1
|
Goktas S, Sonmez G, Şahin A, Çevik NN, Caka C, Yaz I, Esenboga S, Cagdas D. A patient with RFX5 variant causing an expression defect in both HLA ABC and HLA DR. Immunol Res 2025; 73:72. [PMID: 40240550 DOI: 10.1007/s12026-025-09627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
The major histocompatibility complex (MHC) encompasses a group of genes critical for immune system regulation. In humans, these molecules are referred to as human leukocyte antigens (HLA) due to their initial discovery in human leukocytes. Class I molecules present antigens to CD8 + T cells, while Class II molecules present to CD4 + T cells. Here we report a patient who had a background of parental consanguinity and a family history suggestive of immunodeficiency. He presented with clinical symptoms including fever, septic arthritis, recurrent moniliasis. Preliminary diagnostic tests revealed hypogammaglobulinemia and CD4 lymphopenia. Further immunological assessment indicated extremely low expression levels of HLA molecules: HLA ABC at 5% and HLA DR at 0%. Genetic analysis showed a mutation in the regulatory factor X5 (RFX5) gene, leading to a combined immunodeficiency diagnosis. Consequently, hematopoietic stem cell transplantation (HSCT) was planned. Regulatory factor X5plays a pivotal role in immune function by transactivating genes critical for the expression of MHC Class I and Class II molecules, as well as beta- 2-microglobulin (B2M). MHC Class I transcription is controlled indirectly by RFX5, and the RFX5 gene mutation in the patient likely caused the markedly reduced expression of HLA ABC in addition to HLA DR. Combined HLA-ABC and HLA-DR expression analyses via flow cytometry may serve as a valuable diagnostic tool for identifying RFX5-related immunodeficiency at an early stage, facilitating timely genetic testing and appropriate clinical management.
Collapse
Affiliation(s)
- Serdar Goktas
- Division Of Pediatric Immunology And Allergy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gamze Sonmez
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ali Şahin
- Department of Emergency Service, Dr. Vefa Tanır Ilgın City Hospital, Konya, Turkey
| | - Nadira Nabiyeva Çevik
- Division of Pediatric Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Canan Caka
- Division of Pediatric Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ismail Yaz
- Division of Pediatric Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Division of Pediatric Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Deniz Cagdas
- Division of Pediatric Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
- Department of Pediatrics, İhsan Doğramacı Childrens Hospital, Hacettepe University Medical School, 06100, Altındağ, Ankara, Turkey.
- Department of Pediatric Immunology, Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
2
|
Arakawa Y, Arakawa A, Vural S, He M, Vollmer S, Prinz JC. Down-Regulation of HLA-C Expression on Melanocytes May Contribute to the Therapeutic Efficacy of UVB Phototherapy in Psoriasis. Int J Mol Sci 2025; 26:2858. [PMID: 40243413 PMCID: PMC11988605 DOI: 10.3390/ijms26072858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
UVB phototherapy effectively treats psoriasis. Although it suppresses both innate and adaptive immunity, it remains unclear why UVB irradiation is primarily effective for T-cell-mediated but not inflammatory skin diseases of other etiologies. Using a Vα3S1/Vβ13S1 T-cell receptor (TCR) from a lesional psoriatic CD8+ T-cell clone, we recently demonstrated that in psoriasis, the major psoriasis risk allele HLA-C*06:02 mediates an autoimmune response of CD8+ T-cells against melanocytes by presenting a melanocyte autoantigen. We now investigate the effect of UVB irradiation on melanocyte immunogenicity using the psoriatic Vα3S1/Vβ13S1 TCR in a reporter assay. The immunogenicity of melanocytes for the Vα3S1/Vβ13S1 TCR depended on the up-regulation of HLA-C expression by IFN-γ. UVB irradiation reduced the stimulatory capacity of IFN-γ-conditioned melanocytes for the Vα3S1/Vβ13S1 TCR by suppressing key IFN-γ-induced MHC-class I transcriptional regulators (STAT1, IRF1, NLRC5), the HLA-C-specific transcription factor Oct1, and by inducing miR-148a, which specifically inhibits HLA-C expression. This resulted in the suppression of the IFN-γ-induced expression of HLA-class I molecules and, in particular, an almost complete loss of HLA-C expression. We conclude that suppression of the inflammatory increase in HLA-class I expression and antigen-presentation may contribute to the efficacy of UVB phototherapy in T-cell-mediated skin diseases. The pronounced downregulation of HLA-C on melanocytes could render psoriasis, as HLA-C-associated disease, particularly susceptible to this effect.
Collapse
Affiliation(s)
- Yukiyasu Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Akiko Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Seçil Vural
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Mengwen He
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Sigrid Vollmer
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Jörg C Prinz
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| |
Collapse
|
3
|
Ning B, Chiu DJ, Pfefferkorn RM, Kefella Y, Kane E, Reyes-Ortiz V, Liu G, Zhang S, Liu H, Sultan L, Green E, Constant M, Spira AE, Campbell JD, Reid ME, Varelas X, Burks EJ, Lenburg ME, Mazzilli SA, Beane JE. Epithelial miR-149-5p up-regulation is associated with immune evasion in progressive bronchial premalignant lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636307. [PMID: 39975222 PMCID: PMC11838605 DOI: 10.1101/2025.02.03.636307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The molecular drivers bronchial premalignant lesion progression to invasive lung squamous cell carcinoma are not well defined. Prior work profiling longitudinally collected bronchial premalignant lesion biopsies by RNA sequencing defined a proliferative subtype, enriched with bronchial dysplasia. We found that a gene co-expression module associated with interferon gamma signaling and antigen processing/presentation was down-regulated in progressive/persistent versus regressive lesions within the proliferative subtype, suggesting a functional impact of these genes on immune evasion. RNA from these same premalignant lesions was profiled by microRNA (miRNA) sequencing and a miRNA-gene network analysis identified hsa-miR-149-5p as a potential regulator of this antigen presentation gene co-expression module associated with lesion progression. hsa-miR-149-5p was found to be predominantly expressed in the epithelium and up-regulated in progressive/persistent versus regressive proliferative lesions while targets of this miRNA, the transcriptional coactivator of MHC-I gene expression, NLRC5 , and the genes it regulates were down-regulated. MicroRNA in situ hybridization of hsa-miR-149-5p in tissue from adjacent fixed biopsies showed that hsa-miR-149-5p was increased in areas of bronchial dysplasia in progressive/persistent versus regressive lesions. Imaging mass cytometry showed that NLRC5 protein expression was decreased in progressive/persistent versus regressive lesions within areas of hyperplasia, metaplasia, and dysplasia. Additionally, basal cells with high versus low levels of NLRC5 were found to be in close spatial proximity to CD8 T cells, suggesting that these cells exhibit increased functional MHC-I gene expression in lesions with low hsa-miR-149-5p expression. Collectively, our data suggests a functional role for hsa-miR-149-5p in bronchial premalignant lesions and may serve as a therapeutic target for PML immunomodulation. STATEMENT OF SIGNIFICANCE Integrative analysis across bronchial premalignant lesions has identified and localized a potential regulator of immune evasion in progressive/persistent lesions that could be a novel therapeutic target.
Collapse
|
4
|
Zhu H, Xiao C, Chen J, Guo B, Wang W, Tang Z, Cao Y, Zhan L, Zhang JH. New insights into the structure domain and function of NLR family CARD domain containing 5. Cell Commun Signal 2025; 23:42. [PMID: 39849460 PMCID: PMC11755879 DOI: 10.1186/s12964-024-02012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/22/2024] [Indexed: 01/25/2025] Open
Abstract
NOD-like receptor family CARD domain-containing 5 (NLRC5) is a major transcriptional coactivator of MHC class I genes. NLRC5 is the largest member of the NLR family and contains three domains: an untypical caspase recruitment domain (uCARD), a central nucleotide-binding and oligomerization domain (NOD or NACHT), and a leucine-rich repeat (LRR) domain. The functional variability of NLRC5 has been attributed to its different domain interactions with specific ligands in different cell types. In this review, we address the molecular mechanisms and their implications in multiple microenvironments based on the different functional domains of NLRC5.
Collapse
Affiliation(s)
- Haiqing Zhu
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Chengwei Xiao
- The Second Affiliated Hospital of Bengbu Medical University, No. 663 Longhua Road, Bengbu, Anhui, 233040, China
| | - Jiahua Chen
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Bao Guo
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Wenyan Wang
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Zhenhai Tang
- Center for Scientific Research of Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230022, China
| | - Yunxia Cao
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Lei Zhan
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Jun-Hui Zhang
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
5
|
Imam M, Kianian A, Bhat S, Fure Lukes VE, Greiner-Tollersrud L, Edholm ES. Subgroup specific transcriptional regulation of salmonid non-classical MHC class I L lineage genes following viral challenges and interferon stimulations. Front Immunol 2024; 15:1463345. [PMID: 39759529 PMCID: PMC11695323 DOI: 10.3389/fimmu.2024.1463345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Non-classical MHC class I genes which, compared to classical MHC class I, are typically less polymorphic and have more restricted expression patterns are attracting interest because of their potential to regulate immune responses to various pathogens. In salmonids, among the numerous non-classical MHC class I genes identified to date, L lineage genes, including Sasa-LIA and Sasa-LGA1, are differentially induced in response to microbial challenges. In the present study, we show that while transcription of both Sasa-LIA and Sasa-LGA1 are induced in response to SAV3 infection the transcriptional induction patterns are distinct for each gene. While elevated Sasa-LGA1 expression is maintained long-term following in vivo SAV3 infection Sasa-LIA expression is transient, returning to near baseline weeks prior to viral clearance. Furthermore, by contrasting L lineage transcriptional induction potential of SAV3 with that of IPNV we show that Sasa-LIA and Sasa-LGA1 transcriptional induction is tightly interconnected with select type I and type II interferon induction. Both type I and type II interferon stimulation, to varying degrees, induce Sasa-LIA and Sasa-LGA1 expression. Compared to IFNa1 and IFNc, IFN-gamma was a more effective inducer of both Sasa-LIA and Sasa-LGA1 while IFNb showed no activity. Furthermore, IFNa was a more potent inducer of Sasa-LIA compared to IFNc. The involvement of type I IFN and IFN gamma in regulation of Sasa-LIA and Sasa-LGA1 expression was further substantiated by analysis of their respective promoter regions which indicate that ISRE and GAS like elements most likely cooperatively regulate Sasa-LIA expression while IFN gamma induced expression of Sasa-LGA1 is critically dependent on a single, proximally located ISRE element. Together, these findings imply that Sasa-LIA and Sasa-LGA1 play important but likely functionally distinct roles in the anti-viral response of salmonids and that these two molecules may serve as immune regulators promoting more effective antiviral states.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva-Stina Edholm
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics,
University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Soldà T, Galli C, Guerra C, Hoefner C, Molinari M. TMX5/TXNDC15, a natural trapping mutant of the PDI family is a client of the proteostatic factor ERp44. Life Sci Alliance 2024; 7:e202403047. [PMID: 39348940 PMCID: PMC11443168 DOI: 10.26508/lsa.202403047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024] Open
Abstract
The ER is the organelle of nucleated cells that produces lipids, sugars, and proteins. More than 20 ER-resident members of the protein disulfide isomerase (PDI) family regulate formation, isomerization, and disassembly of covalent bonds in newly synthesized polypeptides. The PDI family includes few membrane-bound members. Among these, TMX1, TMX2, TMX3, TMX4, and TMX5 belong to the thioredoxin-related transmembrane (TMX) protein family. TMX5 is the least-known member of the family. Here, we establish that TMX5 covalently engages via its active site cysteine residue at position 220 a subset of secretory proteins, mainly single- and multipass Golgi-resident polypeptides. TMX5 also interacts non-covalently, and covalently, via non-catalytic cysteine residues, with the PDI family members PDI, ERp57, and ERp44. The association between TMX5 and ERp44 requires formation of a mixed disulfide between the catalytic cysteine residue 29 of ERp44 and the non-catalytic cysteine residues 114 and/or 124 of TMX5 and controls the ER localization of TMX5 in pre-Golgi compartments. Thus, TMX5 belongs to the family of proteins including Ero1α, Ero1β, Prx4, ERAP1, and SUMF1 that operate in pre-Golgi compartments but lack localization sequences required to position themselves and rely on ERp44 engagement for proper intercompartmental distribution.
Collapse
Affiliation(s)
- Tatiana Soldà
- Università della Svizzera italiana, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Carmela Galli
- Università della Svizzera italiana, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Concetta Guerra
- Università della Svizzera italiana, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Carolin Hoefner
- Università della Svizzera italiana, Institute for Research in Biomedicine, Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Maurizio Molinari
- Università della Svizzera italiana, Institute for Research in Biomedicine, Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Brunschwiler F, Nakka S, Guerra J, Guarda G. A Ménage à trois: NLRC5, immunity, and metabolism. Front Immunol 2024; 15:1426620. [PMID: 39035010 PMCID: PMC11257985 DOI: 10.3389/fimmu.2024.1426620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
The nucleotide-binding and oligomerization domain-like receptors (NLRs) NLR family CARD domain-containing protein 5 (NLRC5) and Class II Major Histocompatibility Complex Transactivator (CIITA) are transcriptional regulators of major histocompatibility complex (MHC) class I and class II genes, respectively. MHC molecules are central players in our immune system, allowing the detection of hazardous 'non-self' antigens and, thus, the recognition and elimination of infected or transformed cells from the organism. Recently, CIITA and NLRC5 have emerged as regulators of selected genes of the butyrophilin (BTN) family that interestingly are located in the extended MHC locus. BTNs are transmembrane proteins exhibiting structural similarities to B7 family co-modulatory molecules. The family member BTN2A2, which indeed contributes to the control of T cell activation, was found to be transcriptionally regulated by CIITA. NLRC5 emerged instead as an important regulator of the BTN3A1, BTN3A2, and BTN3A3 genes. Together with BTN2A1, BTN3As regulate non-conventional Vγ9Vδ2 T cell responses triggered by selected metabolites of microbial origin or accumulating in hematologic cancer cells. Even if endogenous metabolites conform to the canonical definition of 'self', metabolically abnormal cells can represent a danger for the organism and should be recognized and controlled by immune system cells. Collectively, new data on the role of NLRC5 in the expression of BTN3As link the mechanisms regulating canonical 'non-self' presentation and those marking cells with abnormal metabolic configurations for immune recognition, an evolutionary parallel that we discuss in this perspective review.
Collapse
Affiliation(s)
| | | | - Jessica Guerra
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Greta Guarda
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
8
|
Tovar Perez JE, Zhang S, Hodgeman W, Kapoor S, Rajendran P, Kobayashi KS, Dashwood RH. Epigenetic regulation of major histocompatibility complexes in gastrointestinal malignancies and the potential for clinical interception. Clin Epigenetics 2024; 16:83. [PMID: 38915093 PMCID: PMC11197381 DOI: 10.1186/s13148-024-01698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Gastrointestinal malignancies encompass a diverse group of cancers that pose significant challenges to global health. The major histocompatibility complex (MHC) plays a pivotal role in immune surveillance, orchestrating the recognition and elimination of tumor cells by the immune system. However, the intricate regulation of MHC gene expression is susceptible to dynamic epigenetic modification, which can influence functionality and pathological outcomes. MAIN BODY By understanding the epigenetic alterations that drive MHC downregulation, insights are gained into the molecular mechanisms underlying immune escape, tumor progression, and immunotherapy resistance. This systematic review examines the current literature on epigenetic mechanisms that contribute to MHC deregulation in esophageal, gastric, pancreatic, hepatic and colorectal malignancies. Potential clinical implications are discussed of targeting aberrant epigenetic modifications to restore MHC expression and 0 the effectiveness of immunotherapeutic interventions. CONCLUSION The integration of epigenetic-targeted therapies with immunotherapies holds great potential for improving clinical outcomes in patients with gastrointestinal malignancies and represents a compelling avenue for future research and therapeutic development.
Collapse
Affiliation(s)
| | - Shilan Zhang
- Department of Cardiovascular Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200070, China
| | - William Hodgeman
- Wolfson Medical School, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sabeeta Kapoor
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, 060-8638, Japan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, Bryan, TX, 77087, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA.
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Zhang T, Aipire A, Li Y, Guo C, Li J. Antigen cross-presentation in dendric cells: From bench to bedside. Biomed Pharmacother 2023; 168:115758. [PMID: 37866002 DOI: 10.1016/j.biopha.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Cross-presentation (XPT) is an adaptation of the cellular process in which dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules for recognition of the cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, resulting in immunity or tolerance. Recent advances in DCs have broadened our understanding of the underlying mechanisms of XPT and strengthened their application in tumor immunotherapy. In this review, we summarized the known mechanisms of XPT, including the receptor-mediated internalization of exogenous antigens, endosome escape, engagement of the other XPT-related proteins, and adjuvants, which significantly enhance the XPT capacity of DCs. Consequently, various strategies to enhance XPT can be adopted and optimized to improve outcomes of DC-based therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yijie Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Changying Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
10
|
Lee MH, Ratanachan D, Wang Z, Hack J, Abdulrahman L, Shamlin NP, Kalayjian M, Nesseler JP, Ganapathy E, Nguyen C, Ratikan JA, Cacalano NA, Austin D, Damoiseaux R, DiPardo B, Graham DS, Kalbasi A, Sayer JW, McBride WH, Schaue D. Adaptation of the Tumor Antigen Presentation Machinery to Ionizing Radiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:693-705. [PMID: 37395687 PMCID: PMC10435044 DOI: 10.4049/jimmunol.2100793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/18/2022] [Indexed: 07/04/2023]
Abstract
Ionizing radiation (IR) can reprogram proteasome structure and function in cells and tissues. In this article, we show that IR can promote immunoproteasome synthesis with important implications for Ag processing and presentation and tumor immunity. Irradiation of a murine fibrosarcoma (FSA) induced dose-dependent de novo biosynthesis of the immunoproteasome subunits LMP7, LMP2, and Mecl-1, in concert with other changes in the Ag-presentation machinery (APM) essential for CD8+ T cell-mediated immunity, including enhanced expression of MHC class I (MHC-I), β2-microglobulin, transporters associated with Ag processing molecules, and their key transcriptional activator NOD-like receptor family CARD domain containing 5. In contrast, in another less immunogenic, murine fibrosarcoma (NFSA), LMP7 transcripts and expression of components of the immunoproteasome and the APM were muted after IR, which affected MHC-I expression and CD8+ T lymphocyte infiltration into NFSA tumors in vivo. Introduction of LMP7 into NFSA largely corrected these deficiencies, enhancing MHC-I expression and in vivo tumor immunogenicity. The immune adaptation in response to IR mirrored many aspects of the response to IFN-γ in coordinating the transcriptional MHC-I program, albeit with notable differences. Further investigations showed divergent upstream pathways in that, unlike IFN-γ, IR failed to activate STAT-1 in either FSA or NFSA cells while heavily relying on NF-κB activation. The IR-induced shift toward immunoproteasome production within a tumor indicates that proteasomal reprogramming is part of an integrated and dynamic tumor-host response that is specific to the stressor and the tumor and therefore is of clinical relevance for radiation oncology.
Collapse
Affiliation(s)
- Mi-Heon Lee
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Duang Ratanachan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Zitian Wang
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jacob Hack
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Lobna Abdulrahman
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas P. Shamlin
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mirna Kalayjian
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jean Philippe Nesseler
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ekambaram Ganapathy
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christine Nguyen
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Josephine A. Ratikan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicolas A. Cacalano
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - David Austin
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of CNSI, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Benjamin DiPardo
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Danielle S. Graham
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - James W. Sayer
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- School of Public Health, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - William H. McBride
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
11
|
Lu ZH, Tu GJ, Fu SL, Shang K, Peng SJ, Chen L, Gu XJ. BMI1 induces ubiquitination and protein degradation of Nod-like receptor family CARD domain containing 5 and suppresses human leukocyte antigen class I expression to induce immune escape in non-small cell lung cancer. Kaohsiung J Med Sci 2022; 38:1190-1202. [PMID: 36194200 DOI: 10.1002/kjm2.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022] Open
Abstract
The Nod-like receptor (NLR) family CARD domain containing 5 (NLRC5) has been reported as an activator of human leukocyte antigen (HLA) class I that is responsible for immune activity in cancer treatment. This work focuses on the role of BMI1 proto-oncogene (BMI1) in the NLRC5-HLA class I axis and in immune escape in non-small cell lung cancer (NSCLC). First, immunoblot analysis and/or reverse transcription-quantitative polymerase chain reaction were performed, which identified decreased NLRC5 and HLA class I levels in NSCLC tissues and cell lines. NSCLCs were co-cultured with activated CD8+ T cells. Overexpression of NLRC5 in NSCLC cells elevated the expression of HLA class I and increased the activity of T cells and IL-2 production, and it reduced the PD-1/PD-L1 levels. The ubiquitination and immunoprecipitation assays confirmed that BMI1 bound to NLRC5 to induce is ubiquitination and protein degradation. Downregulation of BMI1 in NSCLC cells elevated NLRC5 and HLA class I levels, and consequently promoted T cell activation and decreased PD-1/PD-L1 levels in the co-culture system. However, overexpression of BMI1 in cells led to inverse trends. In summary, this study demonstrates that BMI1 induces ubiquitination and protein degradation of NLRC5 and suppresses HLA class I expression, which potentially helps immune escape in NSCLC.
Collapse
Affiliation(s)
- Zhi-Hui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Gan-Jie Tu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Si-Lv Fu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Kai Shang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Su-Juan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xi-Juan Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
12
|
Hu Y, Shen Y, Wu X, Ba R, Xu H, Lu K, Shao Y, Sun C, Zhang Y, Miao F, Shen Y, Zhang J. Expression pattern of NLRC5 in the postnatal mouse brain. Acta Histochem 2022; 124:151939. [PMID: 35952483 DOI: 10.1016/j.acthis.2022.151939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
Nucleotide oligomerization domain-like receptors (NLRs), belonging to a large family of pattern recognition receptors, participate in the host's first line of defense against invading pathogens. Caspase recruitment domain containing 5 (NLRC5), the largest member in the NLR family, is demonstrated to be involved in the innate immune response and inflammatory diseases far and wide. Recent studies report that NLRC5 is associated with some central nervous system (CNS) diseases. Besides, NLRC5 is a mastery regulator for the expression of MHC class I both in the immune system and the CNS, while MHC class I is expressed and exerts its function in the brain. Therefore, it is necessary to investigate the expression pattern of NLRC5 in the developing and adult CNS. In our study, postnatal brain sections of C57BL/6 J mice are analyzed for the expression of NLRC5 protein by immunofluorescence. In the postnatal stages of developing telencephalon, NLRC5 exhibits a spatial and temporal expression pattern. NLRC5 is time-specifically expressed in subfields of hippocampus and different layers of prefrontal cortex. Moreover, it is shown that NLRC5 is highly cell type specific. It can be expressed in large quantities by neurons and microglia, but rarely expressed by astrocytes. Taken together, our research is important for further understanding the biological characteristics of NLRC5 and its function in the CNS.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China
| | - Yi Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China
| | - Xiaojing Wu
- Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China
| | - Hongwei Xu
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China
| | - Keze Lu
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China
| | - Chen Sun
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Ying Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China; Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Fasching PA, Liu D, Scully S, Ingle JN, Lyra PC, Rack B, Hein A, Ekici AB, Reis A, Schneeweiss A, Tesch H, Fehm TN, Heinrich G, Beckmann MW, Ruebner M, Huebner H, Lambrechts D, Madden E, Shen J, Romm J, Doheny K, Jenkins GD, Carlson EE, Li L, Fridley BL, Cunningham JM, Janni W, Monteiro ANA, Schaid DJ, Häberle L, Weinshilboum RM, Wang L. Identification of Two Genetic Loci Associated with Leukopenia after Chemotherapy in Patients with Breast Cancer. Clin Cancer Res 2022; 28:3342-3355. [PMID: 35653140 PMCID: PMC9357161 DOI: 10.1158/1078-0432.ccr-20-4774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE To identify molecular predictors of grade 3/4 neutropenic or leukopenic events (NLE) after chemotherapy using a genome-wide association study (GWAS). EXPERIMENTAL DESIGN A GWAS was performed on patients in the phase III chemotherapy study SUCCESS-A (n = 3,322). Genotyping was done using the Illumina HumanOmniExpress-12v1 array. Findings were functionally validated with cell culture models and the genotypes and gene expression of possible causative genes were correlated with clinical treatment response and prognostic outcomes. RESULTS One locus on chromosome 16 (rs4784750; NLRC5; P = 1.56E-8) and another locus on chromosome 13 (rs16972207; TNFSF13B; P = 3.42E-8) were identified at a genome-wide significance level. Functional validation revealed that expression of these two genes is altered by genotype-dependent and chemotherapy-dependent activity of two transcription factors. Genotypes also showed an association with disease-free survival in patients with an NLE. CONCLUSIONS Two loci in NLRC5 and TNFSF13B are associated with NLEs. The involvement of the MHC I regulator NLRC5 implies the possible involvement of immuno-oncological pathways.
Collapse
Affiliation(s)
- Peter A Fasching
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Steve Scully
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - James N Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Paulo C Lyra
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andre Reis
- Institute of Human Genetics, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Division of Gynecologic Oncology, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Hans Tesch
- Onkologie Bethanien, Frankfurt am Main, Germany
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, Düsseldorf University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Georg Heinrich
- Schwerpunktpraxis für Gynäkologische Onkologie, Fürstenwalde, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB and Laboratory for Translational Genetics, KU Leuven, Leuven, Belgium
| | - Ebony Madden
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, Maryland
| | - Jess Shen
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jane Romm
- McKusick-Nathans Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland
| | - Kim Doheny
- McKusick-Nathans Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland
| | - Gregory D Jenkins
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Erin E Carlson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Liang Li
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantan Xili, Beijing, China
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
- Department of Gynecology and Obstetrics, Unit of Biostatistics, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer. Nat Commun 2022; 13:3671. [PMID: 35760778 PMCID: PMC9237085 DOI: 10.1038/s41467-022-31238-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.
Collapse
|
15
|
Mathé J, Benhammadi M, Kobayashi KS, Brochu S, Perreault C. Regulation of MHC Class I Expression in Lung Epithelial Cells during Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1021-1033. [PMID: 35173036 DOI: 10.4049/jimmunol.2100664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Lung infections are a perennial leading cause of death worldwide. The lung epithelium comprises three main cell types: alveolar type I (AT1), alveolar type II (AT2), and bronchiolar cells. Constitutively, these three cell types express extremely low amounts of surface MHC class I (MHC I) molecules, that is, <1% of levels found on medullary thymic epithelial cells (ECs). We report that inhalation of the TLR4 ligand LPS upregulates cell surface MHC I by ∼25-fold on the three subtypes of mouse lung ECs. This upregulation is dependent on Nlrc5, Stat1, and Stat2 and caused by a concerted production of the three IFN families. It is nevertheless hampered, particularly in AT1 cells, by the limited expression of genes instrumental in the peptide loading of MHC I molecules. Genes involved in production and response to cytokines and chemokines were selectively induced in AT1 cells. However, discrete gene subsets were selectively downregulated in AT2 or bronchiolar cells following LPS inhalation. Genes downregulated in AT2 cells were linked to cell differentiation and cell proliferation, and those repressed in bronchiolar cells were primarily involved in cilium function. Our study shows a delicate balance between the expression of transcripts maintaining lung epithelium integrity and transcripts involved in Ag presentation in primary lung ECs.
Collapse
Affiliation(s)
- Justine Mathé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX; and
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada;
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada;
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Bittner GD, Bushman JS, Ghergherehchi CL, Roballo KCS, Shores JT, Smith TA. Typical and atypical properties of peripheral nerve allografts enable novel strategies to repair segmental-loss injuries. J Neuroinflammation 2022; 19:60. [PMID: 35227261 PMCID: PMC8886977 DOI: 10.1186/s12974-022-02395-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
We review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery. Viable peripheral nerve allografts (PNAs) to repair segmental-loss PNIs have not been experimentally or clinically useful due to their immunological rejection, Wallerian degeneration (WD) of anucleate donor graft and distal host axons, and slow regeneration of host axons, leading to delayed re-innervation and producing atrophy or degeneration of distal target tissues. However, two significant advances have recently been made using viable PNAs to repair segmental-loss PNIs: (1) hydrogel release of Treg cells that reduce the immunological response and (2) PEG-fusion of donor PNAs that reduce the immune response, reduce and/or suppress much WD, immediately restore axonal conduction across the donor graft and re-innervate many target tissues, and restore much voluntary behavioral functions within weeks, sometimes to levels approaching that of uninjured nerves. We review the rather sparse cellular/biochemical data for rejection of conventional PNAs and their acceptance following Treg hydrogel and PEG-fusion of PNAs, as well as cellular and systemic data for their acceptance and remarkable behavioral recovery in the absence of tissue matching or immune suppression. We also review typical and atypical characteristics of PNAs compared with other types of tissue or organ allografts, problems and potential solutions for PNA use and storage, clinical implications and commercial availability of PNAs, and future possibilities for PNAs to repair segmental-loss PNIs.
Collapse
Affiliation(s)
- George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jared S Bushman
- School of Pharmacy, University of Wyoming, Laramie, WY, 82072, USA
| | - Cameron L Ghergherehchi
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tyler A Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
17
|
Structural aspects of the MHC expression control system. Biophys Chem 2022; 284:106781. [PMID: 35228036 PMCID: PMC8941990 DOI: 10.1016/j.bpc.2022.106781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) spans innate and adaptive immunity by presenting antigenic peptides to CD4+ and CD8+ T cells. Multiple transcription factors form an enhanceosome complex on the MHC promoter and recruit transcriptional machinery to activate gene transcription. Immune signals such as interferon-γ (IFN-γ) control MHC level by up-regulating components of the enhanceosome complex. As MHC plays crucial roles in immune regulation, alterations in the MHC enhanceosome structure will alter the pace of rapid immune responses at the transcription level and lead to various diseases related to the immune system. In this review, we discuss the current understanding of the MHC enhanceosome, with a focus on the structures of MHC enhanceosome components and the molecular basis of MHC enhanceosome assembly.
Collapse
|
18
|
Mantel I, Sadiq BA, Blander JM. Spotlight on TAP and its vital role in antigen presentation and cross-presentation. Mol Immunol 2022; 142:105-119. [PMID: 34973498 PMCID: PMC9241385 DOI: 10.1016/j.molimm.2021.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
In the late 1980s and early 1990s, the hunt for a transporter molecule ostensibly responsible for the translocation of peptides across the endoplasmic reticulum (ER) membrane yielded the successful discovery of transporter associated with antigen processing (TAP) protein. TAP is a heterodimer complex comprised of TAP1 and TAP2, which utilizes ATP to transport cytosolic peptides into the ER across its membrane. In the ER, together with other components it forms the peptide loading complex (PLC), which directs loading of high affinity peptides onto nascent major histocompatibility complex class I (MHC-I) molecules that are then transported to the cell surface for presentation to CD8+ T cells. TAP also plays a crucial role in transporting peptides into phagosomes and endosomes during cross-presentation in dendritic cells (DCs). Because of the critical role that TAP plays in both classical MHC-I presentation and cross-presentation, its expression and function are often compromised by numerous types of cancers and viruses to evade recognition by cytotoxic CD8 T cells. Here we review the discovery and function of TAP with a major focus on its role in cross-presentation in DCs. We discuss a recently described emergency route of noncanonical cross-presentation that is mobilized in DCs upon TAP blockade to restore CD8 T cell cross-priming. We also discuss the various strategies employed by cancer cells and viruses to target TAP expression or function to evade immunosurveillance - along with some strategies by which the repertoire of peptides presented by cells which downregulate TAP can be targeted as a therapeutic strategy to mobilize a TAP-independent CD8 T cell response. Lastly, we discuss TAP polymorphisms and the role of TAP in inherited disorders.
Collapse
Affiliation(s)
- Ian Mantel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Barzan A Sadiq
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Department of Microbiology and Immunology, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
19
|
Chen J, Li X, Huang J, Wang Q, Wang S, Wei S, Qin Q, Yang M. The transcription factor RFX5 positively regulates expression of MHCIa in the red-spotted grouper (Epinephelus akaara). FISH & SHELLFISH IMMUNOLOGY 2022; 121:370-379. [PMID: 35051562 DOI: 10.1016/j.fsi.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Regulatory factor X 5 (RFX 5) is a member of the RFX family, and it forms the transcription factor complex RFX with RFXANK/B and RFXAP. The RFX complex can activate MHC expression by binding to the MHC promoter. However, the regulate mechanism of RFX in fish species is not been fully elucidated. In this study, we investigated the transcriptional regulation of Epinephelus akaara RFX5 (EaRFX5) on EaMHCI, and its effect on immune pathways. The genomic sequence of EaRFX5 was 35,774 bp and consisted of ten exons and nine introns. The length of EaRFX5 ORF sequence is 2,160 bp, encoding 719 amino acids. By qRT-PCR, EaRFX5 was detected constitutively expressed in twelve selected tissues, showing a wide range of expression. EaRFX5 expression parttern in response to poly (I:C), LPS, Zymosan A, SGIV, and NNV challenges showed that EaRFX5 plays a differentiated immunomodulatory role in response to various stimuli in different tissues, and EaRFX5 was most significantly upregulated in the kidney after challenge with SGIV. Subcellular localization assays showed that EaRFX5 is a typical nuclear protein. Based on the in vitro overexpression experiments, EaRFX5 appeared to promote the expression of EaMHCIa gene, interferon signalling pathway and inflammatory cytokine. Luciferase reporter assay showed that the -267 bp to +82 bp region of EaMHCIa promoter was the core region where EaRFX5 modulated. Additionally, point mutations and electrophoretic mobility shift assays indicating M3 is the EaRFX5 binding sites in the EaMHCIa promoter. These results contribute to elucidating the function of EaRFX5 in fish immune response, and provide the first evidence of positive regulation of MHCIa expression by RFX5 in fish.
Collapse
Affiliation(s)
- Jinpeng Chen
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinshuai Li
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jianling Huang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaowen Wang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shina Wei
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Min Yang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Maggs L, Sadagopan A, Moghaddam AS, Ferrone S. HLA class I antigen processing machinery defects in antitumor immunity and immunotherapy. Trends Cancer 2021; 7:1089-1101. [PMID: 34489208 PMCID: PMC8651070 DOI: 10.1016/j.trecan.2021.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) class I antigen-processing machinery (APM) plays a crucial role in the synthesis and expression of HLA class I tumor antigen-derived peptide complexes; the latter mediate the recognition and elimination of malignant cells by cognate T cells. Defects in HLA class I APM component expression and/or function are frequently found in cancer cells, providing them with an immune escape mechanism that has relevance in the clinical course of the disease and in the response to T-cell-based immunotherapy. The majority of HLA class I APM defects (>75%) are caused by epigenetic mechanisms or dysregulated signaling and therefore can be corrected by strategies that counteract the underlying mechanisms. Their application in oncology is likely to improve responses to T-cell-based immunotherapies, including checkpoint inhibition.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Sanjari Moghaddam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Vollmers S, Lobermeyer A, Körner C. The New Kid on the Block: HLA-C, a Key Regulator of Natural Killer Cells in Viral Immunity. Cells 2021; 10:cells10113108. [PMID: 34831331 PMCID: PMC8620871 DOI: 10.3390/cells10113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022] Open
Abstract
The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.
Collapse
|
22
|
Zhang X, Xue Z, Li Z, Ren A, Zhu X, Deng R, Ma Y. Inhibition of NLRC5 regulates cytokine expression in CD4+ T helper lymphocytes and prolongs murine islet and skin allograft survival. Mol Immunol 2021; 137:67-74. [PMID: 34225136 DOI: 10.1016/j.molimm.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to study the effect of inhibiting NLRC5 expression and function on CD4 + T cells, and islet and skin transplantation in mice. A murine skin graft model and islet cell transplantation model were established, and the expression of NLRC5 was compared in rejection and immune tolerance groups. Mice spleen-derived CD4 + T cells were cultured, purified, and enriched in vitro, and transfected with the shRNA lentiviral vector NLRC5-RNAi-GFP. Changes in cytokine secretion were detected to understand changes in immunological function. Murine islet and skin transplantation models were injected with CD4 + T cells transfected with the lentivirus, and the survival time of the grafts and the levels of IFN-γ and IL-10 were compared between groups. The expression of NLRC5 mRNA in islet and skin grafts was significantly increased. In vitro experiments showed that the expression of IL-4 and IL-10 was up-regulated in CD4 + T cells, and T cells differentiation turned to Th2 after inhibition of NLRC5. In vivo experiments showed that inhibition of NLRC5 prolonged islet and skin graft survival. Pathological examination showed that the rejection of transplanted skin and islets in the NLRC5-RNAi group was mild, and there was a correlation between high expression of NLRC5 and rejection of mouse islet and skin grafts. In summary, inhibition of NLRC5 can prolong islet and skin graft survival induce transplant immune tolerance through induction of the secretion of Th2 cytokines by CD4 + T cells.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Department of Organ Transplantation, the First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Lu, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhicheng Xue
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 E Dongfeng Road, Guangzhou, 510060, China
| | - Zhongqiu Li
- Department of Organ Transplantation, the First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Lu, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ao Ren
- Department of Organ Transplantation, the First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Lu, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaonan Zhu
- Department of Pharmacology, Zhongshan Medical School of Sun Yat-sen University, No.76 Zhongshan Er Lu, Guangzhou, 510080, China
| | - Ronghai Deng
- Department of Organ Transplantation, the First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Lu, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yi Ma
- Department of Organ Transplantation, the First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Lu, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
24
|
Blair TC, Alice AF, Zebertavage L, Crittenden MR, Gough MJ. The Dynamic Entropy of Tumor Immune Infiltrates: The Impact of Recirculation, Antigen-Specific Interactions, and Retention on T Cells in Tumors. Front Oncol 2021; 11:653625. [PMID: 33968757 PMCID: PMC8101411 DOI: 10.3389/fonc.2021.653625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Analysis of tumor infiltration using conventional methods reveals a snapshot view of lymphocyte interactions with the tumor environment. However, lymphocytes have the unique capacity for continued recirculation, exploring varied tissues for the presence of cognate antigens according to inflammatory triggers and chemokine gradients. We discuss the role of the inflammatory and cellular makeup of the tumor environment, as well as antigen expressed by cancer cells or cross-presented by stromal antigen presenting cells, on recirculation kinetics of T cells. We aim to discuss how current cancer therapies may manipulate lymphocyte recirculation versus retention to impact lymphocyte exclusion in the tumor.
Collapse
Affiliation(s)
- Tiffany C Blair
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Lauren Zebertavage
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| |
Collapse
|
25
|
Ong CEB, Patchett AL, Darby JM, Chen J, Liu GS, Lyons AB, Woods GM, Flies AS. NLRC5 regulates expression of MHC-I and provides a target for anti-tumor immunity in transmissible cancers. J Cancer Res Clin Oncol 2021; 147:1973-1991. [PMID: 33797607 PMCID: PMC8017436 DOI: 10.1007/s00432-021-03601-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Purpose Downregulation of MHC class I (MHC-I) is a common immune evasion strategy of many cancers. Similarly, two allogeneic clonal transmissible cancers have killed thousands of wild Tasmanian devils (Sarcophilus harrisii) and also modulate MHC-I expression to evade anti-cancer and allograft responses. IFNG treatment restores MHC-I expression on devil facial tumor (DFT) cells but is insufficient to control tumor growth. Transcriptional co-activator NLRC5 is a master regulator of MHC-I in humans and mice but its role in transmissible cancers remains unknown. In this study, we explored the regulation and role of MHC-I in these unique genetically mis-matched tumors. Methods We used transcriptome and flow cytometric analyses to determine how MHC-I shapes allogeneic and anti-tumor responses. Cell lines that overexpress NLRC5 to drive antigen presentation, and B2M-knockout cell lines incapable of presenting antigen on MHC-I were used to probe the role of MHC-I in rare cases of tumor regressions. Results Transcriptomic results suggest that NLRC5 plays a major role in MHC-I regulation in devils. NLRC5 was shown to drive the expression of many components of the antigen presentation pathway but did not upregulate PDL1. Serum from devils with tumor regressions showed strong binding to IFNG-treated and NLRC5 cell lines; antibody binding to IFNG-treated and NRLC5 transgenic tumor cells was diminished or absent following B2M knockout. Conclusion MHC-I could be identified as a target for anti-tumor and allogeneic immunity. Consequently, NLRC5 could be a promising target for immunotherapy and vaccines to protect devils from transmissible cancers and inform development of transplant and cancer therapies for humans. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03601-x.
Collapse
Affiliation(s)
- Chrissie E B Ong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Amanda L Patchett
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Jinying Chen
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia.,Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia.
| |
Collapse
|
26
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
27
|
NLRC5/CITA expression correlates with efficient response to checkpoint blockade immunotherapy. Sci Rep 2021; 11:3258. [PMID: 33547395 PMCID: PMC7865024 DOI: 10.1038/s41598-021-82729-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Checkpoint blockade-mediated immunotherapy is emerging as an effective treatment modality for multiple cancer types. However, cancer cells frequently evade the immune system, compromising the effectiveness of immunotherapy. It is crucial to develop screening methods to identify the patients who would most benefit from these therapies because of the risk of the side effects and the high cost of treatment. Here we show that expression of the MHC class I transactivator (CITA), NLRC5, is important for efficient responses to anti-CTLA-4 and anti-PD1 checkpoint blockade therapies. Melanoma tumors derived from patients responding to immunotherapy exhibited significantly higher expression of NLRC5 and MHC class I-related genes compared to non-responding patients. In addition, multivariate analysis that included the number of tumor-associated non-synonymous mutations, predicted neo-antigen load and PD-L2 expression was capable of further stratifying responders and non-responders to anti-CTLA4 therapy. Moreover, expression or methylation of NLRC5 together with total somatic mutation number were significantly correlated with increased patient survival. These results suggest that NLRC5 tumor expression, alone or together with tumor mutation load constitutes a valuable predictive biomarker for both prognosis and response to anti-CTLA-4 and potentially anti-PD1 blockade immunotherapy in melanoma patients.
Collapse
|
28
|
León Machado JA, Steimle V. The MHC Class II Transactivator CIITA: Not (Quite) the Odd-One-Out Anymore among NLR Proteins. Int J Mol Sci 2021; 22:1074. [PMID: 33499042 PMCID: PMC7866136 DOI: 10.3390/ijms22031074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the major histocompatibility complex (MHC) class II transactivator (CIITA), which is the master regulator of MHC class II gene expression. CIITA is the founding member of the mammalian nucleotide-binding and leucine-rich-repeat (NLR) protein family but stood apart for a long time as the only transcriptional regulator. More recently, it was found that its closest homolog, NLRC5 (NLR protein caspase activation and recruitment domain (CARD)-containing 5), is a regulator of MHC-I gene expression. Both act as non-DNA-binding activators through multiple protein-protein interactions with an MHC enhanceosome complex that binds cooperatively to a highly conserved combinatorial cis-acting module. Thus, the regulation of MHC-II expression is regulated largely through the differential expression of CIITA. In addition to the well-defined role of CIITA in MHC-II GENE regulation, we will discuss several other aspects of CIITA functions, such as its role in cancer, its role as a viral restriction element contributing to intrinsic immunity, and lastly, its very recently discovered role as an inhibitor of Ebola and SARS-Cov-2 virus replication. We will briefly touch upon the recently discovered role of NLRP3 as a transcriptional regulator, which suggests that transcriptional regulation is, after all, not such an unusual feature for NLR proteins.
Collapse
Affiliation(s)
| | - Viktor Steimle
- Département de Biologie, Université de Sherbrooke, 2500 Boul., Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
29
|
Dersh D, Phelan JD, Gumina ME, Wang B, Arbuckle JH, Holly J, Kishton RJ, Markowitz TE, Seedhom MO, Fridlyand N, Wright GW, Huang DW, Ceribelli M, Thomas CJ, Lack JB, Restifo NP, Kristie TM, Staudt LM, Yewdell JW. Genome-wide Screens Identify Lineage- and Tumor-Specific Genes Modulating MHC-I- and MHC-II-Restricted Immunosurveillance of Human Lymphomas. Immunity 2021; 54:116-131.e10. [PMID: 33271120 PMCID: PMC7874576 DOI: 10.1016/j.immuni.2020.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
Tumors frequently subvert major histocompatibility complex class I (MHC-I) peptide presentation to evade CD8+ T cell immunosurveillance, though how this is accomplished is not always well defined. To identify the global regulatory networks controlling antigen presentation, we employed genome-wide screening in human diffuse large B cell lymphomas (DLBCLs). This approach revealed dozens of genes that positively and negatively modulate MHC-I cell surface expression. Validated genes clustered in multiple pathways including cytokine signaling, mRNA processing, endosomal trafficking, and protein metabolism. Genes can exhibit lymphoma subtype- or tumor-specific MHC-I regulation, and a majority of primary DLBCL tumors displayed genetic alterations in multiple regulators. We established SUGT1 as a major positive regulator of both MHC-I and MHC-II cell surface expression. Further, pharmacological inhibition of two negative regulators of antigen presentation, EZH2 and thymidylate synthase, enhanced DLBCL MHC-I presentation. These and other genes represent potential targets for manipulating MHC-I immunosurveillance in cancers, infectious diseases, and autoimmunity.
Collapse
Affiliation(s)
- Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan E Gumina
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesse H Arbuckle
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaroslav Holly
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rigel J Kishton
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mina O Seedhom
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Fridlyand
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nicholas P Restifo
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Dang AT, Strietz J, Zenobi A, Khameneh HJ, Brandl SM, Lozza L, Conradt G, Kaufmann SHE, Reith W, Kwee I, Minguet S, Chelbi ST, Guarda G. NLRC5 promotes transcription of BTN3A1-3 genes and Vγ9Vδ2 T cell-mediated killing. iScience 2020; 24:101900. [PMID: 33364588 PMCID: PMC7753138 DOI: 10.1016/j.isci.2020.101900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
BTN3A molecules—BTN3A1 in particular—emerged as important mediators of Vγ9Vδ2 T cell activation by phosphoantigens. These metabolites can originate from infections, e.g. with Mycobacterium tuberculosis, or by alterations in cellular metabolism. Despite the growing interest in the BTN3A genes and their high expression in immune cells and various cancers, little is known about their transcriptional regulation. Here we show that these genes are induced by NLRC5, a regulator of MHC class I gene transcription, through an atypical regulatory motif found in their promoters. Accordingly, a robust correlation between NLRC5 and BTN3A gene expression was found in healthy, in M. tuberculosis-infected donors' blood cells, and in primary tumors. Moreover, forcing NLRC5 expression promoted Vγ9Vδ2 T-cell-mediated killing of tumor cells in a BTN3A-dependent manner. Altogether, these findings indicate that NLRC5 regulates the expression of BTN3A genes and hence open opportunities to modulate antimicrobial and anticancer immunity. BTN3A promoters contain a unique regulatory motif occupied by overexpressed NLRC5 NLRC5 and BTN3A mRNA levels correlate in healthy and diseased cells NLRC5 overexpression increases susceptibility to Vγ9Vδ2 T-cell-mediated elimination
Collapse
Affiliation(s)
- Anh Thu Dang
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Juliane Strietz
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Alessandro Zenobi
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Hanif J Khameneh
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Simon M Brandl
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Gregor Conradt
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany.,Hagler Institute for Advanced Study at Texas A&M University, College Station, TX 77843, USA
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sonia T Chelbi
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Greta Guarda
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| |
Collapse
|
31
|
Wang Z, Li G, Dou S, Zhang Y, Liu Y, Zhang J, Li G, Hou C, Wang R, Shen B, Han G. Tim-3 Promotes Listeria monocytogenes Immune Evasion by Suppressing Major Histocompatibility Complex Class I. J Infect Dis 2020; 221:830-840. [PMID: 31586389 DOI: 10.1093/infdis/jiz512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND T-cell immunoglobulin and mucin protein 3 (Tim-3) is an immune checkpoint inhibitor that has therapeutic implications for many tumors and infectious diseases. However, the mechanisms by which Tim-3 promotes immune evasion remain unclear. METHODS In this study, we demonstrated that Tim-3 inhibits the expression of major histocompatibility complex class I (MHC-I) in macrophages at both the messenger ribonucleic acid and protein levels by inhibiting the STAT1-NLRC5 signaling pathway. RESULTS As a result, MHC-I-restricted antigen presentation by macrophages was inhibited by Tim-3 both in vitro and in a Listeria monocytogenes infection model in vivo. Systemic overexpression of Tim-3 or specific knockout of Tim-3 in macrophages significantly attenuated or enhanced CD8+ T-cell activation and infection damage in L monocytogenes-infected mice, respectively. CONCLUSIONS Thus, we identified a new mechanism by which Tim-3 promotes L monocytogenes immune evasion. Further studies on this pathway might shed new light on the physio-pathological roles of Tim-3 and suggest new approaches for intervention.
Collapse
Affiliation(s)
- Zhiding Wang
- Institute of Military Cognition and Brain Sciences, Beijing, China
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | - Ge Li
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Shuaijie Dou
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Yanling Zhang
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Yiqiong Liu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Jiacheng Zhang
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Guoxian Li
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Chunmei Hou
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Renxi Wang
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Beifen Shen
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Gencheng Han
- Institute of Military Cognition and Brain Sciences, Beijing, China
| |
Collapse
|
32
|
Grimholt U, Fosse JH, Sundaram AYM. Selective Stimulation of Duplicated Atlantic Salmon MHC Pathway Genes by Interferon-Gamma. Front Immunol 2020; 11:571650. [PMID: 33123146 PMCID: PMC7573153 DOI: 10.3389/fimmu.2020.571650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Induction of cellular immune responses rely on Major histocompatibility complex (MHC) molecules presenting pathogenic peptides to T cells. Peptide processing, transport, loading and editing is a constitutive process in most cell types, but is accelerated upon infection. Recently, an unexpected complexity in the number of functional genes involved in MHC class I peptide cleavage, peptide transport, peptide loading and editing was found in teleosts, originating from the second and third whole genome duplication events. Salmonids have expanded upon this with functional duplicates also from a fourth unique salmonid whole genome duplication. However, little is known about how individual gene duplicates respond in the context of stimulation. Here we set out to investigate how interferon gamma (IFNg) regulates the transcription of immune genes in Atlantic salmon with particular focus on gene duplicates and MHC pathways. We identified a range of response patterns in Atlantic salmon gene duplicates, with upregulation of all duplicates for some genes, like interferon regulatory factor 1 (IRF1) and interferon induced protein 44-like (IFI44.L), but only induction of one or a few duplicates of other genes, such as TAPBP and ERAP2. A master regulator turned out to be the IRF1 and not the enhanceosome as seen in mammals. If IRF1 also collaborates with CIITA and possibly NLRC5 in regulating IFNg induction of MHCI and MHCII expression in Atlantic salmon, as in zebrafish, remains to be established. Altogether, our results show the importance of deciphering between gene duplicates, as they often respond very differently to stimulation and may have different biological functions.
Collapse
|
33
|
Smith TA, Ghergherehchi CL, Tucker HO, Bittner GD. Coding transcriptome analyses reveal altered functions underlying immunotolerance of PEG-fused rat sciatic nerve allografts. J Neuroinflammation 2020; 17:287. [PMID: 33008419 PMCID: PMC7532577 DOI: 10.1186/s12974-020-01953-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Current methods to repair ablation-type peripheral nerve injuries (PNIs) using peripheral nerve allografts (PNAs) often result in poor functional recovery due to immunological rejection as well as to slow and inaccurate outgrowth of regenerating axonal sprouts. In contrast, ablation-type PNIs repaired by PNAs, using a multistep protocol in which one step employs the membrane fusogen polyethylene glycol (PEG), permanently restore sciatic-mediated behaviors within weeks. Axons and cells within PEG-fused PNAs remain viable, even though outbred host and donor tissues are neither immunosuppressed nor tissue matched. PEG-fused PNAs exhibit significantly reduced T cell and macrophage infiltration, expression of major histocompatibility complex I/II and consistently low apoptosis. In this study, we analyzed the coding transcriptome of PEG-fused PNAs to examine possible mechanisms underlying immunosuppression. METHODS Ablation-type sciatic PNIs in adult Sprague-Dawley rats were repaired using PNAs and a PEG-fusion protocol combined with neurorrhaphy. Electrophysiological and behavioral tests confirmed successful PEG-fusion of PNAs. RNA sequencing analyzed differential expression profiles of protein-coding genes between PEG-fused PNAs and negative control PNAs (not treated with PEG) at 14 days PO, along with unoperated control nerves. Sequencing results were validated by quantitative reverse transcription PCR (RT-qPCR), and in some cases, immunohistochemistry. RESULTS PEG-fused PNAs display significant downregulation of many gene transcripts associated with innate and adaptive allorejection responses. Schwann cell-associated transcripts are often upregulated, and cellular processes such as extracellular matrix remodeling and cell/tissue development are particularly enriched. Transcripts encoding several potentially immunosuppressive proteins (e.g., thrombospondins 1 and 2) also are upregulated in PEG-fused PNAs. CONCLUSIONS This study is the first to characterize the coding transcriptome of PEG-fused PNAs and to identify possible links between alterations of the extracellular matrix and suppression of the allorejection response. The results establish an initial molecular basis to understand mechanisms underlying PEG-mediated immunosuppression.
Collapse
Affiliation(s)
- Tyler A Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Haley O Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
34
|
Cho SX, Vijayan S, Yoo JS, Watanabe T, Ouda R, An N, Kobayashi KS. MHC class I transactivator NLRC5 in host immunity, cancer and beyond. Immunology 2020; 162:252-261. [PMID: 32633419 DOI: 10.1111/imm.13235] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The presentation of antigenic peptides by major histocompatibility complex (MHC) class I and class II molecules is crucial for activation of the adaptive immune system. The nucleotide-binding domain and leucine-rich repeat receptor family members CIITA and NLRC5 function as the major transcriptional activators of MHC class II and class I gene expression, respectively. Since the identification of NLRC5 as the master regulator of MHC class I and class-I-related genes, there have been major advances in understanding the function of NLRC5 in infectious diseases and cancer. Here, we discuss the biological significance and mechanism of NLRC5-dependent MHC class I expression.
Collapse
Affiliation(s)
- Steven X Cho
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saptha Vijayan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, USA
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiyuki Watanabe
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ryota Ouda
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ning An
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, USA
| |
Collapse
|
35
|
Benhammadi M, Mathé J, Dumont-Lagacé M, Kobayashi KS, Gaboury L, Brochu S, Perreault C. IFN-λ Enhances Constitutive Expression of MHC Class I Molecules on Thymic Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1268-1280. [PMID: 32690660 DOI: 10.4049/jimmunol.2000225] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Regulation of MHC class I (MHC I) expression has been studied almost exclusively in hematolymphoid cells. We report that thymic epithelial cells (TECs), particularly the medullary TECs, constitutively express up to 100-fold more cell surface MHC I proteins than epithelial cells (ECs) from the skin, colon, and lung. Differential abundance of cell surface MHC I in primary ECs is regulated via transcription of MHC I and of genes implicated in the generation of MHC I-binding peptides. Superior MHC I expression in TECs is unaffected by deletion of Ifnar1 or Ifngr1, but is lessened by deletion of Aire, Ifnlr1, Stat1, or Nlrc5, and is driven mainly by type III IFN produced by medullary TECs. Ifnlr1 -/- mice show impaired negative selection of CD8 thymocytes and, at 9 mo of age, present autoimmune manifestations. Our study shows unanticipated variation in MHC I expression by ECs from various sites and provides compelling evidence that superior expression of MHC I in TECs is crucial for proper thymocyte education.
Collapse
Affiliation(s)
- Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Justine Mathé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Maude Dumont-Lagacé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843.,Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan; and
| | - Louis Gaboury
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
36
|
Chonwerawong M, Ferrand J, Chaudhry HM, Higgins C, Tran LS, Lim SS, Walker MM, Bhathal PS, Dev A, Moore GT, Sievert W, Jenkins BJ, D'Elios MM, Philpott DJ, Kufer TA, Ferrero RL. Innate Immune Molecule NLRC5 Protects Mice From Helicobacter-induced Formation of Gastric Lymphoid Tissue. Gastroenterology 2020; 159:169-182.e8. [PMID: 32169428 DOI: 10.1053/j.gastro.2020.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori induces strong inflammatory responses that are directed at clearing the infection, but if not controlled, these responses can be harmful to the host. We investigated the immune-regulatory effects of the innate immune molecule, nucleotide-binding oligomerization domain-like receptors (NLR) family CARD domain-containing 5 (NLRC5), in patients and mice with Helicobacter infection. METHODS We obtained gastric biopsies from 30 patients in Australia. We performed studies with mice that lack NLRC5 in the myeloid linage (Nlrc5møKO) and mice without Nlrc5 gene disruption (controls). Some mice were gavaged with H pylori SS1 or Helicobacter felis; 3 months later, stomachs, spleens, and sera were collected, along with macrophages derived from bone marrow. Human and mouse gastric tissues and mouse macrophages were analyzed by histology, immunohistochemistry, immunoblots, and quantitative polymerase chain reaction. THP-1 cells (human macrophages, controls) and NLRC5-/- THP-1 cells (generated by CRISPR-Cas9 gene editing) were incubated with Helicobacter and gene expression and production of cytokines were analyzed. RESULTS Levels of NLRC5 messenger RNA were significantly increased in gastric tissues from patients with H pylori infection, compared with patients without infection (P < .01), and correlated with gastritis severity (P < .05). H pylori bacteria induced significantly higher levels of chemokine and cytokine production by NLRC5-/- THP-1 macrophages than by control THP-1 cells (P < .05). After 3 months of infection with H felis, Nlrc5mø-KO mice developed gastric hyperplasia (P < .0001), splenomegaly (P < .0001), and increased serum antibody titers (P < .01), whereas control mice did not. Nlrc5mø-KO mice with chronic H felis infection had increased numbers of gastric B-cell follicles expressing CD19 (P < .0001); these follicles had features of mucosa-associated lymphoid tissue lymphoma. We identified B-cell-activating factor as a protein that promoted B-cell hyperproliferation in Nlrc5mø-KO mice. CONCLUSIONS NLRC5 is a negative regulator of gastric inflammation and mucosal lymphoid formation in response to Helicobacter infection. Aberrant NLRC5 signaling in macrophages can promote B-cell lymphomagenesis during chronic Helicobacter infection.
Collapse
Affiliation(s)
- Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Victoria, Australia
| | - Jonathan Ferrand
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Hassan Mohammad Chaudhry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Chloe Higgins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Le Son Tran
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - San Sui Lim
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Marjorie M Walker
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, New South Wales, Australia; Department of Pathology, University of Melbourne, Victoria, Australia
| | - Prithi S Bhathal
- Department of Pathology, University of Melbourne, Victoria, Australia
| | - Anouk Dev
- Department of Medicine, Monash University, Monash Medical Centre, Victoria, Australia
| | - Gregory T Moore
- Department of Medicine, Monash University, Monash Medical Centre, Victoria, Australia
| | - William Sievert
- Department of Medicine, Monash University, Monash Medical Centre, Victoria, Australia; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Victoria, Australia
| | - Mario M D'Elios
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas A Kufer
- University of Hohenheim, Institute of Nutritional Medicine, Department of Immunology, Stuttgart, Germany
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Victoria, Australia; Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia.
| |
Collapse
|
37
|
Sznarkowska A, Mikac S, Pilch M. MHC Class I Regulation: The Origin Perspective. Cancers (Basel) 2020; 12:cancers12051155. [PMID: 32375397 PMCID: PMC7281430 DOI: 10.3390/cancers12051155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Viral-derived elements and non-coding RNAs that build up “junk DNA” allow for flexible and context-dependent gene expression. They are extremely dense in the MHC region, accounting for flexible expression of the MHC I, II, and III genes and adjusting the level of immune response to the environmental stimuli. This review brings forward the viral-mediated aspects of the origin and evolution of adaptive immunity and aims to link this perspective with the MHC class I regulation. The complex regulatory network behind MHC expression is largely controlled by virus-derived elements, both as binding sites for immune transcription factors and as sources of regulatory non-coding RNAs. These regulatory RNAs are imbalanced in cancer and associate with different tumor types, making them promising targets for diagnostic and therapeutic interventions.
Collapse
|
38
|
Zebertavage LK, Alice A, Crittenden MR, Gough MJ. Transcriptional Upregulation of NLRC5 by Radiation Drives STING- and Interferon-Independent MHC-I Expression on Cancer Cells and T Cell Cytotoxicity. Sci Rep 2020; 10:7376. [PMID: 32355214 PMCID: PMC7193601 DOI: 10.1038/s41598-020-64408-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy has been shown to enhance the efficacy of various T cell-targeted immunotherapies that improve antigen-specific T cell expansion, T regulatory cell depletion, or effector T cell function. Additionally, radiation therapy has been proposed as a means to recruit T cells to the treatment site and modulate cancer cells as effector T cell targets. The significance of these features remains unclear. We set out to determine, in checkpoint inhibitor resistant models, which components of radiation are primarily responsible for overcoming this resistance. In order to model the vaccination effect of radiation, we used a Listeria monocytogenes based vaccine to generate a large population of tumor antigen specific T cells but found that the presence of cells with cytotoxic capacity was unable to replicate the efficacy of radiation with combination checkpoint blockade. Instead, we demonstrated that a major role of radiation was to increase the susceptibility of surviving cancer cells to CD8+ T cell-mediated control through enhanced MHC-I expression. We observed a novel mechanism of genetic induction of MHC-I in cancer cells through upregulation of the MHC-I transactivator NLRC5. These data support the critical role of local modulation of tumors by radiation to improve tumor control with combination immunotherapy.
Collapse
Affiliation(s)
- Lauren K Zebertavage
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA.,Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA.,The Oregon Clinic, Portland, OR, 97213, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA.
| |
Collapse
|
39
|
Abstract
Recent decades, there is significant progress in understanding the mechanisms of tumor progression and immune evasion. The newly discovered protein NLRC5 is demonstrated to participate in regulating cancer immune escape through enhancing MHC class I genes expression in certain tumors. Nevertheless, increasing evidence has revealed that NLRC5 is up-regulated in some other tumors and promote tumor development and progression. The purpose of this review is to describe the role of NLRC5 in tumors and discuss whether NLRC5 can be a potential target in cancer treatment.
Collapse
Affiliation(s)
- Feng Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China.
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
40
|
Promotion on NLRC5 upregulating MHC-I expression by IFN-γ in MHC-I–deficient breast cancer cells. Immunol Res 2020; 67:497-504. [DOI: 10.1007/s12026-019-09111-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Papúchová H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The Dual Role of HLA-C in Tolerance and Immunity at the Maternal-Fetal Interface. Front Immunol 2019; 10:2730. [PMID: 31921098 PMCID: PMC6913657 DOI: 10.3389/fimmu.2019.02730] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
To establish a healthy pregnancy, maternal immune cells must tolerate fetal allo-antigens and remain competent to respond to infections both systemically and in placental tissues. Extravillous trophoblasts (EVT) are the most invasive cells of extra-embryonic origin to invade uterine tissues and express polymorphic Human Leucocyte Antigen-C (HLA-C) of both maternal and paternal origin. Thus, HLA-C is a key molecule that can elicit allogeneic immune responses by maternal T and NK cells and for which maternal-fetal immune tolerance needs to be established. HLA-C is also the only classical MHC molecule expressed by EVT that can present a wide variety of peptides to maternal memory T cells and establish protective immunity. The expression of paternal HLA-C by EVT provides a target for maternal NK and T cells, whereas HLA-C expression levels may influence how this response is shaped. This dual function of HLA-C requires tight transcriptional regulation of its expression to balance induction of tolerance and immunity. Here, we critically review new insights into: (i) the mechanisms controlling expression of HLA-C by EVT, (ii) the mechanisms by which decidual NK cells, effector T cells and regulatory T cells recognize HLA-C allo-antigens, and (iii) immune recognition of pathogen derived antigens in context of HLA-C.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Qin Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
42
|
Regulatory Factor X 7 and its Potential Link to Lymphoid Cancers. Trends Cancer 2019; 6:6-9. [PMID: 31952782 DOI: 10.1016/j.trecan.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/01/2023]
Abstract
Alterations in the Regulatory factor X 7 (RFX7) gene have recurrently been reported in lymphoid cancers. Uncharacterized until recently, this transcription factor regulates genes important for ciliogenesis and for limiting cellular metabolic activity. Here we discuss these observations and conjecture on the links between the reported functions of RFX7 and its potential role in lymphoid cancers, encouraging future studies in these directions.
Collapse
|
43
|
Li P, Shen Y, Cui P, Hu Y, Zhang Y, Miao F, Zhang A, Zhang J. Neuronal NLRC5 regulates MHC class I expression in Neuro-2a cells and also during hippocampal development. J Neurochem 2019; 152:182-194. [PMID: 31549732 DOI: 10.1111/jnc.14876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 12/25/2022]
Abstract
Major histocompatibility Complex class I (MHC I) molecules are ubiquitously expressed, being found in most nucleated cells, where they are central mediators of both the adaptive and innate immune responses. Recent studies have shown that MHC I are also expressed in the developing brain where they participate in synapse elimination and plasticity. Up-regulation of MHC I within the developing brain has been reported, however, the mechanism(s) regulating this developmental up-regulation of neuronal MHC I remains unknown. Here, we show NLR family CARD domain containing 5 (NLRC5), a newly identified member of the NLR family, is widely expressed in hippocampal neurons, and the expression pattern of NLRC5 coincides with increased MHC I mRNA in the developing hippocampus. Using a luciferase assay in Neuro-2a cells we demonstrate that NLRC5 can induce the activation of MHC I and this induction requires the W/S-X-Y motif. Further studies show that transcription factors regulatory factor X (RFX) and CREB1, which bind to X1 and X2 box, are crucial for NLRC5-mediated induction. Moreover immunoprecipitation experiments reveal that NLRC5 interacts with RFX subunits RFX5 and RFXANK. Knockout of Nlrc5 dramatically impairs basal expression of MHC I in mouse hippocampus. Taken together, our findings identify NLRC5 as a key regulator of MHC I up-regulation in the developing hippocampus and suggest an important role for NLRC5 in neurons. Cover Image for this issue: doi: 10.1111/jnc.14729.
Collapse
Affiliation(s)
- Ping Li
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Pengfei Cui
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yue Hu
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ying Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China.,Jiangsu key laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
44
|
Luan P, Jian W, Xu X, Kou W, Yu Q, Hu H, Li D, Wang W, Feinberg MW, Zhuang J, Xu Y, Peng W. NLRC5 inhibits neointima formation following vascular injury and directly interacts with PPARγ. Nat Commun 2019; 10:2882. [PMID: 31253783 PMCID: PMC6599027 DOI: 10.1038/s41467-019-10784-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
NLR Family CARD Domain Containing 5 (NLRC5), an important immune regulator in innate immunity, is involved in regulating inflammation and antigen presentation. However, the role of NLRC5 in vascular remodeling remains unknown. Here we report the role of NLRC5 on vascular remodeling and provide a better understanding of its underlying mechanism. Nlrc5 knockout (Nlrc5−/−) mice exhibit more severe intimal hyperplasia compared with wild-type mice after carotid ligation. Ex vivo data shows that NLRC5 deficiency leads to increased proliferation and migration of human aortic smooth muscle cells (HASMCs). NLRC5 binds to PPARγ and inhibits HASMC dedifferentiation. NACHT domain of NLRC5 is essential for the interaction with PPARγ and stimulation of PPARγ activity. Pioglitazone significantly rescues excessive intimal hyperplasia in Nlrc5−/− mice and attenuates the increased proliferation and dedifferentiation in NLRC5-deficient HASMCs. Our study demonstrates that NLRC5 regulates vascular remodeling by directly inhibiting SMC dysfunction via its interaction with PPARγ. NLRC5 is known for its role in inflammation and antigen presentation. Here Luan et al. find that NLRC5 protects mice from intimal hyperplasia following vascular injury, and regulates the response of vascular smooth muscle cells to injury through direct interaction with PPARγ.
Collapse
Affiliation(s)
- Peipei Luan
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.,Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Weixia Jian
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Xu Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Handan Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, 10032, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
45
|
Sun T, Ferrero RL, Girardin SE, Gommerman JL, Philpott DJ. NLRC5 deficiency has a moderate impact on immunodominant CD8 + T-cell responses during rotavirus infection of adult mice. Immunol Cell Biol 2019; 97:552-562. [PMID: 30768806 DOI: 10.1111/imcb.12244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/23/2023]
Abstract
The NOD-like receptor (NLR) family plays an important role in innate immunity. Class II transactivator and NOD-like receptor caspase activation and recruitment domain CARD containing 5 (NLRC5) are unusual members of the NLR family that instead of recognizing pathogen-associated or damage-associated molecular patterns, form enhanceosomes with adaptor molecules and modulate major histocompatibility complex (MHC) class II and MHC class I expression, respectively. While NLRC5 has been shown to play a role during intracellular pathogen infection and tumor cell immune evasion, its role in regulating antigen-specific CD8+ T-cell responses at the intestinal mucosa has not been investigated. Here, we take advantage of the rotavirus model in adult mice to dissect the impact of NLRC5 on CD8+ T-cell responses to this viral infection at the gut mucosa. We show that while Nlrc5-/- mice exhibited normal proportions of T-cell subpopulations in the intraepithelial and lamina propria compartments, these mice had decreased baseline MHC class I expression on various immune cells in the lamina propria. Upon rotavirus infection, Nlrc5 deficiency resulted in impaired H2-Kb -restricted antigen-specific CD8+ T-cell responses, which were recapitulated in mice deficient for Nlrc5 within the dendritic cell compartment. The impaired CD8+ T-cell response in Nlrc5-/- mice was not significant enough to impact viral titers, suggesting compensation in Nlrc5-/- mice, perhaps as a result of higher numbers of activated B cells in the mesenteric lymph nodes and normal rotavirus-specific immunoglobulin A responses. Collectively, our results demonstrate a minor role for NLRC5 in modulating H2-Kb -restricted antigen-specific CD8+ T-cell responses in the small intestine during rotavirus infection in adult mice.
Collapse
Affiliation(s)
- Tian Sun
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Stephen E Girardin
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jennifer L Gommerman
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dana J Philpott
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Wu Y, Shi T, Li J. NLRC5: A paradigm for NLRs in immunological and inflammatory reaction. Cancer Lett 2019; 451:92-99. [PMID: 30867141 DOI: 10.1016/j.canlet.2019.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
The nucleotide-binding domain leucine-rich repeat containing (NLR) family of proteins is mainly involved in microbial pathogen recognition, inflammatory responses, and cell death. NLRC5, the largest member of the NLR family, is currently receiving an increasing level of attention. NLRC5 has been demonstrated to be a potent negative regulator of NF-κB signaling pathway-mediated inflammatory response. Moreover, accumulating evidence has indicated that NLRC5 is closely related to pathological processes of various cancers. In this review, we present an overview on NLRC5, addressing its underlying molecular mechanisms and implications in host defense, inflammatory response, and associated cancers.
Collapse
Affiliation(s)
- Yuting Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, PR China.
| | - Tianlu Shi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China.
| | - Jun Li
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, PR China.
| |
Collapse
|
47
|
The Obligate Intracellular Bacterium Orientia tsutsugamushi Targets NLRC5 To Modulate the Major Histocompatibility Complex Class I Pathway. Infect Immun 2019; 87:IAI.00876-18. [PMID: 30559222 DOI: 10.1128/iai.00876-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Orientia tsutsugamushi is an obligate intracellular bacterium that infects mononuclear and endothelial cells to cause the emerging global health threat scrub typhus. The ability of O. tsutsugamushi to survive in monocytes facilitates bacterial dissemination to endothelial cells, which can subsequently lead to several potentially fatal sequelae. As a strict intracellular pathogen that lives in the cytoplasm of host cells, O. tsutsugamushi has evolved to counter adaptive immunity. How the pathogen does so and the outcome of this strategy in monocytes versus endothelial cells are poorly understood. This report demonstrates that O. tsutsugamushi reduces cellular levels of NOD-, LRR-, and CARD-containing 5 (NLRC5), a recently identified specific transactivator of major histocompatibility complex class I (MHC-I) component gene expression, to inhibit MHC-I biosynthesis. Importantly, the efficacy of this approach varies with the host cell type infected. In nonprofessional antigen-presenting HeLa and primary human aortic endothelial cells, the O. tsutsugamushi-mediated reduction of NLRC5 results in lowered MHC-I component transcription and, consequently, lower total and/or surface MHC-I levels throughout 72 h of infection. However, in infected THP-1 monocytes, which are professional antigen-presenting cells, the reductions in NLRC5 and MHC-I observed during the first 24 h reverse thereafter. O. tsutsugamushi is the first example of a microbe that targets NLRC5 to modulate the MHC-I pathway. The differential ability of O. tsutsugamushi to modulate this pathway in nonprofessional versus professional antigen-presenting cells could influence morbidity and mortality from scrub typhus.
Collapse
|
48
|
Vijayan S, Sidiq T, Yousuf S, van den Elsen PJ, Kobayashi KS. Class I transactivator, NLRC5: a central player in the MHC class I pathway and cancer immune surveillance. Immunogenetics 2019; 71:273-282. [PMID: 30706093 DOI: 10.1007/s00251-019-01106-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Major histocompatibility complex (MHC) class I and class II molecules play critical roles in the activation of the adaptive immune system by presenting antigens to CD8+ and CD4+ T cells, respectively. Although it has been well known that CIITA (MHC class II transactivator), an NLR (nucleotide-binding domain, leucine-rich-repeat containing) protein, as a master regulator of MHC class II gene expression, the mechanism of MHC class I gene transactivation was unclear. Recently, another NLR protein, NLRC5 (NLR family, CARD domain-containing 5), was identified as an MHC class I transactivator (CITA). NLRC5 is a critical regulator for the transcriptional activation of MHC class I genes and other genes involved in the MHC class I antigen presentation pathway. CITA/NLRC5 plays a crucial role in human cancer immunity through the recruitment and activation of tumor killing CD8+ T cells. Here, we discuss the molecular function and mechanism of CITA/NLRC5 in the MHC class I pathway and its role in cancer.
Collapse
Affiliation(s)
- Saptha Vijayan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Suhail Yousuf
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA. .,Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
49
|
Geary CD, Krishna C, Lau CM, Adams NM, Gearty SV, Pritykin Y, Thomsen AR, Leslie CS, Sun JC. Non-redundant ISGF3 Components Promote NK Cell Survival in an Auto-regulatory Manner during Viral Infection. Cell Rep 2018; 24:1949-1957.e6. [PMID: 30134157 PMCID: PMC6153266 DOI: 10.1016/j.celrep.2018.07.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/05/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that possess adaptive features, including antigen-specific clonal expansion and long-lived memory responses. Although previous work demonstrated that type I interferon (IFN) signaling is crucial for NK cell expansion and memory cell formation following mouse cytomegalovirus (MCMV) infection, the global transcriptional mechanisms underlying type I IFN-mediated responses remained to be determined. Here, we demonstrate that among the suite of transcripts induced in activated NK cells, IFN-α is necessary and sufficient to promote expression of its downstream transcription factors STAT1, STAT2, and IRF9, via an auto-regulatory, feedforward loop. Similar to STAT1 deficiency, we show that STAT2- or IRF9-deficient NK cells are defective in their ability to expand following MCMV infection, in part because of diminished survival rather than an inability to proliferate. Thus, our findings demonstrate that individual ISGF3 components are crucial cell-autonomous and non-redundant regulators of the NK cell response to viral infection.
Collapse
Affiliation(s)
- Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sofia V Gearty
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
50
|
Castro W, Chelbi ST, Niogret C, Ramon-Barros C, Welten SPM, Osterheld K, Wang H, Rota G, Morgado L, Vivier E, Raeber ME, Boyman O, Delorenzi M, Barras D, Ho PC, Oxenius A, Guarda G. The transcription factor Rfx7 limits metabolism of NK cells and promotes their maintenance and immunity. Nat Immunol 2018; 19:809-820. [PMID: 29967452 DOI: 10.1038/s41590-018-0144-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
Abstract
Regulatory factor X 7 (Rfx7) is an uncharacterized transcription factor belonging to a family involved in ciliogenesis and immunity. Here, we found that deletion of Rfx7 leads to a decrease in natural killer (NK) cell maintenance and immunity in vivo. Genomic approaches showed that Rfx7 coordinated a transcriptional network controlling cell metabolism. Rfx7-/- NK lymphocytes presented increased size, granularity, proliferation, and energetic state, whereas genetic reduction of mTOR activity mitigated those defects. Notably, Rfx7-deficient NK lymphocytes were rescued by interleukin 15 through engagement of the Janus kinase (Jak) pathway, thus revealing the importance of this signaling for maintenance of such spontaneously activated NK cells. Rfx7 therefore emerges as a novel transcriptional regulator of NK cell homeostasis and metabolic quiescence.
Collapse
Affiliation(s)
- Wilson Castro
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Sonia T Chelbi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Charlène Niogret
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | - Kevin Osterheld
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Haiping Wang
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Leonor Morgado
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Innate Pharma Research Labs., Innate Pharma, Marseille, France
| | - Miro E Raeber
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - David Barras
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ping-Chih Ho
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | | | - Greta Guarda
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland. .,Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.
| |
Collapse
|