1
|
Böhringer AC, Sievers CC, Burghaus M, Merzendorfer H. A G-protein coupled receptor is involved in the DUOX pathway in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104306. [PMID: 40158639 DOI: 10.1016/j.ibmb.2025.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Activation of the dual oxidase (DUOX) pathway is an important intestinal defense mechanism against enteric infection triggering the formation of radical oxygen species by stimulating DUOX enzyme activity and/or gene expression. In insects, several studies have suggested that uracil released by pathogenic bacteria functions as a major trigger molecule for the activation of DUOX, which leads to the formation of antimicrobial hypochlorous acid (HOCl). While the recognition of pathogen-associated molecular patterns of microbes by pattern recognition receptors is well understood, the detection of uracil is still elusive. It has been postulated that a G-protein coupled receptor (GPCR) binds the pyrimidine uracil, which activates PLCβ signalling and further downstream events. So far, no pyrimidinergic receptor has been identified in insects, particularly none that binds uracil nucleotides or sugar derivatives. To identify potential candidates for insect pyrimidine receptors, we used a human P2Y4 receptor as a template to screen the Tribolium castaneum reference proteome. Four promising receptor candidates were identified, of which two were analyzed using RNA interference to determine their influence on uracil-induced TcDUOX expression, HOCl formation and development in control larvae and larvae that were challenged with the enteric pathogen Bacillus thuringiensis. Silencing TcGPCR41 resulted in a loss of uracil-induced TcDUOX expression and HOCl formation. Furthermore, the development of challenged larvae was affected in a manner like that observed in a TcDUOX knockdown. We conclude that the identified receptor may play a role in the uracil-dependent activation of the DUOX-pathways.
Collapse
Affiliation(s)
| | | | - Maximilian Burghaus
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany
| | - Hans Merzendorfer
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany.
| |
Collapse
|
2
|
Ji Y, Gao B, Zhao D, Zhang L, Wu H, Xie Y, Shi Q, Wang Y, Guo W. The role of 20-hydroxyecdysone and juvenile hormone in insecticidal activity of Bacillus thuringiensis regulated by DUOX-ROS immunity in Spodoptera exigua. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106222. [PMID: 40015833 DOI: 10.1016/j.pestbp.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 03/01/2025]
Abstract
Insect midgut bacteria can be transferred to the blood cavity due to Bt infection and proliferate, becoming pathogens and enhancing Bt insecticidal activity. Dual oxidase (DUOX)-reactive oxygen species (ROS) signaling pathway plays a key role in regulating microbial homeostasis and resisting pathogen infection. However, the functions of MEKK and MKK associated with DUOX-ROS immunity are rarely studied in insects, moreover, the regulatory mechanisms underlying DUOX-ROS immunity via 20-Hydroxyecdysone (20E) and juvenile hormone (JH) are underexplored. In this study, we investigated that Spodoptera exigua MAPK kinase kinase 4 (SeMEKK4) and MAPK kinase 6 (SeMKK6) were required for Sep38β expression, and RNAi-mediated knockdown of SeMEKK4 and SeMKK6 significantly decreased ROS level and increased bacterial load in the midgut of S. exigua larvae, thereby enhancing Bt insecticidal activity. Furthermore, 20E and JH titers were elevated in insects infected with Bt. 20E upregulated the expression of SeMEKK4, SeMKK6, and Sep38β through SeEcR and SeUSP receptors, and activated the expression of SeDUOX to increase ROS level and decrease bacterial load in the midgut, which was not conducive to the enhancement of Bt insecticide activity. JH showed an opposite effect on midgut-related DUOX-ROS immunity via SeMet1 and SeMet2, and it was noteworthy that JH played a dominant role in negatively regulating DUOX-ROS immunity post Bt infection, which enhanced Bt insecticidal activity. This is an adjustment strategy for insects to cope with Bt infection, providing a new perspective for pest management.
Collapse
Affiliation(s)
- Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Gao
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Lu Zhang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Xie
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuyu Shi
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Du Z, Wang X, Duan Y, Liu S, Tian L, Song F, Cai W, Li H. Global Invasion History and Genomic Signatures of Adaptation of the Highly Invasive Sycamore Lace Bug. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae074. [PMID: 39400548 PMCID: PMC11993305 DOI: 10.1093/gpbjnl/qzae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Invasive species cause massive economic and ecological damages. Climate change has resulted in an unprecedented increase in the number and impact of invasive species; however, the mechanisms underlying these invasions are unclear. The sycamore lace bug, Corythucha ciliata, is a highly invasive species originating from North America and has expanded across the Northern Hemisphere since the 1960s. In this study, we assembled the C. ciliata genome using high-coverage Pacific Biosciences (PacBio), Illumina, and high-throughput chromosome conformation capture (Hi-C) sequencing. A total of 15,278 protein-coding genes were identified, and expansions of gene families with oxidoreductase and metabolic activities were observed. In-depth resequencing of 402 samples from native and nine invaded countries across three continents revealed 2.74 million single nucleotide polymorphisms. Two major invasion routes of C. ciliata were identified from North America to Europe and Japan, with a contact zone forming in East Asia. Genomic signatures of selection associated with invasion and long-term balancing selection in native ranges were identified. These genomic signatures overlapped with each other as well as with expanded genes, suggesting improvements in the oxidative stress and thermal tolerance of C. ciliata. These findings offer valuable insights into the genomic architecture and adaptive evolution underlying the invasive capabilities of species during rapid environmental changes.
Collapse
Affiliation(s)
- Zhenyong Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Musselman LP, Truong HG, DiAngelo JR. Transcriptional Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782870 DOI: 10.1007/5584_2024_808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Huy G Truong
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA.
| |
Collapse
|
5
|
Chen J, Wang Q, Li R, Li Z, Jiang Q, Yan F, Ye J. The role of Keap1-Nrf2 signaling pathway during the progress and therapy of diabetic retinopathy. Life Sci 2024; 338:122386. [PMID: 38159594 DOI: 10.1016/j.lfs.2023.122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Diabetic retinopathy is a complex and progressive ocular complication of diabetes mellitus and is a leading cause of blindness in people of working age worldwide. The pathophysiology of diabetic retinopathy involves multifactorial processes, including oxidative stress, inflammation and vascular abnormalities. Understanding the underlying molecular mechanisms involved in its pathogenesis is essential for the development of effective therapeutic interventions. One of the pathways receiving increasing attention is the Keap1-Nrf2 signaling pathway, which regulates the cellular response to oxidative stress by activating Nrf2. In this review, we analyze the current evidence linking Keap1-Nrf2 signaling pathway dysregulation to diabetic retinopathy. In addition, we explore the potential therapeutic implications and the challenges of targeting this pathway for disease management. A comprehensive understanding of the molecular mechanisms of diabetic retinopathy and the therapeutic potential of the Keap1-Nrf2 pathway may pave the way for innovative and effective interventions to combat this vision-threatening disease.
Collapse
Affiliation(s)
- Jiawen Chen
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China; Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China
| | - Qi Wang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China
| | - Ruiyan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China
| | - Qizhou Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|
6
|
Ji Y, Gao B, Zhao D, Wang Y, Zhang L, Wu H, Xie Y, Shi Q, Guo W. Involvement of Sep38β in the Insecticidal Activity of Bacillus thuringiensis against Beet Armyworm, Spodoptera exigua (Lepidoptera). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2321-2333. [PMID: 38206329 DOI: 10.1021/acs.jafc.3c06667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The p38 mitogen-activated protein kinases (MAPKs) are associated with insect immunity, tissue repair, and the insecticidal activity of Bacillus thuringiensis (Bt). Here, a p38 MAPK family gene (Sep38β) was identified from Spodoptera exigua. Among the developmental stages, the transcription level of Sep38β was the highest in egg, followed by that in prepupa and pupa. Sep38β expression peaked in Malpighian tubules and the hemolymph of fifth instar larvae. Knockdown of Sep38β or injection of SB203580 (a p38 MAPK inhibitor) significantly downregulated the SeDUOX expression and reactive oxygen species (ROS) level in the midgut, accounting for deterioration of the midgut to scavenge pathogens and enhancement of Bt insecticidal activity. In conclusion, all the results demonstrate that Sep38β regulates the immune-related ROS level in the insect midgut, which suppresses the insecticidal activity of Bt against S. exigua by 17-22%. Our study highlights that Sep38β is essential for insect immunity and the insecticidal activity of Bt to S. exigua and is a potential target for pest control.
Collapse
Affiliation(s)
- Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Gao
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Yao Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Zhang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Xie
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuyu Shi
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Balakireva Y, Nikitina M, Makhnovskii P, Kukushkina I, Kuzmin I, Kim A, Nefedova L. The Lifespan of D. melanogaster Depends on the Function of the Gagr Gene, a Domesticated gag Gene of Drosophila LTR Retrotransposons. INSECTS 2024; 15:68. [PMID: 38249074 PMCID: PMC10816282 DOI: 10.3390/insects15010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
(1) Background: The Gagr gene in Drosophila melanogaster's genome originated from the molecular domestication of retrotransposons and retroviruses' gag gene. In all Drosophila species, the Gagr protein homologs exhibit a conserved structure, indicative of a vital role. Previous studies have suggested a potential link between the Gagr gene function and stress responses. (2) Methods: We compared flies with Gagr gene knockdown in all tissues to control flies in physiological tests and RNA-sequencing experiments. (3) Results: Flies with the Gagr gene knockdown exhibited shorter lifespans compared to control flies. Transcriptome analysis revealed that Gagr knockdown flies showed elevated transcription levels of immune response genes. We used ammonium persulfate, a potent stress inducer, to elicit a stress response. In control flies, ammonium persulfate activated the Toll, JAK/STAT, and JNK/MAPK signaling pathways. In contrast, flies with the Gagr gene knockdown displayed reduced expression of stress response genes. Gene ontology enrichment analysis identified categories of genes upregulated under ammonium persulfate stress in control flies but not in Gagr knockdown flies. These genes are involved in developmental control, morphogenesis, and central nervous system function. (4) Conclusion: Our findings indicate the significance of the Gagr gene in maintaining immune response and homeostasis.
Collapse
Affiliation(s)
- Yevgenia Balakireva
- Department of Genetics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (Y.B.); (M.N.); (I.K.); (I.K.); (A.K.)
| | - Maria Nikitina
- Department of Genetics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (Y.B.); (M.N.); (I.K.); (I.K.); (A.K.)
| | - Pavel Makhnovskii
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Inna Kukushkina
- Department of Genetics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (Y.B.); (M.N.); (I.K.); (I.K.); (A.K.)
| | - Ilya Kuzmin
- Department of Genetics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (Y.B.); (M.N.); (I.K.); (I.K.); (A.K.)
| | - Alexander Kim
- Department of Genetics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (Y.B.); (M.N.); (I.K.); (I.K.); (A.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Longgang District, Shenzhen 518172, China
| | - Lidia Nefedova
- Department of Genetics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (Y.B.); (M.N.); (I.K.); (I.K.); (A.K.)
| |
Collapse
|
8
|
Böhringer AC, Deters L, Windfelder AG, Merzendorfer H. Dextran sulfate sodium and uracil induce inflammatory effects and disrupt the chitinous peritrophic matrix in the midgut of Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104029. [PMID: 37907139 DOI: 10.1016/j.ibmb.2023.104029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Dextran sulfate sodium is used in inflammatory bowel disease (IBD) mice models to trigger chronic intestinal inflammation. In this study, we have analyzed DSS effects in the genetic model and pest beetle, Tribolium castaneum, which can be easily and cost-effectively cultivated and examined in very large quantities compensating for individual variations. We fed the larvae with DSS and uracil, which is known to induce the production of reactive oxygen species by activating DUOX, a member of the NADPH oxidase family. Both chemicals induced IBD-like phenotypes, including impaired growth and development, midgut thickening, epithelial swelling, and a loss of epithelial barrier function. RNAi mediated knockdown of DUOX expression enhanced the effects of DSS and uracil on mortality. Finally, we showed that both treatments result in an altered activity of the intestinal microbiome, similar as observed in IBD patients. Our findings suggest that both chemicals impair the epithelial barrier by increasing the permeability of the peritrophic matrix. The loss of the barrier function may facilitate the entry of midgut bacteria triggering innate immune responses that also affect the intestinal microbiome. As the observed effects resemble those induced by DSS treatment in mice, T. castaneum might be suitable high-throughput invertebrate model for IBD research and preclinical studies.
Collapse
Affiliation(s)
| | - Lara Deters
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany
| | - Anton George Windfelder
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 35392, Gießen, Germany; Experimental Radiology, Department of Medicine, Justus Liebig University, 35392, Gießen, Germany
| | - Hans Merzendorfer
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany.
| |
Collapse
|
9
|
Guo L, Tang J, Tang M, Luo S, Zhou X. Reactive oxygen species are regulated by immune deficiency and Toll pathways in determining the host specificity of honeybee gut bacteria. Proc Natl Acad Sci U S A 2023; 120:e2219634120. [PMID: 37556501 PMCID: PMC10438842 DOI: 10.1073/pnas.2219634120] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Host specificity is observed in gut symbionts of diverse animal lineages. But how hosts maintain symbionts while rejecting their close relatives remains elusive. We use eusocial bees and their codiversified gut bacteria to understand host regulation driving symbiotic specificity. The cross-inoculation of bumblebee Gilliamella induced higher prostaglandin in the honeybee gut, promoting a pronounced host response through immune deficiency (IMD) and Toll pathways. Gene silencing and vitamin C treatments indicate that reactive oxygen species (ROS), not antimicrobial peptides, acts as the effector in inhibiting the non-native strain. Quantitative PCR and RNAi further reveal a regulatory function of the IMD and Toll pathways, in which Relish and dorsal-1 may regulate Dual Oxidase (Duox) for ROS production. Therefore, the honeybee maintains symbiotic specificity by creating a hostile gut environment to exotic bacteria, through differential regulation of its immune system, reflecting a co-opting of existing machinery evolved to combat pathogens.
Collapse
Affiliation(s)
- Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100083, People’s Republic of China
- Sanya Institute of China Agricultural University, Sanya572000, People’s Republic of China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100083, People’s Republic of China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, People’s Republic of China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100083, People’s Republic of China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou215100, People’s Republic of China
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100083, People’s Republic of China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100083, People’s Republic of China
- Sanya Institute of China Agricultural University, Sanya572000, People’s Republic of China
| |
Collapse
|
10
|
Shu Q, Guo X, Tian C, Wang Y, Zhang X, Cheng J, Li F, Li B. Homeostatic Regulation of the Duox-ROS Defense System: Revelations Based on the Diversity of Gut Bacteria in Silkworms ( Bombyx mori). Int J Mol Sci 2023; 24:12731. [PMID: 37628915 PMCID: PMC10454487 DOI: 10.3390/ijms241612731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The Duox-ROS defense system plays an important role in insect intestinal immunity. To investigate the role of intestinal microbiota in Duox-ROS regulation herein, 16S rRNA sequencing technology was utilized to compare the characteristics of bacterial populations in the midgut of silkworm after different time-periods of treatment with three feeding methods: 1-4 instars artificial diet (AD), 1-4 instars mulberry leaf (ML) and 1-3 instars artificial diet + 4 instar mulberry leaf (TM). The results revealed simple intestinal microbiota in the AD group whilst microbiota were abundant and variable in the ML and TM silkworms. By analyzing the relationship among intestinal pH, reactive oxygen species (ROS) content and microorganism composition, it was identified that an acidic intestinal environment inhibited the growth of intestinal microbiota of silkworms, observed concurrently with low ROS content and a high activity of antioxidant enzymes (SOD, TPX, CAT). Gene expression associated with the Duox-ROS defense system was detected using RT-qPCR and identified to be low in the AD group and significantly higher in the TM group of silkworms. This study provides a new reference for the future improvement of the artificial diet feeding of silkworm and a systematic indicator for the further study of the relationship between changes in the intestinal environment and intestinal microbiota balance caused by dietary alterations.
Collapse
Affiliation(s)
- Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Chao Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Xiaoxia Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Jialu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
- Sericulture Institute, Soochow University, Suzhou 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
- Sericulture Institute, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Zheng L, Zhang A, Tan M, Ma W, Yan S, Jiang D. Susceptibility of Hyphantria cunea larvae to Beauveria bassiana under Cd Stress: An integrated study of innate immunity and energy metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115071. [PMID: 37257345 DOI: 10.1016/j.ecoenv.2023.115071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Biological control is widely used for integrated pest management. However, there are many abiotic factors that can affect the biocontrol efficiency. In this study, we investigated the susceptibility of Hyphantria cunea larvae to Beauveria bassiana under Cd stress, and the corresponding mechanism was analyzed around innate immunity and energy metabolism. The results showed that mortality of H. cunea larvae treated with Cd and B. bassiana was significantly higher than those treated with B. bassiana alone, and the combined lethal effect exhibited a synergistic effect. Compared with the single fungal treatment group, the total hemocyte count in the combined Cd and fungal treatment group decreased significantly, accompanied by a decrease in phagocytosis, encapsulation, and melanization activity. The expression levels of three phagocytosis-related genes, one encapsulation-promoting gene, and one melanization-regulating gene were significantly lower in the combined treatment group than those in the single fungal treatment group. Furthermore, pathogen recognition ability, signal transduction level, and immune effector expression level were weaker in the combined treatment group than those in the single fungal treatment group. The expression levels of 14 key metabolites and 7 key regulatory genes in glycolysis and tricarboxylic acid cycle pathways were significantly lower in the combined treatment group than those in the single fungal treatment group. Taken together, the weakness of innate immunity and energy metabolism in response to pathogen infection resulted in an increased susceptibility of H. cunea larvae to B. bassiana under Cd pre-exposure. Microbial insecticide is a preferred strategy for pest control in heavy metal-polluted areas. AVAILABILITY OF DATA AND MATERIAL: All the data that support the findings of this study are available in the manuscript.
Collapse
Affiliation(s)
- Lin Zheng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Weichao Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
12
|
Muita BK, Baxter SW. Temporal Exposure to Bt Insecticide Causes Oxidative Stress in Larval Midgut Tissue. Toxins (Basel) 2023; 15:toxins15050323. [PMID: 37235357 DOI: 10.3390/toxins15050323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Bacillus thuringiensis (Bt) three-domain Cry toxins are highly successful biological pesticides; however, the mechanism through which they cause death to targeted larval midgut cells is not fully understood. Herein, we challenged transgenic Bt-susceptible Drosophila melanogaster larvae with moderate doses of activated Cry1Ac toxin and assessed the midgut tissues after one, three, and five hours using transmission electron microscopy and transcriptome sequencing. Larvae treated with Cry1Ac showed dramatic changes to their midgut morphology, including shortened microvilli, enlarged vacuoles, thickened peritrophic membranes, and swelling of the basal labyrinth, suggesting water influx. Transcriptome analysis showed that innate immune responses were repressed, genes involved with cell death pathways were largely unchanged, and mitochondria-related genes were strongly upregulated following toxin exposure. Defective mitochondria produced after toxin exposure were likely to contribute to significant levels of oxidative stress, which represent a common physiological response to a range of toxic chemicals. Significant reductions in both mitochondrial aconitase activity and ATP levels in the midgut tissue supported a rapid increase in reactive oxygen species (ROS) following exposure to Cry1Ac. Overall, these findings support the role of water influx, midgut cell swelling, and ROS activity in response to moderate concentrations of Cry1Ac.
Collapse
Affiliation(s)
- Biko K Muita
- School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Simon W Baxter
- School of BioSciences, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
13
|
Tian C, Wang Y, Yang X, Zhou J, Gao Y, Shi J, Jiang J. Functional analysis of two mitogen-activated protein kinases involved in thermal resistance of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:363-378. [PMID: 37074543 DOI: 10.1007/s10493-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Predatory mites are important biological control agents used against phytophagous mites and small insects. They face various environmental pressures, especially fluctuating climate factors. Neoseiulus californicus, a commercially available phytoseiid mite, is adapted to a wide range of temperature conditions. We investigated the regulatory mechanisms governing the plastic response of N. californicus for coping with environmental temperature variations. The mitogen-activated protein kinase (MAPK) signaling pathway is a highly conserved pathway of cell signal transduction that responds to environmental stress. We isolated two MAPKK genes (NcMAPKK4 and NcMAPKK6) from N. californicus and studied their functions. Developmental stage-specific expression level analysis showed that in adults, particularly females, NcMAPKK4 and NcMAPKK6 levels were higher than in other developmental stages. The expression level analysis at extremely high and low temperature conditions demonstrated that NcMAPKK4 could be induced significantly by adverse thermal stresses, whereas NcMAPKK6 distinctly responded to heat shock, indicating their different roles in thermal stress responses. After silencing of NcMAPKK4, both heat and cold resistance decreased significantly, whereas NcMAPKK6 knockdown had a greater influence on heat resistance. Knockdown of NcMAPKKs also reduced the activities of antioxidant enzymes, suggesting the regulation of NcMAPKKs was closely related to the antioxidant process in oxidative stress caused by external stimuli. These results indicate an important role of NcMAPKKs in the response to thermal stress and provide insight into the MAPK cascade pathway in the environmental adaptation mechanisms of phytoseiid mites.
Collapse
Affiliation(s)
- Chuanbei Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yudi Wang
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xuqin Yang
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
- XuZhou Nuote Chemical Co., Ltd, Xuzhou, 221137, China
| | - Jiangsheng Zhou
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yuzhong Gao
- XuZhou Nuote Chemical Co., Ltd, Xuzhou, 221137, China
| | - Jingjing Shi
- XuZhou Nuote Chemical Co., Ltd, Xuzhou, 221137, China
| | - Jihong Jiang
- College of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
14
|
Shabardina V, Charria PR, Saborido GB, Diaz-Mora E, Cuenda A, Ruiz-Trillo I, Sanz-Ezquerro JJ. Evolutionary analysis of p38 stress-activated kinases in unicellular relatives of animals suggests an ancestral function in osmotic stress. Open Biol 2023; 13:220314. [PMID: 36651171 PMCID: PMC9846432 DOI: 10.1098/rsob.220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
p38 kinases are key elements of the cellular stress response in animals. They mediate the cell response to a multitude of stress stimuli, from osmotic shock to inflammation and oncogenes. However, it is unknown how such diversity of function in stress evolved in this kinase subfamily. Here, we show that the p38 kinase was already present in a common ancestor of animals and fungi. Later, in animals, it diversified into three JNK kinases and four p38 kinases. Moreover, we identified a fifth p38 paralog in fishes and amphibians. Our analysis shows that each p38 paralog has specific amino acid substitutions around the hinge point, a region between the N-terminal and C-terminal protein domains. We showed that this region can be used to distinguish between individual paralogs and predict their specificity. Finally, we showed that the response to hyperosmotic stress in Capsaspora owczarzaki, a close unicellular relative of animals, follows a phosphorylation-dephosphorylation pattern typical of p38 kinases. At the same time, Capsaspora's cells upregulate the expression of GPD1 protein resembling an osmotic stress response in yeasts. Overall, our results show that the ancestral p38 stress pathway originated in the root of opisthokonts, most likely as a cell's reaction to salinity change in the environment. In animals, the pathway became more complex and incorporated more stimuli and downstream targets due to the p38 sequence evolution in the docking and substrate binding sites around the hinge region. This study improves our understanding of p38 evolution and opens new perspectives for p38 research.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona
| | - Pedro Romero Charria
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona
| | - Gonzalo Bercedo Saborido
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona
| | - Ester Diaz-Mora
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona,Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity, University of Barcelona, Barcelona, Spain,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Juan Jose Sanz-Ezquerro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
15
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
16
|
Samuel OD, Adeyemi JA, Bamidele OS, Barbosa F, Adedire CO. Cytotoxicity, redox and immune status in African catfish, Clarias gariepinus (Burchell, 1822) exposed to bisphenol A (BPA) and its analogues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74185-74196. [PMID: 35635660 DOI: 10.1007/s11356-022-21068-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The objective of the study was to determine the comparative toxicities and immune dysfunction in the African catfish, Clarias gariepinus, exposed to bisphenol A (BPA) and its two analogues: bisphenol AP (BPAP) and bisphenol P (BPP). Juveniles of C. gariepinus were exposed to sublethal concentrations (70 and 140 μg/L) of BPA, BPAP and BPP for 7, 14 or 21 days after which various endpoints which are indicative of cytotoxicity, oxidative stress and haematological and innate immune parameters were determined in the liver homogenates or blood plasma. The exposure of C. gariepinus to BPA and its analogues caused significant increased activities of lactate dehydrogenase, catalase and superoxide dismutase. The exposed fish had increased levels of DNA fragmentation, lipid peroxidation, white blood cells, nitric oxide and respiratory burst, while the red blood cell counts and the percentage packed cell volume decreased significantly in the exposed fish compared to control. The toxic effects elicited by the bisphenols were both concentration- and duration-dependent. Generally, BPA exerted the most toxic effects on the fish, followed by BPAP, while BPP exerted the least toxic effects to C. gariepinus. Summarily, the findings indicated that BPA and its two analogues studied in the research are capable of causing cytotoxicity, oxidative stress and immune dysfunction in C. gariepinus.
Collapse
Affiliation(s)
- Oluwakemi D Samuel
- Department of Biology, School of Life Sciences, Federal University of Technology Akure, P.M.B. 704, Akure, Nigeria
| | - Joseph A Adeyemi
- Department of Biology, School of Life Sciences, Federal University of Technology Akure, P.M.B. 704, Akure, Nigeria.
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil.
| | - Olufemi S Bamidele
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Chris O Adedire
- Department of Biology, School of Life Sciences, Federal University of Technology Akure, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
17
|
Sidak-Loftis LC, Rosche KL, Pence N, Ujczo JK, Hurtado J, Fisk EA, Goodman AG, Noh SM, Peters JW, Shaw DK. The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. mBio 2022; 13:e0070322. [PMID: 35862781 PMCID: PMC9426425 DOI: 10.1128/mbio.00703-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.
Collapse
Affiliation(s)
- Lindsay C. Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kristin L. Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jessica K. Ujczo
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Susan M. Noh
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
18
|
Mutations of γCOP Gene Disturb Drosophila melanogaster Innate Immune Response to Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:ijms23126499. [PMID: 35742941 PMCID: PMC9223523 DOI: 10.3390/ijms23126499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Drosophila melanogaster (the fruit fly) is a valuable experimental platform for modeling host–pathogen interactions. It is also commonly used to define innate immunity pathways and to understand the mechanisms of both host tolerance to commensal microbiota and response to pathogenic agents. Herein, we investigate how the host response to bacterial infection is mirrored in the expression of genes of Imd and Toll pathways when D. melanogaster strains with different γCOP genetic backgrounds are infected with Pseudomonas aeruginosa ATCC 27853. Using microarray technology, we have interrogated the whole-body transcriptome of infected versus uninfected fruit fly males with three specific genotypes, namely wild-type Oregon, γCOPS057302/TM6B and γCOP14a/γCOP14a. While the expression of genes pertaining to Imd and Toll is not significantly modulated by P. aeruginosa infection in Oregon males, many of the components of these cascades are up- or downregulated in both infected and uninfected γCOPS057302/TM6B and γCOP14a/γCOP14a males. Thus, our results suggest that a γCOP genetic background modulates the gene expression profiles of Imd and Toll cascades involved in the innate immune response of D. melanogaster, inducing the occurrence of immunological dysfunctions in γCOP mutants.
Collapse
|
19
|
Deshpande R, Lee B, Qiao Y, Grewal SS. TOR signalling is required for host lipid metabolic remodelling and survival following enteric infection in Drosophila. Dis Model Mech 2022; 15:dmm049551. [PMID: 35363274 PMCID: PMC9118046 DOI: 10.1242/dmm.049551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022] Open
Abstract
When infected by enteric pathogenic bacteria, animals need to initiate local and whole-body defence strategies. Although most attention has focused on the role of innate immune anti-bacterial responses, less is known about how changes in host metabolism contribute to host defence. Using Drosophila as a model system, we identify induction of intestinal target-of-rapamycin (TOR) kinase signalling as a key adaptive metabolic response to enteric infection. We find that enteric infection induces both local and systemic induction of TOR independently of the Immune deficiency (IMD) innate immune pathway, and we see that TOR functions together with IMD signalling to promote infection survival. These protective effects of TOR signalling are associated with remodelling of host lipid metabolism. Thus, we see that TOR is required to limit excessive infection-mediated wasting of host lipid stores by promoting an increase in the levels of gut- and fat body-expressed lipid synthesis genes. Our data support a model in which induction of TOR represents a host tolerance response to counteract infection-mediated lipid wasting in order to promote survival. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
20
|
Medina A, Bellec K, Polcowñuk S, Cordero JB. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Dis Model Mech 2022; 15:274860. [PMID: 35344037 PMCID: PMC8990086 DOI: 10.1242/dmm.049332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease. Summary: We outline work in the fruit fly Drosophila melanogaster that has contributed knowledge on local and whole-body signalling coordinated by the adult intestine, and discuss its implications in intestinal pathophysiology and associated systemic dysfunction.
Collapse
Affiliation(s)
- Andre Medina
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Bellec
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sofia Polcowñuk
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
21
|
Jauregui-Lozano J, Hall H, Stanhope SC, Bakhle K, Marlin MM, Weake VM. The Clock:Cycle complex is a major transcriptional regulator of Drosophila photoreceptors that protects the eye from retinal degeneration and oxidative stress. PLoS Genet 2022; 18:e1010021. [PMID: 35100266 PMCID: PMC8830735 DOI: 10.1371/journal.pgen.1010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aging eye experiences physiological changes that include decreased visual function and increased risk of retinal degeneration. Although there are transcriptomic signatures in the aging retina that correlate with these physiological changes, the gene regulatory mechanisms that contribute to cellular homeostasis during aging remain to be determined. Here, we integrated ATAC-seq and RNA-seq data to identify 57 transcription factors that showed differential activity in aging Drosophila photoreceptors. These 57 age-regulated transcription factors include two circadian regulators, Clock and Cycle, that showed sustained increased activity during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15-20% of genes including key components of the phototransduction machinery and many eye-specific transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors leads to changes in activity of 37 transcription factors and causes a progressive decrease in global levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent retinal degeneration and increased oxidative stress, independent of light exposure. Together, our data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the aging eye by directing gene regulatory networks that maintain expression of the phototransduction machinery and counteract oxidative stress.
Collapse
Affiliation(s)
- Juan Jauregui-Lozano
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Hana Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Sarah C. Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Kimaya Bakhle
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Makayla M. Marlin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
22
|
Brown LD, Maness R, Hall C, Gibson JD. Reactive oxygen species-mediated immunity against bacterial infection in the gut of cat fleas (Ctenocephalides felis). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 136:103620. [PMID: 34216781 DOI: 10.1016/j.ibmb.2021.103620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Fleas (Order Siphonaptera) transmit numerous bacterial pathogens that cause severe human diseases (e.g., cat scratch disease, flea-borne spotted fever, murine typhus, plague). Because initial entry of these infectious agents occurs while blood feeding, the immune response in the flea gut is considered to be the first line of defense against invading microbes. However, relatively few studies have identified the flea immune molecules that effectively resist or limit infection in the gut. In other hematophagous insects, an immediate immune response to imbibed pathogens is the generation of reactive oxygen species (ROS). In this study, we utilized cat fleas (Ctenocephalides felis) to investigate whether oral infection with a well-known insect bacterial pathogen (Serratia marcescens) induces ROS synthesis in the flea gut, and whether production of ROS provides a defense mechanism against microbial colonization. Specifically, we treated fleas with an antioxidant to limit the number of free radicals in the digestive tract prior to infection, and then measured the following: S. marcescens infection loads, hydrogen peroxide (ROS) levels, and mRNA abundance of ROS signaling pathway genes. Overall, our data shows that ROS levels increase in response to infection in the flea gut, and that this increase helps to strengthen the flea immune response through the microbicidal activity of ROS.
Collapse
Affiliation(s)
- Lisa D Brown
- Department of Biology, Georgia Southern University, 4324 Old Register Rd., Statesboro, GA, 30460, USA.
| | - Ryne Maness
- Department of Biology, Georgia Southern University, 4324 Old Register Rd., Statesboro, GA, 30460, USA
| | - Clark Hall
- Department of Biology, Georgia Southern University, 4324 Old Register Rd., Statesboro, GA, 30460, USA
| | - Joshua D Gibson
- Department of Biology, Georgia Southern University, 4324 Old Register Rd., Statesboro, GA, 30460, USA
| |
Collapse
|
23
|
Bai S, Yao Z, Raza MF, Cai Z, Zhang H. Regulatory mechanisms of microbial homeostasis in insect gut. INSECT SCIENCE 2021; 28:286-301. [PMID: 32888254 DOI: 10.1111/1744-7917.12868] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Insects live in incredibly complex environments. The intestinal epithelium of insects is in constant contact with microorganisms, some of which are beneficial and some harmful to the host. Insect gut health and function are maintained through multidimensional mechanisms that can proficiently remove foreign pathogenic microorganisms while effectively maintaining local symbiotic microbial homeostasis. The basic immune mechanisms of the insect gut, such as the dual oxidase-reactive oxygen species (Duox-ROS) system and the immune deficiency (Imd)-signaling pathway, are involved in the maintenance of microbial homeostasis. This paper reviews the role of physical defenses, the Duox-ROS and Imd signaling pathways, the Janus kinase/signal transducers and activators of transcription signaling pathway, and intestinal symbiotic flora in the homeostatic maintenance of the insect gut microbiome.
Collapse
Affiliation(s)
- Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Wang Y, Wu X, Wang Z, Chen T, Zhou S, Chen J, Pang L, Ye X, Shi M, Huang J, Chen X. Symbiotic bracovirus of a parasite manipulates host lipid metabolism via tachykinin signaling. PLoS Pathog 2021; 17:e1009365. [PMID: 33647060 PMCID: PMC7951984 DOI: 10.1371/journal.ppat.1009365] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
Parasites alter host energy homeostasis for their own development, but the mechanisms underlying this phenomenon remain largely unknown. Here, we show that Cotesia vestalis, an endoparasitic wasp of Plutella xylostella larvae, stimulates a reduction of host lipid levels. This process requires excess secretion of P. xylostella tachykinin (PxTK) peptides from enteroendocrine cells (EEs) in the midgut of the parasitized host larvae. We found that parasitization upregulates PxTK signaling to suppress lipogenesis in midgut enterocytes (ECs) in a non-cell-autonomous manner, and the reduced host lipid level benefits the development of wasp offspring and their subsequent parasitic ability. We further found that a C. vestalis bracovirus (CvBV) gene, CvBV 9–2, is responsible for PxTK induction, which in turn reduces the systemic lipid level of the host. Taken together, these findings illustrate a novel mechanism for parasite manipulation of host energy homeostasis by a symbiotic bracovirus gene to promote the development and increase the parasitic efficiency of an agriculturally important wasp species. Parasitic wasps are ubiquitous on earth and diverse. They lay eggs in or on the bodies of their hosts, and they have evolved adaptive strategies to regulate the energy metabolism of their hosts to match their own specific nutrition requirements. Here, we found that Cotesia vestalis, a solitary endoparasitoid of Plutella xylostella, uses symbiotic bracovirus as a weapon to manipulate host systemic lipid levels. Specifically, a C. vestalis bracovirus (CvBV) gene, CvBV 9–2, is responsible for the induction of PxTK, which in turn suppresses lipogenesis in the midgut of the parasitized host, leading to a nutritional lipid level suitable for the development and subsequent parasitic efficiency of C. vestalis wasps. Our study provides innovative insights into the mechanisms by which parasitic wasps manipulate host lipid homeostasis and may help to expand our knowledge of other parasitic systems.
Collapse
Affiliation(s)
- Yanping Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zehua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Min Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- * E-mail:
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Yang HT, Huang YH, Yang GW. Mini review: immunologic functions of dual oxidases in mucosal systems of vertebrates. BRAZ J BIOL 2020; 80:948-956. [DOI: 10.1590/1519-6984.208749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract Mucosal epithelial cells act as the first immunologic barrier of organisms, and contact directly with pathogens. Therefore, hosts must have differential strategies to combat pathogens efficiently. Reactive oxygen species (ROS), as a kind of oxidizing agents, participates in the early stage of killing pathogens quickly. Recent reports have revealed that dual oxidase (DUOX) plays a key role in mucosal immunity. And the DUOX is a transmembrane protein which produces ROS as their primary enzymatic products. This process is an important pattern for eliminating pathogens. In this review, we highlight the DUOX immunologic functions in the respiratory and digestive tract of vertebrates.
Collapse
|
26
|
Zhang C, Zhang R, Dai X, Cao X, Wang K, Huang X, Ren Q. Activating transcription factor 2 (ATF2) negatively regulates the expression of antimicrobial peptide genes through tumor necrosis factor (TNF) in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 107:26-35. [PMID: 33011434 DOI: 10.1016/j.fsi.2020.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Activating transcription factor 2 (ATF2), a member of the bZIP transcription factor family, is involved in multiple physiological and developmental processes, yet its role in the innate immunity remains unclear. In this study, two isoforms (named as MnATF2a and MnATF2b) of ATF2 gene were identified in Macrobrachium nipponense and were produced by exon skipping. The full length of MnATF2a is 2328 bp with an open reading frame of 2079 bp that encode 692 amino acids. MnATF2a has 237 bp nucleotides more than MnATF2b and the extra 237 bp is a complete exon. MnATF2a and MnATF2b proteins contain the same conserved and typical bZIP domain at the C-terminus. MnATF2a has 79 amino acids more than MnATF2b. MnATF2a and MnATF2b are widely distributed in a variety of immune tissues. After Vibrio parahaemolyticus and Staphylococcus aureus infection, the expression levels of MnATF2a and MnATF2b were significant up-regulated in the gills and stomach at 12 h. RNA interference analysis showed that knockdown of the total MnATF2 gene significantly inhibits the transcription of tumor necrosis factor (TNF) and promotes the expression of crustins (including Cru3, Cru4, and Cru7). Further study showed that knockdown of MnTNF evidently increase the expression of Cru3, Cru4, and Cru7. Our research indicates that ATF2 negatively regulate the expression of AMPs by regulating the transcription of TNF in M. nipponense. This study provides valuable information about the function of ATF2 family in the innate immunity in crustacean.
Collapse
Affiliation(s)
- Chao Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Xueying Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Kaiqiang Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong province, 250014, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu province, 222005, China.
| |
Collapse
|
27
|
Hood SE, Kofler XV, Chen Q, Scott J, Ortega J, Lehmann M. Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila. J Lipid Res 2020; 61:1720-1732. [PMID: 32989002 PMCID: PMC7707171 DOI: 10.1194/jlr.ra120001051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipins are eukaryotic proteins with functions in lipid synthesis and the homeostatic control of energy balance. They execute these functions by acting as phosphatidate phosphatase enzymes in the cytoplasm and by changing gene expression after translocation into the cell nucleus, in particular under fasting conditions. Here, we asked whether nuclear translocation and the enzymatic activity of Drosophila Lipin serve essential functions and how gene expression changes, under both fed and fasting conditions, when nuclear translocation is impaired. To address these questions, we created a Lipin null mutant, a mutant expressing Lipin lacking a nuclear localization signal (LipinΔNLS ), and a mutant expressing enzymatically dead Lipin. Our data support the conclusion that the enzymatic but not nuclear gene regulatory activity of Lipin is essential for survival. Notably, adult LipinΔNLS flies were not only viable but also exhibited improved life expectancy. In contrast, they were highly susceptible to starvation. Both the improved life expectancy in the fed state and the decreased survival in the fasting state correlated with changes in metabolic gene expression. Moreover, increased life expectancy of fed flies was associated with a decreased metabolic rate. Interestingly, in addition to metabolic genes, genes involved in feeding behavior and the immune response were misregulated in LipinΔNLS flies. Altogether, our data suggest that the nuclear activity of Lipin influences the genomic response to nutrient availability with effects on life expectancy and starvation resistance. Thus, nutritional or therapeutic approaches that aim at lowering nuclear translocation of lipins in humans may be worth exploring.
Collapse
Affiliation(s)
- Stephanie E Hood
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Xeniya V Kofler
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Quiyu Chen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Judah Scott
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jason Ortega
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Michael Lehmann
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
28
|
Sun J, Wang L, Yang W, Wang L, Fu Q, Song L. IgIT-Mediated Signaling Inhibits the Antimicrobial Immune Response in Oyster Hemocytes. THE JOURNAL OF IMMUNOLOGY 2020; 205:2402-2413. [PMID: 32989090 DOI: 10.4049/jimmunol.2000294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
The long-term evolutionary interaction between the host and symbiotic microbes determines their cooperative relationship. It is well known that the symbiotic microbes have evolved various mechanisms to either benefit or exploit the mammalian host immune system to maintain homeostasis. However, the strategies employed by the symbiotic microbes to overcome host immune responses in invertebrates are still not clear. In the current study, the hemolymph microbes in oyster Crassostrea gigas were found to be able to directly bind an oyster Ig superfamily member (IgSF) (designated as CgIgIT) to inhibit the immune responses of hemocytes. The mRNA transcripts of CgIgIT in hemocytes increased significantly after the stimulation with hemolymph microbes. CgIgIT was found to be located on the hemocyte membrane and it was able to directly bind the hemolymph microbes and polysaccharides via its three Ig domains and recruited the protein tyrosine phosphatase CgSHP2 through its ITIM. The recruited CgSHP2 inhibited the activities of CgERK, CgP38 and CgJNK proteins to reduce the productions of dual oxidase 2 (CgDuox2) and defensin 2 (CgDef2), which eventually protected the hemolymph microbes from CgDuox2/CgDef2-mediated elimination. Collectively, the results suggest that the oyster IgIT-SHP2 signaling pathway can recognize bacteria capable of residing in oyster hemolymph and inhibit innate immune responses, which contributes to the maintenance, colonization, and survival of hemolymph microbes.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; and.,Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qiang Fu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; .,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; and
| |
Collapse
|
29
|
Sajjadian SM, Kim Y. PGE 2 upregulates gene expression of dual oxidase in a lepidopteran insect midgut via cAMP signalling pathway. Open Biol 2020; 10:200197. [PMID: 33081632 PMCID: PMC7653354 DOI: 10.1098/rsob.200197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In insect midgut, prostaglandins (PGs) play a crucial role in defending bacterial and malarial pathogens. However, little is known about the PG signalling pathway in the midgut. A dual oxidase (Se-Duox) with presumed function of catalysing reactive oxygen species (ROS) production in the midgut was identified in beet armyworm, Spodoptera exigua. Se-Duox was expressed in all developmental stages, exhibiting relatively high expression levels in the midgut of late larval instars. Se-Duox expression was upregulated upon bacterial challenge. RNA interference (RNAi) of Se-Duox expression significantly suppressed ROS levels in the midgut lumen. The suppression of ROS levels increased insecticidal activity of Serratia marcescens after oral infection. Interestingly, treatment with a PLA2 inhibitor prevented the induction of Se-Duox expression in response to bacterial challenge. On the other hand, addition of its catalytic product rescued the induction of Se-Duox expression. Especially, PG synthesis inhibitor significantly suppressed Se-Duox expression, while the addition of PGE2 or PGD2 rescued the inhibition. Subsequent PG signals involved cAMP and downstream components because specific inhibitors of cAMP signal components such as adenylate cyclase (AC) and protein kinase A (PKA) significantly inhibited Se-Duox expression. Indeed, addition of a cAMP analogue stimulated Se-Duox expression in the midgut. Furthermore, individual RNAi specific to PGE2 receptor (a trimeric G-protein subunit), AC, PKA or cAMP-responsive element-binding protein resulted in suppression of Se-Duox expression. These results suggest that PGs can activate midgut immunity via cAMP signalling pathway by inducing Se-Duox expression along with increased ROS levels.
Collapse
Affiliation(s)
- Seyedeh Minoo Sajjadian
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea
| |
Collapse
|
30
|
Csordás G, Grawe F, Uhlirova M. Eater cooperates with Multiplexin to drive the formation of hematopoietic compartments. eLife 2020; 9:57297. [PMID: 33026342 PMCID: PMC7541089 DOI: 10.7554/elife.57297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Blood development in multicellular organisms relies on specific tissue microenvironments that nurture hematopoietic precursors and promote their self-renewal, proliferation, and differentiation. The mechanisms driving blood cell homing and their interactions with hematopoietic microenvironments remain poorly understood. Here, we use the Drosophila melanogaster model to reveal a pivotal role for basement membrane composition in the formation of hematopoietic compartments. We demonstrate that by modulating extracellular matrix components, the fly blood cells known as hemocytes can be relocated to tissue surfaces where they function similarly to their natural hematopoietic environment. We establish that the Collagen XV/XVIII ortholog Multiplexin in the tissue-basement membranes and the phagocytosis receptor Eater on the hemocytes physically interact and are necessary and sufficient to induce immune cell-tissue association. These results highlight the cooperation of Multiplexin and Eater as an integral part of a homing mechanism that specifies and maintains hematopoietic sites in Drosophila.
Collapse
Affiliation(s)
- Gábor Csordás
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ferdinand Grawe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Zhao X, Karpac J. The Drosophila midgut and the systemic coordination of lipid-dependent energy homeostasis. CURRENT OPINION IN INSECT SCIENCE 2020; 41:100-105. [PMID: 32898765 PMCID: PMC7669600 DOI: 10.1016/j.cois.2020.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The evolution of complex organ systems in metazoans has dictated that the maintenance of energy homeostasis requires coordinating local and systemic energy demands between organs with specialized functions. The gastrointestinal tract is one of many organs that is indispensable for the systemic coordination of energy substrate uptake, storage, and usage, and the spatial organization of this organ (i.e. proximity to other metabolic organs) within a complex body plan underlies its role in organ crosstalk. Studies of various arthropod intestines, and in particular insects, have shed light on the evolution and function of the gastrointestinal tract in the maintenance of energy homeostasis. This brief review focuses on studies and theories derived from the insect intestine (particularly the midgut) of adult Drosophila melanogaster to inform on the how, what, and why of the gastrointestinal tract in the systemic regulation of lipids, the most common form of stored energy in insects.
Collapse
Affiliation(s)
- Xiao Zhao
- Dept. of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jason Karpac
- Dept. of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
32
|
Zhang J, Tracy C, Pasare C, Zeng J, Krämer H. Hypersensitivity of Vps33B mutant flies to non-pathogenic infections is dictated by aberrant activation of p38b MAP kinase. Traffic 2020; 21:578-589. [PMID: 32677257 DOI: 10.1111/tra.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/29/2022]
Abstract
Loss of the arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-linked Vps33B protein results in exaggerated inflammatory responses upon activation of receptors of the innate immune system in both vertebrates and flies. However, little is known about the signaling elements downstream of these receptors that are critical for the hypersensitivity of Vps33B mutants. Here, we show that p38b MAP kinase contributes to the enhanced inflammatory responses in flies lacking Vps33B. Loss of p38b mitogen-activated protein kinase (MAPK) reduces enhanced inflammatory responses and prolongs the survival of infected Vps33B deficient flies. The function of p38 MAPK is not limited to its proinflammatory effects downstream of the PGRP-LC receptor as p38 also modulates endosomal trafficking of PGRP-LC and phagocytosis of bacteria. Expression of constitutively active p38b MAPK, but not dominant negative p38b MAPK enhances accumulation of endocytosed PGRP-LC receptors or phagocytosed bacteria within cells. Moreover, p38 MAPK is required for induction of macropinocytosis, an alternate pathway for the downregulation of immune receptors. Together, our data indicate that p38 MAPK activates multiple pathways that can contribute to the dysregulation of innate immune signaling in ARC syndrome.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Charles Tracy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Helmut Krämer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
33
|
Ryan SM, Wildman K, Oceguera-Perez B, Barbee S, Mortimer NT, Vrailas-Mortimer AD. Evolutionarily conserved transcription factors drive the oxidative stress response in Drosophila. J Exp Biol 2020; 223:jeb221622. [PMID: 32532866 PMCID: PMC7391405 DOI: 10.1242/jeb.221622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
As organisms are constantly exposed to the damaging effects of oxidative stress through both environmental exposure and internal metabolic processes, they have evolved a variety of mechanisms to cope with this stress. One such mechanism is the highly conserved p38 MAPK (p38K) pathway, which is known to be post-translationally activated in response to oxidative stress, resulting in the activation of downstream antioxidant targets. However, little is known about the role of p38K transcriptional regulation in response to oxidative stress. Therefore, we analyzed the p38K gene family across the genus Drosophila to identify conserved regulatory elements. We found that oxidative stress exposure results in increased p38K protein levels in multiple Drosophila species and is associated with increased oxidative stress resistance. We also found that the p38Kb genomic locus includes conserved AP-1 and lola-PT transcription factor consensus binding sites. Accordingly, over-expression of these transcription factors in D. melanogaster is sufficient to induce transcription of p38Kb and enhances resistance to oxidative stress. We further found that the presence of a putative lola-PT binding site in the p38Kb locus of a given species is predictive of the species' survival in response to oxidative stress. Through our comparative genomics approach, we have identified biologically relevant putative transcription factor binding sites that regulate the expression of p38Kb and are associated with resistance to oxidative stress. These findings reveal a novel mode of regulation for p38K genes and suggest that transcription may play as important a role in p38K-mediated stress responses as post-translational modifications.
Collapse
Affiliation(s)
- Sarah M Ryan
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Kaitie Wildman
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| | | | - Scott Barbee
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Nathan T Mortimer
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| | - Alysia D Vrailas-Mortimer
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| |
Collapse
|
34
|
Nhu TQ, Bich Hang BT, Cornet V, Oger M, Bach LT, Anh Dao NL, Thanh Huong DT, Quetin-Leclercq J, Scippo ML, Phuong NT, Kestemont P. Single or Combined Dietary Supply of Psidium guajava and Phyllanthus amarus Extracts Differentially Modulate Immune Responses and Liver Proteome in Striped Catfish ( Pangasianodon hyphophthalmus). Front Immunol 2020; 11:797. [PMID: 32431710 PMCID: PMC7214933 DOI: 10.3389/fimmu.2020.00797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/07/2020] [Indexed: 01/16/2023] Open
Abstract
Guava Psidium guajava L (Pg) and bhumi amla Phyllanthus amarus Schum. et Thonn (Pa) are well-known plants in traditional medicine. However, the capacity of these plants for improving the immune system of aquatic species has received less attention so far. This study aimed to investigate the effects of single supply or mixture of Pg and Pa extracts on immune responses, disease resistance and liver proteome profiles in striped catfish Pangasianodon hypophthalmus. Fish were fed diets including basal diet 0% or one of three doses of each plant extract, either alone or in mixture, 0.08, 0.2, or 0.5% Pg, Pa or mixture (Pg:Pa, v/v) for 6 weeks. The immune parameters (respiratory burst activity (RBA); nitric oxide synthase (NOS), total immunoglobulin, lysozyme, and complement activities) were examined at W3, W6 post-feeding, and after challenge test. The growth parameters and the challenge test with Edwardsiella ictaluri were done at W6. The liver proteome profiles were analyzed in W6 at 0.08 and 0.5% of each extract. The results showed that extract-based diets significantly improved growth parameters in the Pg0.2 group compared to control. The cellular immune responses in spleen and the humoral immune responses in plasma were significantly improved in a dose and time-dependent manner. Diets supplemented with single Pg and Pa extracts, and to lesser extent to combined extracts, could significantly decrease the mortality of striped catfish following bacterial infection compared to control. The proteomic results indicated that some pathways related to immune responses, antioxidant and lipid metabolism were enriched in liver at W6. Several proteins (i.e., CD8B, HSP90AA1, HSP90AB1, PDIA3, CASP8, TUBA1C, CCKAR, GNAS, GRIN2D, PLCG1, PRKCA, SLC25A5, VDAC2, ACTN4, GNAI2, LCK, CARD9, NLRP12, and NLRP3) were synergistically upregulated in mixture of Pg and Pa-based diets compared to control and single dietary treatments. Taken together, the results revealed that single Pg and Pa extracts at 0.2 and 0.5% and their mixture at 0.08 and 0.5% have the potential to modulate the immune mechanisms and disease resistance of striped catfish. Moreover, the combination of Pg and Pa in diets suggested positive synergistic effects liver proteome profile related to immune system processes.
Collapse
Affiliation(s)
- Truong Quynh Nhu
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, Namur, Belgium.,College of Aquaculture and Fisheries, Cantho University, Cantho City, Vietnam
| | - Bui Thi Bich Hang
- College of Aquaculture and Fisheries, Cantho University, Cantho City, Vietnam
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Mathilde Oger
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Le Thi Bach
- College of Natural Sciences, Cantho University, Cantho City, Vietnam
| | - Nguyen Le Anh Dao
- College of Aquaculture and Fisheries, Cantho University, Cantho City, Vietnam
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Cantho University, Cantho City, Vietnam
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health, Veterinary Public Health, University of Liège, Liège, Belgium
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Cantho University, Cantho City, Vietnam
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| |
Collapse
|
35
|
Colombani J, Andersen DS. The
Drosophila
gut: A gatekeeper and coordinator of organism fitness and physiology. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e378. [DOI: 10.1002/wdev.378] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Julien Colombani
- Department of Biology, Faculty of Science University of Copenhagen Copenhagen O Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science University of Copenhagen Copenhagen N Denmark
| | - Ditte S. Andersen
- Department of Biology, Faculty of Science University of Copenhagen Copenhagen O Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science University of Copenhagen Copenhagen N Denmark
| |
Collapse
|
36
|
Roudbari Z, Coort SL, Kutmon M, Eijssen L, Melius J, Sadkowski T, Evelo CT. Identification of Biological Pathways Contributing to Marbling in Skeletal Muscle to Improve Beef Cattle Breeding. Front Genet 2020; 10:1370. [PMID: 32117419 PMCID: PMC7019052 DOI: 10.3389/fgene.2019.01370] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Red meat is an important dietary source that provides part of the nutritional requirements. Intramuscular fat, known as marbling, is located throughout skeletal muscle. Marbling is a trait of major economic relevance that positively influences sensory quality aspects. The aim of the present study was to identify and better understand biological pathways defining marbling in beef cattle. Pathway analysis was performed in PathVisio with publicly available transcriptomic data from semitendinosus muscle of well-marbled and lean-marbled beef. Moreover, for Bos taurus we created a gene identifier mapping database with bridgeDb and a pathway collection in WikiPathways. The regulation of marbling is possibly the result of the interplay between signaling pathways in muscle, fat, and intramuscular connective tissue. Pathway analysis revealed 17 pathways that were significantly different between well-marbled and lean-marbled beef. The MAPK signaling pathway was enriched, and the signaling pathways that play a role in tissue development were also affected. Interestingly, pathways related to immune response and insulin signaling were enriched.
Collapse
Affiliation(s)
- Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.,Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Susan L Coort
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Martina Kutmon
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Lars Eijssen
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jonathan Melius
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Chris T Evelo
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
37
|
Renal Purge of Hemolymphatic Lipids Prevents the Accumulation of ROS-Induced Inflammatory Oxidized Lipids and Protects Drosophila from Tissue Damage. Immunity 2020; 52:374-387.e6. [DOI: 10.1016/j.immuni.2020.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/25/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
|
38
|
Bou Sleiman M, Frochaux MV, Andreani T, Osman D, Guigo R, Deplancke B. Enteric infection induces Lark-mediated intron retention at the 5' end of Drosophila genes. Genome Biol 2020; 21:4. [PMID: 31948480 PMCID: PMC6966827 DOI: 10.1186/s13059-019-1918-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/09/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND RNA splicing is a key post-transcriptional mechanism that generates protein diversity and contributes to the fine-tuning of gene expression, which may facilitate adaptation to environmental challenges. Here, we employ a systems approach to study alternative splicing changes upon enteric infection in females from classical Drosophila melanogaster strains as well as 38 inbred lines. RESULTS We find that infection leads to extensive differences in isoform ratios, which results in a more diverse transcriptome with longer 5' untranslated regions (5'UTRs). We establish a role for genetic variation in mediating inter-individual splicing differences, with local splicing quantitative trait loci (local-sQTLs) being preferentially located at the 5' end of transcripts and directly upstream of splice donor sites. Moreover, local-sQTLs are more numerous in the infected state, indicating that acute stress unmasks a substantial number of silent genetic variants. We observe a general increase in intron retention concentrated at the 5' end of transcripts across multiple strains, whose prevalence scales with the degree of pathogen virulence. The length, GC content, and RNA polymerase II occupancy of these introns with increased retention suggest that they have exon-like characteristics. We further uncover that retained intron sequences are enriched for the Lark/RBM4 RNA binding motif. Interestingly, we find that lark is induced by infection in wild-type flies, its overexpression and knockdown alter survival, and tissue-specific overexpression mimics infection-induced intron retention. CONCLUSION Our collective findings point to pervasive and consistent RNA splicing changes, partly mediated by Lark/RBM4, as being an important aspect of the gut response to infection.
Collapse
Affiliation(s)
- Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institue of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael Vincent Frochaux
- Laboratory of System Biology and Genetics and Swiss Institute of Bioinformatics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tommaso Andreani
- Computational Biology and Data Mining Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300 Lebanon
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia Spain
| | - Bart Deplancke
- Laboratory of Integrative Systems Physiology, Institue of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
39
|
Abstract
Sublethal exposure to certain pesticides (e.g., neonicotinoid insecticides) is suspected to contribute to honey bee (Apis mellifera) population decline in North America. Neonicotinoids are known to interfere with immune pathways in the gut of insects, but the underlying mechanisms remain elusive. We used a Drosophila melanogaster model to understand how imidacloprid (a common neonicotinoid) interferes with two innate immune pathways—Duox and Imd. We found that imidacloprid dysregulates these pathways to reduce hydrogen peroxide production, ultimately leading to a dysbiotic shift in the gut microbiota. Intriguingly, we found that presupplementation with probiotic bacteria could mitigate the harmful effects of imidacloprid. Thus, these observations uncover a novel mechanism of pesticide-induced immunosuppression that exploits the interconnectedness of two important insect immune pathways. Neonicotinoid insecticides are common agrochemicals that are used to kill pest insects and improve crop yield. However, sublethal exposure can exert unintentional toxicity to honey bees and other beneficial pollinators by dysregulating innate immunity. Generation of hydrogen peroxide (H2O2) by the dual oxidase (Duox) pathway is a critical component of the innate immune response, which functions to impede infection and maintain homeostatic regulation of the gut microbiota. Despite the importance of this pathway in gut immunity, the consequences of neonicotinoid exposure on Duox signaling have yet to be studied. Here, we use a Drosophila melanogaster model to investigate the hypothesis that imidacloprid (a common neonicotinoid) can affect the Duox pathway. The results demonstrated that exposure to sublethal imidacloprid reduced H2O2 production by inhibiting transcription of the Duox gene. Furthermore, the reduction in Duox expression was found to be a result of imidacloprid interacting with the midgut portion of the immune deficiency pathway. This impairment led to a loss of microbial regulation, as exemplified by a compositional shift and increased total abundance of Lactobacillus and Acetobacter spp. (dominant microbiota members) found in the gut. In addition, we demonstrated that certain probiotic lactobacilli could ameliorate Duox pathway impairment caused by imidacloprid, but this effect was not directly dependent on the Duox pathway itself. This study is the first to demonstrate the deleterious effects that neonicotinoids can have on Duox-mediated generation of H2O2 and highlights a novel coordination between two important innate immune pathways present in insects.
Collapse
|
40
|
Patel PH, Pénalva C, Kardorff M, Roca M, Pavlović B, Thiel A, Teleman AA, Edgar BA. Damage sensing by a Nox-Ask1-MKK3-p38 signaling pathway mediates regeneration in the adult Drosophila midgut. Nat Commun 2019; 10:4365. [PMID: 31554796 PMCID: PMC6761285 DOI: 10.1038/s41467-019-12336-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelia are exposed to diverse types of stress and damage from pathogens and the environment, and respond by regenerating. Yet, the proximal mechanisms that sense epithelial damage remain poorly understood. Here we report that p38 signaling is activated in adult Drosophila midgut enterocytes in response to diverse stresses including pathogenic bacterial infection and chemical and mechanical insult. Two upstream kinases, Ask1 and Licorne (MKK3), are required for p38 activation following infection, oxidative stress, detergent exposure and wounding. Ask1-p38 signaling in enterocytes is required upon infection to promote full intestinal stem cell (ISC) activation and regeneration, partly through Upd3/Jak-Stat signaling. Furthermore, reactive oxygen species (ROS) produced by the NADPH oxidase Nox in enterocytes, are required for p38 activation in enterocytes following infection or wounding, and for ISC activation upon infection or detergent exposure. We propose that Nox-ROS-Ask1-MKK3-p38 signaling in enterocytes integrates multiple different stresses to induce regeneration.
Collapse
Affiliation(s)
- Parthive H Patel
- Elizabeth Blackwell Institute for Health Research, University of Bristol, Bristol, BS8 1UH, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Center for Molecular Biology, University of Heidelberg (ZMBH), 69120, Heidelberg, Germany.
| | - Clothilde Pénalva
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michael Kardorff
- Center for Molecular Biology, University of Heidelberg (ZMBH), 69120, Heidelberg, Germany
| | - Marianne Roca
- Center for Molecular Biology, University of Heidelberg (ZMBH), 69120, Heidelberg, Germany
| | - Bojana Pavlović
- Center for Molecular Biology, University of Heidelberg (ZMBH), 69120, Heidelberg, Germany
| | - Anja Thiel
- Center for Molecular Biology, University of Heidelberg (ZMBH), 69120, Heidelberg, Germany
| | | | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
41
|
The histone methyltransferase G9a regulates tolerance to oxidative stress-induced energy consumption. PLoS Biol 2019; 17:e2006146. [PMID: 30860988 PMCID: PMC6413895 DOI: 10.1371/journal.pbio.2006146] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
Stress responses are crucial processes that require activation of genetic programs that protect from the stressor. Stress responses are also energy consuming and can thus be deleterious to the organism. The mechanisms coordinating energy consumption during stress response in multicellular organisms are not well understood. Here, we show that loss of the epigenetic regulator G9a in Drosophila causes a shift in the transcriptional and metabolic responses to oxidative stress (OS) that leads to decreased survival time upon feeding the xenobiotic paraquat. During OS exposure, G9a mutants show overactivation of stress response genes, rapid depletion of glycogen, and inability to access lipid energy stores. The OS survival deficiency of G9a mutants can be rescued by a high-sugar diet. Control flies also show improved OS survival when fed a high-sugar diet, suggesting that energy availability is generally a limiting factor for OS tolerance. Directly limiting access to glycogen stores by knocking down glycogen phosphorylase recapitulates the OS-induced survival defects of G9a mutants. We propose that G9a mutants are sensitive to stress because they experience a net reduction in available energy due to (1) rapid glycogen use, (2) an inability to access lipid energy stores, and (3) an overinduced transcriptional response to stress that further exacerbates energy demands. This suggests that G9a acts as a critical regulatory hub between the transcriptional and metabolic responses to OS. Our findings, together with recent studies that established a role for G9a in hypoxia resistance in cancer cell lines, suggest that G9a is of wide importance in controlling the cellular and organismal response to multiple types of stress. Stress responses require proper activation of genetic programs to protect the organism from the stressor. However, the mechanisms controlling energy consumption during stress responses are not well understood. Here, we investigate the role of epigenetic modifier G9a in regulating metabolism and gene transcription during oxidative stress responses in Drosophila. Flies lacking G9a show a shift in the metabolic and transcriptional responses to oxidative stress, leading to decreased stress tolerance despite intact oxidative stress defense mechanisms. During oxidative stress exposure, G9a mutants show overactivation of stress response and many other genes, rapid depletion of glycogen energy stores, and an inability to access lipid energy stores. The increased susceptibility of G9a mutant flies to oxidative stress can be rescued simply by providing extra sugar. This suggests that G9a mutants are sensitive to stress because of reduced access to immediately available energy. Wild-type flies also become more tolerant to oxidative stress when they are fed extra sugar, whereas blocking energy access by genetically reducing a key metabolic enzyme leads to oxidative stress sensitivity. Though the genetic response to oxidative stress has long been appreciated, our study emphasizes the importance of energy metabolism for stress tolerance and identifies the histone methyltransferase G9a as an important player regulating both.
Collapse
|
42
|
Sun J, Wang L, Wu Z, Han S, Wang L, Li M, Liu Z, Song L. P38 is involved in immune response by regulating inflammatory cytokine expressions in the Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:108-114. [PMID: 30385315 DOI: 10.1016/j.dci.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinases are serine/threonine protein kinases reportedly involved in the innate immunity of vertebrates and invertebrates. In the present study, a P38 homolog (CgP38) was characterized from the Pacific oyster Crassostrea gigas. The full-length cDNA of CgP38 was of 1515 bp containing a 1101 bp open reading frame. A serine/threonine protein kinase (S_TKc) domain with a conserved Thr-Gly-Tyr motif and an ATRW substrate-binding site was found in the deduced amino acid sequence of CgP38. CgP38 shared a close evolutionary relationship with ChP38 from the Hong Kong oyster Crassostrea hongkongensis. The transcript levels of CgP38 in hemocytes increased significantly from 12 h to 48 h after lipopolysaccharide (LPS) stimulation and from 12 h to 24 h after Vibrio splendidus stimulation. The phosphorylation level of CgP38 in oyster hemocytes increased significantly at 2 h after LPS stimulation. CgP38 positively regulated the expression of interleukins, such as CgIL17-1, CgIL17-2, CgIL17-3, CgIL17-4 and CgIL17-6, and tumor necrosis factor CgTNF after LPS or V. splendidus stimulation. These results suggested that CgP38 participated in oyster immune response by regulating the expressions of inflammatory cytokines.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaojun Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Shuo Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
43
|
Santabárbara-Ruiz P, Esteban-Collado J, Pérez L, Viola G, Abril JF, Milán M, Corominas M, Serras F. Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila. PLoS Genet 2019; 15:e1007926. [PMID: 30677014 PMCID: PMC6363233 DOI: 10.1371/journal.pgen.1007926] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/05/2019] [Accepted: 01/01/2019] [Indexed: 12/30/2022] Open
Abstract
How cells communicate to initiate a regenerative response after damage has captivated scientists during the last few decades. It is known that one of the main signals emanating from injured cells is the Reactive Oxygen Species (ROS), which propagate to the surrounding tissue to trigger the replacement of the missing cells. However, the link between ROS production and the activation of regenerative signaling pathways is not yet fully understood. We describe here the non-autonomous ROS sensing mechanism by which living cells launch their regenerative program. To this aim, we used Drosophila imaginal discs as a model system due to its well-characterized regenerative ability after injury or cell death. We genetically-induced cell death and found that the Apoptosis signal-regulating kinase 1 (Ask1) is essential for regenerative growth. Ask1 senses ROS both in dying and living cells, but its activation is selectively attenuated in living cells by Akt1, the core kinase component of the insulin/insulin-like growth factor pathway. Akt1 phosphorylates Ask1 in a secondary site outside the kinase domain, which attenuates its activity. This modulation of Ask1 activity results in moderate levels of JNK signaling in the living tissue, as well as in activation of p38 signaling, both pathways required to turn on the regenerative response. Our findings demonstrate a non-autonomous activation of a ROS sensing mechanism by Ask1 and Akt1 to replace the missing tissue after damage. Collectively, these results provide the basis for understanding the molecular mechanism of communication between dying and living cells that triggers regeneration.
Collapse
Affiliation(s)
- Paula Santabárbara-Ruiz
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - José Esteban-Collado
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Lidia Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Giacomo Viola
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Josep F. Abril
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Lian T, Wu Q, Hodge BA, Wilson KA, Yu G, Yang M. Drosophila Gut-A Nexus Between Dietary Restriction and Lifespan. Int J Mol Sci 2018; 19:ijms19123810. [PMID: 30501099 PMCID: PMC6320777 DOI: 10.3390/ijms19123810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Aging is often defined as the accumulation of damage at the molecular and cellular levels which, over time, results in marked physiological impairments throughout the organism. Dietary restriction (DR) has been recognized as one of the strongest lifespan extending therapies observed in a wide array of organisms. Recent studies aimed at elucidating how DR promotes healthy aging have demonstrated a vital role of the digestive tract in mediating the beneficial effects of DR. Here, we review how dietary restriction influences gut metabolic homeostasis and immune function. Our discussion is focused on studies of the Drosophila digestive tract, where we describe in detail the potential mechanisms in which DR enhances maintenance of the intestinal epithelial barrier, up-regulates lipid metabolic processes, and improves the ability of the gut to deal with damage or stress. We also examine evidence of a tissue-tissue crosstalk between gut and neighboring organs including brain and fat body. Taken together, we argue that the Drosophila gut plays a critical role in DR-mediated lifespan extension.
Collapse
Affiliation(s)
- Ting Lian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qi Wu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| | - Brian A Hodge
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94947, USA.
| | - Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94947, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Guixiang Yu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
45
|
Schretter CE, Vielmetter J, Bartos I, Marka Z, Marka S, Argade S, Mazmanian SK. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 2018; 563:402-406. [PMID: 30356215 PMCID: PMC6237646 DOI: 10.1038/s41586-018-0634-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Catherine E Schretter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Jost Vielmetter
- Protein Expression Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Imre Bartos
- Department of Physics, Columbia University, New York, NY, USA
| | - Zsuzsa Marka
- Department of Physics, Columbia University, New York, NY, USA
| | - Szabolcs Marka
- Department of Physics, Columbia University, New York, NY, USA
| | - Sulabha Argade
- GlycoAnalytics Core, University of California, San Diego, CA, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
46
|
Lee KA, Lee WJ. Immune-metabolic interactions during systemic and enteric infection in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2018; 29:21-26. [PMID: 30551821 DOI: 10.1016/j.cois.2018.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/23/2018] [Indexed: 06/09/2023]
Abstract
Immune-metabolic interactions are evolutionarily conserved phenomena observed in all metazoans, from invertebrates to vertebrates. Although it is believed that immune activation drives chronic metabolic diseases, clear conclusions about the reasons and mechanisms of cross-talk between immune and metabolic signaling cannot be drawn. The Drosophila insect model equipped with genetically well-defined immune and metabolic signaling pathways is suitable in understanding the molecular codes underlying immune-metabolic interactions. In this report, we present and discuss the following: how immune signaling induces metabolic phenotypes and how metabolic signaling sequentially induces immune phenotypes in Drosophila. Further genetic studies on immune-metabolic interactions in Drosophila are warranted to increase the understanding of the etiology of different dysregulated immune-metabolic interaction-caused diseases.
Collapse
Affiliation(s)
- Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; National Creative Research Initiative Center for Hologenomics, Seoul National University, Seoul 08826, South Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, South Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; National Creative Research Initiative Center for Hologenomics, Seoul National University, Seoul 08826, South Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
47
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Di Cara F, Bülow MH, Simmonds AJ, Rachubinski RA. Dysfunctional peroxisomes compromise gut structure and host defense by increased cell death and Tor-dependent autophagy. Mol Biol Cell 2018; 29:2766-2783. [PMID: 30188767 PMCID: PMC6249834 DOI: 10.1091/mbc.e18-07-0434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The gut has a central role in digestion and nutrient absorption, but it also serves in defending against pathogens, engages in mutually beneficial interactions with commensals, and is a major source of endocrine signals. Gut homeostasis is necessary for organismal health and changes to the gut are associated with conditions like obesity and diabetes and inflammatory illnesses like Crohn's disease. We report that peroxisomes, organelles involved in lipid metabolism and redox balance, are required to maintain gut epithelium homeostasis and renewal in Drosophila and for survival and development of the organism. Dysfunctional peroxisomes in gut epithelial cells activate Tor kinase-dependent autophagy that increases cell death and epithelial instability, which ultimately alter the composition of the intestinal microbiota, compromise immune pathways in the gut in response to infection, and affect organismal survival. Peroxisomes in the gut effectively function as hubs that coordinate responses from stress, metabolic, and immune signaling pathways to maintain enteric health and the functionality of the gut-microbe interface.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Margret H Bülow
- Development, Genetics and Molecular Physiology, LIMES (Life and Medical Sciences), University of Bonn, D-53115 Bonn, Germany
| | - Andrew J Simmonds
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
49
|
West C, Silverman N. p38b and JAK-STAT signaling protect against Invertebrate iridescent virus 6 infection in Drosophila. PLoS Pathog 2018; 14:e1007020. [PMID: 29746571 PMCID: PMC5963806 DOI: 10.1371/journal.ppat.1007020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/22/2018] [Accepted: 04/11/2018] [Indexed: 01/19/2023] Open
Abstract
The fruit fly Drosophila melanogaster is a powerful model system for the study of innate immunity in vector insects as well as mammals. For vector insects, it is particularly important to understand all aspects of their antiviral immune defenses, which could eventually be harnessed to control the transmission of human pathogenic viruses. The immune responses controlling RNA viruses in insects have been extensively studied, but the response to DNA virus infections is poorly characterized. Here, we report that infection of Drosophila with the DNA virus Invertebrate iridescent Virus 6 (IIV-6) triggers JAK-STAT signaling and the robust expression of the Turandots, a gene family encoding small secreted proteins. To drive JAK-STAT signaling, IIV-6 infection more immediately induced expression of the unpaireds, a family of IL-6-related cytokine genes, via a pathway that required one of the three Drosophila p38 homologs, p38b. In fact, both Stat92E and p38b were required for the survival of IIV-6 infected flies. In addition, in vitro induction of the unpaireds required an NADPH-oxidase, and in vivo studies demonstrated Nox was required for induction of TotA. These results argue that ROS production, triggered by IIV-6 infection, leads to p38b activation and unpaired expression, and subsequent JAK-STAT signaling, which ultimately protects the fly from IIV-6 infection. Mosquitoes and other biting insects transmit many harmful pathogens to humans, including parasites and viruses. In order to better protect humans from these diseases, we must gain a more complete understanding of how insects successfully—or unsuccessfully—combat these infections. While we know a great deal regarding how insects combat RNA viruses, we know little about their immune response to DNA virus infections. Studies of DNA virus infections may reveal novel immune mechanisms, which could be uniquely effective against DNA virus infections or could be broadly effective against many viruses. In this study, we utilized an invertebrate DNA virus, IIV-6, infection model with the fruit fly Drosophila melanogaster, and found that virus infection activated several innate immune signaling pathways, which help protect the animal against this virus. Eventually, a more complete understanding of the antiviral responses of insects may be useful to restrict virus infections of disease transmitting insects.
Collapse
Affiliation(s)
- Cara West
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Neal Silverman
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Henry Y, Renault D, Colinet H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. ACTA ACUST UNITED AC 2018; 221:jeb.169342. [PMID: 29191860 DOI: 10.1242/jeb.169342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Crowding is a complex stress that can affect organisms' physiology, especially through decreased food quality and accessibility. Here, we evaluated the effect of larval density on several biological traits of Drosophila melanogaster An increasing gradient, from 1 to 1000 eggs per milliliter of food, was used to characterize life-history traits variations. Crowded conditions resulted in striking decreases of fresh mass (up to 6-fold) and viability, as well as delayed development. Next, we assessed heat and cold tolerance in L3 larvae reared at three selected larval densities: low (LD, 5 eggs ml-1), medium (MD, 60 eggs ml-1) and high (HD, 300 eggs ml-1). LT50 values of MD and, to a lesser extent, HD larvae were repeatedly higher than those from LD larvae, under both heat and cold stress. We investigated potential physiological correlates associated with this density-dependent thermotolerance shift. No marked pattern could be drawn from the expression of stress-related genes. However, a metabolomic analysis differentiated the metabotypes of the three density levels, with potential candidates associated with this clustering (e.g. glucose 6-phosphate, GABA, sugars and polyols). Under HD, signs of oxidative stress were noted but not confirmed at the transcriptional level. Finally, urea, a common metabolic waste, was found to accumulate substantially in food from MD and HD larvae. When supplemented in food, urea stimulated cold tolerance but reduced heat tolerance in LD larvae. This study highlights that larval crowding is an important environmental parameter that induces drastic consequences on flies' physiology and can affect thermotolerance in a density-specific way.
Collapse
Affiliation(s)
- Youn Henry
- UMR CNRS 6553 Ecobio, Université de Rennes 1, 263 Avenue du General Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - David Renault
- UMR CNRS 6553 Ecobio, Université de Rennes 1, 263 Avenue du General Leclerc, CS 74205, 35042 Rennes Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Hervé Colinet
- UMR CNRS 6553 Ecobio, Université de Rennes 1, 263 Avenue du General Leclerc, CS 74205, 35042 Rennes Cedex, France
| |
Collapse
|