1
|
Verbinnen I, Douzgou Houge S, Hsieh TC, Lesmann H, Kirchhoff A, Geneviève D, Brimble E, Lenaerts L, Haesen D, Levy RJ, Thevenon J, Faivre L, Marco E, Chong JX, Bamshad M, Patterson K, Mirzaa GM, Foss K, Dobyns W, White SM, Pais L, O'Heir E, Itzikowitz R, Donald KA, Van der Merwe C, Mussa A, Cervini R, Giorgio E, Roscioli T, Dias KR, Evans CA, Brown NJ, Ruiz A, Trujillo Quintero JP, Rabin R, Pappas J, Yuan H, Lachlan K, Thomas S, Devlin A, Wright M, Martin R, Karwowska J, Posmyk R, Chatron N, Stark Z, Heath O, Delatycki M, Buchert R, Korenke GC, Ramsey K, Narayanan V, Grange DK, Weisenberg JL, Haack TB, Karch S, Kipkemoi P, Mangi M, Bindels de Heus KGCB, de Wit MCY, Barakat TS, Lim D, Van Winckel G, Spillmann RC, Shashi V, Jacob M, Stehr AM, Krawitz P, Douzgos Houge G, Janssens V. Pathogenic de novo variants in PPP2R5C cause a neurodevelopmental disorder within the Houge-Janssens syndrome spectrum. Am J Hum Genet 2025; 112:554-571. [PMID: 39978342 PMCID: PMC11947181 DOI: 10.1016/j.ajhg.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Pathogenic variants resulting in protein phosphatase 2A (PP2A) dysfunction result in mild to severe neurodevelopmental delay. PP2A is a trimer of a catalytic (C) subunit, scaffolding (A) subunit, and substrate binding/regulatory (B) subunit, encoded by 19 different genes. De novo missense variants in PPP2R5D (B56δ) or PPP2R1A (Aα) and de novo missense and loss-of-function variants in PPP2CA (Cα) lead to syndromes with overlapping phenotypic features, known as Houge-Janssens syndrome (HJS) types 1, 2, and 3, respectively. Here, we describe an additional condition in the HJS spectrum in 26 individuals with variants in PPP2R5C, encoding the regulatory B56γ subunit. Most changes were de novo and of the missense type. The clinical features were well within the HJS spectrum with strongest resemblance to HJS type 1, caused by B56δ variants. Common features were neurodevelopmental delay and hypotonia, with a high risk of epilepsy, behavioral problems, and mildly dysmorphic facial features. Head circumferences were above average or macrocephalic. The degree of intellectual disability was, on average, milder than in other HJS types. All variants affected either substrate binding (2/19), C-subunit binding (2/19), or both (15/19). Five variants were recurrent. Catalytic activity of the phosphatase was variably affected by the variants. Of note, PPP2R5C total loss-of-function variants could be inherited from a non-symptomatic parent. This implies that a dominant-negative mechanism on substrate dephosphorylation or general PP2A function is the most likely pathogenic mechanism.
Collapse
Affiliation(s)
- Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium; KU Leuven Institute for Rare Diseases (Leuven.IRD), Leuven, Belgium
| | - Sofia Douzgou Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute of Human Genetics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Aron Kirchhoff
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - David Geneviève
- Montpellier University, INSERM U1183, Centre de Référence Anomalies du développement et syndromes malformatifs, ERN ITHACA, Génétique clinique, CHU Montpellier, Montpellier, France
| | | | - Lisa Lenaerts
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rebecca J Levy
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, CA, USA
| | - Julien Thevenon
- CNRS UMR 5309, INSERM U1209, Institute of Advanced Biosciences, Université Grenoble-Alpes, Service Génomique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Cedex Grenoble, France
| | - Laurence Faivre
- Centre de génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'enfants, CHU Dijon Bourgogne, Dijon, France; UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | | | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Mike Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Karynne Patterson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ghayda M Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kimberly Foss
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Susan M White
- Victorian Clinical Genetics Services (VCGS), Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O'Heir
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Raphaela Itzikowitz
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and the Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and the Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Celia Van der Merwe
- Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Regina Margherita Children's Hospital, Torino, Italy
| | - Raffaela Cervini
- Child Neuropsychiatry Department, Maria Vittoria Hospital, Torino, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Neurogenetics Research Centre, Pavia, Italy
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2031, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anna Ruiz
- Genetics Laboratory, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Juan Pablo Trujillo Quintero
- Unitat de Genètica Clínica, Servei de Medicina Pediàtrica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Rachel Rabin
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - John Pappas
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Hai Yuan
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, Southampton SO16 5YA, UK
| | - Simon Thomas
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; Wessex Regional Genetics Laboratory, Salisbury NSF Foundation Trust, Salisbury District Hospital, Salisbury, UK
| | - Anita Devlin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Richard Martin
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Genetic Medicine, Newcastle upon Tyne, UK
| | - Joanna Karwowska
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université de Lyon, University Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Australian Genomics Health Alliance, Melbourne, VIC, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Oliver Heath
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia; Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Georg-Christoph Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Klinikum Oldenburg, Oldenburg, Germany
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, One Children's Place, St. Louis, MO, USA
| | - Judith L Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Stephanie Karch
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Patricia Kipkemoi
- Neuroscience Unit, KEMRI-Wellcome Trust, Center for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Moses Mangi
- Neuroscience Unit, KEMRI-Wellcome Trust, Center for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Karen G C B Bindels de Heus
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marie-Claire Y de Wit
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Neurology and Pediatric Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Derek Lim
- Department of Clinical Genetics, Lavender House, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | | | - Rebecca C Spillmann
- Department of Pediatrics-Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Vandana Shashi
- Department of Pediatrics-Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Maureen Jacob
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Antonia M Stehr
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium; KU Leuven Institute for Rare Diseases (Leuven.IRD), Leuven, Belgium.
| |
Collapse
|
2
|
Liu D, Wang T, Zhao X, Chen J, Yang T, Shen Y, Zhou YD. Saturated fatty acids stimulate cytokine production in tanycytes via the PP2Ac-dependent signaling pathway. J Cereb Blood Flow Metab 2024; 44:985-999. [PMID: 38069840 PMCID: PMC11318396 DOI: 10.1177/0271678x231219115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 05/18/2024]
Abstract
The hypothalamic tanycytes are crucial for free fatty acids (FFAs) detection, storage, and transport within the central nervous system. They have been shown to effectively respond to fluctuations in circulating FFAs, thereby regulating energy homeostasis. However, the precise molecular mechanisms by which tanycytes modulate lipid utilization remain unclear. Here, we report that the catalytic subunit of protein phosphatase 2 A (PP2Ac), a serine/threonine phosphatase, is expressed in tanycytes and its accumulation and activation occur in response to high-fat diet consumption. In vitro, tanycytic PP2Ac responds to palmitic acid (PA) exposure and accumulates and is activated at an early stage in an AMPK-dependent manner. Furthermore, activated PP2Ac boosts hypoxia-inducible factor-1α (HIF-1α) accumulation, resulting in upregulation of an array of cytokines. Pretreatment with a PP2Ac inhibitor, LB100, prevented the PA-induced elevation of vascular endothelial growth factor (VEGF), fibroblast growth factor 1 (FGF1), hepatocyte growth factor (HGF), and dipeptidyl peptidase IV (DPPIV or CD26). Our results disclose a mechanism of lipid metabolism in tanycytes that involves the activation of PP2Ac and highlight the physiological significance of PP2Ac in hypothalamic tanycytes in response to overnutrition and efficacious treatment of obesity.
Collapse
Affiliation(s)
- Danyang Liu
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Wang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xingqi Zhao
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Juan Chen
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Tianqi Yang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Lingang Laboratory, Shanghai 200031, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
3
|
Domènech Omella J, Cortesi EE, Verbinnen I, Remmerie M, Wu H, Cubero FJ, Roskams T, Janssens V. A Novel Mouse Model of Combined Hepatocellular-Cholangiocarcinoma Induced by Diethylnitrosamine and Loss of Ppp2r5d. Cancers (Basel) 2023; 15:4193. [PMID: 37627221 PMCID: PMC10453342 DOI: 10.3390/cancers15164193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Primary liver cancer (PLC) can be classified in hepatocellular (HCC), cholangiocarcinoma (CCA), and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). The molecular mechanisms involved in PLC development and phenotype decision are still not well understood. Complete deletion of Ppp2r5d, encoding the B56δ subunit of Protein Phosphatase 2A (PP2A), results in spontaneous HCC development in mice via a c-MYC-dependent mechanism. In the present study, we aimed to examine the role of Ppp2r5d in an independent mouse model of diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Ppp2r5d deletion (heterozygous and homozygous) accelerated HCC development, corroborating its tumor-suppressive function in liver and suggesting Ppp2r5d may be haploinsufficient. Ppp2r5d-deficient HCCs stained positively for c-MYC, consistent with increased AKT activation in pre-malignant and tumor tissues of Ppp2r5d-deficient mice. We also found increased YAP activation in Ppp2r5d-deficient tumors. Remarkably, in older mice, Ppp2r5d deletion resulted in cHCC-CCA development in this model, with the CCA component showing increased expression of progenitor markers (SOX9 and EpCAM). Finally, we observed an upregulation of Ppp2r5d in tumors from wildtype and heterozygous mice, revealing a tumor-specific control mechanism of Ppp2r5d expression, and suggestive of the involvement of Ppp2r5d in a negative feedback regulation restricting tumor growth. Our study highlights the tumor-suppressive role of mouse PP2A-B56δ in both HCC and cHCC-CCA, which may have important implications for human PLC development and targeted treatment.
Collapse
Affiliation(s)
- Judit Domènech Omella
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Emanuela E. Cortesi
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Hanghang Wu
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
| | - Francisco J. Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
- Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Tania Roskams
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
- Department of Pathology, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
- KU Leuven Cancer Institute (LKI), 3000 Leuven, Belgium
| |
Collapse
|
4
|
Nematullah M, Rashid F, Nimker S, Khan F. Protein Phosphatase 2A Regulates Phenotypic and Metabolic Alteration of Microglia Cells in HFD-Associated Vascular Dementia Mice via TNF-α/Arg-1 Axis. Mol Neurobiol 2023; 60:4049-4063. [PMID: 37017907 DOI: 10.1007/s12035-023-03324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
Protein phosphatase 2A (PP2A), the activity of which is dictated by the composition of its regulatory subunit, is strongly related to the progression of neurodegenerative disease. The potential role of PP2A on the phenotypic transition of microglial cells under obese conditions is poorly explored. An understanding of the role of PP2A and identification of regulatory subunits contributing to microglial phenotypic transitions in obese condition may serve as a therapeutic target for obesity-associated neurodegeneration. C57BL/6 mice were exposed to obese-associated vascular dementia conditions by performing unilateral common carotid artery occlusion on obese mice of microglial polarization and PP2A activity using flow cytometry, real-time PCR, western blotting, and immunoprecipitation enzymatic assay, followed identifications of PP2A regulatory subunits using LCMS and RT-PCR. Chronic HFD feeding significantly increased the populations of infiltrated macrophages, showing a high percentage of CD86+ in VaD mice, and the expression of pro-inflammatory cytokines, and we observed that PP2A modulates metabolic reprogramming of microglia by regulating OXPHOS/ECAR activity. Using Co-IP and LCMS, we identified the six specific regulatory subunits, namely PPP2R2A, PPP2R2D, PPP2R5B, PPP2R5C, PPP2R5D, and PPP2R5E, that are associated with microglial-activation during obesity-associated-VaD. Interestingly, pharmacological up-regulation of PP2A more significantly suppressed the expression of TNF-alpha than other pro-inflammatory-cytokines and increased the expression of Arginase-1, suggesting that PP2A modulates microglial-phenotypic transitions through TNF-α/Arg-1 axis. Our present findings demonstrate microglial polarization in HFD associated with VaD, and point towards a therapeutic target by providing specific PP2A regulatory-subunits implicated in microglial activation during obesity-related-vascular-dementia.
Collapse
Affiliation(s)
- Md Nematullah
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Shwetanjali Nimker
- Application Scientist, BD Biosciences India Pvt. Ltd, Jamia Hamdard, New Delhi, 110062, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
5
|
Wang P, Li W, Liu Z, He X, Lan R, Liu Y, Chu M. Analysis of the Association of Two SNPs in the Promoter Regions of the PPP2R5C and SLC39A5 Genes with Litter Size in Yunshang Black Goats. Animals (Basel) 2022; 12:ani12202801. [PMID: 36290187 PMCID: PMC9597746 DOI: 10.3390/ani12202801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Screening for candidate genes and genetic variants associated with litter size is important for goat breeding. The aim of this study was to analyze the relationship between single nucleotide polymorphisms (SNPs) in PPP2R5C and SLC39A5 and litter size in Yunshang black goats. KASP genotyping was used to detect the SNP genetic markers in the PPP2R5C and SLC39A5 in a population of 569 Yunshang black goats. The results show that there were two SNPs in the PPP2R5C and SLC39A5 promoter regions. Association analysis revealed that the polymorphisms PPP2R5C g.65977743C>T and SLC39A5 g.50676693T>C were significantly associated with the litter size of the third parity of Yunshang black goats (p < 0.05). To further explore the regulatory mechanism of the two genes, the expression of different genotypes of PPP2R5C and SLC39A5 was validated by RT-qPCR and Western blotting. The expression of PPP2R5C was significantly higher in individuals with the TT genotype than in those with the TC and CC genotypes (p < 0.05). The expression of SLC39A5 was also significantly higher in individuals with the TT genotype than in TC and CC genotypes (p < 0.05). Dual luciferase reporter analysis showed that the luciferase activity of PPP2R5C-C variant was significantly higher than that of PPP2R5C-T variant (p < 0.05). The luciferase activity of SLC39A5-T variant was significantly higher than that of SLC39A5-C variant (p < 0.05). Software was used to predict the binding of transcription factors to the polymorphic sites, and the results show that SOX18, ZNF418, and ZNF667 and NKX2-4 and TBX6 might bind to PPP2R5C g.65977743C>T and SLC39A5 g.50676693T>C, respectively. These results provide new insights into the identification of candidate genes for marker-assisted selection (MAS) in goats.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wentao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziyi Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.L.); (M.C.); Tel.: +86-10-62819850 (Y.L. & M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.L.); (M.C.); Tel.: +86-10-62819850 (Y.L. & M.C.)
| |
Collapse
|
6
|
Yadav Y, Dey CS. Ser/Thr phosphatases: One of the key regulators of insulin signaling. Rev Endocr Metab Disord 2022; 23:905-917. [PMID: 35697962 DOI: 10.1007/s11154-022-09727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Protein phosphorylation is an important post-translational modification that regulates several cellular processes including insulin signaling. The evidences so far have already portrayed the importance of balanced actions of kinases and phosphatases in regulating the insulin signaling cascade. Therefore, elucidating the role of both kinases and phosphatases are equally important. Unfortunately, the role of phosphatases is less studied as compared to kinases. Since brain responds to insulin and insulin signaling is reported to be crucial for many neuronal processes, it is important to understand the role of neuronal insulin signaling regulators. Ser/Thr phosphatases seem to play significant roles in regulating neuronal insulin signaling. Therefore, in this review, we discussed the involvement of Ser/Thr phosphatases in regulating insulin signaling and insulin resistance in neuronal system at the backdrop of the same phosphatases in peripheral insulin sensitive tissues.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
7
|
Liu G, Li Y, Zhou J, Xu J, Yang B. PM2.5 deregulated microRNA and inflammatory microenvironment in lung injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103832. [PMID: 35189342 DOI: 10.1016/j.etap.2022.103832] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
PM2.5 negatively affects human health, particularly lung injury. However, the role of PM2.5-regulated miRNAs in lung injury remains unknown. MiRNA array results showed mmu-miR-467c-5p regulated Prdx6 expression to adapt to lung injury condition, and deregulated miRNAs regulated macrophages to build a localized inflammatory microenvironment. In addition, miRNAs were transferred into adjacent alveolar epithelial cells, regulating the expressions of cell injury signaling pathway-targeted genes, and accelerating local lung tissue injury. NO and RAGE were increased in the coculture supernatant, and SPD was decreased. PM2.5 exposure induced local lung injury, promoted inflammation in local lung tissues, increased capillary permeability in the lung tissue, and rearranged the local lung tissue structure. We also confirmed in AECOPD patients TNF-α and IL-1β levels are obviously higher than healthy person. These findings provide new mechanistic insights regarding PM2.5 and targeted miRNAs in the inflammatory microenvironment, which increases our knowledge of PM2.5-lung injury interactions.
Collapse
Affiliation(s)
- Guangyan Liu
- Department of Pathogen Biology, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, People's Republic of China.
| | - Yunxia Li
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, No. 5, Nanqi West Road, Shenyang, People's Republic of China.
| | - Jiaming Zhou
- Franklin and Marshall College, 415 Harrisburg Ave, Lancaster City, PA, USA.
| | - Jia Xu
- Department of Pathogen Biology, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, People's Republic of China.
| | - Biao Yang
- Department of Pathogen Biology, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, People's Republic of China.
| |
Collapse
|
8
|
Patel SJ, Liu N, Piaker S, Gulko A, Andrade ML, Heyward FD, Sermersheim T, Edinger N, Srinivasan H, Emont MP, Westcott GP, Luther J, Chung RT, Yan S, Kumari M, Thomas R, Deleye Y, Tchernof A, White PJ, Baselli GA, Meroni M, De Jesus DF, Ahmad R, Kulkarni RN, Valenti L, Tsai L, Rosen ED. Hepatic IRF3 fuels dysglycemia in obesity through direct regulation of Ppp2r1b. Sci Transl Med 2022; 14:eabh3831. [PMID: 35320000 PMCID: PMC9162056 DOI: 10.1126/scitranslmed.abh3831] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.
Collapse
Affiliation(s)
- Suraj J. Patel
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Digestive and Liver Diseases, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Liu
- Harvard Medical School, Boston, MA 02115, USA
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children’s Hospital, Boston, MA 02215, USA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Sam Piaker
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Maynara L. Andrade
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Frankie D. Heyward
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Tyler Sermersheim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nufar Edinger
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Margo P. Emont
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Gregory P. Westcott
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jay Luther
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Raymond T. Chung
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shuai Yan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Manju Kumari
- Department of Cardiology, Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Reeby Thomas
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Yann Deleye
- Duke Molecular Physiology Institute and Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - André Tchernof
- Institut Universitaire de Cardiologie and Pneumologie de Québec–Université Laval (IUCPQUL), Québec City, Canada
| | - Phillip J. White
- Duke Molecular Physiology Institute and Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido A. Baselli
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
- Precision Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario F. De Jesus
- Harvard Medical School, Boston, MA 02115, USA
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rohit N. Kulkarni
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
- Precision Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Long-Chain Acylcarnitines Decrease the Phosphorylation of the Insulin Receptor at Tyr1151 Through a PTP1B-Dependent Mechanism. Int J Mol Sci 2021; 22:ijms22126470. [PMID: 34208786 PMCID: PMC8235348 DOI: 10.3390/ijms22126470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/26/2023] Open
Abstract
The accumulation of lipid intermediates may interfere with energy metabolism pathways and regulate cellular energy supplies. As increased levels of long-chain acylcarnitines have been linked to insulin resistance, we investigated the effects of long-chain acylcarnitines on key components of the insulin signalling pathway. We discovered that palmitoylcarnitine induces dephosphorylation of the insulin receptor (InsR) through increased activity of protein tyrosine phosphatase 1B (PTP1B). Palmitoylcarnitine suppresses protein kinase B (Akt) phosphorylation at Ser473, and this effect is not alleviated by the inhibition of PTP1B by the insulin sensitizer bis-(maltolato)-oxovanadium (IV). This result indicates that palmitoylcarnitine affects Akt activity independently of the InsR phosphorylation level. Inhibition of protein kinase C and protein phosphatase 2A does not affect the palmitoylcarnitine-mediated inhibition of Akt Ser473 phosphorylation. Additionally, palmitoylcarnitine markedly stimulates insulin release by suppressing Akt Ser473 phosphorylation in insulin-secreting RIN5F cells. In conclusion, long-chain acylcarnitines activate PTP1B and decrease InsR Tyr1151 phosphorylation and Akt Ser473 phosphorylation, thus limiting the cellular response to insulin stimulation.
Collapse
|
10
|
Tao L, He XY, Jiang YT, Lan R, Li M, Li ZM, Yang WF, Hong QH, Chu MX. Combined approaches to reveal genes associated with litter size in Yunshang black goats. Anim Genet 2020; 51:924-934. [PMID: 32986880 DOI: 10.1111/age.12999] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 01/25/2023]
Abstract
Intensive artificial selection has been imposed in Yunshang black goats, the first black specialist mutton goat breed in China, with a breeding object of improving reproductive performance, which has contributed to reshaping of the genome including the characterization of SNP, ROH and haplotype. However, variation in reproductive ability exists in the present population. A WGS was implemented in two subpopulations (polytocous group, PG, and monotocous group, MG) with evident differences of litter size. Following the mapping to reference genome, and SNP calling and pruning, three approaches - GWAS, ROH analysis and detection of signatures of selection - were employed to unveil candidate genes responsible for litter size. Consequently, 12 candidate genes containing OSBPL8 with the minimum P-value were uncovered by GWAS. Differences were observed in the pattern of ROH between two subpopulations that shared similar low inbreeding coefficients. Two ROH hotspots and 12 corresponding genes emerged from ROH pool association analysis. Based on the nSL statistic, 15 and 61 promising genes were disclosed under selection for MG and PG respectively. Of them, some promising genes participate in ovarian function (PPP2R5C, CDC25A, ESR1, RPS26 and SERPINBs), seasonal reproduction (DIO3, BTG1 and CRYM) and metabolism (OSBPL8, SLC39A5 and SERPINBs). Our study pinpointed some novel promising genes influencing litter size, provided a comprehensive insight into genetic makeup of litter size and might facilitate selective breeding in goats.
Collapse
Affiliation(s)
- L Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - X Y He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y T Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - R Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - M Li
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Z M Li
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - W F Yang
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Q H Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - M X Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
11
|
Tian F, Ying HM, Wang YY, Cheng BN, Chen J. MiR-542-5p Inhibits Hyperglycemia and Hyperlipoidemia by Targeting FOXO1 in the Liver. Yonsei Med J 2020; 61:780-788. [PMID: 32882762 PMCID: PMC7471073 DOI: 10.3349/ymj.2020.61.9.780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE This research was designed to investigate how miR-542-5p regulates the progression of hyperglycemia and hyperlipoidemia. MATERIALS AND METHODS An in vivo model with diabetic db/db mice and an in vitro model with forskolin/dexamethasone (FSK/DEX)-induced primary hepatocytes and HepG2 cells were employed in the study. Bioinformatics analysis was conducted to identify the expression of candidate miRNAs in the liver tissues of diabetic and control mice. H&E staining revealed liver morphology in diabetic and control mice. Pyruvate tolerance tests, insulin tolerance tests, and intraperitoneal glucose tolerance test were utilized to assess insulin resistance. ELISA was conducted to evaluate blood glucose and insulin levels. Red oil O staining showed lipid deposition in liver tissues. Luciferase reporter assay was used to depict binding between miR-542-5p and forkhead box O1 (FOXO1). RESULTS MiR-542-5p expression was under-expressed in the livers of db/db mice. Further in vitro experiments revealed that FSK/DEX, which mimics the effects of glucagon and glucocorticoids, induced cellular glucose production in HepG2 cells and in primary hepatocytes cells. Notably, these changes were reversed by miR-542-5p. We found that transcription factor FOXO1 is a target of miR-542-5p. Further in vivo study indicated that miR-542-5p overexpression decreases FOXO1 expression, thereby reversing increases in blood glucose, blood lipids, and glucose-related enzymes in diabetic db/db mice. In contrast, anti-miR-542-5p exerted an adverse influence on blood glucose and blood lipid metabolism, and its stimulatory effects were significantly inhibited by sh-FOXO1 in normal control mice. CONCLUSION Collectively, our results indicated that miR-542-5p inhibits hyperglycemia and hyperlipoidemia by targeting FOXO1.
Collapse
Affiliation(s)
- Fang Tian
- Department of Endocrinology, Xixi Hospital of Hangzhou Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Min Ying
- Department of Endocrinology, Xixi Hospital of Hangzhou Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yuan Yuan Wang
- Department of Endocrinology, Xixi Hospital of Hangzhou Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Ning Cheng
- Department of Endocrinology, Xixi Hospital of Hangzhou Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Juan Chen
- Department of Endocrinology, Xixi Hospital of Hangzhou Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Zhang Y, Yuan T, Su Z, Wang X, Wang Y, Ni Y, Zuo Y, Gu H. Reduced methylation of PP2Ac promotes ethanol-induced lipid accumulation through FOXO1 phosphorylation in vitro and in vivo. Toxicol Lett 2020; 331:65-74. [PMID: 32492475 DOI: 10.1016/j.toxlet.2020.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Although disturbance of the methionine cycle and sequent decrease in hepatic methylation capacity are known to be important factors in the development of alcoholic liver injury, the underlying mechanisms are not fully understood. Here, we investigated the importance of the methylation of protein phosphatase 2A (PP2A) in alcoholic liver disease (ALD). We found that the severity of ethanol-induced liver injury and the extent of demethylation of PP2A catalytic C subunit (PP2Ac) were reduced after treatment with betaine, a methyl donor involved in the methionine-homocysteine cycle. These results suggest that PP2Ac methylation is decreased due to a broad decrease in hepatic methylation capacity after exposure to ethanol. Moreover, we found that the reduction in PP2Ac methylation led to increased degradation of the regulatory Bα subunit, thus promoting the phosphorylation and nuclear exclusion of Forkhead box O1 (FOXO1) and reducing FOXO1 transcriptional activity. Ultimately, the reduced activity of FOXO1 led to increased expression of TXNIP, which caused hepatic lipid accumulation. Our findings suggest that the reduction of PP2A methylation, a result of decrease hepatic methylation capacity, played an important role in ethanol-induced lipid accumulation via down-regulation of PP2A/Bα and FOXO1 phosphorylation.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| | - Tianli Yuan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhangyao Su
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Xi Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Yilun Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Yao Ni
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Yue Zuo
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Haohao Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
13
|
Ravi Kumar D, Joel Devadasan M, Surya T, Vineeth MR, Choudhary A, Sivalingam J, Kataria RS, Niranjan SK, Tantia MS, Verma A. Genomic diversity and selection sweeps identified in Indian swamp buffaloes reveals it's uniqueness with riverine buffaloes. Genomics 2020; 112:2385-2392. [PMID: 31978420 DOI: 10.1016/j.ygeno.2020.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The present investigation was focused to study genomic diversity of Indian swamp buffalo populations through reduced representation approach (ddRAD). The heterozygosity (FST) among the swamp buffaloes was 0.11 between Assam and Manipuri; 0.20 between swamp (Manipuri) and riverine buffaloes; 0.30 between swamp (Manipuri) and cattle. The average observed and expected heterozygosity in swamp buffalo populations was 0.254 and 0.221 respectively. The Inbreeding coefficient (FIS) value was 0.02 among the swamp buffaloes. PCA and structure analysis revealed Manipuri swamp buffalo was genetically distinct and closely related to Nagaland swamp buffalo and least to Assam swamp buffalo. Identification of selective sweeps revealed 1087 regions to have undergone selection related to immune response, adaptation and nervous system. A total of 3451 SSRs were identified in the genome of swamp buffaloes. The study evidenced the genomic diversity in the swamp buffalo populations and its uniqueness in comparison with riverine buffalo and cattle.
Collapse
Affiliation(s)
- D Ravi Kumar
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | | | - T Surya
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - M R Vineeth
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | | | | | - R S Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - S K Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - M S Tantia
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Archana Verma
- ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
14
|
Barberio MD, Nadler EP, Sevilla S, Lu R, Harmon B, Hubal MJ. Comparison of visceral adipose tissue DNA methylation and gene expression profiles in female adolescents with obesity. Diabetol Metab Syndr 2019; 11:98. [PMID: 31798691 PMCID: PMC6881970 DOI: 10.1186/s13098-019-0494-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epigenetic changes in visceral adipose tissue (VAT) with obesity and their effects on gene expression are poorly understood, especially during emergent obesity in youth. The current study tested the hypothesis that methylation and gene expression profiles of key growth factor and inflammatory pathways are altered in VAT from obese compared to non-obese youth. METHODS VAT samples from adolescent females grouped as Lean (L; n = 15; age = 15 ± 3 years, BMI = 21.9 ± 3.0 kg/m2) or Obese (Ob; n = 15, age = 16 ± 2 years, BMI = 45.8 ± 9.8 kg/m2) were collected. Global methylation (n = 20) and gene expression (N = 30) patterns were profiled via microarray and interrogated for differences between groups by ANCOVA (p < 0.05), followed by biological pathway analyses. RESULTS Overlapping differences in methylation and gene expression in 317 genes were found in VAT from obese compared to lean groups. PI3K/AKT Signaling (p = 1.83 × 10-6; 11/121 molecules in dataset/pathway) was significantly overrepresented in Ob VAT according to pathway analysis. Upregulations in the PI3K/AKT signaling pathway mRNAs TFAM (p = 0.03; fold change = 1.8) and PPP2R5C (p = 0.03, FC = 2.6) were confirmed via qRT-PCR. CONCLUSION Our analyses show obesity-related differences in DNA methylation and gene expression in visceral adipose tissue of adolescent females. Specifically, we identified methylation site/gene expression pairs differentially regulated and mapped these differences to pathways including PI3K/AKT signaling, suggesting that PI3K/AKT signaling pathway dysfunction in obesity may be driven in part by changes in DNA methylation.
Collapse
Affiliation(s)
- Matthew D. Barberio
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
| | - Evan P. Nadler
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
- Division of Pediatric Surgery, Children’s National Medical Center, Washington, DC USA
- Department of Integrative Systems Biology, School of Medicine, George Washington University, Washington, DC USA
| | - Samantha Sevilla
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
| | - Rosemary Lu
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
| | - Monica J. Hubal
- Center for Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC USA
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN USA
| |
Collapse
|
15
|
Patel BM, Goyal RK. Liver and insulin resistance: New wine in old bottle!!! Eur J Pharmacol 2019; 862:172657. [DOI: 10.1016/j.ejphar.2019.172657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
16
|
Cordero-Solorzano J, Parmentier HK, Arts JAJ, van der Poel J, de Koning DJ, Bovenhuis H. Genome-wide association study identifies loci influencing natural antibody titers in milk of Dutch Holstein-Friesian cattle. J Dairy Sci 2019; 102:11092-11103. [PMID: 31548067 DOI: 10.3168/jds.2019-16627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022]
Abstract
Natural antibodies (NAb) are produced without any antigenic stimulation as a part of the innate immune system and provide a first line of defense against pathogens. Hence, they may be a useful trait when estimating an animal's potential immune competence and in selection for disease resistance. The aim of this study was to identify genomic regions associated with different NAb traits in milk and potentially describe candidate genes. Milk samples from 1,695 first-lactation Holstein Friesian cows with titer measurements for keyhole limpet hemocyanin, lipopolysaccharide, lipoteichoic acid, and peptidoglycan-binding total NAb and isotypes IgG1, IgM, and IgA were used. Genome-wide association study analyses were performed using imputed 777K SNP genotypes, accounting for relationships using pedigree information. Functional enrichment analysis was performed on the significantly associated genomic regions to look for candidate genes. For IgM NAb, significant associations (false discovery rate <0.05) were found on Bos taurus autosome (BTA) 17, 18, and 21 with candidate genes related to immunoglobulin structure and early B cell development. For IgG1, associations were found on BTA3, and we confirmed a quantitative trait loci on BTA21 previously reported for IgG NAb in serum. Our results provide new insights into the regulation of milk NAb that will help unravel the complex relationship between milk immunoglobulins and disease resistance in dairy cattle.
Collapse
Affiliation(s)
- Juan Cordero-Solorzano
- Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics, Box 7023,750 07, Uppsala, Sweden; Wageningen University and Research, Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Henk K Parmentier
- Wageningen University and Research, Adaptation Physiology Group, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Joop A J Arts
- Wageningen University and Research, Adaptation Physiology Group, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Jan van der Poel
- Wageningen University and Research, Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Dirk Jan de Koning
- Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics, Box 7023,750 07, Uppsala, Sweden
| | - Henk Bovenhuis
- Wageningen University and Research, Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, the Netherlands.
| |
Collapse
|
17
|
Abstract
Proximity-dependent labeling methods for detecting candidate protein-protein interactions (PPIs) or mapping the protein constituency of subcellular domains have become increasingly utilized by the scientific community. One such method, BioID, allows for the identification of not only strong interactions but also weak and transient associations between a protein of interest (POI) or targeting motif and adjacent proteins. A promiscuous biotin ligase is fused to a POI or targeting motif, expressed in living cells, and induced to biotinylate proximal proteins during a defined labeling period by biotin supplementation. This generates a history of protein-protein associations that occurred with the POI or the protein constituency within a discrete subcellular domain during the labeling period. Biotinylated proteins are subsequently isolated, identified via mass spectrometry, and investigated as candidate interactors with the POI or as constituents within a subcellular domain. The BioID method has been utilized by numerous research groups and is continually being optimized, applied to new models, and modified for use in novel applications. Here we describe a protocol by which a BioID fusion protein can be validated and utilized for BioID pull-downs.
Collapse
Affiliation(s)
- Danielle G May
- Enabling Technology Group, Sanford Research, Sioux Falls, SD, USA
| | - Kyle J Roux
- Enabling Technology Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
18
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
19
|
Oostdyk LT, Shank L, Jividen K, Dworak N, Sherman NE, Paschal BM. Towards improving proximity labeling by the biotin ligase BirA. Methods 2018; 157:66-79. [PMID: 30419333 DOI: 10.1016/j.ymeth.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 11/15/2022] Open
Abstract
The discovery and validation of protein-protein interactions provides a knowledge base that is critical for defining protein networks and how they underpin the biology of the cell. Identification of protein interactions that are highly transient, or sensitive to biochemical disruption, can be very difficult. This challenge has been met by proximity labeling methods which generate reactive species that chemically modify neighboring proteins. The most widely used proximity labeling method is BioID, which features a mutant biotin ligase BirA(Arg118Gly), termed BirA*, fused to a protein of interest. Here, we explore how amino acid substitutions at Arg118 affect the biochemical properties of BirA. We found that relative to wild-type BirA, the Arg118Lys substitution both slightly reduced biotin affinity and increased the release of reactive biotinyl-5'-AMP. BioID using a BirA(Arg118Lys)-Lamin A fusion enabled identification of PCNA as a lamina-proximal protein in HEK293T cells, a finding that was validated by immunofluorescence microscopy. Our data expand on the concept that proximity labeling by BirA fused to proteins of interest can be modulated by amino acid substitutions that affect biotin affinity and the release of biotinyl-5'-AMP.
Collapse
Affiliation(s)
- Luke T Oostdyk
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, VA 22908, USA
| | - Leonard Shank
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Natalia Dworak
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Nicholas E Sherman
- W.M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia, VA 22908, USA
| | - Bryce M Paschal
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, VA 22908, USA.
| |
Collapse
|
20
|
Radhakrishna U, Vishweswaraiah S, Veerappa AM, Zafra R, Albayrak S, Sitharam PH, Saiyed NM, Mishra NK, Guda C, Bahado-Singh R. Newborn blood DNA epigenetic variations and signaling pathway genes associated with Tetralogy of Fallot (TOF). PLoS One 2018; 13:e0203893. [PMID: 30212560 PMCID: PMC6136787 DOI: 10.1371/journal.pone.0203893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common Critical Congenital Heart Defect (CCHD). The etiology of TOF is unknown in most cases. Preliminary data from our group and others suggest that epigenetic changes may play an important role in CHD. Epidemiologically, a significant percentage of CHD including TOF fail to be diagnosed in the prenatal and early newborn period which can negatively affect health outcomes. We performed genome-wide methylation assay in newborn blood in 24 non-syndromic TOF cases and 24 unaffected matched controls using Illumina Infinium HumanMethylation450 BeadChips. We identified 64 significantly differentially methylated CpG sites in TOF cases, of which 25 CpG sites had high predictive accuracy for TOF, based on the area under the receiver operating characteristics curve (AUC ROC) ≥ 0.90). The CpG methylation difference between TOF and controls was ≥10% in 51 CpG targets suggesting biological significance. Gene ontology analysis identified significant biological processes and functions related to these differentially methylated genes, including: CHD development, cardiomyopathy, diabetes, immunological, inflammation and other plausible pathways in CHD development. Multiple genes known or plausibly linked to heart development and post-natal heart disease were found to be differentially methylated in the blood DNA of newborns with TOF including: ABCB1, PPP2R5C, TLR1, SELL, SCN3A, CREM, RUNX and LHX9. We generated novel and highly accurate putative molecular markers for TOF detection using leucocyte DNA and thus provided information on pathogenesis of TOF.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States of America
- * E-mail:
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States of America
| | - Avinash M. Veerappa
- Department of Studies in Genetics and Genomics, Laboratory of Genomic Sciences, University of Mysore, Mysore, Karnataka, India
| | - Rita Zafra
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Samet Albayrak
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Prajna H. Sitharam
- Department of Studies in Genetics and Genomics, Laboratory of Genomic Sciences, University of Mysore, Mysore, Karnataka, India
| | - Nazia M. Saiyed
- Biotechnology, Nirma Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Nitish K. Mishra
- Department of Genetics, Cell Biology & Anatomy College of Medicine, University of Nebraska Medical Center Omaha, Omaha, Nebraska, United States of America
| | - Chittibabu Guda
- Department of Genetics, Cell Biology & Anatomy College of Medicine, University of Nebraska Medical Center Omaha, Omaha, Nebraska, United States of America
| | - Ray Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States of America
| |
Collapse
|
21
|
Hesketh GG, Youn JY, Samavarchi-Tehrani P, Raught B, Gingras AC. Parallel Exploration of Interaction Space by BioID and Affinity Purification Coupled to Mass Spectrometry. Methods Mol Biol 2018; 1550:115-136. [PMID: 28188527 DOI: 10.1007/978-1-4939-6747-6_10] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Complete understanding of cellular function requires knowledge of the composition and dynamics of protein interaction networks, the importance of which spans all molecular cell biology fields. Mass spectrometry-based proteomics approaches are instrumental in this process, with affinity purification coupled to mass spectrometry (AP-MS) now widely used for defining interaction landscapes. Traditional AP-MS methods are well suited to providing information regarding the temporal aspects of soluble protein-protein interactions, but the requirement to maintain protein-protein interactions during cell lysis and AP means that both weak-affinity interactions and spatial information is lost. A more recently developed method called BioID employs the expression of bait proteins fused to a nonspecific biotin ligase, BirA*, that induces in vivo biotinylation of proximal proteins. Coupling this method to biotin affinity enrichment and mass spectrometry negates many of the solubility and interaction strength issues inherent in traditional AP-MS methods, and provides unparalleled spatial context for protein interactions. Here we describe the parallel implementation of both BioID and FLAG AP-MS allowing simultaneous exploration of both spatial and temporal aspects of protein interaction networks.
Collapse
Affiliation(s)
- Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | - Brian Raught
- Princess Margaret Cancer Centre, Princess Margaret Research Institute, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave., Rm 992A (9th floor), Toronto, ON, Canada, M5G 1X5.
| |
Collapse
|
22
|
Lambrecht C, Libbrecht L, Sagaert X, Pauwels P, Hoorne Y, Crowther J, Louis JV, Sents W, Sablina A, Janssens V. Loss of protein phosphatase 2A regulatory subunit B56δ promotes spontaneous tumorigenesis in vivo. Oncogene 2017; 37:544-552. [DOI: 10.1038/onc.2017.350] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/08/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
|
23
|
Xing Z, Wang S, Tran EJ. Characterization of the mammalian DEAD-box protein DDX5 reveals functional conservation with S. cerevisiae ortholog Dbp2 in transcriptional control and glucose metabolism. RNA (NEW YORK, N.Y.) 2017; 23:1125-1138. [PMID: 28411202 PMCID: PMC5473146 DOI: 10.1261/rna.060335.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/10/2017] [Indexed: 05/09/2023]
Abstract
DEAD-box proteins are a class of nonprocessive RNA helicases that dynamically modulate the structure of RNA and ribonucleoprotein complexes (RNPs). However, the precise roles of individual members are not well understood. Work from our laboratory revealed that the DEAD-box protein Dbp2 in Saccharomyces cerevisiae is an active RNA helicase in vitro that functions in transcription by promoting mRNP assembly, repressing cryptic transcription initiation, and regulating long noncoding RNA activity. Interestingly, Dbp2 is also linked to glucose sensing and hexose transporter gene expression. DDX5 is the mammalian ortholog of Dbp2 that has been implicated in cancer and metabolic syndrome, suggesting that the role of Dbp2 and DDX5 in glucose metabolic regulation is conserved. Herein, we present a refined biochemical and biological comparison of yeast Dbp2 and human DDX5 enzymes. We find that human DDX5 possesses a 10-fold higher unwinding activity than Dbp2, which is partially due to the presence of a mammalian/avian specific C-terminal extension. Interestingly, ectopic expression of DDX5 rescues the cold sensitivity, cryptic initiation defects, and impaired glucose import in dbp2Δ cells, suggesting functional conservation. Consistently, we show that DDX5 promotes glucose uptake and glycolysis in mouse AML12 hepatocyte cells, suggesting that mammalian DDX5 and S. cerevisiae Dbp2 share conserved roles in cellular metabolism.
Collapse
Affiliation(s)
- Zheng Xing
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47906, USA
| | - Siwen Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47906, USA
| | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47906, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906, USA
| |
Collapse
|
24
|
Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond) 2017; 130:943-86. [PMID: 27154742 DOI: 10.1042/cs20160136] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/24/2016] [Indexed: 12/19/2022]
Abstract
In high-, middle- and low-income countries, the rising prevalence of obesity is the underlying cause of numerous health complications and increased mortality. Being a complex and heritable disorder, obesity results from the interplay between genetic susceptibility, epigenetics, metagenomics and the environment. Attempts at understanding the genetic basis of obesity have identified numerous genes associated with syndromic monogenic, non-syndromic monogenic, oligogenic and polygenic obesity. The genetics of leanness are also considered relevant as it mirrors some of obesity's aetiologies. In this report, we summarize ten genetically elucidated obesity syndromes, some of which are involved in ciliary functioning. We comprehensively review 11 monogenic obesity genes identified to date and their role in energy maintenance as part of the leptin-melanocortin pathway. With the emergence of genome-wide association studies over the last decade, 227 genetic variants involved in different biological pathways (central nervous system, food sensing and digestion, adipocyte differentiation, insulin signalling, lipid metabolism, muscle and liver biology, gut microbiota) have been associated with polygenic obesity. Advances in obligatory and facilitated epigenetic variation, and gene-environment interaction studies have partly accounted for the missing heritability of obesity and provided additional insight into its aetiology. The role of gut microbiota in obesity pathophysiology, as well as the 12 genes associated with lipodystrophies is discussed. Furthermore, in an attempt to improve future studies and merge the gap between research and clinical practice, we provide suggestions on how high-throughput '-omic' data can be integrated in order to get closer to the new age of personalized medicine.
Collapse
|
25
|
Zhang YY, Gong JP, Li ZM. Autophagy and hepatic lipid metabolism. Shijie Huaren Xiaohua Zazhi 2017; 25:491-497. [DOI: 10.11569/wcjd.v25.i6.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is initially thought to be a non-selective process in which intracellular proteins or damaged organelles are degraded. It is activated when cells lack nutrients and energy. Autophagy degrades cytoplasmic components within lysosomes and reuses the energy of amino acids to promote cell survival and maintain the cytoplasmic content. Current evidence implicates autophagy in the regulation of lipid stores within the two main organs involved in maintaining lipid homeostasis, the liver and adipose tissue. Upregulation of autophagy may lead to conversion of white adipose tissue into brown adipose tissue, thus regulating energy expenditure and obesity. Discovering new therapeutic interventions to treat lipid and lipoprotein disorders is of great interest and the discovery of autophagy as a regulator of lipid metabolism has opened up a new avenue for this area. In the liver, autophagy can play a role in some common metabolic disorders, which needs further research.
Collapse
|
26
|
Theurey P, Rieusset J. Mitochondria-Associated Membranes Response to Nutrient Availability and Role in Metabolic Diseases. Trends Endocrinol Metab 2017; 28:32-45. [PMID: 27670636 DOI: 10.1016/j.tem.2016.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are associated with nutrient excess and metabolic inflexibility. Mitochondria and endoplasmic reticulum are important organelles and nutrient sensors, and their dysfunction has been extensively and independently implicated in metabolic diseases. Both organelles interact at sites known as mitochondria-associated membranes (MAMs), in order to exchange metabolites and calcium. Recent evidence indicates that MAM could be a hub of hepatic insulin signaling and nutrient sensing. In this review, we discuss the roles organelle function and communication play in the cell's adaptation to nutrient availability, in both physiology and metabolic diseases. We highlight how dynamic regulation of MAM affects mitochondria physiology and adaptation of cellular metabolism to nutrient availability, and how chronic MAM disruption participates in the metabolic inflexibility associated with metabolic disorders.
Collapse
Affiliation(s)
- Pierre Theurey
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Jennifer Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1397, F-69921 Oullins, France.
| |
Collapse
|
27
|
Filling the Void: Proximity-Based Labeling of Proteins in Living Cells. Trends Cell Biol 2016; 26:804-817. [PMID: 27667171 DOI: 10.1016/j.tcb.2016.09.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
There are inherent limitations with traditional methods to study protein behavior or to determine the constituency of proteins in discrete subcellular compartments. In response to these limitations, several methods have recently been developed that use proximity-dependent labeling. By fusing proteins to enzymes that generate reactive molecules, most commonly biotin, proximate proteins are covalently labeled to enable their isolation and identification. In this review we describe current methods for proximity-dependent labeling in living cells and discuss their applications and future use in the study of protein behavior.
Collapse
|
28
|
Varnaitė R, MacNeill SA. Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID. Proteomics 2016; 16:2503-2518. [PMID: 27329485 PMCID: PMC5053326 DOI: 10.1002/pmic.201600123] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022]
Abstract
Proximity-dependent biotin identification (BioID) is a recently developed method that allows the identification of proteins in the close vicinity of a protein of interest in living cells. BioID relies on fusion of the protein of interest with a mutant form of the biotin ligase enzyme BirA (BirA*) that is capable of promiscuously biotinylating proximal proteins irrespective of whether these interact directly or indirectly with the fusion protein or are merely located in the same subcellular neighborhood. The covalent addition of biotin allows the labeled proteins to be purified from cell extracts on the basis of their affinity for streptavidin and identified by mass spectrometry. To date, BioID has been successfully applied to study a variety of proteins and processes in mammalian cells and unicellular eukaryotes and has been shown to be particularly suited to the study of insoluble or inaccessible cellular structures and for detecting weak or transient protein associations. Here, we provide an introduction to BioID, together with a detailed summary of where and how the method has been applied to date, and briefly discuss technical aspects involved in the planning and execution of a BioID study.
Collapse
Affiliation(s)
- Renata Varnaitė
- School of Biology, University of St Andrews, North Haugh, St Andrews, Scotland, UK
| | - Stuart A MacNeill
- School of Biology, University of St Andrews, North Haugh, St Andrews, Scotland, UK.
| |
Collapse
|
29
|
Goldsworthy M, Bai Y, Li CM, Ge H, Lamas E, Hilton H, Esapa CT, Baker D, Baron W, Juan T, Véniant MM, Lloyd DJ, Cox RD. Haploinsufficiency of the Insulin Receptor in the Presence of a Splice-Site Mutation in Ppp2r2a Results in a Novel Digenic Mouse Model of Type 2 Diabetes. Diabetes 2016; 65:1434-46. [PMID: 26868295 PMCID: PMC5947768 DOI: 10.2337/db15-1276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/07/2016] [Indexed: 12/16/2022]
Abstract
Insulin resistance in mice typically does not manifest as diabetes due to multiple compensatory mechanisms. Here, we present a novel digenic model of type 2 diabetes in mice heterozygous for a null allele of the insulin receptor and an N-ethyl-N-nitrosourea-induced alternative splice mutation in the regulatory protein phosphatase 2A (PP2A) subunit PPP2R2A. Inheritance of either allele independently results in insulin resistance but not overt diabetes. Doubly heterozygous mice exhibit progressive hyperglycemia, hyperinsulinemia, and impaired glucose tolerance from 12 weeks of age without significant increase in body weight. Alternative splicing of Ppp2r2a decreased PPP2R2A protein levels. This reduction in PPP2R2A containing PP2A phosphatase holoenzyme was associated with decreased serine/threonine protein kinase AKT protein levels. Ultimately, reduced insulin-stimulated phosphorylated AKT levels were observed, a result that was confirmed in Hepa1-6, C2C12, and differentiated 3T3-L1 cells knocked down using Ppp2r2a small interfering RNAs. Altered AKT signaling and expression of gluconeogenic genes in the fed state contributed to an insulin resistance and hyperglycemia phenotype. This model demonstrates how genetic changes with individually small phenotypic effects interact to cause diabetes and how differences in expression of hypomorphic alleles of PPP2R2A and potentially other regulatory proteins have deleterious effects and may therefore be relevant in determining diabetes risk.
Collapse
Affiliation(s)
| | - Ying Bai
- Diabetes Group, Medical Research Council Harwell, Oxfordshire, U.K
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Inc., Thousand Oaks, CA
| | - Huanying Ge
- Genome Analysis Unit, Amgen Inc., Thousand Oaks, CA
| | - Edwin Lamas
- Genome Analysis Unit, Amgen Inc., Thousand Oaks, CA
| | - Helen Hilton
- Protein Core Facility, Medical Research Council Harwell, Oxfordshire, U.K
| | | | - Dan Baker
- Genome Analysis Unit, Amgen Inc., Thousand Oaks, CA
| | - Will Baron
- Genome Analysis Unit, Amgen Inc., Thousand Oaks, CA
| | - Todd Juan
- Genome Analysis Unit, Amgen Inc., Thousand Oaks, CA
| | | | - David J Lloyd
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA
| | - Roger D Cox
- Diabetes Group, Medical Research Council Harwell, Oxfordshire, U.K.
| |
Collapse
|
30
|
Pepin É, Al-Mass A, Attané C, Zhang K, Lamontagne J, Lussier R, Madiraju SRM, Joly E, Ruderman NB, Sladek R, Prentki M, Peyot ML. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression. PLoS One 2016; 11:e0153017. [PMID: 27043434 PMCID: PMC4820227 DOI: 10.1371/journal.pone.0153017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022] Open
Abstract
Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition to early diabetes (HDR) is associated with major alterations in gene expression.
Collapse
Affiliation(s)
- Émilie Pepin
- Montreal Diabetes Research Center and Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Anfal Al-Mass
- Montreal Diabetes Research Center and Centre de Recherche du CHUM, Montréal, Québec, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Québec, Canada
| | - Camille Attané
- Montreal Diabetes Research Center and Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Kezhuo Zhang
- Departments of Medicine and Human Genetics, McGill University, Montreal, Québec, Canada
| | - Julien Lamontagne
- Montreal Diabetes Research Center and Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Roxane Lussier
- Montreal Diabetes Research Center and Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - S. R. Murthy Madiraju
- Montreal Diabetes Research Center and Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Erik Joly
- Montreal Diabetes Research Center and Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Neil B. Ruderman
- Departments of Medicine and Physiology and Biophysics, Boston University School of Medicine and Diabetes Unit, Boston Medical Center, Boston, MA, United States of America
| | - Robert Sladek
- Departments of Medicine and Human Genetics, McGill University, Montreal, Québec, Canada
| | - Marc Prentki
- Montreal Diabetes Research Center and Centre de Recherche du CHUM, Montréal, Québec, Canada
- Departments of Nutrition, Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montréal, Montreal, Québec, Canada
- * E-mail: (MP); (MLP)
| | - Marie-Line Peyot
- Montreal Diabetes Research Center and Centre de Recherche du CHUM, Montréal, Québec, Canada
- * E-mail: (MP); (MLP)
| |
Collapse
|
31
|
Kim DI, Jensen SC, Noble KA, Kc B, Roux KH, Motamedchaboki K, Roux KJ. An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell 2016; 27:1188-96. [PMID: 26912792 PMCID: PMC4831873 DOI: 10.1091/mbc.e15-12-0844] [Citation(s) in RCA: 573] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/16/2016] [Indexed: 12/20/2022] Open
Abstract
A smaller promiscuous biotin ligase for proximity biotinylation called BioID2 enables more-selective targeting of fusion proteins, requires less biotin supplementation, exhibits enhanced labeling of proximate proteins, and demonstrates the use of a flexible linker to modulate the biotin-labeling radius. The BioID method uses a promiscuous biotin ligase to detect protein–protein associations as well as proximate proteins in living cells. Here we report improvements to the BioID method centered on BioID2, a substantially smaller promiscuous biotin ligase. BioID2 enables more-selective targeting of fusion proteins, requires less biotin supplementation, and exhibits enhanced labeling of proximate proteins. Thus BioID2 improves the efficiency of screening for protein–protein associations. We also demonstrate that the biotinylation range of BioID2 can be considerably modulated using flexible linkers, thus enabling application-specific adjustment of the biotin-labeling radius.
Collapse
Affiliation(s)
- Dae In Kim
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Samuel C Jensen
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Kyle A Noble
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Birendra Kc
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Kenneth H Roux
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Khatereh Motamedchaboki
- Sanford-Burnham Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104 Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| |
Collapse
|