1
|
Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Updegrove TB, Ferreira CN, Ibrahim AM, Tai CH, Kruhlak MJ, Missiakas DM, Camberg JL, Aravind L, Ramamurthi KS. PcdA promotes orthogonal division plane selection in Staphylococcus aureus. Nat Microbiol 2024; 9:2997-3012. [PMID: 39468247 DOI: 10.1038/s41564-024-01821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/30/2024] [Indexed: 10/30/2024]
Abstract
The bacterial pathogen, Staphylococcus aureus, grows by dividing in two alternating orthogonal planes. How these cell division planes are positioned correctly is not known. Here we used chemical genetic screening to identify PcdA as a division plane placement factor. Molecular biology and imaging approaches revealed non-orthogonal division plane selection for pcdA mutant bacteria. PcdA is a structurally and functionally altered member of the McrB AAA+ NTPase family, which are often found as restriction enzyme subunits. PcdA interacts with the tubulin-like divisome component, FtsZ, and the structural protein, DivIVA; it also localizes to future cell division sites. PcdA multimerization, localization and function are NTPase activity-dependent. We propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Although pcdA deletion did not affect S. aureus growth in several laboratory conditions, its clustered growth pattern was disrupted, sensitivity to cell-wall-targeting antibiotics increased and virulence in mice decreased. We propose that the characteristic clustered growth pattern of S. aureus, which emerges from dividing in alternating orthogonal division planes, might protect the bacterium from host defences.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon R Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Colby N Ferreira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Amany M Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dominique M Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Dehghani B, Rodrigues CDA. SpoIIQ-dependent localization of SpoIIE contributes to septal stability and compartmentalization during the engulfment stage of Bacillus subtilis sporulation. J Bacteriol 2024; 206:e0022024. [PMID: 38904397 PMCID: PMC11270862 DOI: 10.1128/jb.00220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
During spore development in bacteria, a polar septum separates two transcriptionally distinct cellular compartments, the mother cell and the forespore. The conserved serine phosphatase SpoIIE is known for its critical role in the formation of this septum and activation of compartment-specific transcription in the forespore. Signaling between the mother cell and forespore then leads to activation of mother cell transcription and a phagocytic-like process called engulfment, which involves dramatic remodeling of the septum and requires a balance between peptidoglycan synthesis and hydrolysis to ensure septal stability and compartmentalization. Using Bacillus subtilis, we identify an additional role for SpoIIE in maintaining septal stability and compartmentalization at the onset of engulfment. This role for SpoIIE is mediated by SpoIIQ, which anchors SpoIIE in the engulfing membrane. A SpoIIQ mutant (SpoIIQ Y28A) that fails to anchor SpoIIE, results in septal instability and miscompartmentalization during septal peptidoglycan hydrolysis, when other septal stabilization factors are absent. Our data support a model whereby SpoIIE and its interactions with the peptidoglycan synthetic machinery contribute to the stabilization of the asymmetric septum early in engulfment, thereby ensuring compartmentalization during spore development.IMPORTANCEBacterial sporulation is a complex process involving a vast array of proteins. Some of these proteins are absolutely critical and regulate key points in the developmental process. Once such protein is SpoIIE, known for its role in the formation of the polar septum, a hallmark of the early stages of sporulation, and activation of the first sporulation-specific sigma factor, σF, in the developing spore. Interestingly, SpoIIE has been shown to interact with SpoIIQ, an important σF-regulated protein that functions during the engulfment stage. However, the significance of this interaction has remained unclear. Here, we unveil the importance of the SpoIIQ-SpoIIE interaction and identify a role for SpoIIE in the stabilization of the polar septum and maintenance of compartmentalization at the onset of engulfment. In this way, we demonstrate that key sporulation proteins, like SpoIIQ and SpoIIE, function in multiple processes during spore development.
Collapse
Affiliation(s)
- Behzad Dehghani
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
3
|
Muchová K, Pospíšil J, Kalocsaiová E, Chromiková Z, Žarnovičanová S, Šanderová H, Krásný L, Barák I. Spatio-temporal control of asymmetric septum positioning during sporulation in Bacillus subtilis. J Biol Chem 2024; 300:107339. [PMID: 38705388 PMCID: PMC11154705 DOI: 10.1016/j.jbc.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
During sporulation, Bacillus subtilis forms an asymmetric septum, dividing the cell into two compartments, a mother cell and a forespore. The site of asymmetric septation is linked to the membrane where FtsZ and SpoIIE initiate the formation of the Z-ring and the E-ring, respectively. These rings then serve as a scaffold for the other cell division and peptidoglycan synthesizing proteins needed to build the septum. However, despite decades of research, not enough is known about how the asymmetric septation site is determined. Here, we identified and characterized the interaction between SpoIIE and RefZ. We show that these two proteins transiently colocalize during the early stages of asymmetric septum formation when RefZ localizes primarily from the mother cell side of the septum. We propose that these proteins and their interplay with the spatial organization of the chromosome play a role in controlling asymmetric septum positioning.
Collapse
Affiliation(s)
- Katarína Muchová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evelína Kalocsaiová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Chromiková
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Žarnovičanová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
4
|
Chareyre S, Li X, Anjuwon-Foster BR, Updegrove TB, Clifford S, Brogan AP, Su Y, Zhang L, Chen J, Shroff H, Ramamurthi KS. Cell division machinery drives cell-specific gene activation during differentiation in Bacillus subtilis. Proc Natl Acad Sci U S A 2024; 121:e2400584121. [PMID: 38502707 PMCID: PMC10990147 DOI: 10.1073/pnas.2400584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment-specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.
Collapse
Affiliation(s)
- Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | | | - Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Sarah Clifford
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Anna P. Brogan
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | | |
Collapse
|
5
|
Cramer K, Reinhardt SCM, Auer A, Shin JY, Jungmann R. Comparing divisome organization between vegetative and sporulating Bacillus subtilis at the nanoscale using DNA-PAINT. SCIENCE ADVANCES 2024; 10:eadk5847. [PMID: 38198550 PMCID: PMC10780868 DOI: 10.1126/sciadv.adk5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Spore-forming bacteria have two distinct division modes: sporulation and vegetative division. The placement of the foundational division machinery component (Z-ring) within the division plane is contingent on the division mode. However, investigating if and how division is performed differently between sporulating and vegetative cells remains challenging, particularly at the nanoscale. Here, we use DNA-PAINT super-resolution microscopy to compare the 3D assembly and distribution patterns of key division proteins SepF, ZapA, DivIVA, and FtsZ. We determine that ZapA and SepF placement within the division plane mimics that of the Z-ring in vegetative and sporulating cells. We find that DivIVA assemblies differ between vegetative and sporulating cells. Furthermore, we reveal that SepF assembles into ~50-nm arcs independent of division mode. We propose a nanoscale model in which symmetric or asymmetric placement of the Z-ring and early divisome proteins is a defining characteristic of vegetative or sporulating cells, respectively, and regulation of septal thickness differs between division modes.
Collapse
Affiliation(s)
- Kimberly Cramer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne C. M. Reinhardt
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexander Auer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jae Yen Shin
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
6
|
Chareyre S, Li X, Anjuwon-Foster BR, Clifford S, Brogan A, Su Y, Shroff H, Ramamurthi KS. Cell division machinery drives cell-specific gene activation during bacterial differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552768. [PMID: 37790399 PMCID: PMC10542145 DOI: 10.1101/2023.08.10.552768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that a unique feature of the sporulation septum, defined by the cell division machinery, drives the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.
Collapse
Affiliation(s)
- Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Brandon R Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Clifford
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Brogan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Jiang Q, Li B, Zhang L, Li T, Hu Q, Li H, Zou W, Hu Z, Huang Q, Zhou R. DivIVA Interacts with the Cell Wall Hydrolase MltG To Regulate Peptidoglycan Synthesis in Streptococcus suis. Microbiol Spectr 2023; 11:e0475022. [PMID: 37212666 PMCID: PMC10269899 DOI: 10.1128/spectrum.04750-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/23/2023] [Indexed: 05/23/2023] Open
Abstract
Bacterial morphology is largely determined by the spatial and temporal regulation of peptidoglycan (PG) biosynthesis. Ovococci possess a unique pattern of PG synthesis different from the well studied Bacillus, and the mechanism of the coordination of PG synthesis remains poorly understood. Several regulatory proteins have been identified to be involved in the regulation of ovococcal morphogenesis, among which DivIVA is an important one to regulate PG synthesis in streptococci, while its mechanism is largely unknown. Here, the zoonotic pathogen Streptococcus suis was used to investigate the regulation of DivIVA on PG synthesis. Fluorescent d-amino acid probing and 3D-structured illumination microscopy found that DivIVA deletion caused abortive peripheral PG synthesis, resulting in a decreased aspect ratio. The phosphorylation-depleted mutant (DivIVA3A) cells displayed a longer nascent PG and became longer, whereas the phosphorylation-mimicking mutant (DivIVA3E) cells showed a shorter nascent PG and became shorter, suggesting that DivIVA phosphorylation is involved in regulating peripheral PG synthesis. Several DivIVA-interacting proteins were identified, and the interaction was confirmed between DivIVA and MltG, a cell wall hydrolase essential for cell elongation. DivIVA did not affect the PG hydrolysis activity of MltG, while the phosphorylation state of DivIVA affected its interaction with MltG. MltG was mislocalized in the ΔdivIVA and DivIVA3E cells, and both ΔmltG and DivIVA3E cells formed significantly rounder cells, indicating an important role of DivIVA phosphorylation in regulating PG synthesis through MltG. These findings highlight the regulatory mechanism of PG synthesis and morphogenesis of ovococci. IMPORTANCE The peptidoglycan (PG) biosynthesis pathway provides a rich source of novel antimicrobial drug targets. However, bacterial PG synthesis and its regulation is a very complex process involving dozens of proteins. Moreover, unlike the well studied Bacillus, ovococci undergo unusual PG synthesis with unique mechanisms of coordination. DivIVA is an important regulator of PG synthesis in ovococci, while its exact role in regulating PG synthesis remains poorly understood. In this study, we determined the role of DivIVA in regulating lateral PG synthesis of Streptococcus suis and identified a critical interacting partner, MltG, in which DivIVA influenced the subcellular localizations of MltG through its phosphorylation. Our study characterizes the detailed role of DivIVA in regulating bacterial PG synthesis, which is very helpful for understanding the process of PG synthesis in streptococci.
Collapse
Affiliation(s)
- Qinggen Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Boxi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liangsheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiao Hu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenjin Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| |
Collapse
|
8
|
Freeman AH, Tembiwa K, Brenner JR, Chase MR, Fortune SM, Morita YS, Boutte CC. Arginine methylation sites on SepIVA help balance elongation and septation in Mycobacterium smegmatis. Mol Microbiol 2023; 119:208-223. [PMID: 36416406 PMCID: PMC10023300 DOI: 10.1111/mmi.15006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
The growth of mycobacterial cells requires successful coordination between elongation and septation. However, it is not clear which factors mediate this coordination. Here, we studied the function and post-translational modification of an essential division factor, SepIVA, in Mycobacterium smegmatis. We find that SepIVA is arginine methylated, and that alteration of its methylation sites affects both septation and polar elongation of Msmeg. Furthermore, we show that SepIVA regulates the localization of MurG and that this regulation may impact polar elongation. Finally, we map SepIVA's two regulatory functions to different ends of the protein: the N-terminus regulates elongation while the C-terminus regulates division. These results establish SepIVA as a regulator of both elongation and division and characterize a physiological role for protein arginine methylation sites for the first time in mycobacteria.
Collapse
Affiliation(s)
- Angela H Freeman
- Department of Biology, University of Texas at Arlington,
Arlington, Texas, USA
| | - Karen Tembiwa
- Department of Biology, University of Texas at Arlington,
Arlington, Texas, USA
| | - James R Brenner
- Department of Microbiology, University of Massachusetts,
Amherst, Massachusetts, USA
| | - Michael R Chase
- Department of Immunology and Infectious Disease, Harvard TH
Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Disease, Harvard TH
Chan School of Public Health, Boston, Massachusetts, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts,
Amherst, Massachusetts, USA
| | - Cara C Boutte
- Department of Biology, University of Texas at Arlington,
Arlington, Texas, USA
| |
Collapse
|
9
|
Habibi Arejan N, Ensinck D, Diacovich L, Patel PB, Quintanilla SY, Emami Saleh A, Gramajo H, Boutte CC. Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum. Front Microbiol 2023; 13:1085918. [PMID: 36713172 PMCID: PMC9878328 DOI: 10.3389/fmicb.2022.1085918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Mycobacterial cell elongation occurs at the cell poles; however, it is not clear how cell wall insertion is restricted to the pole or how it is organized. Wag31 is a pole-localized cytoplasmic protein that is essential for polar growth, but its molecular function has not been described. In this study we used alanine scanning mutagenesis to identify Wag31 residues involved in cell morphogenesis. Our data show that Wag31 helps to control proper septation as well as new and old pole elongation. We have identified key amino acid residues involved in these essential functions. Enzyme assays revealed that Wag31 interacts with lipid metabolism by modulating acyl-CoA carboxylase (ACCase) activity. We show that Wag31 does not control polar growth by regulating the localization of cell wall precursor enzymes to the Intracellular Membrane Domain, and we also demonstrate that phosphorylation of Wag31 does not substantively regulate peptidoglycan metabolism. This work establishes new regulatory functions of Wag31 in the mycobacterial cell cycle and clarifies the need for new molecular models of Wag31 function.
Collapse
Affiliation(s)
- Neda Habibi Arejan
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Delfina Ensinck
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | - Arash Emami Saleh
- Department of Civil Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cara C. Boutte
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States,*Correspondence: Cara C. Boutte,
| |
Collapse
|
10
|
Ramos-León F, Ramamurthi K. Cytoskeletal proteins: Lessons learned from bacteria. Phys Biol 2022; 19. [PMID: 35081523 DOI: 10.1088/1478-3975/ac4ef0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
Cytoskeletal proteins are classified as a group that is defined functionally, whose members are capable of polymerizing into higher order structures, either dynamically or statically, to perform structural roles during a variety of cellular processes. In eukaryotes, the most well-studied cytoskeletal proteins are actin, tubulin, and intermediate filaments, and are essential for cell shape and movement, chromosome segregation, and intracellular cargo transport. Prokaryotes often harbor homologs of these proteins, but in bacterial cells, these homologs are usually not employed in roles that can be strictly defined as "cytoskeletal". However, several bacteria encode other proteins capable of polymerizing which, although they do not appear to have a eukaryotic counterpart, nonetheless appear to perform a more traditional "cytoskeletal" function. In this review, we discuss recent reports that cover the structure and functions of prokaryotic proteins that are broadly termed as cytoskeletal, either by sequence homology or by function, to highlight how the enzymatic properties of traditionally studied cytoskeletal proteins may be used for other types of cellular functions; and to demonstrate how truly "cytoskeletal" functions may be performed by uniquely bacterial proteins that do not display homology to eukaryotic proteins.
Collapse
Affiliation(s)
- Félix Ramos-León
- National Institutes of Health, 37 Convent Dr., Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| | - Kumaran Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Dr, Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| |
Collapse
|
11
|
Cardiolipin-Containing Lipid Membranes Attract the Bacterial Cell Division Protein DivIVA. Int J Mol Sci 2021; 22:ijms22158350. [PMID: 34361115 PMCID: PMC8348161 DOI: 10.3390/ijms22158350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 02/04/2023] Open
Abstract
DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane.
Collapse
|
12
|
Prakash K, Diederich B, Reichelt S, Heintzmann R, Schermelleh L. Super-resolution structured illumination microscopy: past, present and future. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200143. [PMID: 33896205 PMCID: PMC8366908 DOI: 10.1098/rsta.2020.0143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Structured illumination microscopy (SIM) has emerged as an essential technique for three-dimensional (3D) and live-cell super-resolution imaging. However, to date, there has not been a dedicated workshop or journal issue covering the various aspects of SIM, from bespoke hardware and software development and the use of commercial instruments to biological applications. This special issue aims to recap recent developments as well as outline future trends. In addition to SIM, we cover related topics such as complementary super-resolution microscopy techniques, computational imaging, visualization and image processing methods. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'.
Collapse
Affiliation(s)
- Kirti Prakash
- National Physical Laboratory, TW11 0LW Teddington, UK
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Benedict Diederich
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Helmholtzweg 4, Jena, Germany
| | - Stefanie Reichelt
- CRUK Cambridge Research Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Helmholtzweg 4, Jena, Germany
- Faculty of Physics and Astronomy, Friedrich-Schiller-University, Jena, Germany
| | - Lothar Schermelleh
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
13
|
Khanna K, Lopez-Garrido J, Sugie J, Pogliano K, Villa E. Asymmetric localization of the cell division machinery during Bacillus subtilis sporulation. eLife 2021; 10:62204. [PMID: 34018921 PMCID: PMC8192124 DOI: 10.7554/elife.62204] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive bacterium Bacillus subtilis can divide via two modes. During vegetative growth, the division septum is formed at the midcell to produce two equal daughter cells. However, during sporulation, the division septum is formed closer to one pole to yield a smaller forespore and a larger mother cell. Using cryo-electron tomography, genetics and fluorescence microscopy, we found that the organization of the division machinery is different in the two septa. While FtsAZ filaments, the major orchestrators of bacterial cell division, are present uniformly around the leading edge of the invaginating vegetative septa, they are only present on the mother cell side of the invaginating sporulation septa. We provide evidence suggesting that the different distribution and number of FtsAZ filaments impact septal thickness, causing vegetative septa to be thicker than sporulation septa already during constriction. Finally, we show that a sporulation-specific protein, SpoIIE, regulates asymmetric divisome localization and septal thickness during sporulation.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Javier Lopez-Garrido
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| |
Collapse
|
14
|
Khanna K, Lopez-Garrido J, Pogliano K. Shaping an Endospore: Architectural Transformations During Bacillus subtilis Sporulation. Annu Rev Microbiol 2020; 74:361-386. [PMID: 32660383 PMCID: PMC7610358 DOI: 10.1146/annurev-micro-022520-074650] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endospore formation in Bacillus subtilis provides an ideal model system for studying development in bacteria. Sporulation studies have contributed a wealth of information about the mechanisms of cell-specific gene expression, chromosome dynamics, protein localization, and membrane remodeling, while helping to dispel the early view that bacteria lack internal organization and interesting cell biological phenomena. In this review, we focus on the architectural transformations that lead to a profound reorganization of the cellular landscape during sporulation, from two cells that lie side by side to the endospore, the unique cell within a cell structure that is a hallmark of sporulation in B. subtilis and other spore-forming Firmicutes. We discuss new insights into the mechanisms that drive morphogenesis, with special emphasis on polar septation, chromosome translocation, and the phagocytosis-like process of engulfment, and also the key experimental advances that have proven valuable in revealing the inner workings of bacterial cells.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| | | | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| |
Collapse
|
15
|
Singhi D, Srivastava P. How similar or dissimilar cells are produced by bacterial cell division? Biochimie 2020; 176:71-84. [DOI: 10.1016/j.biochi.2020.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
|
16
|
Linking the Peptidoglycan Synthesis Protein Complex with Asymmetric Cell Division during Bacillus subtilis Sporulation. Int J Mol Sci 2020; 21:ijms21124513. [PMID: 32630428 PMCID: PMC7349982 DOI: 10.3390/ijms21124513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Peptidoglycan is generally considered one of the main determinants of cell shape in bacteria. In rod-shaped bacteria, cell elongation requires peptidoglycan synthesis to lengthen the cell wall. In addition, peptidoglycan is synthesized at the division septum during cell division. Sporulation of Bacillus subtilis begins with an asymmetric cell division. Formation of the sporulation septum requires almost the same set of proteins as the vegetative septum; however, these two septa are significantly different. In addition to their differences in localization, the sporulation septum is thinner and it contains SpoIIE, a crucial sporulation specific protein. Here we show that peptidoglycan biosynthesis is linked to the cell division machinery during sporulation septum formation. We detected a direct interaction between SpoIIE and GpsB and found that both proteins co-localize during the early stages of asymmetric septum formation. We propose that SpoIIE is part of a multi-protein complex which includes GpsB, other division proteins and peptidoglycan synthesis proteins, and could provide a link between the peptidoglycan synthesis machinery and the complex morphological changes required for forespore formation during B. subtilis sporulation.
Collapse
|
17
|
Wollman AJ, Muchová K, Chromiková Z, Wilkinson AJ, Barák I, Leake MC. Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis. Comput Struct Biotechnol J 2020; 18:1474-1486. [PMID: 32637045 PMCID: PMC7327415 DOI: 10.1016/j.csbj.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Here we use singe-molecule optical proteomics and computational analysis of live cell bacterial images, using millisecond super-resolved tracking and quantification of fluorescently labelled protein SpoIIE in single live Bacillus subtilis bacteria to understand its crucial role in cell development. Asymmetric cell division during sporulation in Bacillus subtilis presents a model system for studying cell development. SpoIIE is a key integral membrane protein phosphatase that couples morphological development to differential gene expression. However, the basic mechanisms behind its operation remain unclear due to limitations of traditional tools and technologies. We instead used advanced single-molecule imaging of fluorescently tagged SpoIIE in real time on living cells to reveal vital changes to the patterns of expression, localization, mobility and stoichiometry as cells undergo asymmetric cell division then engulfment of the smaller forespore by the larger mother cell. We find, unexpectedly, that SpoIIE forms tetramers capable of cell- and stage-dependent clustering, its copy number rising to ~ 700 molecules as sporulation progresses. We observed that slow moving SpoIIE clusters initially located at septa are released as mobile clusters at the forespore pole as phosphatase activity is manifested and compartment-specific RNA polymerase sigma factor, σF, becomes active. Our findings reveal that information captured in its quaternary organization enables one protein to perform multiple functions, extending an important paradigm for regulatory proteins in cells. Our findings more generally demonstrate the utility of rapid live cell single-molecule optical proteomics for enabling mechanistic insight into the complex processes of cell development during the cell cycle.
Collapse
Affiliation(s)
- Adam J.M. Wollman
- Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom
| | - Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Chromiková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mark C. Leake
- Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
18
|
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0017-2018. [PMID: 31858953 PMCID: PMC6927485 DOI: 10.1128/microbiolspec.gpp3-0017-2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mahfuzur R Sarker
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Daniel Paredes-Sabja
- Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
19
|
A 2-dimensional ratchet model describes assembly initiation of a specialized bacterial cell surface. Proc Natl Acad Sci U S A 2019; 116:21789-21799. [PMID: 31597735 DOI: 10.1073/pnas.1907397116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacterial spores are dormant cells that are encased in a thick protein shell, the "coat," which participates in protecting the organism's DNA from environmental insults. The coat is composed of dozens of proteins that assemble in an orchestrated fashion during sporulation. In Bacillus subtilis, 2 proteins initiate coat assembly: SpoVM, which preferentially binds to micron-scale convex membranes and marks the surface of the developing spore as the site for coat assembly; and SpoIVA, a structural protein recruited by SpoVM that uses ATP hydrolysis to drive its irreversible polymerization around the developing spore. Here, we describe the initiation of coat assembly by SpoVM and SpoIVA. Using single-molecule fluorescence microscopy in vivo in sporulating cells and in vitro on synthetic spores, we report that SpoVM's localization is primarily driven by a lower off-rate on membranes of preferred curvature in the absence of other coat proteins. Recruitment and polymerization of SpoIVA results in the entrapment of SpoVM on the forespore surface. Using experimentally derived reaction parameters, we show that a 2-dimensional ratchet model can describe the interdependent localization dynamics of SpoVM and SpoIVA, wherein SpoVM displays a longer residence time on the forespore surface, which favors recruitment of SpoIVA to that location. Localized SpoIVA polymerization in turn prevents further sampling of other membranes by prelocalized SpoVM molecules. Our model therefore describes the dynamics of structural proteins as they localize and assemble at the correct place and time within a cell to form a supramolecular complex.
Collapse
|
20
|
Abstract
Reproduction in the bacterial kingdom predominantly occurs through binary fission-a process in which one parental cell is divided into two similarly sized daughter cells. How cell division, in conjunction with cell elongation and chromosome segregation, is orchestrated by a multitude of proteins has been an active area of research spanning the past few decades. Together, the monumental endeavors of multiple laboratories have identified several cell division and cell shape regulators as well as their underlying regulatory mechanisms in rod-shaped Escherichia coli and Bacillus subtilis, which serve as model organisms for Gram-negative and Gram-positive bacteria, respectively. Yet our understanding of bacterial cell division and morphology regulation is far from complete, especially in noncanonical and non-rod-shaped organisms. In this review, we focus on two proteins that are highly conserved in Gram-positive organisms, DivIVA and its homolog GpsB, and attempt to summarize the recent advances in this area of research and discuss their various roles in cell division, cell growth, and chromosome segregation in addition to their interactome and posttranslational regulation.
Collapse
|
21
|
Cramer K, Bolender AL, Stockmar I, Jungmann R, Kasper R, Shin JY. Visualization of Bacterial Protein Complexes Labeled with Fluorescent Proteins and Nanobody Binders for STED Microscopy. Int J Mol Sci 2019; 20:ijms20143376. [PMID: 31295803 PMCID: PMC6678925 DOI: 10.3390/ijms20143376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
In situ visualization of molecular assemblies near their macromolecular scale is a powerful tool to investigate fundamental cellular processes. Super-resolution light microscopies (SRM) overcome the diffraction limit and allow researchers to investigate molecular arrangements at the nanoscale. However, in bacterial cells, visualization of these assemblies can be challenging because of their small size and the presence of the cell wall. Thus, although conceptually promising, successful application of SRM techniques requires careful optimization in labeling biochemistry, fluorescent dye choice, bacterial biology and microscopy to gain biological insights. Here, we apply Stimulated Emission Depletion (STED) microscopy to visualize cell division proteins in bacterial cells, specifically E. coli and B. subtilis. We applied nanobodies that specifically recognize fluorescent proteins, such as GFP, mCherry2 and PAmCherry, fused to targets for STED imaging and evaluated the effect of various organic fluorescent dyes on the performance of STED in bacterial cells. We expect this research to guide scientists for in situ macromolecular visualization using STED in bacterial systems.
Collapse
Affiliation(s)
- Kimberly Cramer
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Anna-Lena Bolender
- Max Plank Institute of Neurobiology, 82152 Martinsried, 82152 Munich, Germany
| | - Iris Stockmar
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Ralf Jungmann
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Robert Kasper
- Max Plank Institute of Neurobiology, 82152 Martinsried, 82152 Munich, Germany.
| | - Jae Yen Shin
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany.
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany.
| |
Collapse
|
22
|
Brzozowski RS, Huber M, Burroughs AM, Graham G, Walker M, Alva SS, Aravind L, Eswara PJ. Deciphering the Role of a SLOG Superfamily Protein YpsA in Gram-Positive Bacteria. Front Microbiol 2019; 10:623. [PMID: 31024470 PMCID: PMC6459960 DOI: 10.3389/fmicb.2019.00623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
Bacteria adapt to different environments by regulating cell division and several conditions that modulate cell division have been documented. Understanding how bacteria transduce environmental signals to control cell division is critical in understanding the global network of cell division regulation. In this article we describe a role for Bacillus subtilis YpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and ligand-binding proteins, in cell division. We observed that YpsA provides protection against oxidative stress as cells lacking ypsA show increased susceptibility to hydrogen peroxide treatment. We found that the increased expression of ypsA leads to filamentation and disruption of the assembly of FtsZ, the tubulin-like essential protein that marks the sites of cell division in B. subtilis. We also showed that YpsA-mediated filamentation is linked to the growth rate. Using site-directed mutagenesis, we targeted several conserved residues and generated YpsA variants that are no longer able to inhibit cell division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as overproduction of YpsA in Staphylococcus aureus also impairs cell division.
Collapse
Affiliation(s)
- Robert S Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Mirella Huber
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Gianni Graham
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Merryck Walker
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Sameeksha S Alva
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
23
|
Barák I, Muchová K, Labajová N. Asymmetric cell division during Bacillus subtilis sporulation. Future Microbiol 2019; 14:353-363. [PMID: 30855188 DOI: 10.2217/fmb-2018-0338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis is a rod-shaped bacterium which divides precisely at mid-cell during vegetative growth. Unlike Escherichia coli, another model organism used for studying cell division, B. subtilis can also divide asymmetrically during sporulation, the simplest cell differentiation process. The asymmetrically positioned sporulation septum serves as a morphological foundation for establishing differential gene expression in the smaller forespore and larger mother cell. Both vegetative and sporulation septation events are fine-tuned with cell cycle, and placement of both septa are highly precise. We understand in some detail how this is achieved during vegetative growth but have limited information about how the asymmetric septation site is determined during sporulation.
Collapse
Affiliation(s)
- Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Muchová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Naďa Labajová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
24
|
Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Sci Rep 2019; 9:1371. [PMID: 30718562 PMCID: PMC6362236 DOI: 10.1038/s41598-018-37679-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 01/16/2023] Open
Abstract
Clostridium beijerinckii NRRL B-598 is a sporulating, butanol and hydrogen producing strain that utilizes carbohydrates by the acetone-butanol-ethanol (ABE) fermentative pathway. The pathway consists of two metabolic phases, acidogenesis and solventogenesis, from which the latter one can be coupled with sporulation. Thorough transcriptomic profiling during a complete life cycle and both metabolic phases completed with flow cytometry, microscopy and a metabolites analysis helped to find out key genes involved in particular cellular events. The description of genes/operons that are closely involved in metabolism or the cell cycle is a necessary condition for metabolic engineering of the strain and will be valuable for all C. beijerinckii strains and other Clostridial species. The study focused on glucose transport and catabolism, hydrogen formation, metabolic stress response, binary fission, motility/chemotaxis and sporulation, which resulted in the composition of the unique image reflecting clostridial population changes. Surprisingly, the main change in expression of individual genes was coupled with the sporulation start and not with the transition from acidogenic to solventogenic metabolism. As expected, solvents formation started at pH decrease and the accumulation of butyric and acetic acids in the cultivation medium.
Collapse
|
25
|
Barák I, Muchová K. The positioning of the asymmetric septum during sporulation in Bacillus subtilis. PLoS One 2018; 13:e0201979. [PMID: 30092000 PMCID: PMC6084994 DOI: 10.1371/journal.pone.0201979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/25/2018] [Indexed: 11/28/2022] Open
Abstract
Probably one of the most controversial questions about the cell division of Bacillus subtilis, a rod-shaped bacterium, concerns the mechanism that ensures correct division septum placement-at mid-cell during vegetative growth but closer to one end during sporulation. In general, bacteria multiply by binary fission, in which the division septum forms almost exactly at the cell centre. How the division machinery achieves such accuracy is a question of continuing interest. We understand in some detail how this is achieved during vegetative growth in Escherichia coli and B. subtilis, where two main negative regulators, nucleoid occlusion and the Min system, help to determine the division site, but we still do not know exactly how the asymmetric septation site is determined during sporulation in B. subtilis. Clearly, the inhibitory effects of the nucleoid occlusion and Min system on polar division have to be overcome. We evaluated the positioning of the asymmetric septum and its accuracy by statistical analysis of the site of septation. We also clarified the role of SpoIIE, RefZ and MinCD on the accuracy of this process. We determined that the sporulation septum forms approximately 1/6 of a cell length from one of the cell poles with high precision and that SpoIIE, RefZ and MinCD have a crucial role in precisely localizing the sporulation septum. Our results strongly support the idea that asymmetric septum formation is a very precise and highly controlled process regulated by a still unknown mechanism.
Collapse
Affiliation(s)
- Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
26
|
Characterization of Conserved and Novel Septal Factors in Mycobacterium smegmatis. J Bacteriol 2018; 200:JB.00649-17. [PMID: 29311277 DOI: 10.1128/jb.00649-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
Septation in bacteria requires coordinated regulation of cell wall biosynthesis and hydrolysis enzymes so that new septal cross-wall can be appropriately constructed without compromising the integrity of the existing cell wall. Bacteria with different modes of growth and different types of cell wall require different regulators to mediate cell growth and division processes. Mycobacteria have both a cell wall structure and a mode of growth that are distinct from well-studied model organisms and use several different regulatory mechanisms. Here, using Mycobacterium smegmatis, we identify and characterize homologs of the conserved cell division regulators FtsL and FtsB, and show that they appear to function similarly to their homologs in Escherichia coli We identify a number of previously undescribed septally localized factors which could be involved in cell wall regulation. One of these, SepIVA, has a DivIVA domain, is required for mycobacterial septation, and is localized to the septum and the intracellular membrane domain. We propose that SepIVA is a regulator of cell wall precursor enzymes that contribute to construction of the septal cross-wall, similar to the putative elongation function of the other mycobacterial DivIVA homolog, Wag31.IMPORTANCE The enzymes that build bacterial cell walls are essential for cell survival but can cause cell lysis if misregulated; thus, their regulators are also essential. The number and nature of these regulators is likely to vary in bacteria that grow in different ways. The mycobacteria are a genus that have a cell wall whose composition and construction vary greatly from those of well-studied model organisms. In this work, we identify and characterize some of the proteins that regulate the mycobacterial cell wall. We find that some of these regulators appear to be functionally conserved with their structural homologs in evolutionarily distant species such as Escherichia coli, but other proteins have critical regulatory functions that may be unique to the actinomycetes.
Collapse
|
27
|
Riley EP, Trinquier A, Reilly ML, Durchon M, Perera VR, Pogliano K, Lopez-Garrido J. Spatiotemporally regulated proteolysis to dissect the role of vegetative proteins during Bacillus subtilis sporulation: cell-specific requirement of σ H and σ A. Mol Microbiol 2018; 108:45-62. [PMID: 29363854 DOI: 10.1111/mmi.13916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 11/27/2022]
Abstract
Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation-specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell- and developmental stage-specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σH and σA , during sporulation. The results suggest that σH is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σA plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth.
Collapse
Affiliation(s)
- Eammon P Riley
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Aude Trinquier
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Madeline L Reilly
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marine Durchon
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Varahenage R Perera
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Javier Lopez-Garrido
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Hu Y, Cai Q, Tian S, Ge Y, Yuan Z, Hu X. Regulator DegU is required for multicellular behavior in Lysinibacillus sphaericus. Res Microbiol 2018; 169:177-187. [PMID: 29378340 DOI: 10.1016/j.resmic.2017.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 11/28/2022]
Abstract
DegS and DegU make up a two component system belonging to a class of signal transduction systems that play important roles in a broad range of bacterial responses to the environment. However, little study has been done to explore the physiological functions of DegS-DegU in mosquitocidal Lysinibacillus sphaericus. In this study, it was found that deletion of degU or degS-degU inhibited the swarming motility, biofilm formation, sporulation and binary toxin production through regulating the related genes, and phosphorylation was necessary for the functions of DegU. Based on the findings, a regulation network mediated by DegU was delineated. Both DegU-pi and Spo0A-pi positively regulates genes which are linked with the transition from stage Ⅱ to the end of the sporulation process and also influences the production of binary toxins via regulation on sigE. Both DegU-pi and Spo0A-pi negatively regulate abrB/sinR and influence the biofilm formation. DegU-pi can positively regulate the motility via the regulation on sigD. Whether the regulations are directly or indirectly need to be explored. Moreover, Spo0A-pi may indirectly regulate the swarming motility through negatively regulating DegU. It was concluded that DegU is a global transcriptional regulator on cell swarming motility, biofilm formation, sporulation and virulence in L. sphaericus.
Collapse
Affiliation(s)
- Yimin Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Quanxin Cai
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Shen Tian
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Yong Ge
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Zhiming Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China.
| | - Xiaomin Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China.
| |
Collapse
|
29
|
Genetic Dissection of DivIVA Functions in Listeria monocytogenes. J Bacteriol 2017; 199:JB.00421-17. [PMID: 28972021 DOI: 10.1128/jb.00421-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
DivIVA is a membrane binding protein that clusters at curved membrane regions, such as the cell poles and the membrane invaginations occurring during cell division. DivIVA proteins recruit many other proteins to these subcellular sites through direct protein-protein interactions. DivIVA-dependent functions are typically associated with cell growth and division, even though species-specific differences in the spectrum of DivIVA functions and their causative interaction partners exist. DivIVA from the Gram-positive human pathogen Listeria monocytogenes has at least three different functions. In this bacterium, DivIVA is required for precise positioning of the septum at midcell, it contributes to the secretion of autolysins required for the breakdown of peptidoglycan at the septum after the completion of cell division, and it is essential for flagellar motility. While the DivIVA interaction partners for control of division site selection are well established, the proteins connecting DivIVA with autolysin secretion or swarming motility are completely unknown. We set out to identify divIVA alleles in which these three DivIVA functions could be separated, since the question of the degree to which the three functions of L. monocytogenes DivIVA are interlinked could not be answered before. Here, we identify such alleles, and our results show that division site selection, autolysin secretion, and swarming represent three discrete pathways that are independently influenced by DivIVA. These findings provide the required basis for the identification of DivIVA interaction partners controlling autolysin secretion and swarming in the future.IMPORTANCE DivIVA of the pathogenic bacterium Listeria monocytogenes is a central scaffold protein that influences at least three different cellular processes, namely, cell division, protein secretion, and bacterial motility. How DivIVA coordinates these rather unrelated processes is not known. We here identify variants of L. monocytogenes DivIVA, in which these functions are separated from each other. These results have important implications for the models explaining how DivIVA interacts with other proteins.
Collapse
|
30
|
Kim EY, Tyndall ER, Huang KC, Tian F, Ramamurthi KS. Dash-and-Recruit Mechanism Drives Membrane Curvature Recognition by the Small Bacterial Protein SpoVM. Cell Syst 2017; 5:518-526.e3. [PMID: 29102609 DOI: 10.1016/j.cels.2017.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
In Bacillus subtilis, sporulation requires that the 26-amino acid protein SpoVM embeds specifically into the forespore membrane, a structure with convex curvature. How this nanometer-sized protein can detect curves on a micrometer scale is not well understood. Here, we report that SpoVM exploits a "dash-and-recruit" mechanism to preferentially accumulate on the forespore. Using time-resolved imaging and flow cytometry, we observe that SpoVM exhibits a faster adsorption rate onto membranes of higher convex curvature. This preferential adsorption is accurately modeled as a two-step process: first, an initial binding event occurs with a faster on rate, then cooperative recruitment of additional SpoVM molecules follows. We demonstrate that both this biochemical process and effective sporulation in vivo require an unstructured and flexible SpoVM N terminus. We propose that this two-pronged strategy of fast adsorption followed by recruitment of subsequent molecules is a general mechanism that allows small proteins to detect subtle curves with a radius 1,000-fold their size.
Collapse
Affiliation(s)
- Edward Y Kim
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin R Tyndall
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Vega-Cabrera LA, Wood CD, Pardo-López L. Spo0M: structure and function beyond regulation of sporulation. Curr Genet 2017; 64:17-23. [PMID: 28577219 DOI: 10.1007/s00294-017-0718-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 11/29/2022]
Abstract
In this mini-review, we present a perspective on the recent findings relating Spo0M structure and function that will stimulate and guide further studies in the characterization of this interesting protein. Cell division and sporulation constitute two of the best studied processes in the model organism Bacillus subtilis; however, there are many missing pieces in the giant regulatory puzzle that governs the independent and shared networks between them. Spo0M is a little studied protein that has been related to both, cell division and sporulation, but its biochemical function and its direct interactions have not been yet defined. Structural analysis of Spo0M revealed the presence of an arrestin-like domain and an FP domain (a dimerization domain present in proteasome elements), motifs more commonly found in eukaryotic proteins. The aim of this perspective is to present open questions regarding the functional and structural features of Spo0M that make this protein a good candidate for the ancestor of arrestins in bacteria and an important element in developmental and differentiation processes of Bacillus subtilis.
Collapse
Affiliation(s)
- Luz Adriana Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Apdo. Postal 510-3, 62250, Cuernavaca, Morelos, Mexico
| | - Christopher D Wood
- Laboratorio Nacional de Microscopía Avanzada, Universidad Nacional Autónoma de México, Av. Universidad #2001, Apdo. Postal 510-3, 62250, Cuernavaca, Morelos, Mexico
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Apdo. Postal 510-3, 62250, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
32
|
Cendrowicz E, de Sousa Borges A, Kopacz M, Scheffers DJ. Metal-dependent SpoIIE oligomerization stabilizes FtsZ during asymmetric division in Bacillus subtilis. PLoS One 2017; 12:e0174713. [PMID: 28358838 PMCID: PMC5373596 DOI: 10.1371/journal.pone.0174713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/14/2017] [Indexed: 11/26/2022] Open
Abstract
SpoIIE is a bifunctional protein involved in asymmetric septum formation and in activation of the forespore compartment-specific transcription factor σF through dephosphorylation of SpoIIAA-P. The phosphatase activity of SpoIIE requires Mn2+ as a metal cofactor. Here, we show that the presence of a metal cofactor also influences SpoIIE oligomerization and asymmetric septum formation. Absence of Mn2+ from sporulation medium results in a delay of the formation of polar FtsZ-rings, similar to a spoIIE null mutant. We purified the entire cytoplasmic part of the SpoIIE protein, and show that the protein copurifies with bound metals. Metal binding both stimulates SpoIIE oligomerization, and results in the formation of larger oligomeric structures. The presence of SpoIIE oligomers reduces FtsZ GTP hydrolysis activity and stabilizes FtsZ polymers in a light scattering assay. Combined, these results indicate that metal binding is not just required for SpoIIE phosphatase activity but also is important for SpoIIE's role in asymmetric septum formation.
Collapse
Affiliation(s)
- Ewa Cendrowicz
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Anabela de Sousa Borges
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Malgorzata Kopacz
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
33
|
Vega-Cabrera LA, Guerrero A, Rodríguez-Mejía JL, Tabche ML, Wood CD, Gutiérrez-Rios RM, Merino E, Pardo-López L. Analysis of Spo0M function in Bacillus subtilis. PLoS One 2017; 12:e0172737. [PMID: 28234965 PMCID: PMC5325327 DOI: 10.1371/journal.pone.0172737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
Spo0M has been previously reported as a regulator of sporulation in Bacillus subtilis; however, little is known about the mechanisms through which it participates in sporulation, and there is no information to date that relates this protein to other processes in the bacterium. In this work we present evidence from proteomic, protein-protein interaction, morphological, subcellular localization microscopy and bioinformatics studies which indicate that Spo0M function is not necessarily restricted to sporulation, and point towards its involvement in other stages of the vegetative life cycle. In the current study, we provide evidence that Spo0M interacts with cytoskeletal proteins involved in cell division, which suggest a function additional to that previously described in sporulation. Spo0M expression is not restricted to the transition phase or sporulation; rather, its expression begins during the early stages of growth and Spo0M localization in B. subtilis depends on the bacterial life cycle and could be related to an additional proposed function. This is supported by our discovery of homologs in a broad distribution of bacterial genera, even in non-sporulating species. Our work paves the way for re-evaluation of the role of Spo0M in bacterial cell.
Collapse
Affiliation(s)
- Luz Adriana Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Avenida Universidad 2001, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - José Luis Rodríguez-Mejía
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - María Luisa Tabche
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Christopher D. Wood
- Laboratorio Nacional de Microscopía Avanzada, Avenida Universidad 2001, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Rosa-María Gutiérrez-Rios
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| |
Collapse
|
34
|
Updegrove TB, Ramamurthi KS. Geometric protein localization cues in bacterial cells. Curr Opin Microbiol 2017; 36:7-13. [PMID: 28110195 DOI: 10.1016/j.mib.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Bacterial cells are highly organized at a molecular level. Understanding how specific proteins localize to their proper subcellular address has been a major challenge in bacterial cell biology. One mechanism, which appears to be increasingly more common, is the use of 'geometric cues' for protein localization. In this model, certain shape-sensing proteins recognize, and preferentially embed into, either negatively or positively curved (concave or convex, respectively) membranes. Here, we review examples of bacterial proteins that reportedly localize by sensing geometric cues and highlight emerging mechanistic understandings of how proteins may recognize subtle differences in membrane curvature.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
35
|
Duan Y, Huey JD, Herman JK. The DnaA inhibitor SirA acts in the same pathway as Soj (ParA) to facilitateoriCsegregation duringBacillus subtilissporulation. Mol Microbiol 2016; 102:530-544. [DOI: 10.1111/mmi.13477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Yi Duan
- Department of Biochemistry and Biophysics; Texas A&M University; College Station TX USA
| | - Jack D. Huey
- Department of Biochemistry and Biophysics; Texas A&M University; College Station TX USA
| | - Jennifer K. Herman
- Department of Biochemistry and Biophysics; Texas A&M University; College Station TX USA
| |
Collapse
|
36
|
Muchová K, Chromiková Z, Bradshaw N, Wilkinson AJ, Barák I. Morphogenic Protein RodZ Interacts with Sporulation Specific SpoIIE in Bacillus subtilis. PLoS One 2016; 11:e0159076. [PMID: 27415800 PMCID: PMC4945075 DOI: 10.1371/journal.pone.0159076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
The first landmark in sporulation of Bacillus subtilis is the formation of an asymmetric septum followed by selective activation of the transcription factor σF in the resulting smaller cell. How the morphological transformations that occur during sporulation are coupled to cell-specific activation of transcription is largely unknown. The membrane protein SpoIIE is a constituent of the asymmetric sporulation septum and is a crucial determinant of σF activation. Here we report that the morphogenic protein, RodZ, which is essential for cell shape determination, is additionally required for asymmetric septum formation and sporulation. In cells depleted of RodZ, formation of asymmetric septa is disturbed and σF activation is perturbed. During sporulation, we found that SpoIIE recruits RodZ to the asymmetric septum. Moreover, we detected a direct interaction between SpoIIE and RodZ in vitro and in vivo, indicating that SpoIIE-RodZ may form a complex to coordinate asymmetric septum formation and σF activation. We propose that RodZ could provide a link between the cell shape machinery and the coordinated morphological and developmental transitions required to form a resistant spore.
Collapse
Affiliation(s)
- Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Chromiková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Niels Bradshaw
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- * E-mail:
| |
Collapse
|
37
|
Trcek T, Lionnet T, Shroff H, Lehmann R. mRNA quantification using single-molecule FISH in Drosophila embryos. Nat Protoc 2016; 12:1326-1348. [PMID: 28594816 DOI: 10.1038/nprot.2017.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spatial information is critical to the interrogation of developmental and tissue-level regulation of gene expression. However, this information is usually lost when global mRNA levels from tissues are measured using reverse transcriptase PCR, microarray analysis or high-throughput sequencing. By contrast, single-molecule fluorescence in situ hybridization (smFISH) preserves the spatial information of the cellular mRNA content with subcellular resolution within tissues. Here we describe an smFISH protocol that allows for the quantification of single mRNAs in Drosophila embryos, using commercially available smFISH probes (e.g., short fluorescently labeled DNA oligonucleotides) in combination with wide-field epifluorescence, confocal or instant structured illumination microscopy (iSIM, a super-resolution imaging approach) and a spot-detection algorithm. Fixed Drosophila embryos are hybridized in solution with a mixture of smFISH probes, mounted onto coverslips and imaged in 3D. Individual fluorescently labeled mRNAs are then localized within tissues and counted using spot-detection software to generate quantitative, spatially resolved gene expression data sets. With minimum guidance, a graduate student can successfully implement this protocol. The smFISH procedure described here can be completed in 4-5 d.
Collapse
Affiliation(s)
- Tatjana Trcek
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Timothée Lionnet
- Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Ruth Lehmann
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
38
|
Kim Y, Edwards N, Fenselau C. Extracellular vesicle proteomes reflect developmental phases of Bacillus subtilis. Clin Proteomics 2016; 13:6. [PMID: 26962304 PMCID: PMC4784445 DOI: 10.1186/s12014-016-9107-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/29/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EV) are spherical membrane-bound vesicles with nano-scale diameters, which are shed to the extracellular region by most eukaryotic and prokaryotic cells. Bacterial EV are proposed to contribute to intercellular communication, bacterial survival and human pathogenesis as a novel secretion system. EV have been characterized from many Gram-negative species and, more recently, from several vegetative Gram-positive bacteria. Further characterization of EV and their molecular cargos will contribute to understanding bacterial physiology and to developing therapeutic approaches. RESULTS Bacillus subtilis were observed to release EV to a similar extent during sporulation as during the vegetative growth phase. However, the two vesicular cargos show qualitatively and quantitatively different proteomes. Among 193 total proteins identified across both samples, 61 were shown to be significantly more abundant in EV shed by sporulating cells, with (log) ratio of spectral counts RSC > 1 and Fisher-exact test FDR < 5 %. Sixty-two proteins were found to be significantly more abundant in EV shed by vegetative cells. Membrane fusion was shown to take place between these EVs and Gram-positive cells. CONCLUSION Biogenesis of EV is a continuous process over the entire life cycle of this sporulating bacterium. The formation of EV during sporulation is strongly supported by the delineation of protein content that differs from the proteome of EV formed by vegetative spores.
Collapse
Affiliation(s)
- Yeji Kim
- />Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 USA
| | - Nathan Edwards
- />Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057 USA
| | - Catherine Fenselau
- />Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
39
|
Makroczyová J, Jamroškovič J, Krascsenitsová E, Labajová N, Barák I. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis. Microbiologyopen 2016; 5:387-401. [PMID: 26817670 PMCID: PMC4905992 DOI: 10.1002/mbo3.337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/20/2015] [Accepted: 12/30/2015] [Indexed: 01/07/2023] Open
Abstract
In rod‐shaped bacteria, the proper placement of the division septum at the midcell relies, at least partially, on the proteins of the Min system as an inhibitor of cell division. The main principle of Min system function involves the formation of an inhibitor gradient along the cell axis; however, the establishment of this gradient differs between two well‐studied gram‐negative and gram‐positive bacteria. While in gram‐negative Escherichia coli, the Min system undergoes pole‐to‐pole oscillation, in gram‐positive Bacillus subtilis, proper spatial inhibition is achieved by the preferential attraction of the Min proteins to the cell poles. Nevertheless, when E.coli Min proteins are inserted into B.subtilis cells, they still oscillate, which negatively affects asymmetric septation during sporulation in this organism. Interestingly, homologs of both Min systems were found to be present in various combinations in the genomes of anaerobic and endospore‐forming Clostridia, including the pathogenic Clostridium difficile. Here, we have investigated the localization and behavior of C.difficile Min protein homologs and showed that MinDE proteins of C.difficile can oscillate when expressed together in B.subtilis cells. We have also investigated the effects of this oscillation on B.subtilis sporulation, and observed decreased sporulation efficiency in strains harboring the MinDE genes. Additionally, we have evaluated the effects of C.difficile Min protein expression on vegetative division in this heterologous host.
Collapse
Affiliation(s)
- Jana Makroczyová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Jamroškovič
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Krascsenitsová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Nad'a Labajová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
40
|
Bradshaw N, Losick R. Asymmetric division triggers cell-specific gene expression through coupled capture and stabilization of a phosphatase. eLife 2015; 4. [PMID: 26465112 PMCID: PMC4714977 DOI: 10.7554/elife.08145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/13/2015] [Indexed: 11/13/2022] Open
Abstract
Formation of a division septum near a randomly chosen pole during sporulation in Bacillus subtilis creates unequal sized daughter cells with dissimilar programs of gene expression. An unanswered question is how polar septation activates a transcription factor (σ(F)) selectively in the small cell. We present evidence that the upstream regulator of σ(F), the phosphatase SpoIIE, is compartmentalized in the small cell by transfer from the polar septum to the adjacent cell pole where SpoIIE is protected from proteolysis and activated. Polar recognition, protection from proteolysis, and stimulation of phosphatase activity are linked to oligomerization of SpoIIE. This mechanism for initiating cell-specific gene expression is independent of additional sporulation proteins; vegetative cells engineered to divide near a pole sequester SpoIIE and activate σ(F) in small cells. Thus, a simple model explains how SpoIIE responds to a stochastically-generated cue to activate σ(F) at the right time and in the right place.
Collapse
Affiliation(s)
- Niels Bradshaw
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
41
|
Tan IS, Weiss CA, Popham DL, Ramamurthi KS. A Quality-Control Mechanism Removes Unfit Cells from a Population of Sporulating Bacteria. Dev Cell 2015; 34:682-93. [PMID: 26387458 DOI: 10.1016/j.devcel.2015.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/10/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022]
Abstract
Recent discoveries of regulated cell death in bacteria have led to speculation about possible benefits that apoptosis-like pathways may confer to single-celled organisms. However, establishing how these pathways provide increased ecological fitness has remained difficult to determine. Here, we report a pathway in Bacillus subtilis in which regulated cell death maintains the fidelity of sporulation through selective removal of cells that misassemble the spore envelope. The spore envelope, which protects the dormant spore's genome from environmental insults, uses the protein SpoIVA as a scaffold for assembly. We found that disrupting envelope assembly activates a cell death pathway wherein the small protein CmpA acts as an adaptor to the AAA+ ClpXP protease to degrade SpoIVA, thereby halting sporulation and resulting in lysis of defective sporulating cells. We propose that removal of unfit cells from a population of terminally differentiating cells protects against evolutionary deterioration and ultimately loss of the sporulation program.
Collapse
Affiliation(s)
- Irene S Tan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; NIH-Johns Hopkins University Graduate Partnership Program, Baltimore, MD 21218, USA
| | - Cordelia A Weiss
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Wu IL, Narayan K, Castaing JP, Tian F, Subramaniam S, Ramamurthi KS. A versatile nano display platform from bacterial spore coat proteins. Nat Commun 2015; 6:6777. [PMID: 25854653 PMCID: PMC4396682 DOI: 10.1038/ncomms7777] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
Dormant bacterial spores are encased in a thick protein shell, the ‘coat', which contains ∼70 different proteins. The coat protects the spore from environmental insults, and is among the most durable static structures in biology. Owing to extensive cross-linking among coat proteins, this structure has been recalcitrant to detailed biochemical analysis, so molecular details of how it assembles are largely unknown. Here, we reconstitute the basement layer of the coat atop spherical membranes supported by silica beads to create artificial spore-like particles. We report that these synthetic spore husk-encased lipid bilayers (SSHELs) assemble and polymerize into a static structure, mimicking in vivo basement layer assembly during sporulation in Bacillus subtilis. In addition, we demonstrate that SSHELs may be easily covalently modified with small molecules and proteins. We propose that SSHELs may be versatile display platforms for drugs and vaccines in clinical settings, or for enzymes that neutralize pollutants for environmental remediation. The densely crosslinked protein coats of bacterial spores are among the most durable static structures in biology. Wu et al. reconstitute the basement layer of a bacterial spore coat on membrane-coated beads, and generate covalently-modified spore-like particles with therapeutic potential.
Collapse
Affiliation(s)
- I-Lin Wu
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kedar Narayan
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jean-Philippe Castaing
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
Structural basis for the geometry-driven localization of a small protein. Proc Natl Acad Sci U S A 2015; 112:E1908-15. [PMID: 25825747 DOI: 10.1073/pnas.1423868112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In bacteria, certain shape-sensing proteins localize to differently curved membranes. During sporulation in Bacillus subtilis, the only convex (positively curved) surface in the cell is the forespore, an approximately spherical internal organelle. Previously, we demonstrated that SpoVM localizes to the forespore by preferentially adsorbing onto slightly convex membranes. Here, we used NMR and molecular dynamics simulations of SpoVM and a localization mutant (SpoVM(P9A)) to reveal that SpoVM's atypical amphipathic α-helix inserts deeply into the membrane and interacts extensively with acyl chains to sense packing differences in differently curved membranes. Based on binding to spherical supported lipid bilayers and Monte Carlo simulations, we hypothesize that SpoVM's membrane insertion, along with potential cooperative interactions with other SpoVM molecules in the lipid bilayer, drives its preferential localization onto slightly convex membranes. Such a mechanism, which is distinct from that used by high curvature-sensing proteins, may be widely conserved for the localization of proteins onto the surface of cellular organelles.
Collapse
|
44
|
Fimlaid KA, Shen A. Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Curr Opin Microbiol 2015; 24:88-95. [PMID: 25646759 DOI: 10.1016/j.mib.2015.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/23/2014] [Accepted: 01/10/2015] [Indexed: 11/27/2022]
Abstract
Sporulation allows bacteria to survive adverse conditions and is essential to the lifecycle of some obligate anaerobes. In Bacillus subtilis, the sporulation-specific sigma factors, σ(F), σ(E), σ(G), and σ(K), activate compartment-specific transcriptional programs that drive sporulation through its morphological stages. The regulation of these sigma factors was predicted to be conserved across the Firmicutes, since the regulatory proteins controlling their activation are largely conserved. However, recent studies in (Pepto)Clostridium difficile, Clostridium acetobutylicum, Clostridium perfringens, and Clostridium botulinum have revealed striking differences in the order, activation, and function of sporulation sigma factors. These studies indicate that gene conservation does not necessarily predict gene function and that new mechanisms for controlling cell fate determination remain to be discovered in the anaerobic Clostridia.
Collapse
Affiliation(s)
- Kelly A Fimlaid
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; Cellular, Molecular and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA
| | - Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
45
|
Sieger B, Bramkamp M. Interaction sites of DivIVA and RodA from Corynebacterium glutamicum. Front Microbiol 2015; 5:738. [PMID: 25709601 PMCID: PMC4285798 DOI: 10.3389/fmicb.2014.00738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022] Open
Abstract
Elongation growth in actinobacteria is localized at the cell poles. This is in contrast to many classical model organisms where insertion of new cell wall material is localized around the lateral site. We previously described a role of RodA from Corynebacterium glutamicum in apical cell growth and morphogenesis. Deletion of rodA had drastic effects on morphology and growth, likely a result from misregulation of penicillin-binding proteins and cell wall precursor delivery. We identified the interaction of RodA with the polar scaffold protein DivIVA, thus explaining subcellular localization of RodA to the cell poles. In this study, we describe this interaction in detail and map the interaction sites of DivIVA and RodA. A single amino acid residue in the N-terminal domain of DivIVA was found to be crucial for the interaction with RodA. The interaction site of RodA was mapped to its cytoplasmic, C-terminal domain, in a region encompassing the last 10 amino acids (AAs). Deletion of these 10 AAs significantly decreased the interaction efficiency with DivIVA. Our results corroborate the interaction of DivIVA and RodA, underscoring the important role of DivIVA as a spatial organizer of the elongation machinery in Corynebacterineae.
Collapse
Affiliation(s)
- Boris Sieger
- Biocenter - Ludwig-Maximilians-University Munich Munich, Germany
| | - Marc Bramkamp
- Biocenter - Ludwig-Maximilians-University Munich Munich, Germany
| |
Collapse
|
46
|
Barák I. Complexity of bacterial phosphorylation interaction network. Front Microbiol 2014; 5:725. [PMID: 25566234 PMCID: PMC4269134 DOI: 10.3389/fmicb.2014.00725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| |
Collapse
|