1
|
Mao M, Ishikawa Y, Labelle-Dumais C, Wang X, Kuo YM, Gaffney UB, Smith ME, Abdala CN, Lebedev MD, Paradee WJ, Gould DB. A multifunction murine Col4a1 allele reveals potential gene therapy parameters for Gould syndrome. J Cell Biol 2025; 224:e202409153. [PMID: 40279671 PMCID: PMC12029515 DOI: 10.1083/jcb.202409153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/22/2025] [Accepted: 03/20/2025] [Indexed: 04/27/2025] Open
Abstract
Basement membranes (BMs) are specialized extracellular matrix (ECM) structures essential for organ morphogenesis, architecture, and function. BM composition and properties vary between tissues, developmental stages, and disease states, and there is only a rudimentary understanding of BM dynamics. Here, we introduce a versatile mouse model carrying a multifunctional dual-color fluorescence tagged allele with knockout potential for the fundamental BM component type IV collagen alpha 1 (COL4A1). This allele enables the characterization of cell type- and time-specific contributions to BMs and the generation of a conditional Col4a1 null allele. We demonstrate the utility of this unique genetic resource in providing clinically relevant insights for individuals with Gould syndrome - a multisystem disorder caused by COL4A1 and COL4A2 mutations. We show active COL4A1 turnover in postnatal cerebrovascular BMs, identifying a potential interventional window for cerebrovascular manifestations associated with Gould syndrome. We also demonstrate that heterozygous Col4a1 deletion is significantly less pathogenic than dominant Col4a1 missense mutations, which has important implications for gene therapy.
Collapse
Affiliation(s)
- Mao Mao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Yoshihiro Ishikawa
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | | | - Xiaowei Wang
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Uma B. Gaffney
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Megan E. Smith
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Carlie N. Abdala
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew D. Lebedev
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | | | - Douglas B. Gould
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, and Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Pu C, Shi D, Ingrassia M, Gedeon H, Chu T, Zhang J, Wang C. Skincare Benefits of a Postbiotic Ferment Produced Through Djon Djon Mushroom Fermentation by Saccharomyces. J Cosmet Dermatol 2025; 24:e70067. [PMID: 39968713 PMCID: PMC11836922 DOI: 10.1111/jocd.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Djon Djon is a particularly special black mushroom indigenous to Haiti that has a long history in both their cuisine and in traditional medicine. Centuries of folkloric utilization of theses "medicinal" botanicals tend to indicate the presence of a potentially efficacious western medicine entity. OBJECTIVES With the advantages afforded by both traditional medicines and fermentation, we endeavored to investigate if fermentation of Djon Djon mushrooms can provide skin care benefits. METHODS In this study, active Djon Djon fermentation broth (DDF) was obtained using Saccharomyces, and anti-inflammatory efficacy was assessed in cultured systems using human keratinocytes and fibroblasts, exposed to either UVB or H2O2 respectively. In addition, RNA-Seq technology was employed to further characterize the mechanisms of DDF following ultraviolet irradiation. RESULTS Characterization of the DDF displayed a high number of polysaccharides and peptides present following fermentation, that function to scavenge intracellular ROS, decrease MDA content, while increasing the levels of CAT, COL-I, and HA in HSF induced by H2O2. In addition, levels of pro-inflammatory factors (IL-6, IL-1β, and TNF-α) were decreased in UVB irradiated HaCaT cells that had been treated with DDF. Analysis of cellular RNA indicated that DDF altered the DEGs involved in the AGE-RAGE signaling pathway suggesting that this signaling cascade is inhibited by DDF. Additionally, DDF also influenced the metabolism of arachidonic acid, histidine, and phenylalanine, which are involved in inflammatory processes. CONCLUSION DDF can alleviate oxidative stress damage caused by hydrogen peroxide and photodamage caused by UVB, and the mechanism by which DDF protects skin cells is revealed, displaying the potential benefits of fermented DjonDjon in skincare.
Collapse
Affiliation(s)
- Chunhong Pu
- Beijing Key Lab of Plant Resource Research and DevelopmentBeijing Technology and Business UniversityBeijingP. R. China
- Institute of Cosmetic Regulatory ScienceBeijing Technology and Business UniversityBeijingP. R. China
| | - Doudou Shi
- Beishang Jiamei (Beijing) Technology Co. Ltd.BeijingP. R. China
| | | | | | - Tye Chu
- Dermegen Inc.HauppaugeNew YorkUSA
| | - Jiachan Zhang
- Beijing Key Lab of Plant Resource Research and DevelopmentBeijing Technology and Business UniversityBeijingP. R. China
- Institute of Cosmetic Regulatory ScienceBeijing Technology and Business UniversityBeijingP. R. China
| | - Changtao Wang
- Beijing Key Lab of Plant Resource Research and DevelopmentBeijing Technology and Business UniversityBeijingP. R. China
- Institute of Cosmetic Regulatory ScienceBeijing Technology and Business UniversityBeijingP. R. China
| |
Collapse
|
3
|
Misof BM, Fratzl-Zelman N. Bone Quality and Mineralization and Effects of Treatment in Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:777-804. [PMID: 39231826 DOI: 10.1007/s00223-024-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia characterized by high fracture rates and broad variations in clinical manifestations ranging from mild to increasingly severe and perinatal lethal forms. The underlying mutations affect either the synthesis or processing of the type I procollagen molecule itself or proteins that are involved in the formation and mineralization of the collagen matrix. Consequently, the collagen forming cells, the osteoblasts, become broadly dysfunctional in OI. Strikingly, hypermineralized bone matrix seems to be a frequent feature in OI, despite the variability in clinical severity and mutations in the so far studied different forms of human OI. While the causes of the increased mineral content of the bone matrix are not fully understood yet, there is evidence that the descendants of the osteoblasts, the osteocytes, which play a critical role not only in bone remodeling, but also in mineralization and sensing of mechanical loads, are also highly dysregulated and might be of major importance in the pathogenesis of OI. In this review article, we firstly summarize findings of cellular abnormalities in osteoblasts and osteocytes, alterations of the organic matrix, as well as of the microstructural organization of bone. Secondly, we focus on the hypermineralization of the bone matrix in OI as observed in several different forms of human OI as well as in animal models, its measurement and potential mechanical implications and its effect on the bone mineral density measured by dual X-ray absorptiometry. Thirdly, we give an overview of established medication treatments of OI and new approaches with a focus of their known or possible effects on the bone material, particularly on bone matrix mineralization.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria.
- Vienna Bone and Growth Center, Vienna, Austria.
| |
Collapse
|
4
|
Rutten L, Macías-Sánchez E, Sommerdijk N. On the role of the glycosylation of type I collagen in bone. J Struct Biol 2024; 216:108145. [PMID: 39447940 DOI: 10.1016/j.jsb.2024.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Glycan-protein interactions play a crucial role in biology, providing additional functions capable of inducing biochemical and cellular responses. In the extracellular matrix of bone, this type of interactions is ubiquitous. During the synthesis of the collagen molecule, glycans are post-translationally added to specific lysine residues through an enzymatically catalysed hydroxylation and subsequent glycosylation. During and after fibril assembly, proteoglycans are essential for maintaining tissue structure, porosity, and integrity. Glycosaminoglycans (GAGs), the carbohydrate chains attached to interstitial proteoglycans, are known to be involved in mineralization. They can attract and retain water, which is critical for the mechanical properties of bone. In addition, like other long-lived proteins, collagen is susceptible to glycation. Prolonged exposure of the amine group to glucose eventually leads to the formation of advanced glycation end-products (AGEs). Changes in the degree of glycosylation and glycation have been identified in bone pathologies such as osteogenesis imperfecta and diabetes and appear to be associated with a reduction in bone quality. However, how these changes affect mineralization is not well understood. Based on the literature review, we hypothesize that the covalently attached carbohydrates may have a water-attracting function similar to that of GAGs, but at different lengths and timescales in the bone formation process. Glycosylation potentially increases the hydration around the collagen triple helix, leading to increased mineralization (hypermineralization) after water has been replaced by mineral. Meanwhile, glycation leads to the formation of crosslinking AGEs, which are associated with a decrease in hydration levels, reducing the mechanical properties of bone.
Collapse
Affiliation(s)
- Luco Rutten
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525 EZ Nijmegen, Netherlands; Department of Medical BioSciences, Research Institute for Medical Innovations, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, Netherlands
| | - Elena Macías-Sánchez
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525 EZ Nijmegen, Netherlands; Department of Medical BioSciences, Research Institute for Medical Innovations, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, Netherlands; Department of Stratigraphy and Palaeontolgy, University of Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain.
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525 EZ Nijmegen, Netherlands; Department of Medical BioSciences, Research Institute for Medical Innovations, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
5
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:891-914. [PMID: 39127989 PMCID: PMC11607015 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Yammine KM, Abularach SM, Xiong M, Kim SY, Bikovtseva AA, Butty VL, Schiavoni RP, Bateman JF, Lamandé SR, Shoulders MD. Human cartilage model of the precocious osteoarthritis-inducing COL2A1 p.Arg719Cys reveals pathology-driving matrix defects and a failure of the ER proteostasis network to recognize the defective procollagen-II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622468. [PMID: 39574595 PMCID: PMC11580999 DOI: 10.1101/2024.11.07.622468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Objectives Mutations in the procollagen-II gene (COL2A1) often cause chondrodysplasias, including the precocious osteoarthritis-inducing p.Arg719Cys. Understanding the molecular basis of such diseases has long been challenging, owing to a lack of models accurately reflecting disease genotypes and phenotypes. To address this challenge, we develop and characterize in vitro human cartilage derived from wild-type and disease-causing Arg719Cys COL2A1 isogenic induced pluripotent stem cell (iPSC) lines. Methods Using directed differentiation of iPSCs to chondrocytes, we generated cartilage from wild-type and Arg719Cys COL2A1 lines. We compared the resulting protein, cell, and tissue properties using immunohistochemistry, electron microscopy, SDS-PAGE, RNA-sequencing, and quantitative interactomics. Results While both wild-type and disease lines deposited a cartilage matrix, the Arg719Cys matrix was deficient. Arg719Cys collagen-II was excessively post-translationally modified and modestly intracellularly retained, leading to endoplasmic reticulum (ER) distention suggestive of an ER storage defect. Interactomic studies indicated that Arg719Cys procollagen-II was not differentially engaged by the ER proteostasis network. RNA-sequencing showed that the ER storage defect engendered by Arg719Cys procollagen-II also did not activate cellular stress responses, including the unfolded protein response. These data suggest that cells fail to properly recognize Arg719Cys-associated procollagen-II defects. Conclusions A failure to identify and rectify defective procollagen-II folding in cells expressing Arg719Cys procollagen-II leads to the deposition of a sparse and defective collagen-II matrix, culminating in pathology. Combined with the highly expandable human cartilage disease model reported here, this work provides motivation and a platform to discover therapeutic strategies targeting procollagen folding, quality control, and secretion in this collagenopathy and others.
Collapse
Affiliation(s)
- Kathryn M Yammine
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sophia Mirda Abularach
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Michael Xiong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Seo-Yeon Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Agata A Bikovtseva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Vincent L Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Richard P Schiavoni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - John F Bateman
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
7
|
Yammine KM, Mirda Abularach S, Kim SY, Bikovtseva AA, Lilianty J, Butty VL, Schiavoni RP, Bateman JF, Lamandé SR, Shoulders MD. ER procollagen storage defect without coupled unfolded protein response drives precocious arthritis. Life Sci Alliance 2024; 7:e202402842. [PMID: 38981683 PMCID: PMC11234256 DOI: 10.26508/lsa.202402842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Likely owing to the unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific ER proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the easily expandable cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.
Collapse
Affiliation(s)
- Kathryn M Yammine
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Seo-Yeon Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Agata A Bikovtseva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinia Lilianty
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Vincent L Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard P Schiavoni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John F Bateman
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Australia
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
8
|
Tsuneizumi K, Kasamatsu A, Saito T, Fukushima R, Taga Y, Mizuno K, Sunohara M, Uzawa K, Yamauchi M. Generation of bone-specific lysyl hydroxylase 2 knockout mice and their phenotypes. Biochem Biophys Rep 2024; 39:101790. [PMID: 39156722 PMCID: PMC11327825 DOI: 10.1016/j.bbrep.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of type I collagen. This modification is critical for the formation of stable hydroxylysine-aldehyde derived collagen cross-links, thus, for the stability of collagen fibrils. Though dysfunction of LH2 causes Bruck syndrome, recessive osteogenesis imperfecta with joint contracture, the molecular mechanisms by which LH2 affects bone formation are still not well understood. Since the Plod2 knockout mice are embryonically lethal, we generated bone-specific LH2 conditional knockout mice (bsLH2-cKO) using the osteocalcin-Cre/loxP system, and evaluated phenotypes of femurs. LH2 mRNA and protein levels assessed by qPCR, immunohistochemistry and Data Independent Acquisition proteomics were all markedly low in bsLH2-cKO femurs when compared to controls. Lysine hydroxylation of both carboxy- and amino-terminal telopeptides of an α1(I) chain were significantly diminished resulting in reduction of the hydroxylysine-aldehyde derived cross-links. The collagen fibrils in bsLH2-cKO appeared to be thicker, often fused and irregular when compared to controls. In addition, bone mineral density and mechanical properties of bsLH2-cKO femurs were significantly impaired. Taken together, these data demonstrate that LH2-catalyzed modification and consequent cross-linking of collagen are critical for proper bone formation and mechanical strength.
Collapse
Affiliation(s)
- Kenta Tsuneizumi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Tomoaki Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Reo Fukushima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | | | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 PMCID: PMC12015986 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
10
|
Flaxman HA, Chrysovergi MA, Han H, Kabir F, Lister RT, Chang CF, Yvon R, Black KE, Weigert A, Savai R, Egea-Zorrilla A, Pardo-Saganta A, Lagares D, Woo CM. Sanglifehrin A mitigates multiorgan fibrosis by targeting the collagen chaperone cyclophilin B. JCI Insight 2024; 9:e171162. [PMID: 38900587 PMCID: PMC11383833 DOI: 10.1172/jci.insight.171162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis have potential as antifibrotic agents. We identify the collagen chaperone cyclophilin B as a major cellular target of the natural product sanglifehrin A (SfA) using photoaffinity labeling and chemical proteomics. Mechanistically, SfA inhibits and induces the secretion of cyclophilin B from the endoplasmic reticulum (ER) and prevents TGF-β1-activated myofibroblasts from synthesizing and secreting collagen type I in vitro, without inducing ER stress or affecting collagen type I mRNA transcription, myofibroblast migration, contractility, or TGF-β1 signaling. In vivo, SfA induced cyclophilin B secretion in preclinical models of fibrosis, thereby inhibiting collagen synthesis from fibrotic fibroblasts and mitigating the development of lung and skin fibrosis in mice. Ex vivo, SfA induces cyclophilin B secretion and inhibits collagen type I secretion from fibrotic human lung fibroblasts and samples from patients with idiopathic pulmonary fibrosis (IPF). Taken together, we provide chemical, molecular, functional, and translational evidence for demonstrating direct antifibrotic activities of SfA in preclinical and human ex vivo fibrotic models. Our results identify the cellular target of SfA, the collagen chaperone cyclophilin B, as a mechanistic target for the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Hope A Flaxman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Maria-Anna Chrysovergi
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hongwei Han
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Farah Kabir
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Rachael T Lister
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chia-Fu Chang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Robert Yvon
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Katharine E Black
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Weigert
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Germany
| | - Rajkumar Savai
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Alejandro Egea-Zorrilla
- Institute for Lung Health (ILH), Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Ana Pardo-Saganta
- Institute for Lung Health (ILH), Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - David Lagares
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Joshi A, Nigam A, Narayan Mudgal L, Mondal B, Basak T. ColPTMScape: An open access knowledge base for tissue-specific collagen PTM maps. Matrix Biol Plus 2024; 22:100144. [PMID: 38469247 PMCID: PMC10926295 DOI: 10.1016/j.mbplus.2024.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Collagen is a key component of the extracellular matrix (ECM). In the remodeling of ECM, a remarkable variation in collagen post-translational modifications (PTMs) occurs. This makes collagen a potential target for understanding extracellular matrix remodeling during pathological conditions. Over the years, scientists have gathered a huge amount of data about collagen PTM during extracellular matrix remodeling. To make such information easily accessible in a consolidated space, we have developed ColPTMScape (https://colptmscape.iitmandi.ac.in/), a dedicated knowledge base for collagen PTMs. The identified site-specific PTMs, quantitated PTM sites, and PTM maps of collagen chains are deliverables to the scientific community, especially to matrix biologists. Through this knowledge base, users can easily gain information related to the difference in the collagen PTMs across different tissues in different organisms.
Collapse
Affiliation(s)
- Ashutosh Joshi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Ayush Nigam
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Lalit Narayan Mudgal
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Bhaskar Mondal
- School of Chemical Sciences, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
12
|
Ng YK, Blazev R, McNamara JW, Dutt M, Molendijk J, Porrello ER, Elliott DA, Parker BL. Affinity Purification-Mass Spectrometry and Single Fiber Physiology/Proteomics Reveals Mechanistic Insights of C18ORF25. J Proteome Res 2024; 23:1285-1297. [PMID: 38480473 DOI: 10.1021/acs.jproteome.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
C18ORF25 was recently shown to be phosphorylated at S67 by AMP-activated protein kinase (AMPK) in the skeletal muscle, following acute exercise in humans. Phosphorylation was shown to improve the ex vivo skeletal muscle contractile function in mice, but our understanding of the molecular mechanisms is incomplete. Here, we profiled the interactome of C18ORF25 in mouse myotubes using affinity purification coupled to mass spectrometry. This analysis included an investigation of AMPK-dependent and S67-dependent protein/protein interactions. Several nucleocytoplasmic and contractile-associated proteins were identified, which revealed a subset of GTPases that associate with C18ORF25 in an AMPK- and S67 phosphorylation-dependent manner. We confirmed that C18ORF25 is localized to the nucleus and the contractile apparatus in the skeletal muscle. Mice lacking C18Orf25 display defects in calcium handling specifically in fast-twitch muscle fibers. To investigate these mechanisms, we developed an integrated single fiber physiology and single fiber proteomic platform. The approach enabled a detailed assessment of various steps in the excitation-contraction pathway including SR calcium handling and force generation, followed by paired single fiber proteomic analysis. This enabled us to identify >700 protein/phenotype associations and 36 fiber-type specific differences, following loss of C18Orf25. Taken together, our data provide unique insights into the function of C18ORF25 and its role in skeletal muscle physiology.
Collapse
Affiliation(s)
- Yaan-Kit Ng
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - Ronnie Blazev
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - James W McNamara
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
- Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, 3052 VIC, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052 VIC, Australia
| | - Mriga Dutt
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - Jeffrey Molendijk
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - Enzo R Porrello
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, 3052 VIC, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052 VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, 3010 VIC, Australia
| | - David A Elliott
- Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, 3052 VIC, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052 VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, 3010 VIC, Australia
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| |
Collapse
|
13
|
Yammine KM, Abularach SM, Kim SY, Bikovtseva AA, Lilianty J, Butty VL, Schiavoni RP, Bateman JF, Lamandé SR, Shoulders MD. ER procollagen storage defect without coupled unfolded protein response drives precocious arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.19.562780. [PMID: 37905055 PMCID: PMC10614947 DOI: 10.1101/2023.10.19.562780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Owing to unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.
Collapse
|
14
|
Stauffer WT, Goodman AZ, Bobardt M, Ure DR, Foster RT, Gallay P. Mice lacking cyclophilin B, but not cyclophilin A, are protected from the development of NASH in a diet and chemical-induced model. PLoS One 2024; 19:e0298211. [PMID: 38427624 PMCID: PMC10906846 DOI: 10.1371/journal.pone.0298211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/20/2024] [Indexed: 03/03/2024] Open
Abstract
Cyclophilins are a diverse family of peptidyl-prolyl isomerases (PPIases) of importance in a variety of essential cellular functions. We previously reported that the pan-cyclophilin inhibitor drug reconfilstat (CRV431) decreased disease in mice under the western-diet and carbon tetrachloride (CCl4) non-alcoholic steatohepatitis (NASH) model. CRV431 inhibits several cyclophilin isoforms, among which cyclophilin A (CypA) and B (CypB) are the most abundant. It is not known whether simultaneous inhibition of multiple cyclophilin family members is necessary for the observed therapeutic effects or if loss-of-function of one is sufficient. Identifying the responsible isoform(s) would enable future fine-tuning of drug treatments. Features of human liver fibrosis and complete NASH can be reliably replicated in mice by administration of intraperitoneal CCl4 alone or CCl4 in conjunction with high sugar, high cholesterol western diet, respectively. Here we show that while wild-type (WT) and Ppia-/- CypA KO mice develop severe NASH disease features under these models, Ppib-/- CypB KO mice do not, as measured by analysis of picrosirius red and hematoxylin & eosin-stained liver sections and TNFα immuno-stained liver sections. Cyclophilin inhibition is a promising and novel avenue of treatment for diet-induced NASH. In this study, mice without CypB, but not mice without CypA, were significantly protected from the development of the characteristic features of NASH. These data suggest that CypB is necessary for NASH disease progression. Further investigation is necessary to determine whether the specific role of CypB in the endoplasmic reticulum secretory pathway is of significance to its effect on NASH development.
Collapse
Affiliation(s)
- Winston T. Stauffer
- Department of Immunology & Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Asha Z. Goodman
- Department of Immunology & Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Michael Bobardt
- Department of Immunology & Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Daren R. Ure
- Hepion Pharmaceuticals, Edison, New Jersey, United States of America
| | - Robert T. Foster
- Hepion Pharmaceuticals, Edison, New Jersey, United States of America
| | - Philippe Gallay
- Department of Immunology & Microbiology, Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
15
|
Piao M, Lee SH, Li Y, Choi JK, Yeo CY, Lee KY. Cyclophilin E (CypE) Functions as a Positive Regulator in Osteoblast Differentiation by Regulating the Transcriptional Activity of Runx2. Cells 2023; 12:2549. [PMID: 37947627 PMCID: PMC10648996 DOI: 10.3390/cells12212549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Cyclophilin E (CypE) belongs to the cyclophilin family and exhibits peptidyl-prolyl cis-trans isomerase (PPIase) activity. It participates in various biological processes through the regulation of peptidyl-prolyl isomerization. However, the specific role of CypE in osteoblast differentiation has not yet been elucidated. In this study, we first discovered the positive impact of CypE on osteoblast differentiation through gain or loss of function experiments. Mechanistically, CypE enhances the transcriptional activity of Runx2 through its PPIase activity. Furthermore, we identified the involvement of the Akt signaling pathway in CypE's function in osteoblast differentiation. Taken together, our findings indicate that CypE plays an important role in osteoblast differentiation as a positive regulator by increasing the transcriptional activity of Runx2.
Collapse
Affiliation(s)
- Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheong-Ju 28644, Republic of Korea;
| | - Chang-Yeol Yeo
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman’s University, Seoul 03760, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| |
Collapse
|
16
|
Kuwazuru J, Suico MA, Omachi K, Kojima H, Kamura M, Kaseda S, Kawahara T, Hitora Y, Kato H, Tsukamoto S, Wada M, Asano T, Kotani S, Nakajima M, Misumi S, Sannomiya Y, Horizono J, Koyama Y, Owaki A, Shuto T, Kai H. CyclosporinA Derivative as Therapeutic Candidate for Alport Syndrome by Inducing Mutant Type IV Collagen Secretion. KIDNEY360 2023; 4:909-917. [PMID: 37143203 PMCID: PMC10371266 DOI: 10.34067/kid.0000000000000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Key Points Screening of natural product extracts to find candidate compounds that increase mutant type IV collagen α 3,4,5 (α 345(IV)) trimer secretion in Alport syndrome (AS). Cyclosporin A (CsA) and alisporivir (ALV) increase mutant α 345(IV) trimer secretion in AS. PPIF/cyclophilin D mediates the effect of CsA and ALV on mutant trimer secretion. Background Type IV collagen α 3,4,5 (α 345(IV)) is an obligate trimer that is secreted to form a collagen network, which is the structural foundation of basement membrane. Mutation in one of the genes (COL4A3 , A4 , A5 ) encoding these proteins underlies the progressive genetic nephropathy Alport syndrome (AS) due to deficiency in trimerization and/or secretion of the α 345(IV) trimer. Thus, improving mutant α 345(IV) trimerization and secretion could be a good therapeutic approach for AS. Methods Using the nanoluciferase-based platform that we previously developed to detect α 345(IV) formation and secretion in HEK293T cells, we screened libraries of natural product extracts and compounds to find a candidate compound capable of increasing mutant α 345(IV) secretion. Results The screening of >13,000 extracts and >600 compounds revealed that cyclosporin A (CsA) increased the secretion of mutant α 345(IV)-G1244D. To elucidate the mechanism of the effect of CsA, we evaluated CsA derivatives with different ability to bind to calcineurin (Cn) and cyclophilin (Cyp). Alisporivir (ALV), which binds to Cyp but not to Cn, increased the trimer secretion of mutant α 345(IV). Knockdown studies on Cyps showed that PPIF/cyclophilin D was involved in the trimer secretion-enhancing activity of CsA and ALV. We confirmed that other α 345(IV) mutants are also responsive to CsA and ALV. Conclusions CsA was previously reported to improve proteinuria in patients with AS, but owing to its nephrotoxic effect, CsA is not recommended for treatment in patients with AS. Our data raise the possibility that ALV could be a safer option than CsA. This study provides a novel therapeutic candidate for AS with an innovative mechanism of action and reveals an aspect of the intracellular regulatory mechanism of α 345(IV) that was previously unexplored.
Collapse
Affiliation(s)
- Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruka Kojima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Teppei Kawahara
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Useful and Unique Natural Products for Drug Discovery and Development (UpRod), Program for Building Regional Innovation Ecosystems, Kumamoto University, Kumamoto, Japan
| | - Yuki Hitora
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Kato
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sachiko Tsukamoto
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mikiyo Wada
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Useful and Unique Natural Products for Drug Discovery and Development (UpRod), Program for Building Regional Innovation Ecosystems, Kumamoto University, Kumamoto, Japan
| | - Toshifumi Asano
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kotani
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shogo Misumi
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuya Sannomiya
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Horizono
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuimi Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Aimi Owaki
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
17
|
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez‐Nievas BG, Jimenez‐Sanchez M. Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ. J Neurochem 2023; 166:346-366. [PMID: 37303123 PMCID: PMC10952722 DOI: 10.1111/jnc.15875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Collapse
Affiliation(s)
| | - Alena Gorb
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Fangjia Yang
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Wendy Noble
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Angela Bachi
- IFOM ETS‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Beatriz Gomez Perez‐Nievas
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Maria Jimenez‐Sanchez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
18
|
Droździk A, Droździk M. Drug-Induced Gingival Overgrowth-Molecular Aspects of Drug Actions. Int J Mol Sci 2023; 24:5448. [PMID: 36982523 PMCID: PMC10052148 DOI: 10.3390/ijms24065448] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Drug-induced gingival overgrowth (DIGO) is one of the side effects produced by therapeutic agents, most commonly phenytoin, nifedipine and cyclosporin A. However, the precise mechanism of DIGO is not entirely understood. A literature search of the MEDLINE/PubMed databases was conducted to identify the mechanisms involved in DIGO. The available information suggests that the pathogenesis of DIGO is multifactorial, but common pathogenic sequelae of events emerge, i.e., sodium and calcium channel antagonism or disturbed intracellular handling of calcium, which finally lead to reductions in intracellular folic acid levels. Disturbed cellular functions, mainly in keratinocytes and fibroblasts, result in increased collagen and glycosaminoglycans accumulation in the extracellular matrix. Dysregulation of collagenase activity, as well as integrins and membrane receptors, are key mechanisms of reduced degradation or excessive synthesis of connective tissue components. This manuscript describes the cellular and molecular factors involved in the epithelial-mesenchymal transition and extracellular matrix remodeling triggered by agents producing DIGO.
Collapse
Affiliation(s)
- Agnieszka Droździk
- Department of Interdisciplinary Dentistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72, 70-111 Szczecin, Poland
| | - Marek Droździk
- Department of Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72, 70-111 Szczecin, Poland
| |
Collapse
|
19
|
Flaxman HA, Chrysovergi MA, Han H, Kabir F, Lister RT, Chang CF, Black KE, Lagares D, Woo CM. Sanglifehrin A mitigates multi-organ fibrosis in vivo by inducing secretion of the collagen chaperone cyclophilin B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531890. [PMID: 36945535 PMCID: PMC10028952 DOI: 10.1101/2023.03.09.531890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis by myofibroblasts have clinical potential as anti-fibrotic agents. Lysine hydroxylation by the prolyl-3-hydroxylase complex, comprised of cartilage associated protein, prolyl 3-hydroxylase 1, and cyclophilin B, is essential for collagen type I crosslinking and formation of stable fibers. Here, we identify the collagen chaperone cyclophilin B as a major cellular target of the macrocyclic natural product sanglifehrin A (SfA) using photo-affinity labeling and chemical proteomics. Our studies reveal a unique mechanism of action in which SfA binding to cyclophilin B in the endoplasmic reticulum (ER) induces the secretion of cyclophilin B to the extracellular space, preventing TGF-β1-activated myofibroblasts from synthesizing collagen type I in vitro without inhibiting collagen type I mRNA transcription or inducing ER stress. In addition, SfA prevents collagen type I secretion without affecting myofibroblast contractility or TGF-β1 signaling. In vivo, we provide chemical, molecular, functional, and translational evidence that SfA mitigates the development of lung and skin fibrosis in mouse models by inducing cyclophilin B secretion, thereby inhibiting collagen synthesis from fibrotic fibroblasts in vivo . Consistent with these findings in preclinical models, SfA reduces collagen type I secretion from fibrotic human lung fibroblasts and precision cut lung slices from patients with idiopathic pulmonary fibrosis, a fatal fibrotic lung disease with limited therapeutic options. Our results identify the primary liganded target of SfA in cells, the collagen chaperone cyclophilin B, as a new mechanistic target for the treatment of organ fibrosis.
Collapse
|
20
|
Visser DR, Loo TS, Norris GE, Parry DAD. Potential implications of the glycosylation patterns in collagen α1(I) and α2(I) chains for fibril assembly and growth. J Struct Biol 2023; 215:107938. [PMID: 36641113 DOI: 10.1016/j.jsb.2023.107938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
O-Glycosylation of hydroxylysine (Hyl) in collagen occurs at an early stage of biosynthesis before the triple-helix has formed. This simple post-translational modification (PTM) of lysine by either a galactosyl or glucosylgalactosyl moiety is highly conserved in collagens and depends on the species, type of tissue and the collagen amino acid sequence. The structural/functional reason why only specific lysines are modified is poorly understood, and has led to increased efforts to map the sites of PTMs on collagen sequences from different species and to ascertain their potential role in vivo. To investigate this, we purified collagen type I (Col1) from the skins of four animals, then used mass spectrometry and proteomic techniques to identify lysines that were oxidised, galactosylated, glucosylgalactosylated, or glycated in its mature sequence. We found 18 out of the 38 lysines in collagen type Iα1, (Col1A1) and 7 of the 30 lysines in collagen type Iα2 (Col1A2) were glycosylated. Six of these modifications had not been reported before, and included a lysine involved in crosslinking collagen molecules. A Fourier transform analysis of the positions of the glycosylated hydroxylysines showed they display a regular axial distribution with the same d-period observed in collagen fibrils. The significance of this finding in terms of the assembly of collagen molecules into fibrils and of potential restrictions on the growth of the collagen fibrils is discussed.
Collapse
Affiliation(s)
- D R Visser
- School of Natural Sciences, Massey University, New Zealand
| | - T S Loo
- School of Natural Sciences, Massey University, New Zealand
| | - G E Norris
- School of Natural Sciences, Massey University, New Zealand.
| | | |
Collapse
|
21
|
Liu J, Zeng W, Lin Q, Dai R, Lu L, Guo Z, Lian X, Pan X, Liu H, Xiu ZB. Proteomic Analyses Reveals the Mechanism of Acupotomy Intervention on the Treatment of Knee Osteoarthritis in Rabbits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5698387. [PMID: 36437834 PMCID: PMC9691303 DOI: 10.1155/2022/5698387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/17/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2023]
Abstract
Acupotomy intervention (AI) is an available treatment for knee osteoarthritis (KOA) in China, which is a common health problem over the world. However, the underlying mechanism of AI on the KOA treatment is still unknown. To further understand the mechanism of acupotomy in treating KOA, the morphological observation and TMT proteomic analyses were conducted in rabbits. By using X-ray and MRI, we found that the space of the knee joint was bigger in AI than in KOA. Moreover, the chondrocytes were neatly arranged in AI but disordered in KOA. With proteomic analyses in chondrocytes, 68 differently accumulated proteins (DAPs) were identified in AI vs. KOA and DAPs related to energy metabolism and the TCA cycle were suggested to play a central role in response to AI. Furthermore, AIFM1 was proposed to be an important regulator in controlling the energy production in mitochondrial. Besides, FN1, VIM, COL12A1, COL14A1, MYBPH, and DPYSL3 were suggested to play crucial roles in AI for the treatment of KOA. Our study was systematically elucidating the regulation mechanism of acupotomy intervention in the treatment of KOA.
Collapse
Affiliation(s)
- Jing Liu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Weiquan Zeng
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Qiaoxuan Lin
- The Third People's Hospital of Fujian Province, Fuzhou 350122, China
| | - Rongqiong Dai
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Liming Lu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zexing Guo
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Xiaowen Lian
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Xigui Pan
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Hong Liu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Zhong-Biao Xiu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of TCM, Fuzhou 350122, China
- Fujian Institute of Orthopaedics, Fuzhou, Fujian 350004, China
| |
Collapse
|
22
|
Lv F, Cai X, Ji L. An Update on Animal Models of Osteogenesis Imperfecta. Calcif Tissue Int 2022; 111:345-366. [PMID: 35767009 DOI: 10.1007/s00223-022-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous disorder characterized by bone fragility, multiple fractures, bone deformity, and short stature. In recent years, the application of next generation sequencing has triggered the discovery of many new genetic causes for OI. Until now, more than 25 genetic causes of OI and closely related disorders have been identified. However, the mechanisms of many genes on skeletal fragility in OI are not entirely clear. Animal models of OI could help to understand the cellular, signaling, and metabolic mechanisms contributing to the disease, and how targeting these pathways can provide therapeutic targets. To date, a lot of animal models, mainly mice and zebrafish, have been described with defects in 19 OI-associated genes. In this review, we summarize the known genetic causes and animal models that recapitulate OI with a main focus on engineered mouse and zebrafish models. Additionally, we briefly discuss domestic animals with naturally occurring OI phenotypes. Knowledge of the specific molecular basis of OI will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| |
Collapse
|
23
|
Lysyl hydroxylase 2 mediated collagen post-translational modifications and functional outcomes. Sci Rep 2022; 12:14256. [PMID: 35995931 PMCID: PMC9395344 DOI: 10.1038/s41598-022-18165-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Lysyl hydroxylase 2 (LH2) is a member of LH family that catalyzes the hydroxylation of lysine (Lys) residues on collagen, and this particular isozyme has been implicated in various diseases. While its function as a telopeptidyl LH is generally accepted, several fundamental questions remain unanswered: 1. Does LH2 catalyze the hydroxylation of all telopeptidyl Lys residues of collagen? 2. Is LH2 involved in the helical Lys hydroxylation? 3. What are the functional consequences when LH2 is completely absent? To answer these questions, we generated LH2-null MC3T3 cells (LH2KO), and extensively characterized the type I collagen phenotypes in comparison with controls. Cross-link analysis demonstrated that the hydroxylysine-aldehyde (Hylald)-derived cross-links were completely absent from LH2KO collagen with concomitant increases in the Lysald-derived cross-links. Mass spectrometric analysis revealed that, in LH2KO type I collagen, telopeptidyl Lys hydroxylation was completely abolished at all sites while helical Lys hydroxylation was slightly diminished in a site-specific manner. Moreover, di-glycosylated Hyl was diminished at the expense of mono-glycosylated Hyl. LH2KO collagen was highly soluble and digestible, fibril diameters were diminished, and mineralization impaired when compared to controls. Together, these data underscore the critical role of LH2-catalyzed collagen modifications in collagen stability, organization and mineralization in MC3T3 cells.
Collapse
|
24
|
Downs M, Sethi MK, Raghunathan R, Layne MD, Zaia J. Matrisome changes in Parkinson's disease. Anal Bioanal Chem 2022; 414:3005-3015. [PMID: 35112150 PMCID: PMC8944212 DOI: 10.1007/s00216-022-03929-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/23/2022]
Abstract
Extracellular matrix (ECM) proteins, collectively known as the matrisome, include collagens, glycoproteins, and proteoglycans. Alterations in the matrisome have been implicated in the neurodegenerative pathologies including Parkinson's disease (PD). In this work, we utilized our previously published PD and control proteomics data from human prefrontal cortex and focused our analysis on the matrisome. Among matrisome proteins, we observed a significant enrichment in the expression of type I collagen in PD vs. control samples. We then performed histological analysis on the same samples used for proteomics study, and examined collagen expression using picrosirius red staining. Interestingly, we observed similar trends in collagen abundance in PD vs. control as in our matrisome analysis; thus, this and other histological analyses will be useful as a complementary technique in the future to study the matrisome in PD with a larger cohort, and it may aid in choosing regions of interest for proteomic analysis. Additionally, collagen hydroxyprolination was less variable in PD compared to controls. Glycoproteomic changes in matrisome molecules were also observed in PD relative to aged individuals, especially related to type VI collagen and versican. We further examined the list of differentially expressed matrisome molecules using network topology-based analysis and found that angiogenesis indicated by alterations in decorin and several members of the collagen family was affected in PD. These findings collectively identified matrisome changes associated with PD; further studies with a larger cohort are required to validate the current results.
Collapse
Affiliation(s)
- Margaret Downs
- Department of Biochemistry, Boston University, Boston, MA, 02118, USA
| | - Manveen K Sethi
- Department of Biochemistry, Boston University, Boston, MA, 02118, USA
| | - Rekha Raghunathan
- Department of Biochemistry, Boston University, Boston, MA, 02118, USA
- Molecular and Translational Medicine Program, Boston University, Boston, MA, 02118, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University, Boston, MA, 02118, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University, Boston, MA, 02118, USA.
- Molecular and Translational Medicine Program, Boston University, Boston, MA, 02118, USA.
- Dept. of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, 670 Albany St., Rm. 509, Boston, MA, 02118, USA.
| |
Collapse
|
25
|
Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr Rev 2022; 43:61-90. [PMID: 34007986 PMCID: PMC8755987 DOI: 10.1210/endrev/bnab017] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteogenesis imperfecta (OI) is a phenotypically and genetically heterogeneous skeletal dysplasia characterized by bone fragility, growth deficiency, and skeletal deformity. Previously known to be caused by defects in type I collagen, the major protein of extracellular matrix, it is now also understood to be a collagen-related disorder caused by defects in collagen folding, posttranslational modification and processing, bone mineralization, and osteoblast differentiation, with inheritance of OI types spanning autosomal dominant and recessive as well as X-linked recessive. This review provides the latest updates on OI, encompassing both classical OI and rare forms, their mechanism, and the signaling pathways involved in their pathophysiology. There is a special emphasis on mutations in type I procollagen C-propeptide structure and processing, the later causing OI with strikingly high bone mass. Types V and VI OI, while notably different, are shown to be interrelated by the interferon-induced transmembrane protein 5 p.S40L mutation that reveals the connection between the bone-restricted interferon-induced transmembrane protein-like protein and pigment epithelium-derived factor pathways. The function of regulated intramembrane proteolysis has been extended beyond cholesterol metabolism to bone formation by defects in regulated membrane proteolysis components site-2 protease and old astrocyte specifically induced-substance. Several recently proposed candidate genes for new types of OI are also presented. Discoveries of new OI genes add complexity to already-challenging OI management; current and potential approaches are summarized.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Bone morphogenetic protein 1.3 inhibition decreases scar formation and supports cardiomyocyte survival after myocardial infarction. Nat Commun 2022; 13:81. [PMID: 35013172 PMCID: PMC8748453 DOI: 10.1038/s41467-021-27622-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the high prevalence of ischemic heart diseases worldwide, no antibody-based treatment currently exists. Starting from the evidence that a specific isoform of the Bone Morphogenetic Protein 1 (BMP1.3) is particularly elevated in both patients and animal models of myocardial infarction, here we assess whether its inhibition by a specific monoclonal antibody reduces cardiac fibrosis. We find that this treatment reduces collagen deposition and cross-linking, paralleled by enhanced cardiomyocyte survival, both in vivo and in primary cultures of cardiac cells. Mechanistically, we show that the anti-BMP1.3 monoclonal antibody inhibits Transforming Growth Factor β pathway, thus reducing myofibroblast activation and inducing cardioprotection through BMP5. Collectively, these data support the therapeutic use of anti-BMP1.3 antibodies to prevent cardiomyocyte apoptosis, reduce collagen deposition and preserve cardiac function after ischemia. Here the authors show that a monoclonal antibody against a soluble isoform of Bone Morphogenetic Protein 1 prevents cardiac cell death, reducing fibrosis and preserving cardiac function after myocardial ischemia.
Collapse
|
27
|
Shi H, Zhao L, Zhai C, Yeo J. Specific osteogenesis imperfecta-related Gly substitutions in type I collagen induce distinct structural, mechanical, and dynamic characteristics. Chem Commun (Camb) 2021; 57:12183-12186. [PMID: 34730136 DOI: 10.1039/d1cc05277b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stiffnesses, β-structures, hydrogen bonds, and vibrational modes of wild-type collagen triple helices are compared with osteogenesis imperfecta-related mutants using integrative structural and dynamic analysis via molecular dynamics simulations and Markov state models. Differences in these characteristics are strongly related to the unwound structural states in the mutated regions that are specific to each mutation.
Collapse
Affiliation(s)
- Haoyuan Shi
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Liming Zhao
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
28
|
Zhu W, Yan K, Chen X, Zhao W, Wu Y, Tang H, Chen M, Wu J, Wang P, Zhang R, Shen Y, Zhang D. A Founder Pathogenic Variant of PPIB Unique to Chinese Population Causes Osteogenesis Imperfecta IX. Front Genet 2021; 12:717294. [PMID: 34659339 PMCID: PMC8511635 DOI: 10.3389/fgene.2021.717294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility. PPIB pathogenic variants cause a perinatal lethal form of OI type IX. A limited number of pathogenic variants have been reported so far worldwide. Methods: We identified a rare pedigree whose phenotype was highly consistent with OI-IX. Exome sequencing was performed to uncover the causal variants. The variant pathogenicity was classified following the ACMG/AMP guidelines. The founder effect and the age of the variant were assessed. Results: We identified a homozygous missense variant c.509G > A/p.G170D in PPIB in an affected fetus. This variant is a Chinese-specific allele and can now be classified as pathogenic. We estimated the allele frequency (AF) of this variant to be 0.0000427 in a Chinese cohort involving 128,781 individuals. All patients and carriers shared a common haplotype, indicative of a founder effect. The estimated age of variant was 65,160 years. We further identified pathogenic variants of PPIB in gnomAD and ClinVar databases, the conserved estimation of OI type IX incidence to be 1/1,000,000 in Chinese population. Conclusion: We reported a founder pathogenic variant in PPIB specific to the Chinese population. We further provided our initial estimation of OI-IX disease incidence in China.
Collapse
Affiliation(s)
- Wenting Zhu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Yan
- Department of Genetics and Reproduction, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xijing Chen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhao
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Wu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanna Tang
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan
| | - Jian Wu
- MyGenostics Inc., Beijing, China
| | | | - Runju Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiping Shen
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Division of Genetics and Genomics, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Dan Zhang
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, China
| |
Collapse
|
29
|
Collagen molecular phenotypic switch between non-neoplastic and neoplastic canine mammary tissues. Sci Rep 2021; 11:8659. [PMID: 33883562 PMCID: PMC8060395 DOI: 10.1038/s41598-021-87380-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 01/24/2023] Open
Abstract
In spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.
Collapse
|
30
|
Abstract
Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.
Collapse
Affiliation(s)
- Shinya Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,JT Biohistory Research Hall, Osaka, 569-1125, Japan
| |
Collapse
|
31
|
Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. Biochem Soc Trans 2021; 49:855-866. [PMID: 33704379 DOI: 10.1042/bst20200767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.
Collapse
|
32
|
Ishikawa Y, Taga Y, Zientek K, Mizuno N, Salo AM, Semenova O, Tufa SF, Keene DR, Holden P, Mizuno K, Gould DB, Myllyharju J, Bächinger HP. Type I and type V procollagen triple helix uses different subsets of the molecular ensemble for lysine posttranslational modifications in the rER. J Biol Chem 2021; 296:100453. [PMID: 33631195 PMCID: PMC7988497 DOI: 10.1016/j.jbc.2021.100453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA; Research Department, Shriners Hospital for Children, Portland, Oregon, USA; Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Keith Zientek
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Nobuyo Mizuno
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Olesya Semenova
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Sara F Tufa
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Paul Holden
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | | | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA; Department of Anatomy, University of California, San Francisco, School of Medicine, San Francisco, California USA
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
33
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
34
|
Salo AM, Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol 2020; 30:38-49. [PMID: 32969070 DOI: 10.1111/exd.14197] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Collagens are the most abundant proteins in the extracellular matrix. They provide a framework to build organs and tissues and give structural support to make them resistant to mechanical load and forces. Several intra- and extracellular modifications are needed to make functional collagen molecules, intracellular post-translational modifications of proline and lysine residues having key roles in this. In this article, we provide a review on the enzymes responsible for the proline and lysine modifications, that is collagen prolyl 4-hydroxylases, 3-hydroxylases and lysyl hydroxylases, and discuss their biological functions and involvement in diseases.
Collapse
Affiliation(s)
- Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
35
|
Tang M, Wang X, Gandhi NS, Foley BL, Burrage K, Woods RJ, Gu Y. Effect of hydroxylysine-O-glycosylation on the structure of type I collagen molecule: A computational study. Glycobiology 2020; 30:830-843. [PMID: 32188979 PMCID: PMC7526737 DOI: 10.1093/glycob/cwaa026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
Collagen undergoes many types of post-translational modifications (PTMs), including intracellular modifications and extracellular modifications. Among these PTMs, glycosylation of hydroxylysine (Hyl) is the most complicated. Experimental studies demonstrated that this PTM ceases once the collagen triple helix is formed and that Hyl-O-glycosylation modulates collagen fibrillogenesis. However, the underlying atomic-level mechanisms of these phenomena remain unclear. In this study, we first adapted the force field parameters for O-linkages between Hyl and carbohydrates and then investigated the influence of Hyl-O-glycosylation on the structure of type I collagen molecule, by performing comprehensive molecular dynamic simulations in explicit solvent of collagen molecule segment with and without the glycosylation of Hyl. Data analysis demonstrated that (i) collagen triple helices remain in a triple-helical structure upon glycosylation of Hyl; (ii) glycosylation of Hyl modulates the peptide backbone conformation and their solvation environment in the vicinity and (iii) the attached sugars are arranged such that their hydrophilic faces are well exposed to the solvent, while their hydrophobic faces point towards the hydrophobic portions of collagen. The adapted force field parameters for O-linkages between Hyl and carbohydrates will aid future computational studies on proteins with Hyl-O-glycosylation. In addition, this work, for the first time, presents the detailed effect of Hyl-O-glycosylation on the structure of human type I collagen at the atomic level, which may provide insights into the design and manufacture of collagenous biomaterials and the development of biomedical therapies for collagen-related diseases.
Collapse
Affiliation(s)
- Ming Tang
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4001 Australia
| | - Xiaocong Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Neha S Gandhi
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia
| | | | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane 4001, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - YuanTong Gu
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4001 Australia
| |
Collapse
|
36
|
Yamaguchi H, Terajima M, Kitami M, Wang J, He L, Saeki M, Yamauchi M, Komatsu Y. IFT20 is critical for collagen biosynthesis in craniofacial bone formation. Biochem Biophys Res Commun 2020; 533:739-744. [PMID: 32988591 DOI: 10.1016/j.bbrc.2020.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Intraflagellar transport (IFT) is essential for assembling primary cilia required for bone formation. Disruption of IFT frequently leads to bone defects in humans. While it has been well studied about the function of IFT in osteogenic cell proliferation and differentiation, little is known about its role in collagen biosynthesis during bone formation. Here we show that IFT20, the smallest IFT protein in the IFT-B complex, is important for collagen biosynthesis in mice. Deletion of Ift20 in craniofacial osteoblasts displayed bone defects in the face. While collagen protein levels are unaffected by loss of Ift20, collagen cross-linking was significantly altered. In both Ift20:Wnt1-Cre and Ift20:Ocn-Cre mice the bones exhibit increased hydroxylysine-aldehyde deived cross-linking, and decreased lysine-aldehyde derived cross-linking. To obtain insight into the molecular mechanisms, we examined the expression levels of telopeptidyl lysyl hydroxylase 2 (LH2), and associated chaperone complexes. The results demonstrated that, while LH2 levels were unaffected by loss of Ift20, its chaperone, FKBP65, was significantly increased in Ift20:Wnt1-Cre and Ift20:Ocn-Cre mouse calvaria as well as femurs. These results suggest that IFT20 plays a pivotal role in collagen biosynthesis by regulating, in part, telopeptidyl lysine hydroxylation and cross-linking in bone. To the best of our knowledge, this is the first to demonstrate that the IFT components control collagen post-translational modifications. This provides a novel insight into the craniofacial bone defects associated with craniofacial skeletal ciliopathies.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Megumi Kitami
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan; Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Jianbo Wang
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Li He
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA; Graduate Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Kamiya N, Atsawasuwan P, Joiner DM, Waldorff EI, Goldstein S, Yamauchi M, Mishina Y. Controversy of physiological vs. pharmacological effects of BMP signaling: Constitutive activation of BMP type IA receptor-dependent signaling in osteoblast lineage enhances bone formation and resorption, not affecting net bone mass. Bone 2020; 138:115513. [PMID: 32603910 PMCID: PMC7423725 DOI: 10.1016/j.bone.2020.115513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic proteins (BMPs) were first described over 50 years ago as potent inducers of ectopic bone formation when administrated subcutaneously. Preclinical studies have extensively examined the osteoinductive properties of BMPs in vitro and new bone formation in vivo. BMPs (BMP-2, BMP-7) have been used in orthopedics over 15 years. While osteogenic function of BMPs has been widely accepted, our previous studies demonstrated that loss-of-function of BMP receptor type IA (BMPR1A), a potent receptor for BMP-2, increased net bone mass by significantly inhibiting bone resorption in mice, indicating a positive role of BMP signaling in bone resorption. The physiological role of BMPs (i.e. osteogenic vs. osteoclastogenic) is still largely unknown. The purpose of this study was to investigate the physiological role of BMP signaling in endogenous long bones during adult stages. For this purpose, we conditionally and constitutively activated the Smad-dependent canonical BMP signaling thorough BMPR1A in osteoblast lineage cells using the mutant mice (Col1CreER™:caBmpr1a). Because trabecular bones were largely increased in the loss-of-function mouse study for BMPR1A, we hypothesized that the augmented BMP signaling would affect endogenous trabecular bones. In the mutant bones, the Smad phosphorylation was enhanced within physiological level three-fold while the resulting gross morphology, bodyweights, bone mass/shape/length, serum calcium/phosphorus levels, collagen cross-link patterns, and healing capability were all unchanged. Interestingly, we found; 1) increased expressions of both bone formation and resorption markers in femoral bones, 2) increased osteoblast and osteoclast numbers together with dynamic bone formation parameters by trabecular bone histomorphometry, 3) modest bone architectural phenotype with reduced bone quality (i.e. reduced trabecular bone connectivity, larger diametric size but reduced cortical bone thickness, and reduced bone mechanical strength), and 4) increased expression of SOST, a downstream target of the Smad-dependent BMPR1A signaling, in the mutant bones. This study is clinically insightful because gain-of-function of BMP signaling within a physiological window does not increase bone mass while it alters molecular and cellular aspects of osteoblast and osteoclast functions as predicted. These findings help explain the high-doses of BMPs (i.e. pharmacological level) in clinical settings required to substantially induce a bone formation, concurrent with potential unexpected side effects (i.e. bone resorption, inflammation) presumably due to a broader population of cell-types exposed to the high-dose BMPs rather than osteoblastic lineage cells.
Collapse
Affiliation(s)
- Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; Faculty of Budo and Sport Studies, Tenri University, Nara 6320071, Japan; Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA.
| | - Phimon Atsawasuwan
- School of Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA; College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Danese M Joiner
- Department of Orthopaedic Surgery, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Erik I Waldorff
- Department of Orthopaedic Surgery, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Steve Goldstein
- Department of Orthopaedic Surgery, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
38
|
Etich J, Leßmeier L, Rehberg M, Sill H, Zaucke F, Netzer C, Semler O. Osteogenesis imperfecta-pathophysiology and therapeutic options. Mol Cell Pediatr 2020; 7:9. [PMID: 32797291 PMCID: PMC7427672 DOI: 10.1186/s40348-020-00101-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a rare congenital disease with a wide spectrum of severity characterized by skeletal deformity and increased bone fragility as well as additional, variable extraskeletal symptoms. Here, we present an overview of the genetic heterogeneity and pathophysiological background of OI as well as OI-related bone fragility disorders and highlight current therapeutic options. The most common form of OI is caused by mutations in the two collagen type I genes. Stop mutations usually lead to reduced collagen amount resulting in a mild phenotype, while missense mutations mainly provoke structural alterations in the collagen protein and entail a more severe phenotype. Numerous other causal genes have been identified during the last decade that are involved in collagen biosynthesis, modification and secretion, the differentiation and function of osteoblasts, and the maintenance of bone homeostasis. Management of patients with OI involves medical treatment by bisphosphonates as the most promising therapy to inhibit bone resorption and thereby facilitate bone formation. Surgical treatment ensures pain reduction and healing without an increase of deformities. Timely remobilization and regular strengthening of the muscles by physiotherapy are crucial to improve mobility, prevent muscle wasting and avoid bone resorption caused by immobilization. Identification of the pathomechanism for SERPINF1 mutations led to the development of a tailored mechanism-based therapy using denosumab, and unraveling further pathomechanisms will likely open new avenues for innovative treatment approaches.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, Germany
| | - Lennart Leßmeier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Human Genetics, Cologne, Germany
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Helge Sill
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, Germany
| | - Christian Netzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Human Genetics, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Center for rare diseases, University of Cologne, Cologne, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, Cologne, Germany. .,Faculty of Medicine and University Hospital Cologne, Center for rare diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
39
|
Varga P, Willie BM, Stephan C, Kozloff KM, Zysset PK. Finite element analysis of bone strength in osteogenesis imperfecta. Bone 2020; 133:115250. [PMID: 31981754 PMCID: PMC7383936 DOI: 10.1016/j.bone.2020.115250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
As a dedicated experimentalist, John Currey praised the high potential of finite element (FE) analysis but also recognized its critical limitations. The application of the FE methodology to bone tissue is reviewed in the light of his enthusiastic and colorful statements. In the past decades, FE analysis contributed substantially to the understanding of structure-function properties in the hierarchical organization of bone and to the simulation of bone adaptation. The systematic experimental validation of FE analysis of bone strength in anatomical locations at risk of fracture led to its application in clinical studies to evaluate efficacy of antiresorptive or anabolic treatment of bone fragility. Beyond the successful analyses of healthy or osteoporotic bone, FE analysis becomes increasingly involved in the investigation of other fragility-related bone diseases. The case of osteogenesis imperfecta (OI) is exposed, the multiscale alterations of the bone tissue and the effect of treatment summarized. A few FE analyses attempting to answer open questions in OI are then reported. An original study is finally presented that explored the structural properties of the Brtl/+ murine model of OI type IV subjected to sclerostin neutralizing antibody treatment using microFE analysis. The use of identical material properties in the four-point bending FE simulations of the femora reproduced not only the experimental values but also the statistical comparisons examining the effect of disease and treatment. Further efforts are needed to build upon the extraordinary legacy of John Currey and clarify the impact of different bone diseases on the hierarchical mechanical properties of bone.
Collapse
Affiliation(s)
- Peter Varga
- AO Research Institute Davos, Davos, Switzerland.
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Chris Stephan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Philippe K Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Khong ML, Li L, Solesio ME, Pavlov EV, Tanner JA. Inorganic polyphosphate controls cyclophilin B-mediated collagen folding in osteoblast-like cells. FEBS J 2020; 287:4500-4524. [PMID: 32056376 DOI: 10.1111/febs.15249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/28/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022]
Abstract
Evidence is emerging that inorganic polyphosphate (polyP) is a fundamental molecule involved in a wide range of biological processes. In higher eukaryotes, polyP is abundant in osteoblasts but questions remain as to its functions. Here, we find that polyP is particularly enriched in endoplasmic reticulum (ER) where it colocalizes with cyclophilin B (CypB) using osteoblastic SaOS-2 model cell line. PolyP binds directly and specifically to CypB, inhibiting its peptidyl-prolyl cis-trans isomerase activity which is critical for collagen folding. PolyP sequestration by spermine and ER-specific polyP reduction by polyphosphatase expression in cells reduced collagen misfolding and confirmed that endogenous polyP acts as a molecular control of CypB-mediated collagen folding. We propose that polyP is a previously unrecognized critical regulator of protein homeostasis in ER.
Collapse
Affiliation(s)
- Mei Li Khong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Lina Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Maria E Solesio
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, NY, USA
| | - Evgeny V Pavlov
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, NY, USA
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| |
Collapse
|
41
|
Cabral WA, Fratzl-Zelman N, Weis M, Perosky JE, Alimasa A, Harris R, Kang H, Makareeva E, Barnes AM, Roschger P, Leikin S, Klaushofer K, Forlino A, Backlund PS, Eyre DR, Kozloff KM, Marini JC. Substitution of murine type I collagen A1 3-hydroxylation site alters matrix structure but does not recapitulate osteogenesis imperfecta bone dysplasia. Matrix Biol 2020; 90:20-39. [PMID: 32112888 DOI: 10.1016/j.matbio.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Null mutations in CRTAP or P3H1, encoding cartilage-associated protein and prolyl 3-hydroxylase 1, cause the severe bone dysplasias, types VII and VIII osteogenesis imperfecta. Lack of either protein prevents formation of the ER prolyl 3-hydroxylation complex, which catalyzes 3Hyp modification of types I and II collagen and also acts as a collagen chaperone. To clarify the role of the A1 3Hyp substrate site in recessive bone dysplasia, we generated knock-in mice with an α1(I)P986A substitution that cannot be 3-hydroxylated. Mutant mice have normal survival, growth, femoral breaking strength and mean bone mineralization. However, the bone collagen HP/LP crosslink ratio is nearly doubled in mutant mice, while collagen fibril diameter and bone yield energy are decreased. Thus, 3-hydroxylation of the A1 site α1(I)P986 affects collagen crosslinking and structural organization, but its absence does not directly cause recessive bone dysplasia. Our study suggests that the functions of the modification complex as a collagen chaperone are thus distinct from its role as prolyl 3-hydroxylase.
Collapse
Affiliation(s)
- Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - MaryAnn Weis
- Orthopaedic Research Laboratories, University of Washington, Seattle, WA, USA
| | - Joseph E Perosky
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Adrienne Alimasa
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Harris
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Elena Makareeva
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, USA
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Sergey Leikin
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, USA
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Peter S Backlund
- Biomedical Mass Spectrometry Facility, NICHD, NIH, Bethesda, MD, USA
| | - David R Eyre
- Orthopaedic Research Laboratories, University of Washington, Seattle, WA, USA
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA.
| |
Collapse
|
42
|
Creecy A, Damrath JG, Wallace JM. Control of Bone Matrix Properties by Osteocytes. Front Endocrinol (Lausanne) 2020; 11:578477. [PMID: 33537002 PMCID: PMC7848033 DOI: 10.3389/fendo.2020.578477] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Osteocytes make up 90-95% of the cellular content of bone and form a rich dendritic network with a vastly greater surface area than either osteoblasts or osteoclasts. Osteocytes are well positioned to play a role in bone homeostasis by interacting directly with the matrix; however, the ability for these cells to modify bone matrix remains incompletely understood. With techniques for examining the nano- and microstructure of bone matrix components including hydroxyapatite and type I collagen becoming more widespread, there is great potential to uncover novel roles for the osteocyte in maintaining bone quality. In this review, we begin with an overview of osteocyte biology and the lacunar-canalicular system. Next, we describe recent findings from in vitro models of osteocytes, focusing on the transitions in cellular phenotype as they mature. Finally, we describe historical and current research on matrix alteration by osteocytes in vivo, focusing on the exciting potential for osteocytes to directly form, degrade, and modify the mineral and collagen in their surrounding matrix.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, United States
| | - John G. Damrath
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, United States
- *Correspondence: Joseph M. Wallace,
| |
Collapse
|
43
|
Ure DR, Trepanier DJ, Mayo PR, Foster RT. Cyclophilin inhibition as a potential treatment for nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2019; 29:163-178. [PMID: 31868526 DOI: 10.1080/13543784.2020.1703948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daren R. Ure
- Hepion Pharmaceuticals Inc, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
44
|
Terajima M, Taga Y, Sricholpech M, Kayashima Y, Sumida N, Maeda N, Hattori S, Yamauchi M. Role of Glycosyltransferase 25 Domain 1 in Type I Collagen Glycosylation and Molecular Phenotypes. Biochemistry 2019; 58:5040-5051. [PMID: 31726007 DOI: 10.1021/acs.biochem.8b00984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycosylation in type I collagen occurs as O-linked galactosyl- (G-) lesser and glucosylgalactosyl-hydroxylysine (GG-Hyl); however, its biological significance is still not well understood. To investigate the function of this modification in bone, we have generated preosteoblast MC3T3-E1 (MC)-derived clones, short hairpin (Sh) clones, in which Glt25d1 gene expression was stably suppressed. In Sh clones, the GLT25D1 protein levels were markedly diminished in comparison to controls (MC and those transfected with the empty vector). In Sh collagen, levels of both G- and GG-Hyl were significantly diminished with a concomitant increase in the level of free-Hyl. In addition, the level of immature divalent cross-links significantly diminished while the level of the mature trivalent cross-link increased. As determined by mass spectrometric analysis, seven glycosylation sites were identified in type I collagen and the most predominant site was at the helical cross-linking site, α1-87. At all of the glycosylation sites, the relative levels of G- and GG-Hyl were markedly diminished, i.e., by ∼50-75%, in Sh collagen, and at five of these sites, the level of Lys hydroxylation was significantly increased. The collagen fibrils in Sh clones were larger, and mineralization was impaired. These results indicate that GLT25D1 catalyzes galactosylation of Hyl throughout the type I collagen molecule and that this modification may regulate maturation of collagen cross-linking, fibrillogenesis, and mineralization.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Yuki Taga
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017 , Japan
| | - Marnisa Sricholpech
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry , Srinakharinwirot University , Bangkok 10110 , Thailand
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017 , Japan
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
45
|
He L, Ye X, Gao M, Yang J, Ma J, Xiao F, Wei H. Down-regulation of GLT25D1 inhibited collagen secretion and involved in liver fibrogenesis. Gene 2019; 729:144233. [PMID: 31759980 DOI: 10.1016/j.gene.2019.144233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 07/28/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023]
Abstract
Collagen β (1-O) galactosyltransferase 1 (GLT25D1) has been reported to transfer galactose to hydroxylysine residues via β (1-O) linkages in collagen. However, the role of Glt25d1 in liver fibrogenesis is still unknow. Recently, we generated a Glt25d1 knockout mouse to elucidate the role of Glt25d1 in vivo. However, we found that complete deletion of the Glt25d1 gene resulted in embryonic lethality at E11.5. Histopathological analysis revealed that dysplasia in Glt25d1-/- labyrinth with defects of the vascular network. Immunohistochemical showed that the decrease in proliferation of Glt25d1-/- liver and the developing central nervous system (CNS). The role of Glt25d1 in liver fibrogenesis was explored by Glt25d1+/- mice. Glt25d1+/- mice and wild-type (WT) mice were injected intraperitoneally with the same dose of CCl4. The higher level of serum alanine aminotransferase was observed in Glt25d1+/- mice. Reverse transcription-quantitative polymerase chainreaction demonstrated that the mRNA expression levels of the inflammatory cytokines such as, Tnf-α, Cxcl-1 and Mcp-1, showed a significantly increase in CCl4-treated Glt25d1+/- mice. Collagen-I, collagen-III and α-SMA transcripts accumulation was markedly increased in the Glt25d1+/- mice. However, Masson's trichrome staining revealed a trend to decrease in the ECM proteins deposition of Glt25d1+/- liver. Immunohistochemistry and Western blots revealed that the protein expression of Collagen-III was reduced and a trend to a decrease in collagen-I was observed in the Glt25d1+/- liver compared with those of WT mice. Our results demonstrate that Glt25d1 knockout results in embryonic lethality and down-regulation of Glt25d1 may inhibit collagen secretion during liver fibrogenesis.
Collapse
Affiliation(s)
- Lingling He
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Xiaohui Ye
- Beijing Huaxin Hospital, The First Affiliated Hospital of Tsinghua Uinversity, Beijing, China.
| | - Meixin Gao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Junru Yang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Jiali Ma
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Fan Xiao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
46
|
Evaluation of NV556, a Novel Cyclophilin Inhibitor, as a Potential Antifibrotic Compound for Liver Fibrosis. Cells 2019; 8:cells8111409. [PMID: 31717385 PMCID: PMC6912624 DOI: 10.3390/cells8111409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis can result as a pathological response to nonalcoholic steatohepatitis (NASH). Cirrhosis, the late stage of fibrosis, has been linked to poor survival and an increased risk of developing hepatocellular carcinoma, with limited treatment options available. Therefore, there is an unmet need for novel effective antifibrotic compounds. Cyclophilins are peptidyl-prolyl cis-trans isomerases that facilitate protein folding and conformational changes affecting the function of the targeted proteins. Due to their activity, cyclophilins have been presented as key factors in several stages of the fibrotic process. In this study, we investigated the antifibrotic effects of NV556, a novel potent sanglifehrin-based cyclophilin inhibitor, in vitro and in vivo. NV556 potential antifibrotic effect was evaluated in two well-established animal models of NASH, STAM, and methionine-choline-deficient (MCD) mice, as well as in an in vitro 3D human liver ECM culture of LX2 cells, a human hepatic stellate cell line. We demonstrate that NV556 decreased liver fibrosis in both STAM and MCD in vivo models and decreased collagen production in TGFβ1-activated hepatic stellate cells in vitro. Taken together, these results present NV556 as a potential candidate for the treatment of liver fibrosis.
Collapse
|
47
|
Mei F, Tu Y. Cyclophilin B enhances the proliferation and differentiation of MC3T3-E1 cells via JAK2/STAT3 signaling pathway. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1684842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fan Mei
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, PR China
| | - Yanhong Tu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, PR China
| |
Collapse
|
48
|
Kuo J, Bobardt M, Chatterji U, Mayo PR, Trepanier DJ, Foster RT, Gallay P, Ure DR. A Pan-Cyclophilin Inhibitor, CRV431, Decreases Fibrosis and Tumor Development in Chronic Liver Disease Models. J Pharmacol Exp Ther 2019; 371:231-241. [PMID: 31406003 PMCID: PMC6815936 DOI: 10.1124/jpet.119.261099] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Previous studies show that cyclophilins contribute to many pathologic processes, and cyclophilin inhibitors demonstrate therapeutic activities in many experimental models. However, no drug with cyclophilin inhibition as the primary mode of action has advanced completely through clinical development to market. In this study, we present findings on the cyclophilin inhibitor, CRV431, that highlight its potential as a drug candidate for chronic liver diseases. CRV431 was found to potently inhibit all cyclophilin isoforms tested-A, B, D, and G. Inhibitory constant or IC50 values ranged from 1 to 7 nM, which was up to 13 times more potent than the parent compound, cyclosporine A (CsA), from which CRV431 was derived. Other CRV431 advantages over CsA as a nontransplant drug candidate were significantly diminished immunosuppressive activity, less drug transporter inhibition, and reduced cytotoxicity potential. Oral dosing to mice and rats led to good blood exposures and a 5- to 15-fold accumulation of CRV431 in liver compared with blood concentrations across a wide range of CRV431 dosing levels. Most importantly, CRV431 decreased liver fibrosis in a 6-week carbon tetrachloride model and in a mouse model of nonalcoholic steatohepatitis (NASH). Additionally, CRV431 administration during a late, oncogenic stage of the NASH disease model resulted in a 50% reduction in the number and size of liver tumors. These findings are consistent with CRV431 targeting fibrosis and cancer through multiple, cyclophilin-mediated mechanisms and support the development of CRV431 as a safe and effective drug candidate for liver diseases. SIGNIFICANCE STATEMENT: Cyclophilin inhibitors have demonstrated therapeutic activities in many disease models, but no drug candidates have yet advanced completely through development to market. In this study, CRV431 is shown to potently inhibit multiple cyclophilin isoforms, possess several optimized pharmacological properties, and decrease liver fibrosis and tumors in mouse models of chronic liver disease, which highlights its potential to be the first approved drug primarily targeting cyclophilin isomerases.
Collapse
Affiliation(s)
- Joseph Kuo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Michael Bobardt
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Udayan Chatterji
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Patrick R Mayo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Daniel J Trepanier
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Robert T Foster
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Philippe Gallay
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Daren R Ure
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| |
Collapse
|
49
|
Mitxitorena I, Infante A, Gener B, Rodríguez CI. Suitability and limitations of mesenchymal stem cells to elucidate human bone illness. World J Stem Cells 2019; 11:578-593. [PMID: 31616536 PMCID: PMC6789184 DOI: 10.4252/wjsc.v11.i9.578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/31/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Functional impairment of mesenchymal stem cells (MSCs), osteoblast progenitor cells, has been proposed to be a pathological mechanism contributing to bone disorders, such as osteoporosis (the most common bone disease) and other rare inherited skeletal dysplasias. Pathological bone loss can be caused not only by an enhanced bone resorption activity but also by hampered osteogenic differentiation of MSCs. The majority of the current treatment options counteract bone loss, and therefore bone fragility by blocking bone resorption. These so-called antiresorptive treatments, in spite of being effective at reducing fracture risk, cannot be administered for extended periods due to security concerns. Therefore, there is a real need to develop osteoanabolic therapies to promote bone formation. Human MSCs emerge as a suitable tool to study the etiology of bone disorders at the cellular level as well as to be used for cell therapy purposes for bone diseases. This review will focus on the most relevant findings using human MSCs as an in vitro cell model to unravel pathological bone mechanisms and the application and outcomes of human MSCs in cell therapy clinical trials for bone disease.
Collapse
Affiliation(s)
- Izaskun Mitxitorena
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
| | - Blanca Gener
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
- Service of Genetics, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
- Centre for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid 28005, Spain
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
| |
Collapse
|
50
|
Rauch F, Bardai G, Rockman-Greenberg C. ALPL mutations in adults with rheumatologic disorders and low serum alkaline phosphatase activity. J Bone Miner Metab 2019; 37:893-899. [PMID: 30719581 DOI: 10.1007/s00774-019-00991-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (ALP), encoded by ALPL, is important for bone homeostasis and interacts with collagen type I. In the present study, we sequenced ALPL and a panel of collagen type I-related genes in 24 adults (age 22-80 years; 20 female) with persistently low serum ALP (< 40 U/L) and a range of rheumatologic symptoms. We found heterozygous pathogenic or likely pathogenic variants in ALPL in 14 (58%) of these individuals. In addition, 7 study participants had potentially damaging heterozygous variants of uncertain significance in genes related to collagen type I. Patients who were positive for ALPL variants had similar age and serum ALP levels to patients in whom no ALPL variants were detected, but had higher serum pyridoxal-5-phosphate concentrations (median 214 nmol/L vs. 64 nmol/L; p = 0.02; U test). In summary, heterozygous ALPL variants are frequent in individuals with rheumatologic symptoms and low ALP serum activity. It is possible that variants in genes that are involved in collagen type I production have a modifying effect on the clinical consequences of such ALPL variants.
Collapse
Affiliation(s)
- Frank Rauch
- Shriners Hospital for Children, McGill University, 1003 Decarie, Montreal, QC, H4A 0A9, Canada.
| | - Ghalib Bardai
- Shriners Hospital for Children, McGill University, 1003 Decarie, Montreal, QC, H4A 0A9, Canada
| | - Cheryl Rockman-Greenberg
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|