-ADGRG7) could be germ-line fusions genes involved in tumour-maintaining tasks. Notably, some fusions were confirmed in more tumour samples than predicted, indicating that the detection methods underestimated the real number of existing fusions. Our results highlight the potential of RNA-Seq to identify new cryptic fusions, which could be drivers or tumour-maintaining passenger genes. Such novel findings shed light on the searching for new T-LBL biomarkers in these haematological disorders.
Collapse
|
50
|
Dawidowska M, Jaksik R, Drobna M, Szarzyńska-Zawadzka B, Kosmalska M, Sędek Ł, Machowska L, Lalik A, Lejman M, Ussowicz M, Kałwak K, Kowalczyk JR, Szczepański T, Witt M. Comprehensive Investigation of miRNome Identifies Novel Candidate miRNA-mRNA Interactions Implicated in T-Cell Acute Lymphoblastic Leukemia. Neoplasia 2019; 21:294-310. [PMID: 30763910 PMCID: PMC6372882 DOI: 10.1016/j.neo.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/08/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy originating from T-cell precursors. The genetic landscape of T-ALL has been largely characterized by next-generation sequencing. Yet, the transcriptome of miRNAs (miRNome) of T-ALL has been less extensively studied. Using small RNA sequencing, we characterized the miRNome of 34 pediatric T-ALL samples, including the expression of isomiRs and the identification of candidate novel miRNAs (not previously annotated in miRBase). For the first time, we show that immunophenotypic subtypes of T-ALL present different miRNA expression profiles. To extend miRNome characteristics in T-ALL (to 82 T-ALL cases), we combined our small RNA-seq results with data available in Gene Expression Omnibus. We report on miRNAs most abundantly expressed in pediatric T-ALL and miRNAs differentially expressed in T-ALL versus normal mature T-lymphocytes and thymocytes, representing candidate oncogenic and tumor suppressor miRNAs. Using eight target prediction algorithms and pathway enrichment analysis, we identified differentially expressed miRNAs and their predicted targets implicated in processes (defined in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) of potential importance in pathogenesis of T-ALL, including interleukin-6-mediated signaling, mTOR signaling, and regulation of apoptosis. We finally focused on hsa-mir-106a-363 cluster and functionally validated direct interactions of hsa-miR-20b-5p and hsa-miR-363-3p with 3' untranslated regions of their predicted targets (PTEN, SOS1, LATS2), overrepresented in regulation of apoptosis. hsa-mir-106a-363 is a paralogue of prototypic oncogenic hsa-mir-17-92 cluster with yet unestablished role in the pathogenesis of T-ALL. Our study provides a firm basis and data resource for functional analyses on the role of miRNA-mRNA interactions in T-ALL.
Collapse
Key Words
- all, acute lymphoblastic leukemia
- egil, european group for immunological classification of leukemias
- geo, gene expression omnibus
- go, gene ontology
- isomir, isoform of mirna
- kegg, kyoto encyclopedia of genes and genomes
- mirnome, transcriptome of mirnas
- mre, mirna response element
- or, odds ratio
- rt-qpcr, quantitative reverse transcription polymerase chain reaction
- small rna-seq, next-generation sequencing of small rnas
- t-all, t-cell acute lymphoblastic leukemia
- 3′utr, 3′ untranslated region
Collapse
Affiliation(s)
- Małgorzata Dawidowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Roman Jaksik
- Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
| | - Monika Drobna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Bronisława Szarzyńska-Zawadzka
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Maria Kosmalska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Ludomiła Machowska
- Clinic of Pediatric Oncology Hematology and Transplantology, Poznań University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland.
| | - Anna Lalik
- Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Children's University Hospital, Gębali 6, 20-093 Lublin, Poland.
| | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Krzysztof Kałwak
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Jerzy R Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland.
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia in Katowice, 3 Maja 13-15, 41-800 Zabrze, Poland.
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| |
Collapse
|