1
|
Leijding C, Viken I, Bruton JD, Andersson DC, Cheng AJ, Westerblad H. Increased tetanic calcium in early fatigue of mammalian muscle fibers is accompanied by accelerated force development despite a decreased force. FASEB J 2023; 37:e22978. [PMID: 37191967 DOI: 10.1096/fj.202300401r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
During the initial phase of fatigue induced by repeated contractions in fast-twitch muscle fibers, tetanic force decreases despite increasing tetanic free cytosolic [Ca2+ ] ([Ca2+ ]cyt ). Here, we hypothesized that the increase in tetanic [Ca2+ ]cyt nevertheless has positive effects on force in early fatigue. Experiments on enzymatically isolated mouse flexor digitorum brevis (FDB) fibers showed that an increase in tetanic [Ca2+ ]cyt during ten 350 ms contractions required trains of electrical pulses to be elicited at short intervals (≤2 s) and at high frequencies (≥70 Hz). Mechanically dissected mouse FDB fibers showed greater decrease in tetanic force when the stimulation frequency during contractions was gradually reduced to prevent the increase in tetanic [Ca2+ ]cyt . Novel analyses of data from previous studies revealed an increased rate of force development in the tenth fatiguing contraction in mouse FDB fibers, as well as in rat FDB and human intercostal fibers. Mouse FDB fibers deficient in creatine kinase showed no increase in tetanic [Ca2+ ]cyt and slowed force development in the tenth contraction; after injection of creatine kinase to enable phosphocreatine breakdown, these fibers showed an increase in tetanic [Ca2+ ]cyt and accelerated force development. Mouse FDB fibers exposed to ten short contractions (43 ms) produced at short intervals (142 ms) showed increased tetanic [Ca2+ ]cyt accompanied by a marked (~16%) increase in the developed force. In conclusion, the increase in tetanic [Ca2+ ]cyt in early fatigue is accompanied by accelerated force development, which under some circumstances can counteract the decline in physical performance caused by the concomitant decrease in maximum force.
Collapse
Affiliation(s)
- Cecilia Leijding
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ida Viken
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Heart, Vascular and Neurology Theme, Cardiology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Pomeroy E. Review: The different adaptive trajectories in Neanderthals and Homo sapiens and their implications for contemporary human physiological variation. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111420. [PMID: 37001690 DOI: 10.1016/j.cbpa.2023.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Neanderthals are our one of our closest evolutionary cousins, but while they evolved in Eurasia, we (anatomically modern humans, AMH) originated in Africa. This contrasting evolutionary history has led to morphological and genetic distinctions between our species. Neanderthals are characterised by a relatively stocky build, high body mass, proportionally wide bodies and shorter limbs, a bell-shaped ribcage with a wide pelvis, and a long, low cranial vault compared with AMH. Classic readings of Neanderthal morphology link many of these traits to cold climate adaptations, however these interpretations have been questioned and alternative hypotheses including behavioural factors, dietary adaptations, locomotor specialisations, evolutionary history and neutral evolutionary processes have been invoked. Compared with AMH, Neanderthals may have been adapted for strength and power rather than endurance and may have consumed a diet high in animal products. However, reviewing these hypotheses highlights a number of limitations in our understanding of contemporary human physiology and metabolism, including the relationship between climate and morphology in AMH and Neanderthals, physiological limits on protein consumption, and the relationship between gut morphology and diet. As various relevant factors are clearly linked (e.g. diet, behaviour, metabolism, morphology, activity), ultimately a more integrated approach may be needed to fully understand Neanderthal biology. Variation among contemporary AMHs may offer, with caveats, a useful model for understanding the evolution of both Neanderthal and modern human characteristics, which in turn may further deepen our understanding of variability within and between contemporary humans. Neanderthals; Anatomically modern humans; morphology; climate adaptation; power adaptations; metabolism; diet; physiology; endurance running.
Collapse
|
3
|
Bauer J, Head SI, Friedrich O. Assessment of Cell Viability in Electrically Excitable Muscle Cells Through Intact Twitch Stimulation. Methods Mol Biol 2023; 2644:177-192. [PMID: 37142922 DOI: 10.1007/978-1-0716-3052-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Muscle cells (i.e. skeletal muscle fibers) are fully viable and functional when their excitation-contraction (EC) coupling machinery is intact. This involves intact membrane integrity with polarized membrane, functional ion channels for action potential generation and conduction, an intact electro-chemical interface at the level of the fiber's triad, followed by sarcoplasmic reticulum Ca2+ release, and subsequent activation of the chemico-mechanical interface at the level of the contractile apparatus. The ultimate end result is then a visible twitch contraction upon a brief electrical pulse stimulation. For many biomedical studies involving single muscle cells, intact and viable myofibers are of utmost importance. Thus, a simple global screening method that involves a brief electrical stimulus applied to single muscle fibers and assessment of visible contraction would be of high value. In this chapter, we describe step-by-step protocols to (i) obtain intact single muscle fibers from freshly dissected muscle tissue using an enzymatic digestion procedure and (ii) provide a workflow for the assessment of twitch response of single fibers that can be ultimately classified as viable. For this, we have prepared a unique stimulation pen for which we provide the fabrication guide for do-it-yourself rapid prototyping to eliminate the need for expensive specialized commercial equipment.
Collapse
Affiliation(s)
- Julian Bauer
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Stewart I Head
- School of Medicine, University of Western Sydney, MacArthur, Sydney, NSW, Australia
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
4
|
Haug M, Reischl B, Nübler S, Kiriaev L, Mázala DAG, Houweling PJ, North KN, Friedrich O, Head SI. Absence of the Z-disc protein α-actinin-3 impairs the mechanical stability of Actn3KO mouse fast-twitch muscle fibres without altering their contractile properties or twitch kinetics. Skelet Muscle 2022; 12:14. [PMID: 35733150 PMCID: PMC9219180 DOI: 10.1186/s13395-022-00295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A common polymorphism (R577X) in the ACTN3 gene results in the complete absence of the Z-disc protein α-actinin-3 from fast-twitch muscle fibres in ~ 16% of the world's population. This single gene polymorphism has been subject to strong positive selection pressure during recent human evolution. Previously, using an Actn3KO mouse model, we have shown in fast-twitch muscles, eccentric contractions at L0 + 20% stretch did not cause eccentric damage. In contrast, L0 + 30% stretch produced a significant ~ 40% deficit in maximum force; here, we use isolated single fast-twitch skeletal muscle fibres from the Actn3KO mouse to investigate the mechanism underlying this. METHODS Single fast-twitch fibres are separated from the intact muscle by a collagenase digest procedure. We use label-free second harmonic generation (SHG) imaging, ultra-fast video microscopy and skinned fibre measurements from our MyoRobot automated biomechatronics system to study the morphology, visco-elasticity, force production and mechanical strength of single fibres from the Actn3KO mouse. Data are presented as means ± SD and tested for significance using ANOVA. RESULTS We show that the absence of α-actinin-3 does not affect the visco-elastic properties or myofibrillar force production. Eccentric contractions demonstrated that chemically skinned Actn3KO fibres are mechanically weaker being prone to breakage when eccentrically stretched. Furthermore, SHG images reveal disruptions in the myofibrillar alignment of Actn3KO fast-twitch fibres with an increase in Y-shaped myofibrillar branching. CONCLUSIONS The absence of α-actinin-3 from the Z-disc in fast-twitch fibres disrupts the organisation of the myofibrillar proteins, leading to structural weakness. This provides a mechanistic explanation for our earlier findings that in vitro intact Actn3KO fast-twitch muscles are significantly damaged by L0 + 30%, but not L0 + 20%, eccentric contraction strains. Our study also provides a possible mechanistic explanation as to why α-actinin-3-deficient humans have been reported to have a faster decline in muscle function with increasing age, that is, as sarcopenia reduces muscle mass and force output, the eccentric stress on the remaining functional α-actinin-3 deficient fibres will be increased, resulting in fibre breakages.
Collapse
Affiliation(s)
- Michael Haug
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonit Kiriaev
- School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia.,School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Davi A G Mázala
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, USA
| | - Peter J Houweling
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia.,School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia. .,School of Medical Science, University of New South Wales, Sydney, NSW, Australia. .,Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Kiriaev L, Houweling PJ, North KN, Head SI. Loss of α-actinin-3 confers protection from eccentric contraction damage in fast-twitch EDL muscles from aged mdx dystrophic mice by reducing pathological fibre branching. Hum Mol Genet 2022; 31:1417-1429. [PMID: 34761268 PMCID: PMC9071495 DOI: 10.1093/hmg/ddab326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022] Open
Abstract
The common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein α-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin-deficient Duchenne Muscular Dystrophy. To investigate the mechanism underlying this, we use a double knockout (dk)Actn3KO/mdx (dKO) mouse model, which lacks both dystrophin and sarcomere α-actinin-3. We used dKO mice and mdx dystrophic mice at 12 months (aged) to investigate the correlation between morphological changes to the fast-twitch dKO EDL and the reduction in force deficit produced by an in vitro eccentric contraction protocol. In the aged dKO mouse, we found a marked reduction in fibre branching complexity that correlated with protection from eccentric contraction induced force deficit. Complex branches in the aged dKO EDL fibres (28%) were substantially reduced compared to aged mdx EDL fibres (68%), and this correlates with a graded force loss over three eccentric contractions for dKO muscles (~36% after first contraction, ~66% overall) compared to an abrupt drop in mdx upon the first eccentric contraction (~75% after first contraction, ~89% after three contractions). In dKO, protection from eccentric contraction damage was linked with a doubling of SERCA1 pump density the EDL. We propose that the increased oxidative metabolism of fast-twitch glycolytic fibres characteristic of the null polymorphism (R577X) and increase in SR Ca2+ pump proteins reduces muscle fibre branching and decreases susceptibility to eccentric injury in the dystrophinopathies.
Collapse
Affiliation(s)
- Leonit Kiriaev
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
| | - Peter J Houweling
- Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Kathryn N North
- Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
| |
Collapse
|
6
|
Barrón-Cabrera E, Torres-Castillo N, González-Becerra K, Zepeda-Carrillo EA, Torres-Valadez R, Hernández-Cañaveral I, Martínez-López E. The ACTN3 R577X polymorphism is associated with metabolic alterations in a sex-dependent manner in subjects from western Mexico. J Hum Nutr Diet 2021; 35:713-721. [PMID: 34750902 DOI: 10.1111/jhn.12948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The ACTN3 gene is primarily expressed in fast skeletal muscle fibres. A common nonsense polymorphism in this gene is ACTN3 R577X (rs1815739), which causes an absolute deficiency of α-actinin-3 protein and alterations in muscle metabolism. Considering metabolic alterations are influenced by nutrition and genetic factors, as well as lifestyle factors, we hypothesise a possible association of the ACTN3 R577X polymorphism with metabolic alterations. METHODS In this cross-sectional study, 397 adults met the inclusion criteria. Body composition was measured by electrical bioimpedance. Dietary data were analysed using Nutritionist Pro™ software. Biochemical variables were determined by dry chemistry. Genomic DNA was extracted from peripheral leukocytes and genotyping of the ACTN3 R577X polymorphism was determined by allelic discrimination using TaqMan probes. The statistical analyses were performed using SPSS statistical software. p < 0.05 was considered statistically significant. RESULTS The ACTN3 577XX genotype was associated with high glucose, triglyceride and very low density lipoprotein-cholesterol levels and a higher frequency of hypertriglyceridaemia and insulin resistance in women. In males, the genetic variant showed a trend towards significance for insulin resistance. CONCLUSIONS The ACTN3 R577X polymorphism was associated with metabolic alterations in women and a tendency was observed in men variant carriers. Thus, this common genetic variant could be implicated in the development of chronic metabolic diseases.
Collapse
Affiliation(s)
- Elisa Barrón-Cabrera
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Nutrigenética y Nutrigenómica Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nathaly Torres-Castillo
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Nutrigenética y Nutrigenómica Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Karina González-Becerra
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Nutrigenética y Nutrigenómica Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Eloy A Zepeda-Carrillo
- Centro Nayarita de Innovación y Transferencia de Tecnología, Universidad Autónoma de Nayarit, Tepic, Nayarit, México.,Hospital Civil Dr Antonio González Guevara, Servicios de Salud de Nayarit, Tepic, Nayarit, Mexico
| | - Rafael Torres-Valadez
- Centro Nayarita de Innovación y Transferencia de Tecnología, Universidad Autónoma de Nayarit, Tepic, Nayarit, México.,Unidad Académica de Salud Integral, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Iván Hernández-Cañaveral
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Erika Martínez-López
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Nutrigenética y Nutrigenómica Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
7
|
Seto JT, Roeszler KN, Meehan LR, Wood HD, Tiong C, Bek L, Lee SF, Shah M, Quinlan KGR, Gregorevic P, Houweling PJ, North KN. ACTN3 genotype influences skeletal muscle mass regulation and response to dexamethasone. SCIENCE ADVANCES 2021; 7:eabg0088. [PMID: 34215586 PMCID: PMC11060041 DOI: 10.1126/sciadv.abg0088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Homozygosity for the common ACTN3 null polymorphism (ACTN3 577X) results in α-actinin-3 deficiency in ~20% of humans worldwide and is linked to reduced sprint and power performance in both elite athletes and the general population. α-Actinin-3 deficiency is also associated with reduced muscle mass, increased risk of sarcopenia, and altered muscle wasting response induced by denervation and immobilization. Here, we show that α-actinin-3 plays a key role in the regulation of protein synthesis and breakdown signaling in skeletal muscle and influences muscle mass from early postnatal development. We also show that α-actinin-3 deficiency reduces the atrophic and anti-inflammatory response to the glucocorticoid dexamethasone in muscle and protects against dexamethasone-induced muscle wasting in female but not male mice. The effects of α-actinin-3 deficiency on muscle mass regulation and response to muscle wasting provide an additional mechanistic explanation for the positive selection of the ACTN3 577X allele in recent human history.
Collapse
Affiliation(s)
- Jane T Seto
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kelly N Roeszler
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Lyra R Meehan
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Harrison D Wood
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Chrystal Tiong
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Lucinda Bek
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Siaw F Lee
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Physiology, University of Melbourne, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Peter J Houweling
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. Am J Hum Genet 2021; 108:446-457. [PMID: 33600773 PMCID: PMC8008486 DOI: 10.1016/j.ajhg.2021.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The protein α-actinin-3 expressed in fast-twitch skeletal muscle fiber is absent in 1.5 billion people worldwide due to homozygosity for a nonsense polymorphism in ACTN3 (R577X). The prevalence of the 577X allele increased as modern humans moved to colder climates, suggesting a link between α-actinin-3 deficiency and improved cold tolerance. Here, we show that humans lacking α-actinin-3 (XX) are superior in maintaining core body temperature during cold-water immersion due to changes in skeletal muscle thermogenesis. Muscles of XX individuals displayed a shift toward more slow-twitch isoforms of myosin heavy chain (MyHC) and sarcoplasmic reticulum (SR) proteins, accompanied by altered neuronal muscle activation resulting in increased tone rather than overt shivering. Experiments on Actn3 knockout mice showed no alterations in brown adipose tissue (BAT) properties that could explain the improved cold tolerance in XX individuals. Thus, this study provides a mechanism for the positive selection of the ACTN3 X-allele in cold climates and supports a key thermogenic role of skeletal muscle during cold exposure in humans.
Collapse
|
9
|
Abstract
Muscle stiffness, muscle elasticity and explosive strength are the main components of athletes' performance and they show a sex-based as well as ethnicity variation. Muscle stiffness is thought to be one of the risk factors associated with sports injuries and is less common in females than in males. These observations may be explained by circulating levels of sex hormones and their specific receptors. It has been shown that higher levels of estrogen are associated with lower muscle stiffness responsible for suppression of collagen synthesis. It is thought that these properties, at least in part, depend on genetic factors. Particularly, the gene encoding estrogen receptor 1 (ESR1) is one of the candidates that may be associated with muscle stiffness. Muscle elasticity increases with aging and there is evidence suggesting that titin (encoded by the TTN gene), a protein that is expressed in cardiac and skeletal muscles, is one of the factors responsible for elastic properties of the muscles. Mutations in the TTN gene result in some types of muscular dystrophy or cardiomyopathy. In this context, TTN may be regarded as a promising candidate for studying the elastic properties of muscles in athletes. The physiological background of explosive strength depends not only on the muscle architecture and muscle fiber composition, but also on the central nervous system and functionality of neuromuscular units. These properties are, at least partly, genetically determined. In this context, the ACTN3 gene code for α-actinin 3 has been widely researched.
Collapse
|
10
|
Effect of ACTN3 Genotype on Sports Performance, Exercise-Induced Muscle Damage, and Injury Epidemiology. Sports (Basel) 2020; 8:sports8070099. [PMID: 32668587 PMCID: PMC7404684 DOI: 10.3390/sports8070099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic factors play a significant role in athletic performance and its related phenotypes such as power, strength and aerobic capacity. In this regard, the lack of a muscle protein due to a genetic polymorphism has been found to affect sport performance in a wide variety of ways. α-actinin-3 is a protein located within the skeletal muscle with a key role in the production of sarcomeric force. A common stop-codon polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) produces individuals with the XX genotype that lack expression of a functional α-actinin-3. In contrast, individuals with the R-allele (i.e., RX vs. RR genotypes) in this polymorphism can express α-actinin-3. Interestingly, around ~18% of the world population have the XX genotype and much has been debated about why a polymorphism that produces a lack of a muscle protein has endured natural selection. Several investigations have found that α-actinin-3 deficiency due to XX homozygosity in the ACTN3 R577X polymorphism can negatively affect sports performance through several structural, metabolic, or signaling changes. In addition, new evidence suggests that α-actinin-3 deficiency may also impact sports performance through indirect factors such a higher risk for injury or lower resistance to muscle-damaging exercise. The purpose of this discussion is to provide a clear explanation of the effect of α-actinin-3 deficiency due to the ACTN3 XX genotype on sport. Key focus has been provided about the effect of α-actinin-3 deficiency on morphologic changes in skeletal muscle, on the low frequency of XX athletes in some athletic disciplines, and on injury epidemiology.
Collapse
|
11
|
Harada N, Gotoda Y, Hatakeyama A, Nakagawa T, Miyatake Y, Kuroda M, Masumoto S, Tsutsumi R, Nakaya Y, Sakaue H. Differential regulation of Actn2 and Actn3 expression during unfolded protein response in C2C12 myotubes. J Muscle Res Cell Motil 2020; 41:199-209. [PMID: 32451822 DOI: 10.1007/s10974-020-09582-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/20/2020] [Indexed: 11/29/2022]
Abstract
ACTN2 and ACTN3 encode sarcomeric α-actinin-2 and α-actinin-3 proteins, respectively, that constitute the Z-line in mammalian skeletal muscle fibers. In human ACTN3, a nonsense mutation at codon 577 that encodes arginine (R) produces the R577X polymorphism. Individuals having a homozygous 577XX genotype do not produce α-actinin-3 protein. The 577XX genotype reportedly occurs in sprint and power athletes in frequency lower than in the normal population, suggesting that α-actinin-3 deficiency diminishes fast-type muscle function. Among humans who carry 577R alleles, varying ACTN3 expression levels under certain conditions can have diverse effects on atheletic and muscle performance. However, the factors that regulate ACTN3 expression are unclear. Here we investigated whether the unfolded protein response (UPR) under endoplasmic reticulum (ER) stress regulates expression of Actn3 and its isoform Actn2 in mouse C2C12 myotubes. Among UPR-related transcription factors, XBP1 upregulated Actn2, whereas XBP1, ATF4 and ATF6 downregulated Actn3 promoter activity. Chemical induction of ER stress increased Actn2 mRNA levels, but decreased those for Actn3. ER stress also decreased α-actinin-3 protein levels, whereas levels of α-actinin-2 were unchanged. The intracellular composition of muscle contraction-related proteins was altered under ER stress, in that expression of parvalbumin (a fast-twitch muscle-specific protein) and troponin I type 1 (skeletal, slow) was suppressed. siRNA-induced suppression of Actn3 mimicked the inhibitory effect of ER stress on parvalbumin levels. Thus, endogenous expression levels of α-actinin-3 can be altered by ER stress, which may modulate muscle performance and athletic aptitudes, particularly in humans who carry ACTN3 577R alleles.
Collapse
Affiliation(s)
- Nagakatsu Harada
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, 151 Nishihayashigi, Izumo City, Shimane, 693-8550, Japan. .,Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan.
| | - Yuka Gotoda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Adzumi Hatakeyama
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Tadahiko Nakagawa
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, 151 Nishihayashigi, Izumo City, Shimane, 693-8550, Japan
| | - Yumiko Miyatake
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Saeko Masumoto
- Faculty of Food and Agricultural Sciences, Fukushima University, 1, Kanayagawa, Fukushima City, Fukushima, 960-1296, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| |
Collapse
|
12
|
Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age. Genes (Basel) 2020; 11:genes11020172. [PMID: 32041309 PMCID: PMC7073773 DOI: 10.3390/genes11020172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Studies of the gene and miRNA expression profiles associated with the postnatal late growth, development, and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq) analyses to determine the differentially expressed (DE) unigenes and miRNAs from skeletal muscle tissues at 1, 3, 5, and 10 years in sika deer. A total of 51,716 unigenes, 171 known miRNAs, and 60 novel miRNAs were identified based on four mRNA and small RNA libraries. A total of 2,044 unigenes and 11 miRNAs were differentially expressed between adolescence and juvenile sika deer, 1,946 unigenes and 4 miRNAs were differentially expressed between adult and adolescent sika deer, and 2,209 unigenes and 1 miRNAs were differentially expressed between aged and adult sika deer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DE unigenes and miRNA were mainly related to energy and substance metabolism, processes that are closely associate with the growth, development, and aging of skeletal muscle. We also constructed mRNA–mRNA and miRNA–mRNA interaction networks related to the growth, development, and aging of skeletal muscle. The results show that mRNA (Myh1, Myh2, Myh7, ACTN3, etc.) and miRNAs (miR-133a, miR-133c, miR-192, miR-151-3p, etc.) may play important roles in muscle growth and development, and mRNA (WWP1, DEK, UCP3, FUS, etc.) and miRNAs (miR-17-5p, miR-378b, miR-199a-5p, miR-7, etc.) may have key roles in muscle aging. In this study, we determined the dynamic miRNA and unigenes transcriptome in muscle tissue for the first time in sika deer. The age-dependent miRNAs and unigenes identified will offer insights into the molecular mechanism underlying muscle development, growth, and maintenance and will also provide valuable information for sika deer genetic breeding.
Collapse
|
13
|
Goleva-Fjellet S, Bjurholt AM, Kure EH, Larsen IK, Støren Ø, Sæbø M. Distribution of allele frequencies for genes associated with physical activity and/or physical capacity in a homogenous Norwegian cohort- a cross-sectional study. BMC Genet 2020; 21:8. [PMID: 31973699 PMCID: PMC6979285 DOI: 10.1186/s12863-020-0813-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There are large individual differences in physical activity (PA) behavior as well as trainability of physical capacity. Heritability studies have shown that genes may have as much impact on exercise participation behavior as environmental factors. Genes that favor both trainability and participation may increase the levels of PA. The present study aimed to assess the allele frequencies in genes associated with PA and/or physical capacity, and to see if there is any association between these polymorphisms and self-reported PA levels in a cohort of middle-aged Norwegians of Scandinavian descent (n = 831; mean age mean age (± SD) 55.5 ± 3.8 years). RESULTS The genotype distributions of the ACTN3 R577X, ACE I/D and MAOA uVNTR polymorphisms were similar to other populations of European descent. When comparing the genotype distribution between the low/medium level PA group (LMPA) and high level PA groups (HPA), a significant difference in ACTN3 577X allele distribution was found. The X allele frequency was 10% lower in the HPA level group (P = 0.006). There were no differences in the genotype distribution of the ACE I/D or MAOA uVNTR polymorphism. Education and previous participation in sports or outdoor activities was positively associated with the self-reported PA levels (P ≤ 0.001). CONCLUSIONS To the best of our knowledge, this is the first study to report association between ACTN3 R577X genotype and PA level in middle-aged Scandinavians. Nevertheless, the contribution of a single polymorphism to a complex trait, like PA level, is likely small. Socioeconomic variables, as education and previous participation in sports or outdoor activities, are positively associated with the self-reported PA levels.
Collapse
Affiliation(s)
- Sannija Goleva-Fjellet
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway.
| | - Anne Mari Bjurholt
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway
| | - Elin H Kure
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | | | - Øyvind Støren
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway
| | - Mona Sæbø
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø i, Telemark, Norway
| |
Collapse
|
14
|
Ivarsson N, Mattsson CM, Cheng AJ, Bruton JD, Ekblom B, Lanner JT, Westerblad H. SR Ca 2+ leak in skeletal muscle fibers acts as an intracellular signal to increase fatigue resistance. J Gen Physiol 2019; 151:567-577. [PMID: 30635368 PMCID: PMC6445590 DOI: 10.1085/jgp.201812152] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/16/2018] [Indexed: 01/14/2023] Open
Abstract
Skeletal muscle oxidative capacity and fatigue resistance can be improved with endurance training, but the mechanism is not fully understood. Ivarsson et al. find that the signaling pathway that increases fatigue resistance in muscle is triggered by a mild Ca2+ leak from the sarcoplasmic reticulum. Effective practices to improve skeletal muscle fatigue resistance are crucial for athletes as well as patients with dysfunctional muscles. To this end, it is important to identify the cellular signaling pathway that triggers mitochondrial biogenesis and thereby increases oxidative capacity and fatigue resistance in skeletal muscle fibers. Here, we test the hypothesis that the stress induced in skeletal muscle fibers by endurance exercise causes a reduction in the association of FK506-binding protein 12 (FKBP12) with ryanodine receptor 1 (RYR1). This will result in a mild Ca2+ leak from the sarcoplasmic reticulum (SR), which could trigger mitochondrial biogenesis and improved fatigue resistance. After giving mice access to an in-cage running wheel for three weeks, we observed decreased FKBP12 association to RYR1, increased baseline [Ca2+]i, and signaling associated with greater mitochondrial biogenesis in muscle, including PGC1α1. After six weeks of voluntary running, FKBP12 association is normalized, baseline [Ca2+]i returned to values below that of nonrunning controls, and signaling for increased mitochondrial biogenesis was no longer present. The adaptations toward improved endurance exercise performance that were observed with training could be mimicked by pharmacological agents that destabilize RYR1 and thereby induce a modest Ca2+ leak. We conclude that a mild RYR1 SR Ca2+ leak is a key trigger for the signaling pathway that increases muscle fatigue resistance.
Collapse
Affiliation(s)
- Niklas Ivarsson
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - C Mikael Mattsson
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - Björn Ekblom
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Houweling PJ, Papadimitriou ID, Seto JT, Pérez LM, Coso JD, North KN, Lucia A, Eynon N. Is evolutionary loss our gain? The role of
ACTN3
p.Arg577Ter (R577X) genotype in athletic performance, ageing, and disease. Hum Mutat 2018; 39:1774-1787. [DOI: 10.1002/humu.23663] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Peter J. Houweling
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | | | - Jane T. Seto
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | - Laura M. Pérez
- Universidad Europea de Madrid (Faculty of Sport Sciences) Madrid Spain
- Instituto de Investigación Hospital 12 de Octubre Madrid Spain
| | - Juan Del Coso
- Exercise Physiology Laboratory Camilo José Cela University Madrid Spain
| | - Kathryn N. North
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | - Alejandro Lucia
- Universidad Europea de Madrid (Faculty of Sport Sciences) Madrid Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable Madrid Spain
| | - Nir Eynon
- Institute for Health and Sport (iHeS) Victoria University Victoria Australia
| |
Collapse
|
16
|
Wang J, Meng J, Wang X, Zeng Y, Li L, Xin Y, Yao X, Liu W. Analysis of Equine ACTN3 Gene Polymorphisms in Yili Horses. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Del Coso J, Hiam D, Houweling P, Pérez LM, Eynon N, Lucía A. More than a 'speed gene': ACTN3 R577X genotype, trainability, muscle damage, and the risk for injuries. Eur J Appl Physiol 2018; 119:49-60. [PMID: 30327870 DOI: 10.1007/s00421-018-4010-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
A common null polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) has been related to different aspects of exercise performance. Individuals who are homozygous for the X allele are unable to express the α-actinin-3 protein in the muscle as opposed to those with the RX or RR genotype. α-actinin-3 deficiency in the muscle does not result in any disease. However, the different ACTN3 genotypes can modify the functioning of skeletal muscle during exercise through structural, metabolic or signaling changes, as shown in both humans and in the mouse model. Specifically, the ACTN3 RR genotype might favor the ability to generate powerful and forceful muscle contractions. Leading to an overall advantage of the RR genotype for enhanced performance in some speed and power-oriented sports. In addition, RR genotype might also favor the ability to withstand exercise-induced muscle damage, while the beneficial influence of the XX genotype on aerobic exercise performance needs to be validated in human studies. More information is required to unveil the association of ACTN3 genotype with trainability and injury risk during acute or chronic exercise.
Collapse
Affiliation(s)
- Juan Del Coso
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | | | - Laura M Pérez
- Universidad Europea de Madrid (Faculty of Sport Sciences) and Research Institute i+12, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Alejandro Lucía
- Universidad Europea de Madrid (Faculty of Sport Sciences) and Research Institute i+12, Madrid, Spain
| |
Collapse
|
18
|
Del Coso J, Valero M, Salinero JJ, Lara B, Gallo-Salazar C, Areces F. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon. PLoS One 2017; 12:e0172965. [PMID: 28257486 PMCID: PMC5336235 DOI: 10.1371/journal.pone.0172965] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Purpose Exertional rhabdomyolysis can occur in individuals performing various types of exercise but it is unclear why some individuals develop this condition while others do not. Previous investigations have determined the role of several single nucleotide polymorphisms (SNPs) to explain inter-individual variability of serum creatine kinase (CK) concentrations after exertional muscle damage. However, there has been no research about the interrelationship among these SNPs. The purpose of this investigation was to analyze seven SNPs that are candidates for explaining individual variations of CK response after a marathon competition (ACE = 287bp Ins/Del, ACTN3 = p.R577X, CKMM = NcoI, IGF2 = C13790G, IL6 = 174G>C, MLCK = C37885A, TNFα = 308G>A). Methods Using Williams and Folland’s model, we determined the total genotype score from the accumulated combination of these seven SNPs for marathoners with a low CK response (n = 36; serum CK <400 U·L-1) vs. marathoners with a high CK response (n = 31; serum CK ≥400 U·L-1). Results At the end of the race, low CK responders had lower serum CK (290±65 vs. 733±405 U·L-1; P<0.01) and myoglobin concentrations (443±328 vs. 1009±971 ng·mL-1, P<0.01) than high CK responders. Although the groups were similar in age, anthropometric characteristics, running experience and training habits, total genotype score was higher in low CK responders than in high CK responders (5.2±1.4 vs. 4.4±1.7 point, P = 0.02). Conclusion Marathoners with a lower CK response after the race had a more favorable polygenic profile than runners with high serum CK concentrations. This might suggest a significant role of genetic polymorphisms in the levels of exertional muscle damage and rhabdomyolysis. Yet other SNPs, in addition to exercise training, might also play a role in the values of CK after damaging exercise.
Collapse
Affiliation(s)
- Juan Del Coso
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
- * E-mail:
| | - Marjorie Valero
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | - Juan José Salinero
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | - Beatriz Lara
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | | | - Francisco Areces
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| |
Collapse
|
19
|
ACTN3 genotype influences exercise-induced muscle damage during a marathon competition. Eur J Appl Physiol 2017; 117:409-416. [DOI: 10.1007/s00421-017-3542-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/09/2017] [Indexed: 11/27/2022]
|
20
|
Abstract
Viability of cells is strongly related to their Ca2+ homeostasis. Ca2+ signal fluctuations can be on a slow time scale, e.g., in non-excitable cells, but also in the range of tens of milliseconds for excitable cells, such as nerve and muscle. Muscle fibers respond to electrical stimulation with Ca2+ transients that exceed their resting basal level about 100 times. Fluorescent Ca2+ dyes have become an indispensable means to monitor Ca2+ fluctuations in living cells online. Fluorescence intensity of such "environmental dyes" relies on a buffer-ligand interaction which is not only governed by laws of mass action but also by binding and unbinding kinetics that have to be considered for proper Ca2+ kinetics and amplitude validation. The concept of Ca2+ dyes including the different approaches using ratiometric and non-ratiometric dyes, the way to correctly choose dyes according to their low-/high-affinity properties and kinetics as well as staining techniques, and in situ calibration are reviewed and explained. We provide detailed protocols to apply ratiometric Fura-2 imaging of resting Ca2+ and Ca2+ fluctuations during field-stimulation in single isolated skeletal muscle cells and how to translate fluorescence intensities into absolute Ca2+ concentrations using appropriate calibration techniques.
Collapse
Affiliation(s)
- Oliver Friedrich
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Institute of Medical Biotechnology, Paul-Gordan-Street 3, Erlangen, 91052, Germany.
| | - Stewart I Head
- School of Medical Sciences (SOMS), University of New South Wales (UNSW), Wallace Wurth Building, Sydney, NSW, 2052, Australia
| |
Collapse
|
21
|
Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 2016; 116:1595-625. [PMID: 27294501 PMCID: PMC4983298 DOI: 10.1007/s00421-016-3411-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Philipp Baumert
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mark J Lake
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
22
|
Papadimitriou ID, Lucia A, Pitsiladis YP, Pushkarev VP, Dyatlov DA, Orekhov EF, Artioli GG, Guilherme JPLF, Lancha AH, Ginevičienė V, Cieszczyk P, Maciejewska-Karlowska A, Sawczuk M, Muniesa CA, Kouvatsi A, Massidda M, Calò CM, Garton F, Houweling PJ, Wang G, Austin K, Druzhevskaya AM, Astratenkova IV, Ahmetov II, Bishop DJ, North KN, Eynon N. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genomics 2016; 17:285. [PMID: 27075997 PMCID: PMC4831144 DOI: 10.1186/s12864-016-2462-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background To date, studies investigating the association between ACTN3 R577X and ACE I/D gene variants and elite sprint/power performance have been limited by small cohorts from mixed sport disciplines, without quantitative measures of performance. Aim: To examine the association between these variants and sprint time in elite athletes. Methods We collected a total of 555 best personal 100-, 200-, and 400-m times of 346 elite sprinters in a large cohort of elite Caucasian or African origin sprinters from 10 different countries. Sprinters were genotyped for ACTN3 R577X and ACE ID variants. Results On average, male Caucasian sprinters with the ACTN3 577RR or the ACE DD genotype had faster best 200-m sprint time than their 577XX (21.19 ± 0.53 s vs. 21.86 ± 0.54 s, p = 0.016) and ACE II (21.33 ± 0.56 vs. 21.93 ± 0.67 sec, p = 0.004) counterparts and only one case of ACE II, and no cases of ACTN3 577XX, had a faster 200-m time than the 2012 London Olympics qualifying (vs. 12 qualified sprinters with 577RR or 577RX genotype). Caucasian sprinters with the ACE DD genotype had faster best 400-m sprint time than their ACE II counterparts (46.94 ± 1.19 s vs. 48.50 ± 1.07 s, p = 0.003). Using genetic models we found that the ACTN3 577R allele and ACE D allele dominant model account for 0.92 % and 1.48 % of sprint time variance, respectively. Conclusions Despite sprint performance relying on many gene variants and environment, the % sprint time variance explained by ACE and ACTN3 is substantial at the elite level and might be the difference between a world record and only making the final. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2462-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioannis D Papadimitriou
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, 8001, Australia
| | - Alejandro Lucia
- Universidad Europea and Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Yannis P Pitsiladis
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Vladimir P Pushkarev
- Clinical Physiology Laboratory, Urals Research Centre for Radiation Medicine, Chelyabinsk, Russia
| | | | | | - Guilherme G Artioli
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Antonio H Lancha
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Pawel Cieszczyk
- Department of Physical Culture and Health Promotion, University of Szczecin, Szczecin, Poland.,Department of Sport Education, Academy of Physical Education and Sport, Gdansk, Poland
| | | | - Marek Sawczuk
- Department of Physical Culture and Health Promotion, University of Szczecin, Szczecin, Poland
| | - Carlos A Muniesa
- Faculty of Physical Activity, Universidad Europea de Madrid, Alcobendas, Spain
| | - Anastasia Kouvatsi
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Myosotis Massidda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Carla Maria Calò
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Fleur Garton
- Murdoch Childrens Research Institute, Melbourne, Australia
| | | | - Guan Wang
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Krista Austin
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Anastasiya M Druzhevskaya
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia
| | - Irina V Astratenkova
- Department of Physiology, St Petersburg State University, St. Petersburg, Russia
| | - Ildus I Ahmetov
- Sport Technology Research Centre, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia
| | - David J Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, 8001, Australia
| | | | - Nir Eynon
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, 8001, Australia.
| |
Collapse
|
23
|
GARTON FLEURC, NORTH KATHRYNN. The Effect of Heterozygosity for the ACTN3 Null Allele on Human Muscle Performance. Med Sci Sports Exerc 2016; 48:509-20. [DOI: 10.1249/mss.0000000000000784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Hogarth MW, Garton FC, Houweling PJ, Tukiainen T, Lek M, Macarthur DG, Seto JT, Quinlan KGR, Yang N, Head SI, North KN. Analysis of the ACTN3 heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion. Hum Mol Genet 2016; 25:866-77. [PMID: 26681802 PMCID: PMC4754040 DOI: 10.1093/hmg/ddv613] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
A common null polymorphism (R577X) in ACTN3 causes α-actinin-3 deficiency in ∼ 18% of the global population. There is no associated disease phenotype, but α-actinin-3 deficiency is detrimental to sprint and power performance in both elite athletes and the general population. However, despite considerable investigation to date, the functional consequences of heterozygosity for ACTN3 are unclear. A subset of studies have shown an intermediate phenotype in 577RX individuals, suggesting dose-dependency of α-actinin-3, while others have shown no difference between 577RR and RX genotypes. Here, we investigate the effects of α-actinin-3 expression level by comparing the muscle phenotypes of Actn3(+/-) (HET) mice to Actn3(+/+) [wild-type (WT)] and Actn3(-/-) [knockout (KO)] littermates. We show reduction in α-actinin-3 mRNA and protein in HET muscle compared with WT, which is associated with dose-dependent up-regulation of α-actinin-2, z-band alternatively spliced PDZ-motif and myotilin at the Z-line, and an incremental shift towards oxidative metabolism. While there is no difference in force generation, HET mice have an intermediate endurance capacity compared with WT and KO. The R577X polymorphism is associated with changes in ACTN3 expression consistent with an additive model in the human genotype-tissue expression cohort, but does not influence any other muscle transcripts, including ACTN2. Overall, ACTN3 influences sarcomeric composition in a dose-dependent fashion in mouse skeletal muscle, which translates directly to function. Variance in fibre type between biopsies likely masks this phenomenon in human skeletal muscle, but we suggest that an additive model is the most appropriate for use in testing ACTN3 genotype associations.
Collapse
Affiliation(s)
- Marshall W Hogarth
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia, Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia
| | - Fleur C Garton
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia, Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia, Murdoch Children's Research Institute, Melbourne, Vic 3052, Australia, Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| | - Peter J Houweling
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia, Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia, Murdoch Children's Research Institute, Melbourne, Vic 3052, Australia, Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| | - Taru Tukiainen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA, Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA and
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA, Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA and
| | - Daniel G Macarthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA, Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA and
| | - Jane T Seto
- Murdoch Children's Research Institute, Melbourne, Vic 3052, Australia, Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| | - Kate G R Quinlan
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia, Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia
| | - Nan Yang
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia
| | - Stewart I Head
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kathryn N North
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia, Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia, Murdoch Children's Research Institute, Melbourne, Vic 3052, Australia, Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia,
| |
Collapse
|
25
|
Lee FXZ, Houweling PJ, North KN, Quinlan KGR. How does α-actinin-3 deficiency alter muscle function? Mechanistic insights into ACTN3, the 'gene for speed'. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:686-93. [PMID: 26802899 DOI: 10.1016/j.bbamcr.2016.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 01/18/2023]
Abstract
An estimated 1.5 billion people worldwide are deficient in the skeletal muscle protein α-actinin-3 due to homozygosity for the common ACTN3 R577X polymorphism. α-Actinin-3 deficiency influences muscle performance in elite athletes and the general population. The sarcomeric α-actinins were originally characterised as scaffold proteins at the muscle Z-line. Through studying the Actn3 knockout mouse and α-actinin-3 deficient humans, significant progress has been made in understanding how ACTN3 genotype alters muscle function, leading to an appreciation of the diverse roles that α-actinins play in muscle. The α-actinins interact with a number of partner proteins, which broadly fall into three biological pathways-structural, metabolic and signalling. Differences in functioning of these pathways have been identified in α-actinin-3 deficient muscle that together contributes to altered muscle performance in mice and humans. Here we discuss new insights that have been made in understanding the molecular mechanisms that underlie the consequences of α-actinin-3 deficiency.
Collapse
Affiliation(s)
- Fiona X Z Lee
- The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, NSW 2145, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, NSW 2006, Australia
| | - Peter J Houweling
- Murdoch Childrens Research Institute, the Royal Children's Hospital, VIC 3052, Australia
| | - Kathryn N North
- The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, NSW 2145, Australia; Murdoch Childrens Research Institute, the Royal Children's Hospital, VIC 3052, Australia
| | - Kate G R Quinlan
- Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, NSW 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
26
|
Garton FC, North KN, Koch LG, Britton SL, Nogales-Gadea G, Lucia A. Rodent models for resolving extremes of exercise and health. Physiol Genomics 2015; 48:82-92. [PMID: 26395598 DOI: 10.1152/physiolgenomics.00077.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.
Collapse
Affiliation(s)
- Fleur C Garton
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia;
| | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and
| | - Alejandro Lucia
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and Instituto de Investigación Hospital 12 de Octubre (i+12) and Universidad Europea, Madrid, Spain
| |
Collapse
|
27
|
Murphy ACH, Young PW. The actinin family of actin cross-linking proteins - a genetic perspective. Cell Biosci 2015; 5:49. [PMID: 26312134 PMCID: PMC4550062 DOI: 10.1186/s13578-015-0029-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Actinins are one of the major actin cross-linking proteins found in virtually all cell types and are the ancestral proteins of a larger family that includes spectrin, dystrophin and utrophin. Invertebrates have a single actinin-encoding ACTN gene, while mammals have four. Mutations in all four human genes have now been linked to heritable diseases or traits. ACTN1 mutations cause macrothrombocytopenia, a platelet disorder characterized by excessive bleeding. ACTN2 mutations have been linked to a range of cardiomyopathies, and ACTN4 mutations cause a kidney condition called focal segmental glomerulosclerosis. Intriguingly, approximately 16 % of people worldwide are homozygous for a nonsense mutation in ACTN3 that abolishes actinin-3 protein expression. This ACTN3 null allele has undergone recent positive selection in specific human populations, which may be linked to improved endurance and adaptation to colder climates. In this review we discuss the human genetics of the ACTN gene family, as well as ACTN gene knockout studies in several model organisms. Observations from both of these areas provide insights into the evolution and cellular functions of actinins.
Collapse
Affiliation(s)
- Anita C H Murphy
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Paul W Young
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Correction: Altered Ca2+ Kinetics Associated with α-Actinin-3 Deficiency May Explain Positive Selection for ACTN3 Null Allele in Human Evolution. PLoS Genet 2015; 11:e1005312. [PMID: 26125182 PMCID: PMC4488384 DOI: 10.1371/journal.pgen.1005312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Deschamps CL, Connors KE, Klein MS, Johnsen VL, Shearer J, Vogel HJ, Devaney JM, Gordish-Dressman H, Many GM, Barfield W, Hoffman EP, Kraus WE, Hittel DS. The ACTN3 R577X Polymorphism Is Associated with Cardiometabolic Fitness in Healthy Young Adults. PLoS One 2015; 10:e0130644. [PMID: 26107372 PMCID: PMC4480966 DOI: 10.1371/journal.pone.0130644] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/21/2015] [Indexed: 12/03/2022] Open
Abstract
Homozygosity for a premature stop codon (X) in the ACTN3 “sprinter” gene is common in humans despite the fact that it reduces muscle size, strength and power. Because of the close relationship between skeletal muscle function and cardiometabolic health we examined the influence of ACTN3 R577X polymorphism over cardiovascular and metabolic characteristics of young adults (n = 98 males, n = 102 females; 23 ± 4.2 years) from our Assessing Inherent Markers for Metabolic syndrome in the Young (AIMMY) study. Both males and females with the RR vs XX genotype achieved higher mean VO2 peak scores (47.8 ± 1.5 vs 43.2 ±1.8 ml/O2/min, p = 0.002) and exhibited higher resting systolic (115 ± 2 vs 105 ± mmHg, p = 0.027) and diastolic (69 ± 3 vs 59 ± 3 mmHg, p = 0.005) blood pressure suggesting a role for ACTN3 in the maintenance of vascular tone. We subsequently identified the expression of alpha-actinin 3 protein in pulmonary artery smooth muscle, which may explain the genotype-specific differences in cardiovascular adaptation to acute exercise. In addition, we utilized targeted serum metabolomics to distinguish between RR and XX genotypes, suggesting an additional role for the ACTN3 R577X polymorphism in human metabolism. Taken together, these results identify significant cardiometabolic effects associated with possessing one or more functional copies of the ACTN3 gene.
Collapse
Affiliation(s)
- Chelsea L. Deschamps
- Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
| | - Kimberly E. Connors
- Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
| | - Matthias S. Klein
- Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
| | - Virginia L. Johnsen
- Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
- Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
| | - Hans J. Vogel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
| | - Joseph M. Devaney
- Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, United States of America
| | - Heather Gordish-Dressman
- Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, United States of America
| | - Gina M. Many
- Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, United States of America
| | - Whitney Barfield
- Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, United States of America
| | - Eric P. Hoffman
- Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, United States of America
| | - William E. Kraus
- Duke University, 304 Research Drive, Durham, NC, United States of America
| | - Dustin S. Hittel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
- * E-mail:
| |
Collapse
|
30
|
Abstract
Micropeptides represent an emerging class of eukaryotic regulators that are easily missed in conventional genome annotation. Anderson et al. (2015) describe how a new tissue-specific micropeptide, myoregulin (MLN), interacts with the skeletal muscle calcium handling machinery to moderate contractile activity, representing a promising drug target for improving muscle performance.
Collapse
Affiliation(s)
- Joanne Tonkin
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK
| | - Nadia Rosenthal
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; Australian Regenerative Medicine Institute/ EMBL Australia, Monash University, 3800 Melbourne, Australia.
| |
Collapse
|
31
|
Affiliation(s)
- Niklas Ivarsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|