1
|
Andryszkiewicz W, Gąsiorowska J, Kübler M, Kublińska K, Pałkiewicz A, Wiatkowski A, Szwedowicz U, Choromańska A. Glucose Metabolism and Tumor Microenvironment: Mechanistic Insights and Therapeutic Implications. Int J Mol Sci 2025; 26:1879. [PMID: 40076506 PMCID: PMC11900028 DOI: 10.3390/ijms26051879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Metabolic reprogramming in cancer cells involves changes in glucose metabolism, glutamine utilization, and lipid production, as well as promoting increased cell proliferation, survival, and immune resistance by altering the tumor microenvironment. Our study analyzes metabolic reprogramming in neoplastically transformed cells, focusing on changes in glucose metabolism, glutaminolysis, and lipid synthesis. Moreover, we discuss the therapeutic potential of targeting cancer metabolism, focusing on key enzymes involved in glycolysis, the pentose phosphate pathway, and amino acid metabolism, including lactate dehydrogenase A, hexokinase, phosphofructokinase and others. The review also highlights challenges such as metabolic heterogeneity, adaptability, and the need for personalized therapies to overcome resistance and minimize adverse effects in cancer treatment. This review underscores the significance of comprehending metabolic reprogramming in cancer cells to engineer targeted therapies, personalize treatment methodologies, and surmount challenges, including metabolic plasticity and therapeutic resistance.
Collapse
Affiliation(s)
- Wiktoria Andryszkiewicz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.A.); (J.G.); (M.K.); (K.K.); (A.P.); (A.W.)
| | - Julia Gąsiorowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.A.); (J.G.); (M.K.); (K.K.); (A.P.); (A.W.)
| | - Maja Kübler
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.A.); (J.G.); (M.K.); (K.K.); (A.P.); (A.W.)
| | - Karolina Kublińska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.A.); (J.G.); (M.K.); (K.K.); (A.P.); (A.W.)
| | - Agata Pałkiewicz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.A.); (J.G.); (M.K.); (K.K.); (A.P.); (A.W.)
| | - Adam Wiatkowski
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.A.); (J.G.); (M.K.); (K.K.); (A.P.); (A.W.)
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
2
|
Gadiraju B, Magisetty J, Kondreddy V. Transcription factor ETV4 plays a critical role in the development of non-alcoholic fatty liver disease. Int J Biol Macromol 2024; 282:137235. [PMID: 39500423 DOI: 10.1016/j.ijbiomac.2024.137235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/12/2024]
Abstract
The Angiopoietin-like 4 (ANGPTL4) and ETS Variant Transcription Factor 4 (ETV4) are involved in the metabolic transition and carcinogenesis in the liver. However, the role of ETV4 in the development of non-alcoholic fatty liver disease (NAFLD) is currently unknown. Our study reveals that ETV4 expression was upregulated in the diet-induced non-alcoholic fatty liver disease, and plays a critical role in the dysregulated lipid metabolism. We demonstrate a mechanism by which ANGPTL4 regulates lipid homeostasis via involving the AMPK/ETV4 axis. Transient knockdown of ETV4 abolished the ANGPTL4-induced expression of Srebp1c, Acc and Fasn. Insulin treatment potentially increased the physical association of ETV4 with SREBP1, and promotes nuclear translocation and transcriptional activity of SREBP1. In addition, we show that combined therapy with omega-3 fatty acids and diacylglycerol O-acyltransferase inhibitor 1 (DGAT1) inhibitor (A-922500) counteracted the ANGPTL4-ETV4 axis-induced lipogenesis in vitro, and in vivo in obese mice via activation of GPR120-βarrestin2-AMPK pathway. Finally, we demonstrate that targeted pharmacologic therapy using GalNac-ETV4 siRNA that specifically inhibits ETV4 gene expression in the liver protects against diet-induced NAFLD, obesity and dyslipidemia. Hence, our study reveal previously unrecognized role of ETV4 in the NAFLD, and provides rationale targeting ETV4 to treat NAFLD.
Collapse
Affiliation(s)
- Bhavani Gadiraju
- Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Jhansi Magisetty
- Department of Zoology, Central University of Punjab, Bathinda., India.
| | - Vijay Kondreddy
- Department of Biochemistry, Central University of Punjab, Bathinda, India.
| |
Collapse
|
3
|
Zhang D, Xu D, Zhang W, Zhang J, Sun T, Weng D. Low doses of acetyl trihexyl citrate plasticizer promote adipogenesis in hepatocytes and mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51593-51603. [PMID: 39115733 DOI: 10.1007/s11356-024-34636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
Accumulating epidemiological evidence underscores the association between pervasive environmental factors and an increased risk of metabolic diseases. Environmental chemicals, recognized disruptors of endocrine and metabolic processes, may contribute to the global prevalence of metabolic disorders, including obesity. Acetyl tributyl citrate (ATHC), categorized as a citric acid ester plasticizer, serves as a substitute for di-(2-ethylhexyl) phthalate (DEHP) in various everyday products. Despite its widespread use and the increasing risk of exposure in humans and animals due to its high leakage rates, information regarding the safety of exposure to environmentally relevant doses of ATHC remains limited. This study aimed to investigate the potential impact of ATHC exposure on metabolic homeostasis. Both in vivo and in vitro exposure models were used to characterize the effects induced by ATHC exposure. C57BL/6 J male mice were subjected to a diet containing ATHC for 12 weeks, and metabolism-related parameters were monitored and analyzed throughout and after the exposure period. Results indicated that sub-chronic dietary exposure to ATHC induced an increase in body fat percentage, elevated serum lipid levels, and increased lipid content in the liver tissue of mice. Furthermore, the effect of ATHC exposure on murine hepatocytes were examined and results indicated that ATHC significantly augmented lipid levels in AML12 hepatocytes, disrupting energy homeostasis and altering the expression of genes associated with fatty acid synthesis, uptake, oxidation, and secretion pathways. Conclusively, both in vivo and in vitro results suggest that exposure to low levels of ATHC may be linked to an elevated risk of obesity and fatty liver in mice. The potential implications of ATHC on human health warrant comprehensive evaluation in future studies.
Collapse
Affiliation(s)
- Danyang Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Di Xu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Weigao Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jianfa Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Tingzhe Sun
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing, 246133, Anhui, China
| | - Dan Weng
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| |
Collapse
|
4
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
5
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 420] [Impact Index Per Article: 210.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Wang Y, Du J, Gao Z, Sun H, Mei M, Wang Y, Ren Y, Zhou X. Evolving landscape of PD-L2: bring new light to checkpoint immunotherapy. Br J Cancer 2022; 128:1196-1207. [PMID: 36522474 PMCID: PMC10050415 DOI: 10.1038/s41416-022-02084-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
AbstractImmune checkpoint blockade therapy targeting programmed cell death protein 1 (PD-1) has revolutionized the landscape of multiple human cancer types, including head and neck squamous carcinoma (HNSCC). Programmed death ligand-2 (PD-L2), a PD-1 ligand, mediates cancer cell immune escape (or tolerance independent of PD-L1) and predicts poor prognosis of patients with HNSCC. Therefore, an in-depth understanding of the regulatory process of PD-L2 expression may stratify patients with HNSCC to benefit from anti-PD-1 immunotherapy. In this review, we summarised the PD-L2 expression and its immune-dependent and independent functions in HNSCC and other solid tumours. We focused on recent findings on the mechanisms that regulate PD-L2 at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels, also in intercellular communication of tumour microenvironment (TME). We also discussed the prospects of using small molecular agents indirectly targeting PD-L2 in cancer therapy. These findings may provide a notable avenue in developing novel and effective PD-L2-targeted therapeutic strategies for immune combination therapy and uncovering biomarkers that improve the clinical efficacy of anti-PD-1 therapies.
Collapse
|
7
|
Kang Y, Li J. The heterogeneous subclones might be induced by cycling hypoxia which was aggravated along with the luminal A tumor growth. Tissue Cell 2022; 77:101844. [DOI: 10.1016/j.tice.2022.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
|
8
|
Sela Y, Li J, Maheswaran S, Norgard R, Yuan S, Hubbi M, Doepner M, Xu JP, Ho E, Measaros C, Sheehan C, Croley G, Muir A, Blair IA, Shalem O, Dang CV, Stanger BZ. Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer. Cancer Res 2022; 82:1890-1908. [PMID: 35315913 PMCID: PMC9117449 DOI: 10.1158/0008-5472.can-22-0431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
Solid tumors possess heterogeneous metabolic microenvironments where oxygen and nutrient availability are plentiful (fertile regions) or scarce (arid regions). While cancer cells residing in fertile regions proliferate rapidly, most cancer cells in vivo reside in arid regions and exhibit a slow-cycling state that renders them chemoresistant. Here, we developed an in vitro system enabling systematic comparison between these populations via transcriptome analysis, metabolomic profiling, and whole-genome CRISPR screening. Metabolic deprivation led to pronounced transcriptional and metabolic reprogramming, resulting in decreased anabolic activities and distinct vulnerabilities. Reductions in anabolic, energy-consuming activities, particularly cell proliferation, were not simply byproducts of the metabolic challenge, but rather essential adaptations. Mechanistically, Bcl-xL played a central role in the adaptation to nutrient and oxygen deprivation. In this setting, Bcl-xL protected quiescent cells from the lethal effects of cell-cycle entry in the absence of adequate nutrients. Moreover, inhibition of Bcl-xL combined with traditional chemotherapy had a synergistic antitumor effect that targeted cycling cells. Bcl-xL expression was strongly associated with poor patient survival despite being confined to the slow-cycling fraction of human pancreatic cancer cells. These findings provide a rationale for combining traditional cancer therapies that target rapidly cycling cells with those that target quiescent, chemoresistant cells associated with nutrient and oxygen deprivation. SIGNIFICANCE The majority of pancreatic cancer cells inhabit nutrient- and oxygen-poor tumor regions and require Bcl-xL for their survival, providing a compelling antitumor metabolic strategy.
Collapse
Affiliation(s)
- Yogev Sela
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Jinyang Li
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Shivahamy Maheswaran
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Robert Norgard
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Salina Yuan
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Maimon Hubbi
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Miriam Doepner
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Jimmy P. Xu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Elaine Ho
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Clementina Measaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Colin Sheehan
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Grace Croley
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ian A. Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V. Dang
- Systems and Computational Biology Center and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, 19104, USA
- Ludwig Institute for Cancer Research, New York, 10016, USA
| | - Ben Z. Stanger
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
9
|
Sun T, Ding CKC, Zhang Y, Zhang Y, Lin CC, Wu J, Setayeshpour Y, Coggins S, Shepard C, Macias E, Kim B, Zhou P, Gordân R, Chi JT. MESH1 knockdown triggers proliferation arrest through TAZ repression. Cell Death Dis 2022; 13:221. [PMID: 35273140 PMCID: PMC8913805 DOI: 10.1038/s41419-022-04663-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
All organisms are constantly exposed to various stresses, necessitating adaptive strategies for survival. In bacteria, the main stress-coping mechanism is the stringent response triggered by the accumulation of “alarmone” (p)ppGpp to arrest proliferation and reprogram transcriptome. While mammalian genomes encode MESH1—the homolog of the (p)ppGpp hydrolase SpoT, current knowledge about its function remains limited. We found MESH1 expression tended to be higher in tumors and associated with poor patient outcomes. Consistently, MESH1 knockdown robustly inhibited proliferation, depleted dNTPs, reduced tumor sphere formation, and retarded xenograft growth. These antitumor phenotypes associated with MESH1 knockdown were accompanied by a significantly altered transcriptome, including the repressed expression of TAZ, a HIPPO coactivator, and proliferative gene. Importantly, TAZ restoration mitigated many anti-growth phenotypes of MESH1 knockdown, including proliferation arrest, reduced sphere formation, tumor growth inhibition, dNTP depletion, and transcriptional changes. Furthermore, TAZ repression was associated with the histone hypo-acetylation at TAZ regulatory loci due to the induction of epigenetic repressors HDAC5 and AHRR. Together, MESH1 knockdown in human cells altered the genome-wide transcriptional patterns and arrested proliferation that mimicked the bacterial stringent response through the epigenetic repression of TAZ expression.
Collapse
|
10
|
Quintana I, Mur P, Terradas M, García-Mulero S, Aiza G, Navarro M, Piñol V, Brunet J, Moreno V, Sanz-Pamplona R, Capellá G, Valle L. Potential Involvement of NSD1, KRT24 and ACACA in the Genetic Predisposition to Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030699. [PMID: 35158968 PMCID: PMC8833793 DOI: 10.3390/cancers14030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Methods used for the identification of hereditary cancer genes have evolved in parallel to technological progress; however, much of the genetic predisposition to cancer remains unexplained. A new in silico method based on Knudson’s two-hit hypothesis recently identified ~50 putative cancer predisposing genes, but their actual association with cancer has not yet been validated. In our study, we aimed to assess the involvement of these genes in familial/early-onset colorectal cancer (CRC) using different lines of evidence. Our results indicated that most of those genes were not associated with a genetic predisposition to CRC, but suggested a possible association for NSD1, KRT24 and ACACA. Abstract The ALFRED (Allelic Loss Featuring Rare Damaging) in silico method was developed to identify cancer predisposition genes through the identification of somatic second hits. By applying ALFRED to ~10,000 tumor exomes, 49 candidate genes were identified. We aimed to assess the causal association of the identified genes with colorectal cancer (CRC) predisposition. Of the 49 genes, NSD1, HDAC10, KRT24, ACACA and TP63 were selected based on specific criteria relevant for hereditary CRC genes. Gene sequencing was performed in 736 patients with familial/early onset CRC or polyposis without germline pathogenic variants in known genes. Twelve (predicted) damaging variants in 18 patients were identified. A gene-based burden test in 1596 familial/early-onset CRC patients, 271 polyposis patients, 543 TCGA CRC patients and >134,000 controls (gnomAD, non-cancer), revealed no clear association with CRC for any of the studied genes. Nevertheless, (non-significant) over-representation of disruptive variants in NSD1, KRT24 and ACACA in CRC patients compared to controls was observed. A somatic second hit was identified in one of 20 tumors tested, corresponding to an NSD1 carrier. In conclusion, most genes identified through the ALFRED in silico method were not relevant for CRC predisposition, although a possible association was detected for NSD1, KRT24 and ACACA.
Collapse
Affiliation(s)
- Isabel Quintana
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
| | - Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (V.M.); (R.S.-P.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Virginia Piñol
- Gastroenterology Unit, Hospital Universitario de Girona Dr. Josep Trueta, 17007 Girona, Spain;
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Catalan Institute of Oncology, IDIBGi, 17007 Girona, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (V.M.); (R.S.-P.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (V.M.); (R.S.-P.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
11
|
Zhang Y, Ding J, Liu C, Luo S, Gao X, Wu Y, Wang J, Wang X, Wu X, Shen W, Zhu J. Genetics Responses to Hypoxia and Reoxygenation Stress in Larimichthys crocea Revealed via Transcriptome Analysis and Weighted Gene Co-Expression Network. Animals (Basel) 2021; 11:ani11113021. [PMID: 34827754 PMCID: PMC8614329 DOI: 10.3390/ani11113021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia, which occurs frequently in aquaculture, can cause serious harm to all aspects of the growth, reproduction and metabolism of cultured fish. Due to the intolerance of Larimichthys crocea to hypoxia, Larimichthys crocea often floats head or even dies under hypoxic environment. However, the molecular mechanism of hypoxia tolerance in Larimichthys crocea has not been fully described. Therefore, the aim of this study was to explore the hub regulatory genes under hypoxic stress environment by transcriptome analysis of three key tissues (liver, blood and gill) in Larimichthys crocea. We identified a number of important genes that exercise different regulatory functions. Overall, this study will provide important clues to the molecular mechanisms of hypoxia tolerance in Larimichthys crocea. Abstract The large yellow croaker (Larimichthys crocea) is an important marine economic fish in China; however, its intolerance to hypoxia causes widespread mortality. To understand the molecular mechanisms underlying hypoxia tolerance in L. crocea, the transcriptome gene expression profiling of three different tissues (blood, gills, and liver) of L. crocea exposed to hypoxia and reoxygenation stress were performed. In parallel, the gene relationships were investigated based on weighted gene co-expression network analysis (WGCNA). Accordingly, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that several pathways (e.g., energy metabolism, signal transduction, oxygen transport, and osmotic regulation) may be involved in the response of L. crocea to hypoxia and reoxygenation stress. In addition, also, four key modules (darkorange, magenta, saddlebrown, and darkolivegreen) that were highly relevant to the samples were identified by WGCNA. Furthermore, some hub genes within the association module, including RPS16, EDRF1, KCNK5, SNAT2, PFKL, GSK-3β, and PIK3CD, were found. This is the first study to report the co-expression patterns of a gene network after hypoxia stress in marine fish. The results provide new clues for further research on the molecular mechanisms underlying hypoxia tolerance in L. crocea.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Cheng Liu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Shengyu Luo
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Yuanjie Wu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
| | - Xuelei Wang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Xiongfei Wu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
| | - Weiliang Shen
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Juxian Road, Ningbo 315103, China; (X.W.); (X.W.)
- Correspondence: (W.S.); (J.Z.); Tel.: +86-153-8137-7660 (W.S.); +86-139-5784-1679 (J.Z.)
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo 315832, China; (Y.Z.); (J.D.); (C.L.); (S.L.); (X.G.); (Y.W.); (J.W.)
- Correspondence: (W.S.); (J.Z.); Tel.: +86-153-8137-7660 (W.S.); +86-139-5784-1679 (J.Z.)
| |
Collapse
|
12
|
Jiang W, Xu Y, Chen X, Pan S, Zhu X. E26 transformation-specific variant 4 as a tumor promotor in human cancers through specific molecular mechanisms. Mol Ther Oncolytics 2021; 22:518-527. [PMID: 34553037 PMCID: PMC8433062 DOI: 10.1016/j.omto.2021.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
E26 transformation-specific (ETS) variant 4 (ETV4) is an important transcription factor that belongs to the ETS transcription factor family and is essential for much cellular physiology. Recent evidence has revealed that ETV4 is aberrantly expressed in many types of tumors, and its overexpression is related to poor prognosis of cancer patients. Additionally, increasing studies have identified that ETV4 promotes cancer growth, invasion, metastasis, and drug resistance. Mechanistically, the level of ETV4 is regulated by some post-translation modulations in a broad spectrum of cancers. However, little progress has been made to comprehensively summarize the critical roles of ETV4 in different human cancers. Hence, this review mainly focuses on the physiological functions of ETV4 in various human tumors. In addition, the molecular mechanisms of ETV4-mediated cancer progression were elucidated, including how ETV4 modulates its downstream signaling pathways and how ETV4 is regulated by some factors. On this basis, the present review may provide a valuable therapeutics strategy for future cancer treatment by targeting ETV4-related pathways.
Collapse
Affiliation(s)
- Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xin Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
13
|
The regulation of ferroptosis by MESH1 through the activation of the integrative stress response. Cell Death Dis 2021; 12:727. [PMID: 34294679 PMCID: PMC8298397 DOI: 10.1038/s41419-021-04018-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022]
Abstract
All organisms exposed to metabolic and environmental stresses have developed various stress adaptive strategies to maintain homeostasis. The main bacterial stress survival mechanism is the stringent response triggered by the accumulation “alarmone” (p)ppGpp, whose level is regulated by RelA and SpoT. While metazoan genomes encode MESH1 (Metazoan SpoT Homolog 1) with ppGpp hydrolase activity, neither ppGpp nor the stringent response is found in metazoa. The deletion of Mesh1 in Drosophila triggers a transcriptional response reminiscent of the bacterial stringent response. However, the function of MESH1 remains unknown until our recent discovery of MESH1 as the first cytosolic NADPH phosphatase that regulates ferroptosis. To further understand whether MESH1 knockdown triggers a similar transcriptional response in mammalian cells, here, we employed RNA-Seq to analyze the transcriptome response to MESH1 knockdown in human cancer cells. We find that MESH1 knockdown induced different genes involving endoplasmic reticulum (ER) stress, especially ATF3, one of the ATF4-regulated genes in the integrative stress responses (ISR). Furthermore, MESH1 knockdown increased ATF4 protein, eIF2a phosphorylation, and induction of ATF3, XBPs, and CHOP mRNA. ATF4 induction contributes to ~30% of the transcriptome induced by MESH1 knockdown. Concurrent ATF4 knockdown re-sensitizes MESH1-depleted RCC4 cells to ferroptosis, suggesting its role in the ferroptosis protection mediated by MESH1 knockdown. ATF3 induction is abolished by the concurrent knockdown of NADK, implicating a role of NADPH accumulation in the integrative stress response. Collectively, these results suggest that MESH1 depletion triggers ER stress and ISR as a part of its overall transcriptome changes to enable stress survival of cancer cells. Therefore, the phenotypic similarity of stress tolerance caused by MESH1 removal and NADPH accumulation is in part achieved by ISR to regulate ferroptosis.
Collapse
|
14
|
Sun T, Chi JT. Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: The therapeutic implications. Genes Dis 2021; 8:241-249. [PMID: 33997171 PMCID: PMC8093643 DOI: 10.1016/j.gendis.2020.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Ferroptosis is a novel form of iron-dependent cell death characterized by lipid peroxidation. While the importance and disease relevance of ferroptosis is gaining recognition, much remains unknown about various genetic and non-genetic determinants of ferroptosis. Hippo signaling pathway is an evolutionarily conserved pathway that responds to various environmental cues and controls organ size, cell proliferation, death, and self-renewal capacity. In cancer biology, Hippo pathway is a potent tumor suppressing mechanism and its dysregulation contributes to apoptosis evasion, cancer development, metastasis, and treatment resistance. Hippo dysregulation leads to aberrant activation of YAP and TAZ, the two major transcription co-activators of TEADs, that induce the expression of genes triggering tumor-promoting phenotypes, including enhanced cell proliferation, self-renewal and apoptosis inhibition. The Hippo pathway is regulated by the cell-cell contact and cellular density/confluence. Recently, ferroptosis has also been found being regulated by the cellular contact and density. The YAP/TAZ activation under low density, while confers apoptosis resistance, renders cancer cells sensitivity to ferroptosis. These findings establish YAP/TAZ and Hippo pathways as novel determinants of ferroptosis. Therefore, inducing ferroptosis may have therapeutic potential for YAP/TAZ-activated chemo-resistant and metastatic tumor cells. Reciprocally, various YAP/TAZ-targeting treatments under clinical development may confer ferroptosis resistance, limiting the therapeutic efficacy.
Collapse
Affiliation(s)
- Tianai Sun
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
15
|
Pandkar MR, Dhamdhere SG, Shukla S. Oxygen gradient and tumor heterogeneity: The chronicle of a toxic relationship. Biochim Biophys Acta Rev Cancer 2021; 1876:188553. [PMID: 33915221 DOI: 10.1016/j.bbcan.2021.188553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
The commencement of cancer is attributed to one or a few cells that become rogue and attain the property of immortality. The inception of distinct cancer cell clones during the hyperplastic and dysplastic stages of cancer progression is the utimate consequence of the dysregulated cellular pathways and the proliferative potential itself. Furthermore, a critical factor that adds a layer of complexity to this pre-existent intra-tumoral heterogeneity (ITH) is the foundation of an oxygen gradient, that is established due to the improper architecture of the tumor vasculature. Therefore, as a resultant effect, the poorly oxygenated regions thus formed and characterized as hypoxic, promote the emergence of aggressive and treatment-resistant cancer cell clones. The extraordinary property of the hypoxic cancer cells to exist harmoniously with cancerous and non-cancerous cells in the tumor microenvironment (TME) further increases the intricacies of ITH. Here in this review, the pivotal influence of differential oxygen concentrations in shaping the ITH is thoroughly discussed. We also emphasize on the vitality of the interacting networks that govern the overall fate of oxygen gradient-dependent origin of tumor heterogeneity. Additionally, the implications of less-appreciated reverse Warburg effect, a symbiotic metabolic coupling, and the associated epigenetic regulation of rewiring of cancer metabolism in response to oxygen gradients, have been highlighted as critical influencers of ITH.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Shruti G Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
16
|
Xie H, Tang J, Lu L, Li B, Wang M. CASC9 plays a role in salivary adenoid cystic carcinoma in vitro by upregulation of ACLY. Oral Dis 2020; 28:352-363. [PMID: 33345395 DOI: 10.1111/odi.13759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The study was designed to explore the role of cancer susceptibility candidate 9 (CASC9) in salivary adenoid cystic carcinoma (SACC) (SACC-83 and SACC-LM) cell malignant phenotypes. METHODS Colony formation assay was used to measure cell proliferation. Transwell assay was used to detect cell migration and invasion. Flow cytometry analysis was applied to determine cell cycle distribution and apoptosis. FISH assay revealed the subcellular location of CASC9. RESULTS Downregulation of CASC9 inhibited SACC cell proliferation, migration, and invasion, led to cell arrest at G0/G1 phase, and facilitated cell apoptosis. In mechanism, CASC9 bound with microRNA 146b-5p (miR-146b-5p) and negatively modulated miR-146b-5p expression. MiR-146b-5p directly targeted 3' untranslated region of ATP-Citrate Lyase (ACLY) to degrade ACLY in SACC cells. CASC9 upregulated ACLY expression through competitively binding with miR-146b-5p. Furthermore, rescue assays indicated that ACLY overexpression counteracted the effects triggered by CASC9 knockdown on cell proliferation, migration, invasion, and apoptosis in SACC cells. CONCLUSION CASC9 facilitated the malignant phenotypes of SACC cells by the regulation of the miR-146b-5p/ACLY axis. These findings might lay foundation for SACC research.
Collapse
Affiliation(s)
- Hongliang Xie
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, Shenzhen People's Hospital, The First Affiliated Hospital of South University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Jianming Tang
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, Shenzhen People's Hospital, The First Affiliated Hospital of South University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Lu Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, Shenzhen People's Hospital, The First Affiliated Hospital of South University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Bohan Li
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, Shenzhen People's Hospital, The First Affiliated Hospital of South University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Mengmeng Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, Shenzhen People's Hospital, The First Affiliated Hospital of South University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
17
|
Qi T, Qu Q, Li G, Wang J, Zhu H, Yang Z, Sun Y, Lu Q, Qu J. Function and regulation of the PEA3 subfamily of ETS transcription factors in cancer. Am J Cancer Res 2020; 10:3083-3105. [PMID: 33163259 PMCID: PMC7642666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023] Open
Abstract
The PEA3 subfamily is a subgroup of the E26 transformation-specific (ETS) family. Its members, ETV1, ETV4, and ETV5, have been found to be overexpressed in multiple cancers. The deregulation of ETV1, ETV4, and ETV5 induces cell growth, invasion, and migration in various tumor cells, leading to tumor progression, metastasis, and drug resistance. Therefore, exploring drugs or therapeutic targets that target the PEA3 subfamily may contribute to the clinical treatment of tumor patients. In this review, we introduce the structures and functions of the PEA3 subfamily members, systematically review their main roles in various tumor cells, analyze their prognostic and diagnostic value, and, finally, introduce several molecular targets and therapeutic drugs targeting ETV1, ETV4, and ETV5. We conclude that targeting a series of upstream regulators and downstream target genes of the PEA3 subfamily may be an effective strategy for the treatment of ETV1/ETV4/ETV5-overexpressing tumors.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Zhi Yang
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Yuesheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s HospitalWenzhou 325000, PR China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| |
Collapse
|
18
|
Lin CC, Chi JT. Ferroptosis of epithelial ovarian cancer: genetic determinants and therapeutic potential. Oncotarget 2020; 11:3562-3570. [PMID: 33062192 PMCID: PMC7533070 DOI: 10.18632/oncotarget.27749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (OVCA) is the most lethal gynecologic cancer. Current treatment for OVCA involves surgical debulking of the tumors followed by combination chemotherapies. While most patients achieve complete remission, many OVCA will recur and develop chemo-resistance. Whereas recurrent OVCA may be treated by angiogenesis inhibitors, PARP inhibitors, or immunotherapies, the clinical outcomes of recurrence OVCA are still unsatisfactory. One new promising anti-tumor strategy is ferroptosis, a novel form of regulated cell death featured by lipid peroxidation. In this review, we have summarized several recent studies on the ferroptosis of OVCA. Also, we summarize our current understanding of various genetic determinants of ferroptosis and their underlying mechanisms in OVCA. Furthermore, ferroptosis can be combined with other standard cancer therapeutics, which has shown synergistic effects. Therefore, such a combination of therapeutics could lead to new therapeutic strategies to improve the response rate and overcome resistance. By understanding the genetic determinants and underlying mechanisms, ferroptosis may have significant therapeutic potential to improve the clinical outcome of women with OVCA.
Collapse
Affiliation(s)
- Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
19
|
Chi JT, Lin PH, Tolstikov V, Oyekunle T, Chen EY, Bussberg V, Greenwood B, Sarangarajan R, Narain NR, Kiebish MA, Freedland SJ. Metabolomic effects of androgen deprivation therapy treatment for prostate cancer. Cancer Med 2020; 9:3691-3702. [PMID: 32232974 PMCID: PMC7286468 DOI: 10.1002/cam4.3016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Androgen deprivation therapy (ADT) is the main treatment strategy for men with metastatic prostate cancer (PC). However, ADT is associated with various metabolic disturbances, including impaired glucose tolerance, insulin resistance and weight gain, increasing risk of diabetes and cardiovascular death. Much remains unknown about the metabolic pathways and disturbances altered by ADT and the mechanisms. We assessed the metabolomic effects of ADT in the serum of 20 men receiving ADT. Sera collected before (baseline), 3 and 6 months after initiation of ADT was used for the metabolomics and lipidomics analyses. The ADT‐associated metabolic changes were identified by univariable and multivariable statistical analysis, ANOVA, and Pearson correlation. We found multiple key changes. First, ADT treatments reduced the steroid synthesis as reflected by the lower androgen sulfate and other steroid hormones. Greater androgen reduction was correlated with higher serum glucose levels, supporting the diabetogenic role of ADT. Second, ADT consistently decreased the 3‐hydroxybutyric acid and ketogenesis. Third, many acyl‐carnitines were reduced, indicating the effects on the fatty acid metabolism. Fourth, ADT was associated with a corresponding reduction in 3‐formyl indole (a.k.a. indole‐3‐carboxaldehyde), a microbiota‐derived metabolite from the dietary tryptophan. Indole‐3‐carboxaldehyde is an agonist for the aryl hydrocarbon receptor and regulates the mucosal reactivity and inflammation. Together, these ADT‐associated metabolomic analyses identified reduction in steroid synthesis and ketogenesis as prominent features, suggesting therapeutic potential of restricted ketogenic diets, though this requires formal testing. ADT may also impact the microbial production of indoles related to the immune pathways. Future research is needed to determine the functional impact and underlying mechanisms to prevent ADT‐linked comorbidities and diabetes risk.
Collapse
Affiliation(s)
- Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Center for Genomics and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Pao-Hwa Lin
- Department of Medicine, Division of Nephrology, Duke University Medical Center, Durham, NC, USA
| | | | - Taofik Oyekunle
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | - Stephen J Freedland
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai, Los Angeles, CA, USA.,Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
20
|
Ma J, Weng L, Jia Y, Liu B, Wu S, Xue L, Yin X, Mao A, Wang Z, Shang M. PTBP3 promotes malignancy and hypoxia-induced chemoresistance in pancreatic cancer cells by ATG12 up-regulation. J Cell Mol Med 2020; 24:2917-2930. [PMID: 31989778 PMCID: PMC7077536 DOI: 10.1111/jcmm.14896] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/17/2019] [Accepted: 11/23/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumours exhibit a high level of heterogeneity which is associated with hypoxia and strong resistance to chemotherapy. The RNA splicing protein polypyrimidine tract-binding protein 3 (PTBP3) regulates hypoxic gene expression by selectively binding to hypoxia-regulated transcripts. We have investigated the role of PTBP3 in tumour development and chemotherapeutic resistance in human PDAC tissues and pancreatic cancer cells. In addition, we determined the sensitivity of cancer cells to gemcitabine with differential levels of PTBP3 and whether autophagy and hypoxia affect gemcitabine resistance in vitro. PTBP3 expression was higher in human pancreatic cancer than in paired adjacent tissues. PTBP3 overexpression promoted PDAC proliferation in vitro and tumour growth in vivo, whereas PTBP3 depletion had opposing effects. Hypoxia significantly increased the expression of PTBP3 in pancreatic cancer cells in vitro. Under hypoxic conditions, cells were more resistance to gemcitabine. Knockdown of PTBP3 results in decreased resistance to gemcitabine, which was attributed to attenuated autophagy. We propose that PTBP3 binds to multiple sites in the 3'-UTR of ATG12 resulting in overexpression. PTBP3 increases cancer cell proliferation and autophagic flux in response to hypoxic stress, which contributes to gemcitabine resistance.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Animals
- Autophagy/drug effects
- Autophagy/genetics
- Autophagy-Related Protein 12/genetics
- Autophagy-Related Protein 12/metabolism
- Base Sequence
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Polypyrimidine Tract-Binding Protein/metabolism
- Stress, Physiological/drug effects
- Tumor Hypoxia/drug effects
- Tumor Hypoxia/genetics
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Gemcitabine
Collapse
Affiliation(s)
- Jun Ma
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Weng
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiping Jia
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bingyan Liu
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shaoqiu Wu
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei Xue
- Shanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Xiang Yin
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Aiwu Mao
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongmin Wang
- Department of interventional radiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingyi Shang
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
21
|
Weng H, Pei Q, Yang M, Zhang J, Cheng Z, Yi Q. Hypomethylation of C1q/tumor necrosis factor-related protein-1 promoter region in whole blood and risks for coronary artery aneurysms in Kawasaki disease. Int J Cardiol 2020; 307:159-163. [PMID: 32081468 DOI: 10.1016/j.ijcard.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is characterized as a self-limited systemic vasculitis. C1q/tumor necrosis factor-related protein-1 (CTRP1) had been associated with the occurrence of vasculitis in KD. Methylation at the promoter region of certain genes was reported to be involved in the development process of KD. This study aims to investigate the methylation levels of CTRP1 in KD, as well as, its potential to predict coronary artery aneurysms (CAAs). METHODS 31 patients with KD and 14 healthy controls (HCs) were recruited into this study. The KD group was further divided into KD with CAA (KD-CAAs) group and KD without NCAAs (KD-NCAAs) group. Methylation levels of CpG sites were determined by MethylTarget sequencing, a method that uses multiple targeted CpG methylation analysis. RESULTS The methylation levels of CTRP1 promoter region in the KD group were lower than that in the HC group at all predicted CpG sites, especially at sites 34, 51, 69, 79, 176 and 206. Compared with KD-CAAs group, the methylation levels of almost every CpG sites of CTRP1 were increased in the KD-NCAAs group, with site 69 and 154 found to be strongly related to the occurrence of CAAs. CONCLUSIONS The difference in methylation levels of CTRP1 promoter may be involved in the development process of KD, and may be a potential predictive marker for the occurrence of CAAs.
Collapse
Affiliation(s)
- Haobo Weng
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Qiongfei Pei
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Maoling Yang
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Jing Zhang
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Zhenli Cheng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| |
Collapse
|
22
|
Cui J, Gong M, Fang S, Hu C, Wang Y, Zhang J, Tang N, He Y. All-trans retinoic acid reverses malignant biological behavior of hepatocarcinoma cells by regulating miR-200 family members. Genes Dis 2020; 8:509-520. [PMID: 34179313 PMCID: PMC8209308 DOI: 10.1016/j.gendis.2019.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
As a potential chemo-therapeutic agent, all-trans retinoic acid (ATRA) can significantly reverse epithelial-mesenchymal transition (EMT) of hepal-6 hepatocarcinoma cell line in vitro, but the mechanism is unclear. The expression profile of microRNA-200 (miR-200) families is different in hepatocellular carcinoma. In this study, we found that ATRA treatment could up-regulate the expression of miR-200a-3p, 200c-3p, and 141-3p, which were involved in ATRA regulated proliferation and apoptosis of hepal-6 cell, but not colony formation. Meanwhile, miR-200a-3p, 200c-3p, and 141-3p could recovery ATRA inhibited migration and invasion abilities of hepal-6 cells at various levels. miR-200a-3p and 200c-3p prevented ATRA from inducing the differentiation and hepatic functions of hepal-6 cells. Antagomir specific for miR-200a-3p and 200c-3p down-regulated the expression of CK18, but only miR-200a-3p antagomir played prominent role in regulating the expression of these mesenchymal markers, N-Cadherin, Snail and Twist. The transcriptional activities of 8 transcription factors were up-regulated and 35 transcription factors were down-regulated by ATRA. Compared with ATRA group, inhibition of miR-200a-3p, 200c-3p, and 141-3p significantly strengthened the expression of Fra1/Jun (AP1), Ets1/PEA3, Brn3, and Zeb1/AREB6 at varying degrees. Therefore, this result suggested that ATRA may suppress EMT through down-regulating miR-200a-3p, 200c-3p and 141-3p related transcription factors. miR-200 and their downstream genes might be the potentially specific targets for the treatment of hepatocarcinoma.
Collapse
Affiliation(s)
- Jiejie Cui
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,Puyang People's Hospital, Puyang, Henan Province, 457000, PR China
| | - Mengjia Gong
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Shuyu Fang
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Chaoqun Hu
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Yi Wang
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Jingfang Zhang
- Puyang People's Hospital, Puyang, Henan Province, 457000, PR China
| | - Ni Tang
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Yun He
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| |
Collapse
|
23
|
The vital role of ATP citrate lyase in chronic diseases. J Mol Med (Berl) 2019; 98:71-95. [PMID: 31858156 DOI: 10.1007/s00109-019-01863-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Chronic or non-communicable diseases are the leading cause of death worldwide; they usually result in long-term illnesses and demand long-term care. Despite advances in molecular therapeutics, specific biomarkers and targets for the treatment of these diseases are required. The dysregulation of de novo lipogenesis has been found to play an essential role in cell metabolism and is associated with the development and progression of many chronic diseases; this confirms the link between obesity and various chronic diseases. The main enzyme in this pathway-ATP-citrate lyase (ACLY), a lipogenic enzyme-catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis. Increasing lines of evidence suggest that the modulation of ACLY expression correlates with the development and progressions of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, obesity, inflammation, and cancer. Recent studies suggest that the inhibition of ACLY activity modulates the glycolysis and lipogenesis processes and stimulates normal physiological functions. This comprehensive review aimed to critically evaluate the role of ACLY in the development and progression of different diseases and the effects of its downregulation in the prevention and treatment of these diseases.
Collapse
|
24
|
Yang WH, Ding CKC, Sun T, Rupprecht G, Lin CC, Hsu D, Chi JT. The Hippo Pathway Effector TAZ Regulates Ferroptosis in Renal Cell Carcinoma. Cell Rep 2019; 28:2501-2508.e4. [PMID: 31484063 PMCID: PMC10440760 DOI: 10.1016/j.celrep.2019.07.107] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances, the poor outcomes in renal cell carcinoma (RCC) suggest novel therapeutics are needed. Ferroptosis is a form of regulated cell death, which may have therapeutic potential toward RCC; however, much remains unknown about the determinants of ferroptosis susceptibility. We found that ferroptosis susceptibility is highly influenced by cell density and confluency. Because cell density regulates the Hippo-YAP/TAZ pathway, we investigated the roles of the Hippo pathway effectors in ferroptosis. TAZ is abundantly expressed in RCC and undergoes density-dependent nuclear or cytosolic translocation. TAZ removal confers ferroptosis resistance, whereas overexpression of TAZS89A sensitizes cells to ferroptosis. Furthermore, TAZ regulates the expression of Epithelial Membrane Protein 1 (EMP1), which, in turn, induces the expression of nicotinamide adenine dinucleotide phosphate (NADPH) Oxidase 4 (NOX4), a renal-enriched reactive oxygen species (ROS)-generating enzyme essential for ferroptosis. These findings reveal that cell density-regulated ferroptosis is mediated by TAZ through the regulation of EMP1-NOX4, suggesting its therapeutic potential for RCC and other TAZ-activated tumors.
Collapse
Affiliation(s)
- Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chien-Kuang Cornelia Ding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tianai Sun
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gabrielle Rupprecht
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Hsu
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
25
|
MAP: model-based analysis of proteomic data to detect proteins with significant abundance changes. Cell Discov 2019; 5:40. [PMID: 31636953 PMCID: PMC6796874 DOI: 10.1038/s41421-019-0107-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/14/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Isotope-labeling-based mass spectrometry (MS) is widely used in quantitative proteomic studies. With this technique, the relative abundance of thousands of proteins can be efficiently profiled in parallel, greatly facilitating the detection of proteins differentially expressed across samples. However, this task remains computationally challenging. Here we present a new approach, termed Model-based Analysis of Proteomic data (MAP), for this task. Unlike many existing methods, MAP does not require technical replicates to model technical and systematic errors, and instead utilizes a novel step-by-step regression analysis to directly assess the significance of observed protein abundance changes. We applied MAP to compare the proteomic profiles of undifferentiated and differentiated mouse embryonic stem cells (mESCs), and found it has superior performance compared with existing tools in detecting proteins differentially expressed during mESC differentiation. A web-based application of MAP is provided for online data processing at http://bioinfo.sibs.ac.cn/shaolab/MAP.
Collapse
|
26
|
Thutkawkorapin J, Lindblom A, Tham E. Exome sequencing in 51 early onset non-familial CRC cases. Mol Genet Genomic Med 2019; 7:e605. [PMID: 30809968 PMCID: PMC6503031 DOI: 10.1002/mgg3.605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) cases with an age of onset <40 years suggests a germline genetic cause. In total, 51 simplex cases were included to test the hypothesis of CRC as a mendelian trait caused by either heterozygous autosomal dominant or bi‐allelic autosomal recessive pathogenic variants. Methods The cohort was whole exome sequenced (WES) at 100× coverage. Both a dominant‐ and recessive model were used for searching predisposing genetic factors. In addition, we assayed recessive variants of potential moderate risk that were enriched in our young‐onset CRC cohort. Variants were filtered using a candidate cancer gene list or by selecting variants more likely to be pathogenic based on variant type (e.g., loss‐of‐function) or allele frequency. Results We identified one pathogenic variant in PTEN in a patient subsequently confirmed to have a hereditary hamartoma tumor syndrome (Cowden syndrome) and one patient with a pathogenic heterozygous variant in PMS2 that was originally not identified by WES due to low quality reads resulting from pseudogenes. In addition, we identified three heterozygous candidate missense variants in known cancer susceptibility genes (BMPR1A,BRIP1, and SRC), three truncating variants in possibly novel cancer genes (CLSPN,SEC24B, SSH2) and four candidate missense variants in ACACA, NR2C2, INPP4A, and DIDO1. We also identify five possible autosomal recessive candidate genes: ATP10B,PKHD1,UGGT2,MYH13,TFF3. Conclusion Two clear pathogenic variants were identified in patients that had not been identified clinically. Thus, the chance of detecting a hereditary cancer syndrome in patients with CRC at young age but without family history is 2/51 (4%) and therefore the clinical benefit of genetic testing in this patient group is low. Of note, using stringent filtering, we have identified a total of ten candidate heterozygous variants and five possibly biallelic autosomal recessive candidate genes that warrant further study.
Collapse
Affiliation(s)
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Ran MX, Li Y, Zhang Y, Liang K, Ren YN, Zhang M, Zhou GB, Zhou YM, Wu K, Wang CD, Huang Y, Luo B, Qazi IH, Zhang HM, Zeng CJ. Transcriptome Sequencing Reveals the Differentially Expressed lncRNAs and mRNAs Involved in Cryoinjuries in Frozen-Thawed Giant Panda ( Ailuropoda melanoleuca) Sperm. Int J Mol Sci 2018; 19:ijms19103066. [PMID: 30297640 PMCID: PMC6212861 DOI: 10.3390/ijms19103066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm cryopreservation and artificial insemination are important methods for giant panda breeding and preservation of extant genetic diversity. Lower conception rates limit the use of artificial insemination with frozen-thawed giant panda sperm, due to the lack of understanding of the cryodamaging or cryoinjuring mechanisms in cryopreservation. Long non-coding RNAs (lncRNAs) are involved in regulating spermatogenesis. However, their roles during cryopreservation remain largely unexplored. Therefore, this study aimed to identify differentially expressed lncRNAs and mRNAs associated with cryodamage or freeze tolerance in frozen-thawed sperm through high throughput sequencing. A total of 61.05 Gb clean reads and 22,774 lncRNA transcripts were obtained. From the sequencing results, 1477 significantly up-regulated and 1,396 significantly down-regulated lncRNA transcripts from fresh and frozen-thawed sperm of giant panda were identified. GO and KEGG showed that the significantly dysregulated lncRNAs and mRNAs were mainly involved in regulating responses to cold stress and apoptosis, such as the integral component of membrane, calcium transport, and various signaling pathways including PI3K-Akt, p53 and cAMP. Our work is the first systematic profiling of lncRNA and mRNA in fresh and frozen-thawed giant panda sperm, and provides valuableinsights into the potential mechanism of cryodamage in sperm.
Collapse
Affiliation(s)
- Ming-Xia Ran
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yuan Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yan Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Kai Liang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Nan Ren
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Guang-Bin Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Min Zhou
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Kai Wu
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Cheng-Dong Wang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Bo Luo
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Izhar Hyder Qazi
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Department of Veterinary Anatomy & Histology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan.
| | - He-Min Zhang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Chang-Jun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
28
|
Muir A, Danai LV, Vander Heiden MG. Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies. Dis Model Mech 2018; 11:dmm035758. [PMID: 30104199 PMCID: PMC6124553 DOI: 10.1242/dmm.035758] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancers have an altered metabolism, and there is interest in understanding precisely how oncogenic transformation alters cellular metabolism and how these metabolic alterations can translate into therapeutic opportunities. Researchers are developing increasingly powerful experimental techniques to study cellular metabolism, and these techniques have allowed for the analysis of cancer cell metabolism, both in tumors and in ex vivo cancer models. These analyses show that, while factors intrinsic to cancer cells such as oncogenic mutations, alter cellular metabolism, cell-extrinsic microenvironmental factors also substantially contribute to the metabolic phenotype of cancer cells. These findings highlight that microenvironmental factors within the tumor, such as nutrient availability, physical properties of the extracellular matrix, and interactions with stromal cells, can influence the metabolic phenotype of cancer cells and might ultimately dictate the response to metabolically targeted therapies. In an effort to better understand and target cancer metabolism, this Review focuses on the experimental evidence that microenvironmental factors regulate tumor metabolism, and on the implications of these findings for choosing appropriate model systems and experimental approaches.
Collapse
Affiliation(s)
- Alexander Muir
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura V Danai
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
29
|
Bai M, Yang L, Liao H, Liang X, Xie B, Xiong J, Tao X, Chen X, Cheng Y, Chen X, Feng Y, Zhang Z, Zheng W. Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism. Oncogene 2018; 37:5666-5681. [PMID: 29921847 DOI: 10.1038/s41388-018-0360-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
Chemoresistance is the major obstacle to cure endometrial cancer, whereas metformin has demonstrated sensitization to chemotherapy in endometrial cancer. A novel finding states that isocitrate dehydrogenase 1 (IDH1) involves in cancer chemoresistance. Recent studies have revealed that epigenetic modifications facilitate chemoresistance. However, whether IDH1 play a role in metformin-induced endometrial cancer chemosensitivity through epigenetic modification is incompletely understood. Immunohistochemistry and Elisa assays were used to evaluate the expression pattern of IDH1 in endometrial tissue and serum, respectively. Western blot was performed to determine changes in expression of key molecules in the IDH1-ɑ-KG-TET1-Nrf2 signaling pathway after various treatments. Dot blot assays were used to assess global hydroxymethylation levels after metformin administration or plasmid transfection. Antioxidant response element (ARE) activity in the IDH1 promoter region was monitored by luciferase assay. Cancer cell sensitivity to chemotherapy was detected by SRB assay. We found that activation of the IDH1 signaling pathway in endometrial cancer tissue resulting from aberrant expression of IDH1 and its downstream mediators conferred chemoresistance. We found that this effect was abated by metformin treatment. Dot blot and HMeDIP assays revealed that metformin blocked IDH1-ɑ-KG-TET1-mediated enhancement of Nrf2 hydroxymethylation levels, eliminating chemoresistance. Moreover, we observed that chemoresistance was enhanced via a regulatory loop in which Nrf2 activated IDH1-ɑ-KG-TET1-Nrf2 signaling via binding to the ARE sites in the IDH1 promoter region. Our findings highlight a critical role of IDH1-ɑ-KG-TET1-Nrf2 signaling in chemoresistance and suggest that rational combination therapy with metformin and chemotherapeutics has the potential to suppress chemoresistance.
Collapse
Affiliation(s)
- Mingzhu Bai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Linlin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China.,Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Hong Liao
- Department of Cervical Diseases, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Xiaoyan Liang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Bingying Xie
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Ji Xiong
- Department of Pathology, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiong Chen
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Yali Cheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Youji Feng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China. .,Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China.
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
30
|
Saavedra-García P, Nichols K, Mahmud Z, Fan LYN, Lam EWF. Unravelling the role of fatty acid metabolism in cancer through the FOXO3-FOXM1 axis. Mol Cell Endocrinol 2018; 462:82-92. [PMID: 28087388 DOI: 10.1016/j.mce.2017.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023]
Abstract
Obesity and cachexia represent divergent states of nutritional and metabolic imbalance but both are intimately linked to cancer. There is an extensive overlap in their signalling pathways and molecular components involved such as fatty acids (FAs), which likely play a crucial role in cancer. Forkhead box (FOX) proteins are responsible of a wide range of transcriptional programmes during normal development, and the FOXO3-FOXM1 axis is associated with cancer initiation, progression and drug resistance. Free fatty acids (FFAs), FA synthesis and β-oxidation are associated with cancer development and progression. Meanwhile, insulin and some adipokines, that are up-regulated by FAs, are also involved in cancer development and poor prognosis. In this review, we discuss the role of FA metabolism in cancer and how FA metabolism integrates with the FOXO3-FOXM1 axis. These new insights may provide leads to better cancer diagnostics as well as strategies for tackling cancer development, progression and drug resistance.
Collapse
Affiliation(s)
- Paula Saavedra-García
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Katie Nichols
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Zimam Mahmud
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
31
|
Chen PH, Smith TJ, Wu J, Siesser PF, Bisnett BJ, Khan F, Hogue M, Soderblom E, Tang F, Marks JR, Major MB, Swarts BM, Boyce M, Chi JT. Glycosylation of KEAP1 links nutrient sensing to redox stress signaling. EMBO J 2017; 36:2233-2250. [PMID: 28663241 PMCID: PMC5538768 DOI: 10.15252/embj.201696113] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
O-GlcNAcylation is an essential, nutrient-sensitive post-translational modification, but its biochemical and phenotypic effects remain incompletely understood. To address this question, we investigated the global transcriptional response to perturbations in O-GlcNAcylation. Unexpectedly, many transcriptional effects of O-GlcNAc transferase (OGT) inhibition were due to the activation of NRF2, the master regulator of redox stress tolerance. Moreover, we found that a signature of low OGT activity strongly correlates with NRF2 activation in multiple tumor expression datasets. Guided by this information, we identified KEAP1 (also known as KLHL19), the primary negative regulator of NRF2, as a direct substrate of OGT We show that O-GlcNAcylation of KEAP1 at serine 104 is required for the efficient ubiquitination and degradation of NRF2. Interestingly, O-GlcNAc levels and NRF2 activation co-vary in response to glucose fluctuations, indicating that KEAP1 O-GlcNAcylation links nutrient sensing to downstream stress resistance. Our results reveal a novel regulatory connection between nutrient-sensitive glycosylation and NRF2 signaling and provide a blueprint for future approaches to discover functionally important O-GlcNAcylation events on other KLHL family proteins in various experimental and disease contexts.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Priscila F Siesser
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brittany J Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Farhan Khan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Maxwell Hogue
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Erik Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Flora Tang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jeffrey R Marks
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
32
|
Tang X, Ding CK, Wu J, Sjol J, Wardell S, Spasojevic I, George D, McDonnell DP, Hsu DS, Chang JT, Chi JT. Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling. Oncogene 2017; 36:4235-4242. [PMID: 27869167 PMCID: PMC5438912 DOI: 10.1038/onc.2016.394] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
Abstract
Despite the advances in the diagnosis and treatment of breast cancer, breast cancers still cause significant mortality. For some patients, especially those with triple-negative breast cancer, current treatments continue to be limited and ineffective. Therefore, there remains an unmet need for a novel therapeutic approach. One potential strategy is to target the altered metabolic state that is rewired by oncogenic transformation. Specifically, this rewiring may render certain outside nutrients indispensable. To identify such a nutrient, we performed a nutrigenetic screen by removing individual amino acids to identify possible addictions across a panel of breast cancer cells. This screen revealed that cystine deprivation triggered rapid programmed necrosis, but not apoptosis, in the basal-type breast cancer cells mostly seen in TNBC tumors. In contrast, luminal-type breast cancer cells are cystine-independent and exhibit little death during cystine deprivation. The cystine addiction phenotype is associated with a higher level of cystine-deprivation signatures noted in the basal type breast cancer cells and tumors. We found that the cystine-addicted breast cancer cells and tumors have strong activation of TNFα and MEKK4-p38-Noxa pathways that render them susceptible to cystine deprivation-induced necrosis. Consistent with this model, silencing of TNFα and MEKK4 dramatically reduces cystine-deprived death. In addition, the cystine addiction phenotype can be abrogated in the cystine-addictive cells by miR-200c, which converts the mesenchymal-like cells to adopt epithelial features. Conversely, the introduction of inducers of epithelial-mesenchymal transition (EMT) in cystine-independent breast cancer cells conferred the cystine-addiction phenotype by modulating the signaling components of cystine addiction. Together, our data reveal that cystine-addiction is associated with EMT in breast cancer during tumor progression. These findings provide the genetic and mechanistic basis to explain how cystine deprivation triggers necrosis by activating pre-existing oncogenic pathways in cystine-addicted TNBC with prominent mesenchymal features.
Collapse
Affiliation(s)
- X Tang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - C-K Ding
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - J Wu
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - J Sjol
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - S Wardell
- Department of Pharmacology and Cancer Biology, Duke University Durham, NC, USA
| | - I Spasojevic
- Department of Medicine, Duke University, Durham, NC, USA
| | - D George
- Department of Medicine, Duke University, Durham, NC, USA
| | - D P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University Durham, NC, USA
| | - D S Hsu
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Durham, NC, USA
| | - J T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J-T Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| |
Collapse
|
33
|
Fan LYN, Saavedra-García P, Lam EWF. Dataset of the human homologues and orthologues of lipid-metabolic genes identified as DAF-16 targets their roles in lipid and energy metabolism. Data Brief 2017; 11:606-610. [PMID: 28349111 PMCID: PMC5358523 DOI: 10.1016/j.dib.2017.02.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/08/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
The data presented in this article are related to the review article entitled ‘Unravelling the role of fatty acid metabolism in cancer through the FOXO3-FOXM1 axis’ (Saavedra-Garcia et al., 2017) [24]. Here, we have matched the DAF-16/FOXO3 downstream genes with their respective human orthologues and reviewed the roles of these targeted genes in FA metabolism. The list of genes listed in this article are precisely selected from literature reviews based on their functions in mammalian FA metabolism. The nematode Caenorhabditis elegans gene orthologues of the genes are obtained from WormBase, the online biological database of C. elegans. This dataset has not been uploaded to a public repository yet.
Collapse
Key Words
- ACAA2, Acetyl-CoA acetyltransferase 2
- ACACA, Acetyl-CoA carboxylase
- ACAD8, Acyl-CoA dehydrogenase family member 8
- ACADM, Acyl-CoA dehydrogenase C4 to C12 straight chain
- ACOX, Acyl-CoA oxidase
- ACSL3/4, Acyl-CoA synthetase long-chain family member 3/4
- ACSS, Acyl-CoA synthetase short-chain family member
- CPT2, Carnitine palmitoyltransferase II
- Caenorhabditis elegans
- DAF-16
- DAG, Diacylglycerol
- DGAT, Diacylglycerol O-acyltransferase
- ECHS1, Short-chain enoyl-CoA hydratase 1
- ELOVL1, Elongation of very long chain fatty acids protein 1
- FA, fatty acid
- FADS2, Fatty acid desaturase 2
- FASN, Fatty acid synthase
- FATP4, Fatty acid transport protein 4
- FOX, Forkhead box
- FOXM1
- FOXO3
- HADH, Hydroxyacyl-coenzyme A dehydrogenase
- HADHA, Hydroxyacyl-CoA dehydrogenase/3-Ketoacyl-CoA thiolase/Enoyl-CoA hydratase, alpha subunit
- LCFA, Long chain fatty acid
- Lipid metabolism
- MLYCD, Malonyl-CoA decarboxylase
- MOGAT1/2, Monoacylglycerol O-acyltransferase 1/2
- PNPLA, patatin like phospholipase domain containing
- PUFA, polyunsaturated fatty acid
- SCD1/5, Stearoyl-CoA desaturase 1/5
- TAG, triacylglycerol
- TCA, Tricarboxylic acid
- VLCFA, Very long chain fatty acid.
Collapse
|
34
|
Kataegis Expression Signature in Breast Cancer Is Associated with Late Onset, Better Prognosis, and Higher HER2 Levels. Cell Rep 2016; 16:672-83. [PMID: 27373164 DOI: 10.1016/j.celrep.2016.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/30/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022] Open
Abstract
Kataegis is a mutational process observed in ∼55% of breast tumors that results in hypermutation in localized genomic regions. Using whole-genome sequence data of 97 tumors, we examined the distribution of kataegis loci, showing that these somatic mutations are over-represented on chromosomes 8, 17, and 22 and enriched in genic regions and active chromatin elements. We show that tumors harboring kataegis are associated with transcriptome-wide expression changes consistent with low invasive potential. We exploit the kataegis expression signature to predict kataegis status in 412 breast cancers with transcriptome but not whole-genome sequence data and show that kataegis loci are enriched in high-grade, HER2(+) tumors in patients diagnosed with breast cancer at an older age and who have a later age at death. Our study demonstrates that kataegis loci are associated with important clinical features in breast cancer and may serve as a marker of good prognosis.
Collapse
|
35
|
Zhao Z, Wang L, Di L. Compartmentation of metabolites in regulating epigenome of cancer. Mol Med 2016; 22:349-360. [PMID: 27258652 DOI: 10.2119/molmed.2016.00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023] Open
Abstract
Covalent modification of DNA and histones are important epigenetic events and the genome wide reshaping of epigenetic markers is common in cancer. The epigenetic markers are produced by enzymatic reactions and some of these reactions require the presence of metabolites as cofactors (termed Epigenetic Enzyme Required Metabolites, EERMs). Recent studies found that the abundance of these EERMs correlates with epigenetic enzyme activities. Also, the subcellular compartmentation, especially the nuclear localization of these EERMs may play a role in regulating the activities of epigenetic enzymes. Moreover, gene specific recruitment of enzymes which produce the EERMs in the proximity of the epigenetic modification events accompanying the gene expression regulation, were proposed. Therefore, it is of importance to summarize these findings of the EERMs in regulating the epigenetic modifications at both DNA and histone levels, and to understand how EERMs contribute to cancer development by addressing their global versus local distribution.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lijun Di
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
36
|
Kinlaw WB, Baures PW, Lupien LE, Davis WL, Kuemmerle NB. Fatty Acids and Breast Cancer: Make Them on Site or Have Them Delivered. J Cell Physiol 2016; 231:2128-41. [PMID: 26844415 DOI: 10.1002/jcp.25332] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/11/2022]
Abstract
Brisk fatty acid (FA) production by cancer cells is accommodated by the Warburg effect. Most breast and other cancer cell types are addicted to fatty acids (FA), which they require for membrane phospholipid synthesis, signaling purposes, and energy production. Expression of the enzymes required for FA synthesis is closely linked to each of the major classes of signaling molecules that stimulate BC cell proliferation. This review focuses on the regulation of FA synthesis in BC cells, and the impact of FA, or the lack thereof, on the tumor cell phenotype. Given growing awareness of the impact of dietary fat and obesity on BC biology, we will also examine the less-frequently considered notion that, in addition to de novo FA synthesis, the lipolytic uptake of preformed FA may also be an important mechanism of lipid acquisition. Indeed, it appears that cancer cells may exist at different points along a "lipogenic-lipolytic axis," and FA uptake could thwart attempts to exploit the strict requirement for FA focused solely on inhibition of de novo FA synthesis. Strategies for clinically targeting FA metabolism will be discussed, and the current status of the medicinal chemistry in this area will be assessed. J. Cell. Physiol. 231: 2128-2141, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- William B Kinlaw
- Division of Endocrinology and Metabolism, Department of Medicine, The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Paul W Baures
- Department of Chemistry, Keene State University, Keene, New Hampshire
| | - Leslie E Lupien
- The Geisel School of Medicine at Dartmouth, Program in Experimental and Molecular Medicine, Lebanon, New Hampshire.,Division of Oncology, Department of Medicine, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Wilson L Davis
- Division of Endocrinology and Metabolism, Department of Medicine, The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Nancy B Kuemmerle
- The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire.,Division of Hematology/Oncology, Department of Medicine, White River Junction VAMC, White River Junction, Vermont
| |
Collapse
|
37
|
Tang X, Wu J, Ding CK, Lu M, Keenan MM, Lin CC, Lin CA, Wang CC, George D, Hsu DS, Chi JT. Cystine Deprivation Triggers Programmed Necrosis in VHL-Deficient Renal Cell Carcinomas. Cancer Res 2016; 76:1892-903. [PMID: 26833124 DOI: 10.1158/0008-5472.can-15-2328] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/14/2016] [Indexed: 12/27/2022]
Abstract
Oncogenic transformation may reprogram tumor metabolism and render cancer cells addicted to extracellular nutrients. Deprivation of these nutrients may therefore represent a therapeutic opportunity, but predicting which nutrients cancer cells become addicted remains difficult. Here, we performed a nutrigenetic screen to determine the phenotypes of isogenic pairs of clear cell renal cancer cells (ccRCC), with or without VHL, upon the deprivation of individual amino acids. We found that cystine deprivation triggered rapid programmed necrosis in VHL-deficient cell lines and primary ccRCC tumor cells, but not in VHL-restored counterparts. Blocking cystine uptake significantly delayed xenograft growth of ccRCC. Importantly, cystine deprivation triggered similar metabolic changes regardless of VHL status, suggesting that metabolic responses alone are not sufficient to explain the observed distinct fates of VHL-deficient and restored cells. Instead, we found that increased levels of TNFα associated with VHL loss forced VHL-deficient cells to rely on intact RIPK1 to inhibit apoptosis. However, the preexisting elevation in TNFα expression rendered VHL-deficient cells susceptible to necrosis triggered by cystine deprivation. We further determined that reciprocal amplification of the Src-p38 (MAPK14)-Noxa (PMAIP1) signaling and TNFα-RIP1/3 (RIPK1/RIPK3)-MLKL necrosis pathways potentiated cystine-deprived necrosis. Together, our findings reveal that cystine deprivation in VHL-deficient RCCs presents an attractive therapeutic opportunity that may bypass the apoptosis-evading mechanisms characteristic of drug-resistant tumor cells. Cancer Res; 76(7); 1892-903. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaohu Tang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Chien-Kuang Ding
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Min Lu
- Center for Genomic and Computational Biology Duke University, Durham, North Carolina. Department of Medicine, Duke University, Durham, North Carolina
| | - Melissa M Keenan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Chih-An Lin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Charles C Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Daniel George
- Department of Medicine, Duke University, Durham, North Carolina
| | - David S Hsu
- Center for Genomic and Computational Biology Duke University, Durham, North Carolina. Department of Medicine, Duke University, Durham, North Carolina
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina.
| |
Collapse
|
38
|
Merialdi A, Padovani E, Spreafichi F. [On the mechanism of the colpocytological changes during gonado-stimulating therapy with clomiphene]. Oncotarget 1970; 8:107947-107963. [PMID: 29296215 PMCID: PMC5746117 DOI: 10.18632/oncotarget.22431] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/26/2017] [Indexed: 01/16/2023] Open
Abstract
Acetyl coenzyme A (acetyl-CoA) is essential for histone acetylation, to promote cell proliferation by regulating gene expression. However, the underlying mechanism(s) governing acetylation remains poorly understood. Activated α2-Macroglobulin (α2M*) signals through tumor Cell Surface GRP78 (CS-GRP78) to regulate tumor cell proliferation through multiple signaling pathway. Here, we demonstrate that the α2M*/CS-GRP78 axis regulates acetyl-CoA synthesis and thus functions as an epigenetic modulator by enhancing histone acetylation in cancer cells. α2M*/CS-GRP78 signaling induces and activates glucose-dependent ATP-citrate lyase (ACLY) and promotes acetate-dependent Acetyl-CoA Synthetase (ACSS1) expression by regulating AKT pathways to acetylate histones and other proteins. Further, we show that acetate itself regulates ACLY and ACSS1 expression through a feedback loop in an AKT-dependent manner. These studies demonstrate that α2M*/CS-GRP78 signaling is a central mechanism for integrating glucose and acetate-dependent signaling to induce histone acetylation. More importantly, targeting the α2M*/CS-GRP78 axis with C38 Monoclonal antibody (Mab) abrogates acetate-induced acetylation of histones and proteins essential for proliferation and survival under hypoxic stress. Furthermore, C38 Mab significantly reduced glucose uptake and lactate consumption which definitively suggests the role of aerobic glycolysis. Collectively, besides its ability to induce fatty acid synthesis, our study reveals a new mechanism of epigenetic regulation by the α2M*/CS-GRP78 axis to increase histone acetylation and promote cell survival under unfavorable condition. Therefore CS-GRP78 might be effectively employed to target the metabolic vulnerability of a wide spectrum of tumors and C38 Mab represents such a potential therapeutic agent.
Collapse
|