1
|
Tang M, Zhou YQ, Blaser MC, Steinman DA, Simmons CA. Ultrasound Image Velocimetry for High Spatiotemporal Resolution Blood Flow Velocity Field Mapping in Mice. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:841-851. [PMID: 39971688 DOI: 10.1016/j.ultrasmedbio.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE Abnormal hemodynamics is thought to play an essential role in the development of cardiovascular diseases. Mouse models are widely used for elucidating the underlying mechanisms; however, their small size and high heart rates make it difficult to perform quantitative flow velocity field mapping with sufficient temporal resolution. Our objective was to develop a noninvasive method for quantitative flow field mapping in mice based on speckle-tracking from high-frequency ultrasound B-mode imaging. METHODS Ultrasound ECG-gated kilohertz visualization (EKV) was performed on a mouse-aorta-sized tubular flow phantom at frame rates up to 10,000 fps. Unexpected velocity underestimations were elucidated by simulating EKV reconstruction and performing ultrasound image velocimetry (UIV) in silico. A technique for error correction was developed and validated in vitro, and demonstrated in vivo. RESULTS In flow phantoms, EKV-UIV underestimated velocity in the beam lateral direction by 50%-70%. This was attributed to loss of speckle contiguity owing to EKV's retrospective strip-based reconstruction of the two-dimensional B-mode image. The proposed correction technique reduced the errors to <10% by accounting only for speckle movement within each image strip. A preliminary in vivo study showed that vortex shapes and near-wall expansion movement inside a mouse left ventricle were more aligned with physical expectations after correction. CONCLUSION A novel technique was developed to quantitatively map blood flow with high spatiotemporal resolution. Further optimization will enable longitudinal studies in mice to gain insights on the role of local hemodynamic forces in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingyi Tang
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| | - Yu-Qing Zhou
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David A Steinman
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Chen MH, Chagari B, Abramson AM, Shi LJ, He J, Shi W. The Genetic Elements of the Obesity Paradox in Atherosclerosis Identified in an Intercross Between Hyperlipidemic Mouse Strains. Int J Mol Sci 2025; 26:4241. [PMID: 40362477 PMCID: PMC12072963 DOI: 10.3390/ijms26094241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/22/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Overweight and obese individuals show lower mortality rates or better prognoses than those of normal weight in a variety of diseases, a phenomenon called the "obesity paradox". An inverse association of adiposity with atherosclerosis has been observed in both humans and mice. To dissect phenotypic and genetic connections between the traits, 154 female and 145 male F2 mice were generated from an intercross between BALB/cJ and LP/J apolipoprotein E-deficient mice and fed a Western diet for 12 weeks. Atherosclerotic lesion size in the aortic root, body weight, plasma lipids, and glucose were measured, and genotyping was performed on miniMUGA SNP arrays. Quantitative trait locus (QTL) analyses on all F2 mice with sex as a covariate revealed four significant QTLs on chromosomes (Chr) 3, 6, 13, and 15 for atherosclerosis and three significant QTLs on Chr2, 7, and 15 for body weight. Chr15 QTL for atherosclerosis overlapped with one for body weight near 36 Mb. After adjusting for variation in body weight, Chr15 atherosclerosis QTL was downgraded from significant to suggestive linkage. Body weight was inversely correlated with atherosclerotic lesion sizes and accounted for more variance than a single other risk factor for atherosclerosis among F2 mice. Analysis of public data collected from two backcross cohorts revealed strong correlations between body weight and fat mass in adult mice (r ≥ 0.93; p ≤ 1.6 × 10-136). Thus, the obesity paradox in atherosclerosis is partially attributable to shared genetic components that have an opposite effect on adiposity and atherosclerosis.
Collapse
Affiliation(s)
- Mei-Hua Chen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (M.-H.C.); (B.C.); (A.M.A.); (L.J.S.); (J.H.)
| | - Bilhan Chagari
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (M.-H.C.); (B.C.); (A.M.A.); (L.J.S.); (J.H.)
| | - Ashley M. Abramson
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (M.-H.C.); (B.C.); (A.M.A.); (L.J.S.); (J.H.)
| | - Lisa J. Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (M.-H.C.); (B.C.); (A.M.A.); (L.J.S.); (J.H.)
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (M.-H.C.); (B.C.); (A.M.A.); (L.J.S.); (J.H.)
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (M.-H.C.); (B.C.); (A.M.A.); (L.J.S.); (J.H.)
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Zhang Q, Hutchison ER, Pan C, Warren MF, Keller MP, Attie AD, Lusis AJ, Rey FE. Systems genetics uncovers associations among host amylase locus, gut microbiome, and metabolic traits in mice. MICROBIOME 2025; 13:101. [PMID: 40259344 PMCID: PMC12012960 DOI: 10.1186/s40168-025-02093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/16/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Population studies have revealed associations between host genetic and gut microbiome in humans and mice. However, the molecular bases for how host genetic variation impacts the gut microbial community and bacterial metabolic niches remain largely unknown. RESULTS We leveraged 90 inbred hyperlipidemic mouse strains from the hybrid mouse diversity panel (HMDP), previously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these, we detected a genetic locus surrounding multiple amylase genes that were associated with abundances of Firmicutes (Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar degrading capabilities. The genetic variants at the amylase gene locus were associated with distinct gut microbial communities (enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated with gut microbiome enterotypes. CONCLUSIONS This work reveals novel relationships among host genetic variation, gut microbial enterotypes, and host metabolic traits and supports the notion that variation of host amylase may represent a key determinant of gut microbiome in mice. Video Abstract.
Collapse
Affiliation(s)
- Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Evan R Hutchison
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Calvin Pan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Matthew F Warren
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Reed JN, Hasan F, Karkar A, Banka D, Hinkle J, Shastri P, Srivastava N, Scherping SC, Newkirk SE, Ferris HA, Kundu BK, Kranz S, Civelek M, Keller SR. Combined effects of genetic background and diet on mouse metabolism and gene expression. iScience 2024; 27:111323. [PMID: 39640571 PMCID: PMC11617257 DOI: 10.1016/j.isci.2024.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/17/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, dietary patterns impact weight and metabolism differentially across individuals. To uncover genetic determinants for differential dietary effects, we subjected four genetically diverse mouse strains to humanized diets (American, Mediterranean, vegetarian, and vegan) with similar macronutrient composition, and performed body weight, metabolic parameter, and RNA-seq analysis. We observed pronounced diet- and strain-dependent effects on weight, and triglyceride and insulin levels. Differences in fat mass, adipose tissue, and skeletal muscle glucose uptake, and gene expression changes in most tissues were strain-dependent. In visceral adipose tissue, ∼400 genes responded to diet in a strain-dependent manner, many of them in metabolite transport and lipid metabolism pathways and several previously identified to modify diet effects in humans. Thus, genetic background profoundly impacts metabolism, though chosen dietary patterns modify the strong genetic effects. This study paves the way for future mechanistic investigations into strain-diet interactions in mice and translation to precision nutrition in humans.
Collapse
Affiliation(s)
- Jordan N. Reed
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Faten Hasan
- Department of Kinesiology, University of Virginia School of Education and Human Development, Charlottesville, VA 22903, USA
| | - Abhishek Karkar
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Dhanush Banka
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jameson Hinkle
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Preeti Shastri
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Navya Srivastava
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Steven C. Scherping
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Sarah E. Newkirk
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Heather A. Ferris
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Bijoy K. Kundu
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Sibylle Kranz
- Department of Kinesiology, University of Virginia School of Education and Human Development, Charlottesville, VA 22903, USA
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Susanna R. Keller
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Bhetraratana M, Orozco LD, Bennett BJ, Luna K, Yang X, Lusis AJ, Araujo JA. Diesel exhaust particle extract elicits an oxPAPC-like transcriptomic profile in macrophages across multiple mouse strains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124415. [PMID: 38908672 DOI: 10.1016/j.envpol.2024.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is a prominent cause of cardiopulmonary illness, but uncertainties remain regarding the mechanisms mediating those effects as well as individual susceptibility. Macrophages are highly responsive to particles, and we hypothesized that their responses would be dependent on their genetic backgrounds. We conducted a genome-wide analysis of peritoneal macrophages harvested from 24 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). Cells were treated with a DEP methanol extract (DEPe) to elucidate potential pathways that mediate acute responses to air pollution exposures. This analysis showed that 1247 genes were upregulated and 1383 genes were downregulated with DEPe treatment across strains. Pathway analysis identified oxidative stress responses among the most prominent upregulated pathways; indeed, many of the upregulated genes included antioxidants such as Hmox1, Txnrd1, Srxn1, and Gclm, with NRF2 (official gene symbol: Nfe2l2) being the most significant driver. DEPe induced a Mox-like transcriptomic profile, a macrophage subtype typically induced by oxidized phospholipids and likely dependent on NRF2 expression. Analysis of individual strains revealed consistency of overall responses to DEPe and yet differences in the degree of Mox-like polarization across the various strains, indicating DEPe × genetic interactions. These results suggest a role for macrophage polarization in the cardiopulmonary toxicity induced by air pollution.
Collapse
Affiliation(s)
- May Bhetraratana
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Luz D Orozco
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Brian J Bennett
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Karla Luna
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Biology, College of Science and Math, California State University-Northridge, 18111 Nordhoff Street, Northridge, CA, 91330, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, 612 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Institute for Quantitative and Computational Biosciences, UCLA, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Stappenbeck F, Wang F, Sinha SK, Hui ST, Farahi L, Mukhamedova N, Fleetwood A, Murphy AJ, Sviridov D, Lusis AJ, Parhami F. Anti-Inflammatory Oxysterol, Oxy210, Inhibits Atherosclerosis in Hyperlipidemic Mice and Inflammatory Responses of Vascular Cells. Cells 2024; 13:1632. [PMID: 39404395 PMCID: PMC11475996 DOI: 10.3390/cells13191632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND AIMS We previously reported that Oxy210, an oxysterol-based drug candidate, exhibits antifibrotic and anti-inflammatory properties. We also showed that, in mice, it ameliorates hepatic hallmarks of non-alcoholic steatohepatitis (NASH), including inflammation and fibrosis, and reduces adipose tissue inflammation. Here, we aim to investigate the effects of Oxy210 on atherosclerosis, an inflammatory disease of the large arteries that is linked to NASH in epidemiologic studies, shares many of the same risk factors, and is the major cause of mortality in people with NASH. METHODS Oxy210 was studied in vivo in APOE*3-Leiden.CETP mice, a humanized mouse model for both NASH and atherosclerosis, in which symptoms are induced by consumption of a high fat, high cholesterol "Western" diet (WD). Oxy210 was also studied in vitro using two cell types that are important in atherogenesis: human aortic endothelial cells (HAECs) and macrophages treated with atherogenic and inflammatory agents. RESULTS Oxy210 reduced atherosclerotic lesion formation by more than 50% in hyperlipidemic mice fed the WD for 16 weeks. This was accompanied by reduced plasma cholesterol levels and reduced macrophages in lesions. In HAECs and macrophages, Oxy210 reduced the expression of key inflammatory markers associated with atherosclerosis, including interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1), and E-Selectin. In addition, cholesterol efflux was significantly enhanced in macrophages treated with Oxy210. CONCLUSIONS These findings suggest that Oxy210 could be a drug candidate for targeting both NASH and atherosclerosis, as well as chronic inflammation associated with the manifestations of metabolic syndrome.
Collapse
Affiliation(s)
| | - Feng Wang
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| | - Satyesh K. Sinha
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Simon T. Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Lia Farahi
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Nigora Mukhamedova
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew Fleetwood
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Farhad Parhami
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| |
Collapse
|
7
|
Getz GS, Reardon CA. Insights from Murine Studies on the Site Specificity of Atherosclerosis. Int J Mol Sci 2024; 25:6375. [PMID: 38928086 PMCID: PMC11204064 DOI: 10.3390/ijms25126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis. But how this accounts for lesion development at various locations along the vascular tree across differing time frames still requires additional study. Currently, murine models are favored for the experimental study of atherogenesis and provide the most insight into the mechanisms that may contribute to the development of atherosclerosis. Based largely on these studies, in this review, we discuss the role of hemodynamic shear stress, SR-B1, and other factors that may contribute to the site-specific development of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | | |
Collapse
|
8
|
Zhang Q, Hutchison ER, Pan C, Warren MF, Keller MP, Attie AD, Lusis AJ, Rey FE. Systems genetics approach uncovers associations between host amylase locus, gut microbiome and metabolic traits in hyperlipidemic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582610. [PMID: 38464150 PMCID: PMC10925268 DOI: 10.1101/2024.02.28.582610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The molecular basis for how host genetic variation impacts gut microbial community and bacterial metabolic niches remain largely unknown. We leveraged 90 inbred hyperlipidemic mouse strains from the Hybrid Mouse Diversity Panel (HMDP), previously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these we detected a genetic locus surrounding multiple amylase genes that was associated with abundances of Firmicutes (Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar metabolism functions. We also found that lower amylase gene number in the mouse genome was associated with higher gut Muribaculaceae levels. Previous work suggests that modulation of host amylase activity impacts the availability of carbohydrates to the host and potentially to gut bacteria. The genetic variants described above were associated with distinct gut microbial communities (enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated with gut microbiome enterotypes. This work reveals novel relationships between host genetic variation, gut microbial enterotypes and host physiology/disease phenotypes in mice.
Collapse
Affiliation(s)
- Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evan R. Hutchison
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Calvin Pan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Matthew F. Warren
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J. Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Votava JA, John SV, Li Z, Chen S, Fan J, Parks BW. Mining cholesterol genes from thousands of mouse livers identifies aldolase C as a regulator of cholesterol biosynthesis. J Lipid Res 2024; 65:100525. [PMID: 38417553 PMCID: PMC10965479 DOI: 10.1016/j.jlr.2024.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
The availability of genome-wide transcriptomic and proteomic datasets is ever-increasing and often not used beyond initial publication. Here, we applied module-based coexpression network analysis to a comprehensive catalog of 35 mouse genome-wide liver expression datasets (encompassing more than 3800 mice) with the goal of identifying and validating unknown genes involved in cholesterol metabolism. From these 35 datasets, we identified a conserved module of genes enriched with cholesterol biosynthetic genes. Using a systematic approach across the 35 datasets, we identified three genes (Rdh11, Echdc1, and Aldoc) with no known role in cholesterol metabolism. We then performed functional validation studies and show that each gene is capable of regulating cholesterol metabolism. For the glycolytic gene, Aldoc, we demonstrate that it contributes to de novo cholesterol biosynthesis and regulates cholesterol and triglyceride levels in mice. As Aldoc is located within a genome-wide significant genome-wide association studies locus for human plasma cholesterol levels, our studies establish Aldoc as a causal gene within this locus. Through our work, we develop a framework for leveraging mouse genome-wide liver datasets for identifying and validating genes involved in cholesterol metabolism.
Collapse
Affiliation(s)
- James A Votava
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Zhonggang Li
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Shuyang Chen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
11
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
12
|
Kurt Z, Cheng J, Barrere-Cain R, McQuillen CN, Saleem Z, Hsu N, Jiang N, Pan C, Franzén O, Koplev S, Wang S, Björkegren J, Lusis AJ, Blencowe M, Yang X. Shared and distinct pathways and networks genetically linked to coronary artery disease between human and mouse. eLife 2023; 12:RP88266. [PMID: 38060277 PMCID: PMC10703441 DOI: 10.7554/elife.88266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-causal gene networks and pathways, by using human GWAS of CAD from the CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human (STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human shared >75% of CAD causal pathways. Based on network topology, we then predicted key regulatory genes for both the shared pathways and species-specific pathways, which were further validated through the use of single cell data and the latest CAD GWAS. In sum, our results should serve as a much-needed guidance for which human CAD-causal pathways can or cannot be further evaluated for novel CAD therapies using mouse models.
Collapse
Affiliation(s)
- Zeyneb Kurt
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
- The Information School at the University of SheffieldSheffieldUnited Kingdom
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Rio Barrere-Cain
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Caden N McQuillen
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Zara Saleem
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Neil Hsu
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Nuoya Jiang
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
| | - Oscar Franzén
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Simon Koplev
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Johan Björkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine, (Huddinge), Karolinska InstitutetHuddingeSweden
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
- Departments of Human Genetics & Microbiology, Immunology, and Molecular Genetics, UCLALos AngelesUnited States
- Cardiovascular Research Laboratory, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los AngelesLos AngelesUnited States
- Interdepartmental Program of Bioinformatics, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
13
|
Cheng J, Cheng M, Lusis AJ, Yang X. Gene Regulatory Networks in Coronary Artery Disease. Curr Atheroscler Rep 2023; 25:1013-1023. [PMID: 38008808 PMCID: PMC11466510 DOI: 10.1007/s11883-023-01170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Coronary artery disease is a complex disorder and the leading cause of mortality worldwide. As technologies for the generation of high-throughput multiomics data have advanced, gene regulatory network modeling has become an increasingly powerful tool in understanding coronary artery disease. This review summarizes recent and novel gene regulatory network tools for bulk tissue and single cell data, existing databases for network construction, and applications of gene regulatory networks in coronary artery disease. RECENT FINDINGS New gene regulatory network tools can integrate multiomics data to elucidate complex disease mechanisms at unprecedented cellular and spatial resolutions. At the same time, updates to coronary artery disease expression data in existing databases have enabled researchers to build gene regulatory networks to study novel disease mechanisms. Gene regulatory networks have proven extremely useful in understanding CAD heritability beyond what is explained by GWAS loci and in identifying mechanisms and key driver genes underlying disease onset and progression. Gene regulatory networks can holistically and comprehensively address the complex nature of coronary artery disease. In this review, we discuss key algorithmic approaches to construct gene regulatory networks and highlight state-of-the-art methods that model specific modes of gene regulation. We also explore recent applications of these tools in coronary artery disease patient data repositories to understand disease heritability and shared and distinct disease mechanisms and key driver genes across tissues, between sexes, and between species.
Collapse
Affiliation(s)
- Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Michael Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, 650 Charles E Young Drive South, Los Angeles, CA, 90095, USA.
- Departments of Human Genetics & Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Allayee H, Farber CR, Seldin MM, Williams EG, James DE, Lusis AJ. Systems genetics approaches for understanding complex traits with relevance for human disease. eLife 2023; 12:e91004. [PMID: 37962168 PMCID: PMC10645424 DOI: 10.7554/elife.91004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Quantitative traits are often complex because of the contribution of many loci, with further complexity added by environmental factors. In medical research, systems genetics is a powerful approach for the study of complex traits, as it integrates intermediate phenotypes, such as RNA, protein, and metabolite levels, to understand molecular and physiological phenotypes linking discrete DNA sequence variation to complex clinical and physiological traits. The primary purpose of this review is to describe some of the resources and tools of systems genetics in humans and rodent models, so that researchers in many areas of biology and medicine can make use of the data.
Collapse
Affiliation(s)
- Hooman Allayee
- Departments of Population & Public Health Sciences, University of Southern CaliforniaLos AngelesUnited States
- Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Departments of Biochemistry & Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Public Health Sciences, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Evan Graehl Williams
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgLuxembourgLuxembourg
| | - David E James
- School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
- Faculty of Medicine and Health, University of SydneyCamperdownAustralia
- Charles Perkins Centre, University of SydneyCamperdownAustralia
| | - Aldons J Lusis
- Departments of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Medicine, University of California, Los AngelesLos AngelesUnited States
- Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLALos AngelesUnited States
| |
Collapse
|
15
|
Kurt Z, Cheng J, McQuillen CN, Saleem Z, Hsu N, Jiang N, Barrere-Cain R, Pan C, Franzen O, Koplev S, Wang S, Bjorkegren J, Lusis AJ, Blencowe M, Yang X. Shared and distinct pathways and networks genetically linked to coronary artery disease between human and mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544148. [PMID: 37333408 PMCID: PMC10274918 DOI: 10.1101/2023.06.08.544148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-causal gene networks and pathways, by using human GWAS of CAD from the CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human (STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human shared >75% of CAD causal pathways. Based on network topology, we then predicted key regulatory genes for both the shared pathways and species-specific pathways, which were further validated through the use of single cell data and the latest CAD GWAS. In sum, our results should serve as a much-needed guidance for which human CAD-causal pathways can or cannot be further evaluated for novel CAD therapies using mouse models.
Collapse
Affiliation(s)
- Zeyneb Kurt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Computer and Information Sciences, University of Northumbria, Ellison Pl, Newcastle upon Tyne NE1 8ST, UK
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Caden N. McQuillen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Zara Saleem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Neil Hsu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Nuoya Jiang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Rio Barrere-Cain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, 650 Charles E Young Drive South, Los Angeles, CA 90095-1679, USA
| | - Oscar Franzen
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, US
| | - Simon Koplev
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, US
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Johan Bjorkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, US
- Department of Medicine, (Huddinge), Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, 650 Charles E Young Drive South, Los Angeles, CA 90095-1679, USA
- Departments of Human Genetics & Microbiology, Immunology, and Molecular Genetics, UCLA, CA 90095, USA
- Cardiovascular Research Laboratory, David Geffen School of Medicine, UCLA, CA 90095
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Hui ST, Gong L, Swichkow C, Blencowe M, Kaminska D, Diamante G, Pan C, Dalsania M, French SW, Magyar CE, Pajukanta P, Pihlajamäki J, Boström KI, Yang X, Lusis AJ. Role of Matrix Gla Protein in Transforming Growth Factor-β Signaling and Nonalcoholic Steatohepatitis in Mice. Cell Mol Gastroenterol Hepatol 2023; 16:943-960. [PMID: 37611662 PMCID: PMC10632746 DOI: 10.1016/j.jcmgh.2023.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is a complex disease involving both genetic and environmental factors in its onset and progression. We analyzed NASH phenotypes in a genetically diverse cohort of mice, the Hybrid Mouse Diversity Panel, to identify genes contributing to disease susceptibility. METHODS A "systems genetics" approach, involving integration of genetic, transcriptomic, and phenotypic data, was used to identify candidate genes and pathways in a mouse model of NASH. The causal role of Matrix Gla Protein (MGP) was validated using heterozygous MGP knockout (Mgp+/-) mice. The mechanistic role of MGP in transforming growth factor-beta (TGF-β) signaling was examined in the LX-2 stellate cell line by using a loss of function approach. RESULTS Local cis-acting regulation of MGP was correlated with fibrosis, suggesting a causal role in NASH, and this was validated using loss of function experiments in 2 models of diet-induced NASH. Using single-cell RNA sequencing, Mgp was found to be primarily expressed in hepatic stellate cells and dendritic cells in mice. Knockdown of MGP expression in stellate LX-2 cells led to a blunted response to TGF-β stimulation. This was associated with reduced regulatory SMAD phosphorylation and TGF-β receptor ALK1 expression as well as increased expression of inhibitory SMAD6. Hepatic MGP expression was found to be significantly correlated with the severity of fibrosis in livers of patients with NASH, suggesting relevance to human disease. CONCLUSIONS MGP regulates liver fibrosis and TGF-β signaling in hepatic stellate cells and contributes to NASH pathogenesis.
Collapse
Affiliation(s)
- Simon T Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Lili Gong
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Chantle Swichkow
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Dorota Kaminska
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Meet Dalsania
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Clara E Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Kristina I Boström
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
17
|
Park SH, Helsley RN, Fadhul T, Willoughby JLS, Noetzli L, Tu HC, Solheim MH, Fujisaka S, Pan H, Dreyfuss JM, Bons J, Rose J, King CD, Schilling B, Lusis AJ, Pan C, Gupta M, Kulkarni RN, Fitzgerald K, Kern PA, Divanovic S, Kahn CR, Softic S. Fructose induced KHK-C can increase ER stress independent of its effect on lipogenesis to drive liver disease in diet-induced and genetic models of NAFLD. Metabolism 2023; 145:155591. [PMID: 37230214 PMCID: PMC10752375 DOI: 10.1016/j.metabol.2023.155591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome, and is estimated to affect one billion individuals worldwide. An increased intake of a high-fat diet (HFD) and sugar-sweetened beverages are risk-factors for NAFLD development, but how their combined intake promotes progression to a more severe form of liver injury is unknown. Here we show that fructose metabolism via ketohexokinase (KHK) C isoform leads to unresolved endoplasmic reticulum (ER) stress when coupled with a HFD intake. Conversely, a liver-specific knockdown of KHK in mice consuming fructose on a HFD is adequate to improve the NAFLD activity score and exert a profound effect on the hepatic transcriptome. Overexpression of KHK-C in cultured hepatocytes is sufficient to induce ER stress in fructose free media. Upregulation of KHK-C is also observed in mice with genetically induced obesity or metabolic dysfunction, whereas KHK knockdown in these mice improves metabolic function. Additionally, in over 100 inbred strains of male or female mice hepatic KHK expression correlates positively with adiposity, insulin resistance, and liver triglycerides. Similarly, in 241 human subjects and their controls, hepatic Khk expression is upregulated in early, but not late stages of NAFLD. In summary, we describe a novel role of KHK-C in triggering ER stress, which offers a mechanistic understanding of how the combined intake of fructose and a HFD propagates the development of metabolic complications.
Collapse
Affiliation(s)
- Se-Hyung Park
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Robert N Helsley
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Taghreed Fadhul
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | - Leila Noetzli
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Ho-Chou Tu
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Marie H Solheim
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Shiho Fujisaka
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; First Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joanna Bons
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Jacob Rose
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Christina D King
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Birgit Schilling
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, Department of Human Genetics, A2-237 Center for the Health Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, Department of Human Genetics, A2-237 Center for the Health Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Manoj Gupta
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Philip A Kern
- Department of Medicine, Division of Endocrinology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samir Softic
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
18
|
Grelska A, Sharan D, Light SH. Purine-ifying uric acid by gut microbes. Cell Chem Biol 2023; 30:706-708. [PMID: 37478828 DOI: 10.1016/j.chembiol.2023.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023]
Abstract
Elevated bloodstream levels of uric acid, a mammalian purine degradation product, are associated with several noncommunicable diseases. Recent studies by Kasahara et al. and Liu et al. define purine-degrading activities of the gut microbiota that lower bloodstream uric acid in atherosclerosis and gout disease models, establishing a novel microbial role in host health.
Collapse
Affiliation(s)
- Agnieszka Grelska
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA; Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Deepti Sharan
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA; Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA; Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Kasahara K, Kerby RL, Zhang Q, Pradhan M, Mehrabian M, Lusis AJ, Bergström G, Bäckhed F, Rey FE. Gut bacterial metabolism contributes to host global purine homeostasis. Cell Host Microbe 2023; 31:1038-1053.e10. [PMID: 37279756 PMCID: PMC10311284 DOI: 10.1016/j.chom.2023.05.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/25/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
The microbes and microbial pathways that influence host inflammatory disease progression remain largely undefined. Here, we show that variation in atherosclerosis burden is partially driven by gut microbiota and is associated with circulating levels of uric acid (UA) in mice and humans. We identify gut bacterial taxa spanning multiple phyla, including Bacillota, Fusobacteriota, and Pseudomonadota, that use multiple purines, including UA as carbon and energy sources anaerobically. We identify a gene cluster that encodes key steps of anaerobic purine degradation and that is widely distributed among gut-dwelling bacteria. Furthermore, we show that colonization of gnotobiotic mice with purine-degrading bacteria modulates levels of UA and other purines in the gut and systemically. Thus, gut microbes are important drivers of host global purine homeostasis and serum UA levels, and gut bacterial catabolism of purines may represent a mechanism by which gut bacteria influence health.
Collapse
Affiliation(s)
- Kazuyuki Kasahara
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Robert L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Meenakshi Pradhan
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Margarete Mehrabian
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Kim M, Huda MN, Evans LW, Que E, Gertz ER, Maeda-Smithies N, Bennett BJ. Integrative analysis of hepatic transcriptional profiles reveals genetic regulation of atherosclerosis in hyperlipidemic Diversity Outbred-F1 mice. Sci Rep 2023; 13:9475. [PMID: 37301941 PMCID: PMC10257719 DOI: 10.1038/s41598-023-35917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Atherogenesis is an insipidus but precipitating process leading to serious consequences of many cardiovascular diseases (CVD). Numerous genetic loci contributing to atherosclerosis have been identified in human genome-wide association studies, but these studies have limitations in the ability to control environmental factors and to decipher cause/effect relationships. To assess the power of hyperlipidemic Diversity Outbred (DO) mice in facilitating quantitative trait loci (QTL) analysis of complex traits, we generated a high-resolution genetic panel of atherosclerosis susceptible (DO-F1) mouse cohort by crossing 200 DO females with C57BL/6J males carrying two human genes: encoding apolipoprotein E3-Leiden and cholesterol ester transfer protein. We examined atherosclerotic traits including plasma lipids and glucose in the 235 female and 226 male progeny before and after 16 weeks of a high-fat/cholesterol diet, and aortic plaque size at 24 weeks. We also assessed the liver transcriptome using RNA-sequencing. Our QTL mapping for atherosclerotic traits identified one previously reported female-specific QTL on Chr10 with a narrower interval of 22.73 to 30.80 Mb, and one novel male-specific QTL at 31.89 to 40.25 Mb on Chr19. Liver transcription levels of several genes within each QTL were highly correlated with the atherogenic traits. A majority of these candidates have already known atherogenic potential in humans and/or mice, but integrative QTL, eQTL, and correlation analyses further pointed Ptprk as a major candidate of the Chr10 QTL, while Pten and Cyp2c67 of the Chr19 QTL in our DO-F1 cohort. Finally, through additional analyses of RNA-seq data we identified genetic regulation of hepatic transcription factors, including Nr1h3, contributes to atherogenesis in this cohort. Thus, an integrative approach using DO-F1 mice effectively validates the influence of genetic factors on atherosclerosis in DO mice and suggests an opportunity to discover therapeutics in the setting of hyperlipidemia.
Collapse
Affiliation(s)
- Myungsuk Kim
- Department of Nutrition, University of California, Davis, CA, USA
- Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-Do, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - M Nazmul Huda
- Department of Nutrition, University of California, Davis, CA, USA
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Levi W Evans
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Excel Que
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Erik R Gertz
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian J Bennett
- Department of Nutrition, University of California, Davis, CA, USA.
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA.
| |
Collapse
|
21
|
Adlam D, Berrandou TE, Georges A, Nelson CP, Giannoulatou E, Henry J, Ma L, Blencowe M, Turley TN, Yang ML, Chopade S, Finan C, Braund PS, Sadeg-Sayoud I, Iismaa SE, Kosel ML, Zhou X, Hamby SE, Cheng J, Liu L, Tarr I, Muller DWM, d'Escamard V, King A, Brunham LR, Baranowska-Clarke AA, Debette S, Amouyel P, Olin JW, Patil S, Hesselson SE, Junday K, Kanoni S, Aragam KG, Butterworth AS, Tweet MS, Gulati R, Combaret N, Kadian-Dodov D, Kalman JM, Fatkin D, Hingorani AD, Saw J, Webb TR, Hayes SN, Yang X, Ganesh SK, Olson TM, Kovacic JC, Graham RM, Samani NJ, Bouatia-Naji N. Genome-wide association meta-analysis of spontaneous coronary artery dissection identifies risk variants and genes related to artery integrity and tissue-mediated coagulation. Nat Genet 2023; 55:964-972. [PMID: 37248441 PMCID: PMC10260398 DOI: 10.1038/s41588-023-01410-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.
Collapse
Affiliation(s)
- David Adlam
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK.
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - Takiy-Eddine Berrandou
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
- Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Adrien Georges
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Joséphine Henry
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tamiel N Turley
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sandesh Chopade
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Chris Finan
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Peter S Braund
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ines Sadeg-Sayoud
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew L Kosel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephen E Hamby
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lu Liu
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Ingrid Tarr
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - David W M Muller
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Valentina d'Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annette King
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Departments of Medicine and Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ania A Baranowska-Clarke
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stéphanie Debette
- Department of Neurology, Bordeaux University Hospital, Inserm, Bordeaux, France
| | - Philippe Amouyel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, RID-AGE - Labex DISTALZ - Risk Factors and Molecular Determinants of Aging-Related Disease, Lille, France
| | - Jeffrey W Olin
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Snehal Patil
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephanie E Hesselson
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Krishna G Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Marysia S Tweet
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicolas Combaret
- Department of Cardiology, CHU Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Aroon D Hingorani
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Jacqueline Saw
- Vancouver General Hospital, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tom R Webb
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Sharonne N Hayes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nabila Bouatia-Naji
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France.
| |
Collapse
|
22
|
Jurrjens AW, Seldin MM, Giles C, Meikle PJ, Drew BG, Calkin AC. The potential of integrating human and mouse discovery platforms to advance our understanding of cardiometabolic diseases. eLife 2023; 12:e86139. [PMID: 37000167 PMCID: PMC10065800 DOI: 10.7554/elife.86139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Cardiometabolic diseases encompass a range of interrelated conditions that arise from underlying metabolic perturbations precipitated by genetic, environmental, and lifestyle factors. While obesity, dyslipidaemia, smoking, and insulin resistance are major risk factors for cardiometabolic diseases, individuals still present in the absence of such traditional risk factors, making it difficult to determine those at greatest risk of disease. Thus, it is crucial to elucidate the genetic, environmental, and molecular underpinnings to better understand, diagnose, and treat cardiometabolic diseases. Much of this information can be garnered using systems genetics, which takes population-based approaches to investigate how genetic variance contributes to complex traits. Despite the important advances made by human genome-wide association studies (GWAS) in this space, corroboration of these findings has been hampered by limitations including the inability to control environmental influence, limited access to pertinent metabolic tissues, and often, poor classification of diseases or phenotypes. A complementary approach to human GWAS is the utilisation of model systems such as genetically diverse mouse panels to study natural genetic and phenotypic variation in a controlled environment. Here, we review mouse genetic reference panels and the opportunities they provide for the study of cardiometabolic diseases and related traits. We discuss how the post-GWAS era has prompted a shift in focus from discovery of novel genetic variants to understanding gene function. Finally, we highlight key advantages and challenges of integrating complementary genetic and multi-omics data from human and mouse populations to advance biological discovery.
Collapse
Affiliation(s)
- Aaron W Jurrjens
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, United States
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
23
|
Vazgiourakis VM, Zervou MI, Papageorgiou L, Chaniotis D, Spandidos DA, Vlachakis D, Eliopoulos E, Goulielmos GN. Association of endometriosis with cardiovascular disease: Genetic aspects (Review). Int J Mol Med 2023; 51:29. [PMID: 36799179 PMCID: PMC9943539 DOI: 10.3892/ijmm.2023.5232] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a broad spectrum of pathological conditions that affect the heart or blood vessels, including sequelae that arise from damaged vasculature in other organs of the body, such as the brain, kidneys or eyes. Atherosclerosis is a chronic inflammatory disease of the arterial intima and is the primary cause of coronary artery disease, peripheral vascular disease, heart attack, stroke and renal pathology. It represents a leading cause of mortality worldwide and the loss of human productivity that is marked by an altered immune response. Endometriosis is a heritable, heterogeneous, common gynecological condition influenced by multiple genetic, epigenetic and environmental factors, affecting up to 10% of the female population of childbearing age, causing pain and infertility; it is characterized by the ectopic growth of endometrial tissue outside the uterine cavity. Of note, epidemiological data obtained thus far have suggested a link between endometriosis and the risk of developing CVD. The similarities observed in specific molecular and cellular pathways of endometriosis and CVD may be partially explained by a shared genetic background. The present review presents and discusses the shared genetic factors which have been reported to be associated with the development of both disorders.
Collapse
Affiliation(s)
- Vassilios M. Vazgiourakis
- Intensive Care Unit, University Hospital of Larissa, University of Thessaly, Faculty of Medicine, 41110 Larissa, Greece
| | - Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Louis Papageorgiou
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
24
|
Park SH, Helsley RN, Fadhul T, Willoughby JL, Noetzli L, Tu HC, Solheim MH, Fujisaka S, Pan H, Dreyfuss JM, Bons J, Rose J, King CD, Schilling B, Lusis AJ, Pan C, Gupta M, Kulkarni RN, Fitzgerald K, Kern PA, Divanovic S, Kahn CR, Softic S. Fructose Induced KHK-C Increases ER Stress and Modulates Hepatic Transcriptome to Drive Liver Disease in Diet-Induced and Genetic Models of NAFLD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525605. [PMID: 36747758 PMCID: PMC9900898 DOI: 10.1101/2023.01.27.525605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome, and is estimated to affect one billion individuals worldwide. An increased intake of a high-fat diet (HFD) and sugar-sweetened beverages are risk-factors for NAFLD development, but how their combined intake promotes progression to a more severe form of liver injury is unknown. Here we show that fructose metabolism via ketohexokinase (KHK) C isoform increases endoplasmic reticulum (ER) stress in a dose dependent fashion, so when fructose is coupled with a HFD intake it leads to unresolved ER stress. Conversely, a liver-specific knockdown of KHK in C57BL/6J male mice consuming fructose on a HFD is adequate to improve the NAFLD activity score and exert a profound effect on the hepatic transcriptome. Overexpression of KHK-C in cultured hepatocytes is sufficient to induce ER stress in fructose free media. Upregulation of KHK-C is also observed in genetically obesity ob/ob, db/db and lipodystrophic FIRKO male mice, whereas KHK knockdown in these mice improves metabolic function. Additionally, in over 100 inbred strains of male or female mice hepatic KHK expression correlates positively with adiposity, insulin resistance, and liver triglycerides. Similarly, in 241 human subjects and their controls, hepatic Khk expression is upregulated in early, but not late stages of NAFLD. In summary, we describe a novel role of KHK-C in triggering ER stress, which offers a mechanistic understanding of how the combined intake of fructose and a HFD propagates the development of metabolic complications.
Collapse
Affiliation(s)
- Se-Hyung Park
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY. 40536
| | - Robert N. Helsley
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY. 40536
| | - Taghreed Fadhul
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY. 40536
| | | | | | - Ho-Chou Tu
- Alnylam Pharmaceuticals Inc., Cambridge, MA. 02142
| | - Marie H. Solheim
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA. 02215
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Shiho Fujisaka
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA. 02215
- First Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Jonathan M. Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Joanna Bons
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945
| | - Jacob Rose
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945
| | - Christina D. King
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945
| | - Birgit Schilling
- Proteomics and Aging Center, Buck Institute for Research on Aging, Novato, CA 94945
| | - Aldons J. Lusis
- Department of Medicine/Division of Cardiology, Department of Human Genetics, A2-237 Center for the Health Sciences, University of California, Los Angeles, Los Angeles, CA USA
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, Department of Human Genetics, A2-237 Center for the Health Sciences, University of California, Los Angeles, Los Angeles, CA USA
| | - Manoj Gupta
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215
| | - Rohit N. Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215
| | | | - Philip A. Kern
- Department of Medicine, Division of Endocrinology, University of Kentucky College of Medicine, Lexington, KY. 40536
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA. 02215
| | - Samir Softic
- Department of Pediatrics, Division of Pediatric Gastroenterology, University of Kentucky College of Medicine, Lexington, KY. 40536
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA. 02215
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY. 40536
| |
Collapse
|
25
|
Zhang Q, Zhang L, Chen C, Li P, Lu B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Prog Lipid Res 2023; 89:101209. [PMID: 36473673 DOI: 10.1016/j.plipres.2022.101209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.
Collapse
Affiliation(s)
- Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Molendijk J, Blazev R, Mills RJ, Ng YK, Watt KI, Chau D, Gregorevic P, Crouch PJ, Hilton JBW, Lisowski L, Zhang P, Reue K, Lusis AJ, Hudson JE, James DE, Seldin MM, Parker BL. Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function. eLife 2022; 11:e82951. [PMID: 36472367 PMCID: PMC9833826 DOI: 10.7554/elife.82951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.
Collapse
Affiliation(s)
- Jeffrey Molendijk
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| | | | - Yaan-Kit Ng
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| | - Kevin I Watt
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| | - Daryn Chau
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
| | - Paul Gregorevic
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| | - Peter J Crouch
- Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - James BW Hilton
- Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Leszek Lisowski
- Children's Medical Research Institute, University of SydneySydneyAustralia
- Military Institute of MedicineWarszawaPoland
| | - Peixiang Zhang
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Karen Reue
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Aldons J Lusis
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los AngelesLos AngelesUnited States
| | - James E Hudson
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, School of Medical Science, University of SydneySydneyAustralia
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
| | - Benjamin L Parker
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| |
Collapse
|
27
|
Mauersberger C, Sager HB, Wobst J, Dang TA, Lambrecht L, Koplev S, Stroth M, Bettaga N, Schlossmann J, Wunder F, Friebe A, Björkegren JLM, Dietz L, Maas SL, van der Vorst EPC, Sandner P, Soehnlein O, Schunkert H, Kessler T. Loss of soluble guanylyl cyclase in platelets contributes to atherosclerotic plaque formation and vascular inflammation. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1174-1186. [PMID: 37484062 PMCID: PMC10361702 DOI: 10.1038/s44161-022-00175-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/27/2022] [Indexed: 07/25/2023]
Abstract
Variants in genes encoding the soluble guanylyl cyclase (sGC) in platelets are associated with coronary artery disease (CAD) risk. Here, by using histology, flow cytometry and intravital microscopy, we show that functional loss of sGC in platelets of atherosclerosis-prone Ldlr-/- mice contributes to atherosclerotic plaque formation, particularly via increasing in vivo leukocyte adhesion to atherosclerotic lesions. In vitro experiments revealed that supernatant from activated platelets lacking sGC promotes leukocyte adhesion to endothelial cells (ECs) by activating ECs. Profiling of platelet-released cytokines indicated that reduced platelet angiopoietin-1 release by sGC-depleted platelets, which was validated in isolated human platelets from carriers of GUCY1A1 risk alleles, enhances leukocyte adhesion to ECs. I mp or ta ntly, p ha rm ac ol ogical sGC stimulation increased platelet angiopoietin-1 release in vitro and reduced leukocyte recruitment and atherosclerotic plaque formation in atherosclerosis-prone Ldlr-/- mice. Therefore, pharmacological sGC stimulation might represent a potential therapeutic strategy to prevent and treat CAD.
Collapse
Affiliation(s)
- Carina Mauersberger
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors contributed equally: Carina Mauersberger, Hendrik B. Sager
| | - Hendrik B. Sager
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors contributed equally: Carina Mauersberger, Hendrik B. Sager
| | - Jana Wobst
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Tan An Dang
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Laura Lambrecht
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Marlène Stroth
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Noomen Bettaga
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Frank Wunder
- Bayer AG, R&D Pharmaceuticals, Wuppertal, Germany
| | - Andreas Friebe
- Institute of Physiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Neo, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Lisa Dietz
- Bayer AG, R&D Pharmaceuticals, Wuppertal, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research and Interdisciplinary Centre for Clinical Research, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research and Interdisciplinary Centre for Clinical Research, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
- Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Oliver Soehnlein
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Munich, Germany
- Institute for Experimental Pathology, University of Münster, Münster, Germany
- Department of Physiology and Pharmacology and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors jointly supervised this work: Heribert Schunkert, Thorsten Kessler
| | - Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors jointly supervised this work: Heribert Schunkert, Thorsten Kessler
| |
Collapse
|
28
|
Mokry M, Boltjes A, Slenders L, Bel-Bordes G, Cui K, Brouwer E, Mekke JM, Depuydt MA, Timmerman N, Waissi F, Verwer MC, Turner AW, Khan MD, Hodonsky CJ, Benavente ED, Hartman RJ, van den Dungen NAM, Lansu N, Nagyova E, Prange KH, Kovacic JC, Björkegren JL, Pavlos E, Andreakos E, Schunkert H, Owens GK, Monaco C, Finn AV, Virmani R, Leeper NJ, de Winther MP, Kuiper J, de Borst GJ, Stroes ES, Civelek M, de Kleijn DP, den Ruijter HM, Asselbergs FW, van der Laan SW, Miller CL, Pasterkamp G. Transcriptomic-based clustering of human atherosclerotic plaques identifies subgroups with different underlying biology and clinical presentation. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1140-1155. [PMID: 37920851 PMCID: PMC10621615 DOI: 10.1038/s44161-022-00171-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/20/2022] [Indexed: 11/04/2023]
Abstract
Histopathological studies have revealed key processes of atherosclerotic plaque thrombosis. However, the diversity and complexity of lesion types highlight the need for improved sub-phenotyping. Here we analyze the gene expression profiles of 654 advanced human carotid plaques. The unsupervised, transcriptome-driven clustering revealed five dominant plaque types. These plaque phenotypes were associated with clinical presentation and showed differences in cellular compositions. Validation in coronary segments showed that the molecular signature of these plaques was linked to coronary ischemia. One of the plaque types with the most severe clinical symptoms pointed to both inflammatory and fibrotic cell lineages. Further, we did a preliminary analysis of potential circulating biomarkers that mark the different plaques phenotypes. In conclusion, the definition of the plaque at risk for a thrombotic event can be fine-tuned by in-depth transcriptomic-based phenotyping. These differential plaque phenotypes prove clinically relevant for both carotid and coronary artery plaques and point to distinct underlying biology of symptomatic lesions.
Collapse
Affiliation(s)
- Michal Mokry
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Arjan Boltjes
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Lotte Slenders
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Gemma Bel-Bordes
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Kai Cui
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Eli Brouwer
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Joost M. Mekke
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marie A.C. Depuydt
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Nathalie Timmerman
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Farahnaz Waissi
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Maarten C Verwer
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Adam W. Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Chani J. Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Robin J.G. Hartman
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Noortje A M van den Dungen
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Nico Lansu
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Emilia Nagyova
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Koen H.M. Prange
- Amsterdam University Medical Centers – location AMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam, The Netherlands
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and St Vincent’s Clinical School, University of New South Wales, Australia
| | - Johan L.M. Björkegren
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Eleftherios Pavlos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford
| | | | | | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA
| | - Menno P.J. de Winther
- Amsterdam University Medical Centers – location AMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam, The Netherlands
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Gert J. de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | | | - Hester M. den Ruijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Folkert W. Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Clint L. Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Li H, Perino A, Huang Q, Von Alvensleben GVG, Banaei-Esfahani A, Velazquez-Villegas LA, Gariani K, Korbelius M, Bou Sleiman M, Imbach J, Sun Y, Li X, Bachmann A, Goeminne LJE, Gallart-Ayala H, Williams EG, Ivanisevic J, Auwerx J, Schoonjans K. Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis. Cell Metab 2022; 34:1594-1610.e4. [PMID: 36099916 PMCID: PMC9534359 DOI: 10.1016/j.cmet.2022.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Bile acids (BAs) are complex and incompletely understood enterohepatic-derived hormones that control whole-body metabolism. Here, we profiled postprandial BAs in the liver, feces, and plasma of 360 chow- or high-fat-diet-fed BXD male mice and demonstrated that both genetics and diet strongly influence BA abundance, composition, and correlation with metabolic traits. Through an integrated systems approach, we mapped hundreds of quantitative trait loci that modulate BAs and identified both known and unknown regulators of BA homeostasis. In particular, we discovered carboxylesterase 1c (Ces1c) as a genetic determinant of plasma tauroursodeoxycholic acid (TUDCA), a BA species with established disease-preventing actions. The association between Ces1c and plasma TUDCA was validated using data from independent mouse cohorts and a Ces1c knockout mouse model. Collectively, our data are a unique resource to dissect the physiological importance of BAs as determinants of metabolic traits, as underscored by the identification of CES1C as a master regulator of plasma TUDCA levels.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Qingyao Huang
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giacomo V G Von Alvensleben
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amir Banaei-Esfahani
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laura A Velazquez-Villegas
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Karim Gariani
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Korbelius
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jéromine Imbach
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yu Sun
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alexis Bachmann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Evan G Williams
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
30
|
Bauer S, Eigenmann J, Zhao Y, Fleig J, Hawe JS, Pan C, Bongiovanni D, Wengert S, Ma A, Lusis AJ, Kovacic JC, Björkegren JLM, Maegdefessel L, Schunkert H, von Scheidt M. Identification of the Transcription Factor ATF3 as a Direct and Indirect Regulator of the LDLR. Metabolites 2022; 12:840. [PMID: 36144244 PMCID: PMC9504235 DOI: 10.3390/metabo12090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Coronary artery disease (CAD) is a complex, multifactorial disease caused, in particular, by inflammation and cholesterol metabolism. At the molecular level, the role of tissue-specific signaling pathways leading to CAD is still largely unexplored. This study relied on two main resources: (1) genes with impact on atherosclerosis/CAD, and (2) liver-specific transcriptome analyses from human and mouse studies. The transcription factor activating transcription factor 3 (ATF3) was identified as a key regulator of a liver network relevant to atherosclerosis and linked to inflammation and cholesterol metabolism. ATF3 was predicted to be a direct and indirect (via MAF BZIP Transcription Factor F (MAFF)) regulator of low-density lipoprotein receptor (LDLR). Chromatin immunoprecipitation DNA sequencing (ChIP-seq) data from human liver cells revealed an ATF3 binding motif in the promoter regions of MAFF and LDLR. siRNA knockdown of ATF3 in human Hep3B liver cells significantly upregulated LDLR expression (p < 0.01). Inflammation induced by lipopolysaccharide (LPS) stimulation resulted in significant upregulation of ATF3 (p < 0.01) and subsequent downregulation of LDLR (p < 0.001). Liver-specific expression data from human CAD patients undergoing coronary artery bypass grafting (CABG) surgery (STARNET) and mouse models (HMDP) confirmed the regulatory role of ATF3 in the homeostasis of cholesterol metabolism. This study suggests that ATF3 might be a promising treatment candidate for lowering LDL cholesterol and reducing cardiovascular risk.
Collapse
Affiliation(s)
- Sabine Bauer
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Jana Eigenmann
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Julia Fleig
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Johann S. Hawe
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Calvin Pan
- Departments of Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Dario Bongiovanni
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Simon Wengert
- Helmholtz Pioneer Campus, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Oberschleißheim, Germany
| | - Angela Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aldons J. Lusis
- Departments of Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY 10029, USA
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Clinical Gene Networks AB, 114 44 Stockholm, Sweden
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Novum, Huddinge, 171 77 Stockholm, Sweden
| | - Lars Maegdefessel
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Department of Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Moritz von Scheidt
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
31
|
Phenotypic and Genetic Evidence for a More Prominent Role of Blood Glucose than Cholesterol in Atherosclerosis of Hyperlipidemic Mice. Cells 2022; 11:cells11172669. [PMID: 36078077 PMCID: PMC9455034 DOI: 10.3390/cells11172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia and type 2 diabetes (T2D) are major risk factors for atherosclerosis. Apoe-deficient (Apoe−/−) mice on certain genetic backgrounds develop hyperlipidemia, atherosclerosis, and T2D when fed a Western diet. Here, we sought to dissect phenotypic and genetic relationships of blood lipids and glucose with atherosclerotic plaque formation when the vasculature is exposed to high levels of cholesterol and glucose. Male F2 mice were generated from LP/J and BALB/cJ Apoe−/− mice and fed a Western diet for 12 weeks. Three significant QTL Ath51, Ath52 and Ath53 on chromosomes (Chr) 3 and 15 were mapped for atherosclerotic lesions. Ath52 on proximal Chr15 overlapped with QTL for plasma glucose, non-HDL cholesterol, and triglyceride. Atherosclerotic lesion sizes showed significant correlations with fasting, non-fasting glucose, non-fasting triglyceride, and body weight but no correlation with HDL, non-HDL cholesterol, and fasting triglyceride levels. Ath52 for atherosclerosis was down-graded from significant to suggestive level after adjustment for fasting, non-fasting glucose, and non-fasting triglyceride but minimally affected by HDL, non-HDL cholesterol, and fasting triglyceride. Adjustment for body weight suppressed Ath52 but elevated Ath53 on distal Chr15. These results demonstrate phenotypic and genetic connections of blood glucose and triglyceride with atherosclerosis, and suggest a more prominent role for blood glucose than cholesterol in atherosclerotic plaque formation of hyperlipidemic mice.
Collapse
|
32
|
Zhu X, Zhao L, Wang Y, Hu X, Zhu Y, Yang X. Dietary titanium dioxide particles (E171) promote diet-induced atherosclerosis through reprogramming gut microbiota-mediated choline metabolism in APOE -/- mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129179. [PMID: 35739712 DOI: 10.1016/j.jhazmat.2022.129179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Food-grade titanium dioxide (E171) has been reported to induce changes in some intestinal metabolites related to development of atherosclerosis (AS). However, little is known about the effects of chronic dietary intake of E171 on AS development, particularly in AS-prone populations with high-choline western diet (HCD). Herein, we disclosed that E171 obviously exacerbated HCD-induced AS through increasing production of trimethylamine (TMA) and pro-atherogenic trimethylamine-N-oxide (TMAO) via remodeling gut microbiota structure in APOE-/- mice. Oral administration of 40 mg/kg E171 daily for 4 months significantly increased the atherosclerotic lesion area, especially in the HCD group. Mechanistic studies revealed that E171 induced much more TMAO production by increasing the gut microbial expression of choline TMA lyases (CutC/D), which converted dietary choline to TMA by a glycyl radical reaction. The 16S rDNA sequencing analysis demonstrated that bacterial strains expressing CutC/D were enriched by E171 in HCD-fed mice. In contrast, gut microbiota depletion eliminated the impact of E171 on choline/TMA/TMAO pathway and AS progression, indicating gut flora shifts were responsible for the exacerbation effects of E171 ingestion on HCD-induced AS. All the results emphasized the alarming role of E171 on AS progression and stated the importance of reevaluating the impact of food additives on the development of chronic diseases.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lijun Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiqian Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiuwen Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
33
|
Thomas SR, Zhang Y, Rye KA. The pleiotropic effects of high-density lipoproteins and apolipoprotein A-I. Best Pract Res Clin Endocrinol Metab 2022; 37:101689. [PMID: 36008277 DOI: 10.1016/j.beem.2022.101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The high density lipoprotein (HDL) fraction of human plasma consists of multiple subpopulations of spherical particles that are structurally uniform, but heterogeneous in terms of size, composition and function. Numerous epidemiological studies have established that an elevated high density lipoprotein cholesterol (HDL-C) level is associated with decreased cardiovascular risk. However, with several recent randomised clinical trials of HDL-C raising agents failing to reduce cardiovascular events, contemporary research is transitioning towards clinical development of the cardioprotective functions of HDLs and the identification of functions that can be exploited for treatment of other diseases. This review describes the origins of HDLs and the causes of their compositional and functional heterogeneity. It then summarises current knowledge of how cardioprotective and other functions of HDLs are regulated. The final section of the review summarises recent advances in the clinical development of HDL-targeted therapies.
Collapse
Affiliation(s)
- Shane R Thomas
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Yunjia Zhang
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Kerry-Anne Rye
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
34
|
Ldlr-Deficient Mice with an Atherosclerosis-Resistant Background Develop Severe Hyperglycemia and Type 2 Diabetes on a Western-Type Diet. Biomedicines 2022; 10:biomedicines10061429. [PMID: 35740449 PMCID: PMC9220196 DOI: 10.3390/biomedicines10061429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/10/2023] Open
Abstract
Apoe-/- and Ldlr-/- mice are two animal models extensively used for atherosclerosis research. We previously reported that Apoe-/- mice on certain genetic backgrounds, including C3H/HeJ (C3H), develop type 2 diabetes when fed a Western diet. We sought to characterize diabetes-related traits in C3H-Ldlr-/- mice through comparing with C3H-Apoe-/- mice. On a chow diet, Ldlr-/- mice had lower plasma total and non-HDL cholesterol levels but higher HDL levels than Apoe-/- mice. Fasting plasma glucose was much lower in Ldlr-/- than Apoe-/- mice (male: 122.5 ± 5.9 vs. 229.4 ± 17.5 mg/dL; female: 144.1 ± 12.4 vs. 232.7 ± 6.4 mg/dL). When fed a Western diet, Ldlr-/- and Apoe-/- mice developed severe hypercholesterolemia and also hyperglycemia with fasting plasma glucose levels exceeding 250 mg/dL. Both knockouts had similar non-HDL cholesterol and triglyceride levels, and their fasting glucose levels were also similar. Male Ldlr-/- mice exhibited greater glucose tolerance and insulin sensitivity compared to their Apoe-/- counterpart. Female mice showed similar glucose tolerance and insulin sensitivity though Ldlr-/- mice had higher non-fasting glucose levels. Male Ldlr-/- and Apoe-/- mice developed moderate obesity on the Western diet, but female mice did not. These results indicate that the Western diet and ensuing hyperlipidemia lead to the development of type 2 diabetes, irrespective of underlying genetic causes.
Collapse
|
35
|
Gisterå A, Ketelhuth DFJ, Malin SG, Hansson GK. Animal Models of Atherosclerosis-Supportive Notes and Tricks of the Trade. Circ Res 2022; 130:1869-1887. [PMID: 35679358 DOI: 10.1161/circresaha.122.320263] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease is a major cause of death among humans. Animal models have shown that cholesterol and inflammation are causatively involved in the disease process. Apolipoprotein B-containing lipoproteins elicit immune reactions and instigate inflammation in the vessel wall. Still, a treatment that is specific to vascular inflammation is lacking, which motivates continued in vivo investigations of the immune-vascular interactions that drive the disease. In this review, we distill old notions with emerging concepts into a contemporary understanding of vascular disease models. Pros and cons of different models are listed and the complex integrative interplay between cholesterol homeostasis, immune activation, and adaptations of the vascular system is discussed. Key limitations with atherosclerosis models are highlighted, and we suggest improvements that could accelerate progress in the field. However, excessively rigid experimental guidelines or limiting usage to certain animal models can be counterproductive. Continued work in improved models, as well as the development of new models, should be of great value in research and could aid the development of cardiovascular disease diagnostics and therapeutics of the future.
Collapse
Affiliation(s)
- Anton Gisterå
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.).,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark (SDU), Odense, Denmark (D.F.J.K)
| | - Stephen G Malin
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Göran K Hansson
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| |
Collapse
|
36
|
Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 2022; 22:251-265. [PMID: 34389841 PMCID: PMC10111155 DOI: 10.1038/s41577-021-00584-1] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the root cause of many cardiovascular diseases. Extensive research in preclinical models and emerging evidence in humans have established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. New techniques have highlighted the enormous heterogeneity of leukocyte subsets in the arterial wall that have pro-inflammatory or regulatory roles in atherogenesis. Understanding the homing and activation pathways of these immune cells, their disease-associated dynamics and their regulation by microbial and metabolic factors will be crucial for the development of clinical interventions for atherosclerosis, including potentially vaccination-based therapeutic strategies. Here, we review key molecular mechanisms of immune cell activation implicated in modulating atherogenesis and provide an update on the contributions of innate and adaptive immune cell subsets in atherosclerosis.
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
37
|
Pasterkamp G, den Ruijter HM, Giannarelli C. False Utopia of One Unifying Description of the Vulnerable Atherosclerotic Plaque: A Call for Recalibration That Appreciates the Diversity of Mechanisms Leading to Atherosclerotic Disease. Arterioscler Thromb Vasc Biol 2022; 42:e86-e95. [PMID: 35139657 DOI: 10.1161/atvbaha.121.316693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is a complex disease characterized by the formation of arterial plaques with a broad diversity of morphological phenotypic presentations. Researchers often apply one description of the vulnerable plaque as a gold standard in preclinical and clinical research that could be applied as a surrogate measure of a successful therapeutic intervention, despite the variability in lesion characteristics that may underly a thrombotic occlusion. The complex mechanistic interplay underlying progression of atherosclerotic disease is a consequence of the broad range of determinants such as sex, risk factors, hemodynamics, medications, and the genetic landscape. Currently, we are facing an overwhelming amount of data based on genetic, transcriptomic, proteomic, and metabolomic studies that all point to heterogeneous molecular profiles of atherosclerotic lesions that lead to a myocardial infarction or stroke. The observed molecular diversity implies that one unifying model cannot fully recapitulate the natural history of atherosclerosis. Despite emerging data obtained from -omics studies, a description of a natural history of atherosclerotic disease in which cell-specific expression of proteins or genes are included is still lacking. This also applies to the insights provided by genome-wide association studies. This review will critically discuss the dogma that the progression of atherosclerotic disease can be captured in one unifying natural history model of atherosclerosis.
Collapse
Affiliation(s)
- Gerard Pasterkamp
- Circulatory Health Laboratories (G.P., H.M.d.R.), University Medical Center Utrecht, the Netherlands.,Central Diagnostics Laboratories (G.P.), University Medical Center Utrecht, the Netherlands
| | - Hester M den Ruijter
- Circulatory Health Laboratories (G.P., H.M.d.R.), University Medical Center Utrecht, the Netherlands.,Laboratory of Experimental Cardiology (H.M.d.R.), University Medical Center Utrecht, the Netherlands
| | - Chiara Giannarelli
- NYU Cardiovascular Research Center (C.G.), New York University Grossman School of Medicine.,Department of Pathology (C.G.), New York University Grossman School of Medicine
| |
Collapse
|
38
|
Li L, Chen Z, von Scheidt M, Li S, Steiner A, Güldener U, Koplev S, Ma A, Hao K, Pan C, Lusis AJ, Pang S, Kessler T, Ermel R, Sukhavasi K, Ruusalepp A, Gagneur J, Erdmann J, Kovacic JC, Björkegren JLM, Schunkert H. Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Res Cardiol 2022; 117:6. [PMID: 35175464 PMCID: PMC8852935 DOI: 10.1007/s00395-022-00917-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 01/31/2023]
Abstract
The majority of risk loci identified by genome-wide association studies (GWAS) are in non-coding regions, hampering their functional interpretation. Instead, transcriptome-wide association studies (TWAS) identify gene-trait associations, which can be used to prioritize candidate genes in disease-relevant tissue(s). Here, we aimed to systematically identify susceptibility genes for coronary artery disease (CAD) by TWAS. We trained prediction models of nine CAD-relevant tissues using EpiXcan based on two genetics-of-gene-expression panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and the Genotype-Tissue Expression (GTEx). Based on these prediction models, we imputed gene expression of respective tissues from individual-level genotype data on 37,997 CAD cases and 42,854 controls for the subsequent gene-trait association analysis. Transcriptome-wide significant association (i.e. P < 3.85e-6) was observed for 114 genes. Of these, 96 resided within previously identified GWAS risk loci and 18 were novel. Stepwise analyses were performed to study their plausibility, biological function, and pathogenicity in CAD, including analyses for colocalization, damaging mutations, pathway enrichment, phenome-wide associations with human data and expression-traits correlations using mouse data. Finally, CRISPR/Cas9-based gene knockdown of two newly identified TWAS genes, RGS19 and KPTN, in a human hepatocyte cell line resulted in reduced secretion of APOB100 and lipids in the cell culture medium. Our CAD TWAS work (i) prioritized candidate causal genes at known GWAS loci, (ii) identified 18 novel genes to be associated with CAD, and iii) suggested potential tissues and pathways of action for these TWAS CAD genes.
Collapse
Affiliation(s)
- Ling Li
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Fakultät für Informatik, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Zhifen Chen
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Moritz von Scheidt
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Shuangyue Li
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andrea Steiner
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ulrich Güldener
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Angela Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shichao Pang
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Raili Ermel
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Katyayani Sukhavasi
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Arno Ruusalepp
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Julien Gagneur
- Fakultät für Informatik, Technische Universität München, Munich, Germany
| | - Jeanette Erdmann
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029-6574, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
- Clinical Gene Networks AB, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany.
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
39
|
Clark KC, Kwitek AE. Multi-Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. Compr Physiol 2021; 12:3045-3084. [PMID: 34964118 PMCID: PMC9373910 DOI: 10.1002/cphy.c210010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is a highly heritable disease and a major public health burden worldwide. MetS diagnosis criteria are met by the simultaneous presence of any three of the following: high triglycerides, low HDL/high LDL cholesterol, insulin resistance, hypertension, and central obesity. These diseases act synergistically in people suffering from MetS and dramatically increase risk of morbidity and mortality due to stroke and cardiovascular disease, as well as certain cancers. Each of these component features is itself a complex disease, as is MetS. As a genetically complex disease, genetic risk factors for MetS are numerous, but not very powerful individually, often requiring specific environmental stressors for the disease to manifest. When taken together, all sequence variants that contribute to MetS disease risk explain only a fraction of the heritable variance, suggesting additional, novel loci have yet to be discovered. In this article, we will give a brief overview on the genetic concepts needed to interpret genome-wide association studies (GWAS) and quantitative trait locus (QTL) data, summarize the state of the field of MetS physiological genomics, and to introduce tools and resources that can be used by the physiologist to integrate genomics into their own research on MetS and any of its component features. There is a wealth of phenotypic and molecular data in animal models and humans that can be leveraged as outlined in this article. Integrating these multi-omic QTL data for complex diseases such as MetS provides a means to unravel the pathways and mechanisms leading to complex disease and promise for novel treatments. © 2022 American Physiological Society. Compr Physiol 12:1-40, 2022.
Collapse
Affiliation(s)
- Karen C Clark
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
40
|
Grainger AT, Pilar N, Li J, Chen MH, Abramson AM, Becker-Pauly C, Shi W. Identification of Mep1a as a susceptibility gene for atherosclerosis in mice. Genetics 2021; 219:6377788. [PMID: 34849841 DOI: 10.1093/genetics/iyab160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is the underlying cause of heart attack, ischemic stroke and peripheral arterial disease, and genetic factors involved remain mostly unidentified. We previously identified a significant locus on mouse chromosome 17 for atherosclerosis, Ath49, in an intercross between BALB/c and SM strains. Ath49 partially overlaps in the confidence interval with Ath22 mapped in an AKR × DBA/2 intercross. Bioinformatics analysis prioritized Mep1a, encoding meprin 1α metalloendopeptidase, as a likely candidate gene for Ath49. To prove causality, Mep1a-/-Apoe-/- mice were generated and compared with Mep1a+/+Apoe-/- mice for atherosclerosis development. Mep1a was found abundantly expressed in atherosclerotic lesions but not in healthy aorta and liver of mice. Mep1a-/- Apoe-/- mice exhibited significant reductions in both early and advanced lesion sizes. Loss of Mep1a led to decreased necrosis but increased macrophage and neutrophil contents in advanced lesions, reduced plasma levels of CXCL5 and an oxidative stress biomarker. In addition, Mep1a-/- mice had significantly reduced triglyceride levels on a chow diet. Thus, Mep1a is a susceptibility gene for atherosclerosis and aggravates atherosclerosis partially through action on oxidative stress and inflammation.
Collapse
Affiliation(s)
- Andrew T Grainger
- Departments of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Nathanael Pilar
- Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Jun Li
- Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Mei-Hua Chen
- Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Ashley M Abramson
- Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Weibin Shi
- Departments of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
41
|
Moore TM, Terrazas A, Strumwasser AR, Lin AJ, Zhu X, Anand ATS, Nguyen CQ, Stiles L, Norheim F, Lang JM, Hui ST, Turcotte LP, Zhou Z. Effect of voluntary exercise upon the metabolic syndrome and gut microbiome composition in mice. Physiol Rep 2021; 9:e15068. [PMID: 34755487 PMCID: PMC8578881 DOI: 10.14814/phy2.15068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolic syndrome is a cluster of conditions that increase an individual's risk of developing diseases. Being physically active throughout life is known to reduce the prevalence and onset of some aspects of the metabolic syndrome. Furthermore, previous studies have demonstrated that an individual's gut microbiome composition has a large influence on several aspects of the metabolic syndrome. However, the mechanism(s) by which physical activity may improve metabolic health are not well understood. We sought to determine if endurance exercise is sufficient to prevent or ameliorate the development of the metabolic syndrome and its associated diseases. We also analyzed the impact of physical activity under metabolic syndrome progression upon the gut microbiome composition. Utilizing whole-body low-density lipoprotein receptor (LDLR) knockout mice on a "Western Diet," we show that long-term exercise acts favorably upon glucose tolerance, adiposity, and liver lipids. Exercise increased mitochondrial abundance in skeletal muscle but did not reduce liver fibrosis, aortic lesion area, or plasma lipids. Lastly, we observed several changes in gut bacteria and their novel associations with metabolic parameters of clinical importance. Altogether, our results indicate that exercise can ameliorate some aspects of the metabolic syndrome progression and alter the gut microbiome composition.
Collapse
Affiliation(s)
- Timothy M. Moore
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Anthony Terrazas
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Xiaopeng Zhu
- Division of Pediatric EndocrinologyDepartment of Pediatrics UCLA Children's Discovery and Innovation InstituteDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of Endocrinology and Metabolism. Zhongshan HospitalFudan UniversityShanghaiP.R.China
| | - Akshay T. S. Anand
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Christina Q. Nguyen
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Frode Norheim
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of NutritionFaculty of MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jennifer M. Lang
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Simon T. Hui
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
42
|
Buono MF, Slenders L, Wesseling M, Hartman RJG, Monaco C, den Ruijter HM, Pasterkamp G, Mokry M. The changing landscape of the vulnerable plaque: a call for fine-tuning of preclinical models. Vascul Pharmacol 2021; 141:106924. [PMID: 34607015 DOI: 10.1016/j.vph.2021.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
For decades, the pathological definition of the vulnerable plaque led to invaluable insights into the mechanisms that underlie myocardial infarction and stroke. Beyond plaque rupture, other mechanisms, such as erosion, may elicit thrombotic events underlining the complexity and diversity of the atherosclerotic disease. Novel insights, based on single-cell transcriptomics and other "omics" methods, provide tremendous opportunities in the ongoing search for cell-specific determinants that will fine-tune the description of the thrombosis prone lesion. It coincides with an increasing awareness that knowledge on lesion characteristics, cell plasticity and clinical presentation of ischemic cardiovascular events have shifted over the past decades. This shift correlates with an observed changes of cell composition towards phenotypical stabilizing of human plaques. These stabilization features and mechanisms are directly mediated by the cells present in plaques and can be mimicked in vitro via primary plaque cells derived from human atherosclerotic tissues. In addition, the rapidly evolving of sequencing technologies identify many candidate genes and molecular mechanisms that may influence the risk of developing an atherosclerotic thrombotic event - which bring the next challenge in sharp focus: how to translate these cell-specific insights into tangible functional and translational discoveries?
Collapse
Affiliation(s)
- Michele F Buono
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Lotte Slenders
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marian Wesseling
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robin J G Hartman
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
43
|
Hui ST, Wang F, Stappenbeck F, French SW, Magyar CE, Parhami F, Lusis AJ. Oxy210, a novel inhibitor of hedgehog and TGF-β signalling, ameliorates hepatic fibrosis and hypercholesterolemia in mice. ENDOCRINOLOGY DIABETES & METABOLISM 2021; 4:e00296. [PMID: 34505423 PMCID: PMC8502222 DOI: 10.1002/edm2.296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/19/2022]
Abstract
AIMS Non-alcoholic steatohepatitis (NASH) is associated with increased overall morbidity and mortality in non-alcoholic fatty liver disease (NAFLD) patients. Liver fibrosis is the strongest prognostic factor for clinical outcomes, liver-related mortality and liver transplantation. Currently, no single therapy or medication for NASH has been approved by the U.S. Food and Drug Administration (FDA). Oxy210, an oxysterol derivative, displays the unique property of antagonizing both Hedgehog (Hh) and transforming growth factor-beta (TGF-β) signalling in primary human hepatic stellate cells (HSC). We hypothesized that inhibition of both Hh and TGF-β signalling by Oxy210 could reduce hepatic fibrosis in NASH. In this study, we examined the therapeutic potential of Oxy210 on NASH in vivo. METHODS We examined the effect of Oxy210 treatment on Hh and TGF-β pathways in HSC. The efficacy of Oxy210 on liver fibrosis was tested in a 'humanized' hyperlipidemic mouse model of NASH that has high relevance to human pathology. APPROACH AND RESULTS We show that Oxy210 inhibits both Hh and TGF-β pathways in human HSC and attenuates baseline and TGF-β-induced expression of pro-fibrotic genes in vitro. Oral delivery of Oxy210 in food resulted in significant liver exposure and significantly reduced hepatic fibrosis in mice over the course of the 16-week study with no apparent safety issues. Additionally, we observed several benefits related to NASH phenotype: (a) reduced plasma pro-inflammatory cytokine and the corresponding hepatic gene expression; (b) reduced pro-fibrotic cytokine and inflammasome gene expression in the liver; (c) reduced apoptosis in the liver; (d) reduced hepatic unesterified cholesterol accumulation; and (e) reduced plasma total and unesterified cholesterol levels. CONCLUSIONS Oxy210 effectively ameliorated hepatic fibrosis and inflammation and improved hypercholesterolemia in mice. Our findings suggest that Oxy210 and related analogues are a new class of drug candidates that may serve as potential therapeutics candidates for NASH.
Collapse
Affiliation(s)
- Simon T Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Feng Wang
- MAX BioPharma, Inc, Santa Monica, California, USA
| | | | - Samuel W French
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Clara E Magyar
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
44
|
León-Mimila P, Villamil-Ramírez H, Macías-Kauffer LR, Jacobo-Albavera L, López-Contreras BE, Posadas-Sánchez R, Posadas-Romero C, Romero-Hidalgo S, Morán-Ramos S, Domínguez-Pérez M, Olivares-Arevalo M, López-Montoya P, Nieto-Guerra R, Acuña-Alonzo V, Macín-Pérez G, Barquera-Lozano R, Del-Río-Navarro BE, González-González I, Campos-Pérez F, Gómez-Pérez F, Valdés VJ, Sampieri A, Reyes-García JG, Carrasco-Portugal MDC, Flores-Murrieta FJ, Aguilar-Salinas CA, Vargas-Alarcón G, Shih D, Meikle PJ, Calkin AC, Drew BG, Vaca L, Lusis AJ, Huertas-Vazquez A, Villarreal-Molina T, Canizales-Quinteros S. Genome-Wide Association Study Identifies a Functional SIDT2 Variant Associated With HDL-C (High-Density Lipoprotein Cholesterol) Levels and Premature Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2021; 41:2494-2508. [PMID: 34233476 PMCID: PMC8664085 DOI: 10.1161/atvbaha.120.315391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Low HDL-C (high-density lipoprotein cholesterol) is the most frequent dyslipidemia in Mexicans, but few studies have examined the underlying genetic basis. Our purpose was to identify genetic variants associated with HDL-C levels and cardiovascular risk in the Mexican population. Approach and Results A genome-wide association studies for HDL-C levels in 2335 Mexicans, identified four loci associated with genome-wide significance: CETP, ABCA1, LIPC, and SIDT2. The SIDT2 missense Val636Ile variant was associated with HDL-C levels and was replicated in 3 independent cohorts (P=5.9×10−18 in the conjoint analysis). The SIDT2/Val636Ile variant is more frequent in Native American and derived populations than in other ethnic groups. This variant was also associated with increased ApoA1 and glycerophospholipid serum levels, decreased LDL-C (low-density lipoprotein cholesterol) and ApoB levels, and a lower risk of premature CAD. Because SIDT2 was previously identified as a protein involved in sterol transport, we tested whether the SIDT2/Ile636 protein affected this function using an in vitro site-directed mutagenesis approach. The SIDT2/Ile636 protein showed increased uptake of the cholesterol analog dehydroergosterol, suggesting this variant affects function. Finally, liver transcriptome data from humans and the Hybrid Mouse Diversity Panel are consistent with the involvement of SIDT2 in lipid and lipoprotein metabolism. Conclusions This is the first genome-wide association study for HDL-C levels seeking associations with coronary artery disease in the Mexican population. Our findings provide new insight into the genetic architecture of HDL-C and highlight SIDT2 as a new player in cholesterol and lipoprotein metabolism in humans.
Collapse
Affiliation(s)
- Paola León-Mimila
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Luis R Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
- Dirección de Planeación, Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Estado de México (L.R.M.-K.)
| | - Leonor Jacobo-Albavera
- Laboratorio de Enfermedades Cardiovasculares, INMEGEN, Mexico City (L.J.-A., M.D.-P., T.V.-M.)
| | - Blanca E López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (R.P.-S., C.P.-R.)
| | - Carlos Posadas-Romero
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (R.P.-S., C.P.-R.)
| | | | - Sofía Morán-Ramos
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City (S.M.-R.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Enfermedades Cardiovasculares, INMEGEN, Mexico City (L.J.-A., M.D.-P., T.V.-M.)
| | - Marisol Olivares-Arevalo
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Priscilla López-Montoya
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Roberto Nieto-Guerra
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | | | - Gastón Macín-Pérez
- Escuela Nacional de Antropología e Historia, Mexico City (V.A.-A., G.M.-P.)
| | | | | | | | | | - Francisco Gómez-Pérez
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (F.G.-P., C.A.A.-S.)
| | - Victor J Valdés
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Alicia Sampieri
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Juan G Reyes-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City (J.G.R.-G., F.J.F.-M.)
| | - Miriam Del C Carrasco-Portugal
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City (M.C.-P., F.J.F.-M.)
| | - Francisco J Flores-Murrieta
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City (J.G.R.-G., F.J.F.-M.)
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City (M.C.-P., F.J.F.-M.)
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (F.G.-P., C.A.A.-S.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L. Mexico (C.A.A.-S.)
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (G.V.-A.)
| | - Diana Shih
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | - Peter J Meikle
- Head Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M.)
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Central Clinical School, Monash University, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia (A.C.C., B.G.D.)
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Central Clinical School, Monash University, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia (A.C.C., B.G.D.)
| | - Luis Vaca
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | - Adriana Huertas-Vazquez
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | | | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| |
Collapse
|
45
|
Kessler T, Schunkert H. Coronary Artery Disease Genetics Enlightened by Genome-Wide Association Studies. JACC Basic Transl Sci 2021; 6:610-623. [PMID: 34368511 PMCID: PMC8326228 DOI: 10.1016/j.jacbts.2021.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Many cardiovascular diseases are facilitated by strong inheritance. For example, large-scale genetic studies identified hundreds of genomic loci that affect the risk of coronary artery disease. At each of these loci, common variants are associated with disease risk with robust statistical evidence but individually small effect sizes. Only a minority of candidate genes found at these loci are involved in the pathophysiology of traditional risk factors, but experimental research is making progress in identifying novel, and, in part, unexpected mechanisms. Targets identified by genome-wide association studies have already led to the development of novel treatments, specifically in lipid metabolism. This review summarizes recent genetic and experimental findings in this field. In addition, the development and possible clinical usefulness of polygenic risk scores in risk prediction and individualization of treatment, particularly in lipid metabolism, are discussed.
Collapse
Affiliation(s)
- Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
46
|
Mineharu Y, Miyamoto S. RNF213 and GUCY1A3 in Moyamoya Disease: Key Regulators of Metabolism, Inflammation, and Vascular Stability. Front Neurol 2021; 12:687088. [PMID: 34381413 PMCID: PMC8350054 DOI: 10.3389/fneur.2021.687088] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Moyamoya disease is an idiopathic chronically progressive cerebrovascular disease, which causes both ischemic and hemorrhagic stroke. Genetic studies identified RNF213/Mysterin and GUCY1A3 as disease-causing genes. They were also known to be associated with non-moyamoya intracranial large artery disease, coronary artery disease and pulmonary artery hypertension. This review focused on these two molecules and their strong linker, calcineurin/NFAT signaling and caveolin to understand the pathophysiology of moyamoya disease and related vascular diseases. They are important regulators of lipid metabolism especially lipotoxicity, NF-κB mediated inflammation, and nitric oxide-mediated vascular protection. Although intimal thickening with fibrosis and damaged vascular smooth muscle cells are the distinguishing features of moyamoya disease, origin of the fibrous tissue and the mechanism of smooth muscle cell damages remains not fully elucidated. Endothelial cells and smooth muscle cells have long been a focus of interest, but other vascular components such as immune cells and extracellular matrix also need to be investigated in future studies. Molecular research on moyamoya disease would give us a clue to understand the mechanism preserving vascular stability.
Collapse
Affiliation(s)
- Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
47
|
Shum M, Shintre CA, Althoff T, Gutierrez V, Segawa M, Saxberg AD, Martinez M, Adamson R, Young MR, Faust B, Gharakhanian R, Su S, Chella Krishnan K, Mahdaviani K, Veliova M, Wolf DM, Ngo J, Nocito L, Stiles L, Abramson J, Lusis AJ, Hevener AL, Zoghbi ME, Carpenter EP, Liesa M. ABCB10 exports mitochondrial biliverdin, driving metabolic maladaptation in obesity. Sci Transl Med 2021; 13:13/594/eabd1869. [PMID: 34011630 DOI: 10.1126/scitranslmed.abd1869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Although the role of hydrophilic antioxidants in the development of hepatic insulin resistance and nonalcoholic fatty liver disease has been well studied, the role of lipophilic antioxidants remains poorly characterized. A known lipophilic hydrogen peroxide scavenger is bilirubin, which can be oxidized to biliverdin and then reduced back to bilirubin by cytosolic biliverdin reductase. Oxidation of bilirubin to biliverdin inside mitochondria must be followed by the export of biliverdin to the cytosol, where biliverdin is reduced back to bilirubin. Thus, the putative mitochondrial exporter of biliverdin is expected to be a major determinant of bilirubin regeneration and intracellular hydrogen peroxide scavenging. Here, we identified ABCB10 as a mitochondrial biliverdin exporter. ABCB10 reconstituted into liposomes transported biliverdin, and ABCB10 deletion caused accumulation of biliverdin inside mitochondria. Obesity with insulin resistance up-regulated hepatic ABCB10 expression in mice and elevated cytosolic and mitochondrial bilirubin content in an ABCB10-dependent manner. Revealing a maladaptive role of ABCB10-driven bilirubin synthesis, hepatic ABCB10 deletion protected diet-induced obese mice from steatosis and hyperglycemia, improving insulin-mediated suppression of glucose production and decreasing lipogenic SREBP-1c expression. Protection was concurrent with enhanced mitochondrial function and increased inactivation of PTP1B, a phosphatase disrupting insulin signaling and elevating SREBP-1c expression. Restoration of cellular bilirubin content in ABCB10 KO hepatocytes reversed the improvements in mitochondrial function and PTP1B inactivation, demonstrating that bilirubin was the maladaptive effector linked to ABCB10 function. Thus, we identified a fundamental transport process that amplifies intracellular bilirubin redox actions, which can exacerbate insulin resistance and steatosis in obesity.
Collapse
Affiliation(s)
- Michael Shum
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Chitra A Shintre
- Center for Medicines Discovery, University of Oxford, Oxfordshire OX3 7DQ, UK
| | - Thorsten Althoff
- Department of Physiology, University of California, Los Angeles, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Vincent Gutierrez
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Mayuko Segawa
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Alexandra D Saxberg
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| | - Melissa Martinez
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| | - Roslin Adamson
- Center for Medicines Discovery, University of Oxford, Oxfordshire OX3 7DQ, UK
| | - Margaret R Young
- Center for Medicines Discovery, University of Oxford, Oxfordshire OX3 7DQ, UK
| | - Belinda Faust
- Center for Medicines Discovery, University of Oxford, Oxfordshire OX3 7DQ, UK
| | - Raffi Gharakhanian
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Shi Su
- Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Karthickeyan Chella Krishnan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Kiana Mahdaviani
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Michaela Veliova
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Dane M Wolf
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Jennifer Ngo
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laura Nocito
- Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Linsey Stiles
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Jeff Abramson
- Department of Physiology, University of California, Los Angeles, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Andrea L Hevener
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Maria E Zoghbi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| | | | - Marc Liesa
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA. .,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA.,Molecular Biology Institute at UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| |
Collapse
|
48
|
Chait A, Wang S, Goodspeed L, Gomes D, Turk KE, Wietecha T, Tang J, Storey C, O'Brien KD, Rubinow KB, Tang C, Vaisar T, Gharib SA, Lusis AJ, Den Hartigh LJ. Sexually Dimorphic Relationships Among Saa3 (Serum Amyloid A3), Inflammation, and Cholesterol Metabolism Modulate Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2021; 41:e299-e313. [PMID: 33761762 PMCID: PMC8159856 DOI: 10.1161/atvbaha.121.316066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Diego Gomes
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Katherine E Turk
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Tomasz Wietecha
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Department of Medicine, Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle
| | - Jingjing Tang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Carl Storey
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Kevin D O'Brien
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Department of Medicine, Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle
| | - Katya B Rubinow
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Chongren Tang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Tomas Vaisar
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, Computational Medicine Core, Department of Medicine, Center for Lung Biology (S.A.G.), University of Washington, Seattle
| | - Aldons J Lusis
- Department of Human Genetics, University of California, Los Angeles (A.J.L.)
| | - Laura J Den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The functions, genetic variations and impact of apolipoprotein E on lipoprotein metabolism in general are placed in the context of clinical practice dealing with moderate dyslipidaemia as well as dysbetalipoproteinemia, a highly atherogenic disorder and lipoprotein glomerulopathy. RECENT FINDINGS Additional variants of apolipoprotein E and participation of apolipoprotein E in inflammation are of interest. The mostly favourable effects of apolipoprotein E2 as well as the atherogenic nature of apolipoproteinE4, which has an association with cognitive impairment, are confirmed. The contribution of remnant lipoproteins of triglyceride-rich lipoproteins, of which dysbetalipoproteinemia represents an extreme, is explored in atherosclerosis. Mimetic peptides may present new therapeutic approaches. Apolipoprotein E is an important determinant of the lipid profile and cardiovascular health in the population at large and can precipitate dysbetalipoproteinemia and glomerulopathy. Awareness of apolipoprotein E polymorphisms should improve medical care.
Collapse
|
50
|
Kim M, Huda MN, O'Connor A, Albright J, Durbin-Johnson B, Bennett BJ. Hepatic transcriptional profile reveals the role of diet and genetic backgrounds on metabolic traits in female progenitor strains of the Collaborative Cross. Physiol Genomics 2021; 53:173-192. [PMID: 33818129 PMCID: PMC8424536 DOI: 10.1152/physiolgenomics.00140.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Mice have provided critical mechanistic understandings of clinical traits underlying metabolic syndrome (MetSyn) and susceptibility to MetSyn in mice is known to vary among inbred strains. We investigated the diet- and strain-dependent effects on metabolic traits in the eight Collaborative Cross (CC) founder strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Liver transcriptomics analysis showed that both atherogenic diet and host genetics have profound effects on the liver transcriptome, which may be related to differences in metabolic traits observed between strains. We found strain differences in circulating trimethylamine N-oxide (TMAO) concentration and liver triglyceride content, both of which are traits associated with metabolic diseases. Using a network approach, we identified a module of transcripts associated with TMAO and liver triglyceride content, which was enriched in functional pathways. Interrogation of the module related to metabolic traits identified NADPH oxidase 4 (Nox4), a gene for a key enzyme in the production of reactive oxygen species, which showed a strong association with plasma TMAO and liver triglyceride. Interestingly, Nox4 was identified as the highest expressed in the C57BL/6J and NZO/HILtJ strains and the lowest expressed in the CAST/EiJ strain. Based on these results, we suggest that there may be genetic variation in the contribution of Nox4 to the regulation of plasma TMAO and liver triglyceride content. In summary, we show that liver transcriptomic analysis identified diet- or strain-specific pathways for metabolic traits in the Collaborative Cross (CC) founder strains.
Collapse
Affiliation(s)
- Myungsuk Kim
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| | - M Nazmul Huda
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| | - Annalouise O'Connor
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | | | - Brian J Bennett
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| |
Collapse
|