1
|
Hirono M, Kudo M, Yamada M, Yanagawa Y. The modulatory role of bone morphogenetic protein signaling in cerebellar synaptic plasticity. J Neurochem 2025; 169:e16290. [PMID: 39680498 DOI: 10.1111/jnc.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/23/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Bone morphogenetic proteins (BMPs), regulators of bone formation, have been implicated in embryogenesis and morphogenesis of various tissues and organs. BMP signaling plays a role in the formation of appropriate synaptic connections and development of normal neural circuits in the brain. However, physiological roles of BMP signaling in postnatal neural functions, including synaptic plasticity, remain largely unknown. Long-term depression (LTD) of synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum has been suggested one neuronal mechanism underlying cerebellar functions. Here, we explored the contribution of BMP signaling to the induction of mouse cerebellar LTD. We first demonstrated that BMP2 and/or 4 were expressed in GABAergic neurons in mature networks of the cerebellar cortex. mRNA encoding BMP receptor type 1B (Bmpr1b) was expressed in the PC layer. Exogenous application of noggin, a BMP ligand inhibitor, suppressed the induction of cerebellar LTD by conjunctive stimulation, which caused normal LTD under control condition. Furthermore, mice deficient in BMPR1B exhibited attenuation of the extent of LTD induction, whereas they showed normal excitatory synaptic transmission at PF-PC synapses. These results suggest that after postnatal development, BMP signaling activated by BMPR1B, expressed in the PC layer, plays a crucial role in the facilitation of cerebellar LTD, leading to the modulation of cerebellar functions and behaviors.
Collapse
Affiliation(s)
| | - Moeko Kudo
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
2
|
Borgen M, Grill B. Ubiquitin ligase signalling networks shape presynaptic development, function and disease. J Physiol 2024:10.1113/JP286469. [PMID: 39360902 PMCID: PMC11965430 DOI: 10.1113/jp286469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/27/2024] [Indexed: 04/04/2025] Open
Abstract
Ubiquitin ligases are important regulators of nervous system development, function and disease. To date, numerous ubiquitin ligases have been discovered that regulate presynaptic biology. Here, we discuss recent findings on presynaptic ubiquitin ligases that include members from the three major ubiquitin ligase classes: RING, RBR and HECT. Several themes emerge based on findings across a range of model systems. A cadre of ubiquitin ligases is required presynaptically to orchestrate development and transmission at synapses. Multiple ubiquitin ligases deploy both enzymatic and non-enzymatic mechanisms, and act as hubs for signalling networks at the synapse. Both excitatory and inhibitory presynaptic terminals are influenced by ligase activity. Finally, there are several neurodevelopmental disorders and neurodegenerative diseases associated with presynaptic ubiquitin ligases. These findings highlight the growing prominence and biomedical relevance of the presynaptic ubiquitin ligase network.
Collapse
Affiliation(s)
- Melissa Borgen
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, USA
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, USA
| |
Collapse
|
3
|
Vidaurre V, Song A, Li T, Ku WL, Zhao K, Qian J, Chen X. The Drosophila histone methyltransferase SET1 coordinates multiple signaling pathways in regulating male germline stem cell maintenance and differentiation. Development 2024; 151:dev202729. [PMID: 39007366 PMCID: PMC11369688 DOI: 10.1242/dev.202729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase Set1 regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of Set1 results in temporally progressive defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the Set1 knockdown phenotypes, highlighting the functional importance of the methyltransferase activity of Set1. Further, RNA-sequencing experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene Stat92E and the BMP pathway gene Mad, which are upregulated upon Set1 knockdown. Genetic interaction assays support the functional relationships between Set1 and JAK-STAT or BMP pathways, as both Stat92E and Mad mutations suppress the Set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The phenotype of germ cell loss followed by over-proliferation when inhibiting a histone methyltransferase also raises concerns about using their inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Annabelle Song
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taibo Li
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wai Lim Ku
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Vidaurre V, Song A, Li T, Ku WL, Zhao K, Qian J, Chen X. The Drosophila histone methyl-transferase SET1 coordinates multiple signaling pathways in regulating male germline stem cell maintenance and differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580277. [PMID: 38405894 PMCID: PMC10888844 DOI: 10.1101/2024.02.14.580277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Many cell types come from tissue-specific adult stem cells that maintain the balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase, Set1, regulates early-stage male germ cell proliferation and differentiation in Drosophila. Early-stage germline-specific knockdown of set1 results in a temporally progressed defects, arising as germ cell loss and developing to overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage in a non-cell-autonomous manner. Additionally, wild-type Set1, but not the catalytically inactive Set1, could rescue the set1 knockdown phenotypes, highlighting the functional importance of the methyl-transferase activity of the Set1 enzyme. Further, RNA-seq experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene stat92E and the BMP pathway gene mad, that are upregulated upon set1 knockdown. Genetic interaction assays support the functional relationships between set1 and JAK-STAT or BMP pathways, as mutations of both the stat92E and mad genes suppress the set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The germ cell loss followed by over-proliferation phenotypes when inhibiting a histone methyl-transferase raise concerns about using their inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Annabelle Song
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Taibo Li
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wai Lim Ku
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xin Chen
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
Feybesse C, Chokron S, Tordjman S. Melatonin in Neurodevelopmental Disorders: A Critical Literature Review. Antioxidants (Basel) 2023; 12:2017. [PMID: 38001870 PMCID: PMC10669594 DOI: 10.3390/antiox12112017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The article presents a review of the relationships between melatonin and neurodevelopmental disorders. First, the antioxidant properties of melatonin and its physiological effects are considered to understand better the role of melatonin in typical and atypical neurodevelopment. Then, several neurodevelopmental disorders occurring during infancy, such as autism spectrum disorder or neurogenetic disorders associated with autism (including Smith-Magenis syndrome, Angelman syndrome, Rett's syndrome, Tuberous sclerosis, or Williams-Beuren syndrome) and neurodevelopmental disorders occurring later in adulthood like bipolar disorder and schizophrenia, are discussed with regard to impaired melatonin production and circadian rhythms, in particular, sleep-wake rhythms. This article addresses the issue of overlapping symptoms that are commonly observed within these different mental conditions and debates the role of abnormal melatonin production and altered circadian rhythms in the pathophysiology and behavioral expression of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cyrille Feybesse
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
- Faculté de Médecine, Université de Rennes, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| |
Collapse
|
7
|
Moore MC, Taylor DT. Effects of valproate on seizure-like activity in Drosophila melanogaster with a knockdown of Ube3a in different neuronal populations as a model of Angelman Syndrome. Epilepsy Behav Rep 2023; 24:100622. [PMID: 37842098 PMCID: PMC10570944 DOI: 10.1016/j.ebr.2023.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Angelman Syndrome is a rare, genetically induced neurodevelopmental disorder. This disorder stems from a mutation or deletion of the maternal UBE3A gene. Characteristics of this disease include developmental delay, recurring seizures, and severe intellectual disabilities. We studied seizure activity in male Drosophila melanogaster with a knockdown of Ube3a in different neuronal populations (GABAergic, glutamatergic, mushroom body, and all neurons) and investigated the effects of the antiseizure medication (ASM) on seizure-like activity. Epileptiform activity was monitored in individual fruit flies using imaging chambers and mechanically induced seizures using a vortex assay. A positive control was also used: eas (easily shocked seizure phenotype). Seizure activity was analyzed for sums of seizure durations, number of seizures, and total time to return to normal activity. Ube3a knockdowns in GABAergic neurons elicited more seizure-like episodes than knockdowns in glutamatergic neurons and were on par with the positive control group and those with knockdowns in the mushroom bodies. We have established a method whereby valproate could be administered through food rather than through injections to effectively treat epileptiform activity. We demonstrated that if Ube3a is not knocked down pan-neuronally, Angelman Syndrome seizure-like activity can be studied using Drosophila melanogaster and therefore allows for high-throughput drug discovery.
Collapse
|
8
|
Furusawa K, Ishii K, Tsuji M, Tokumitsu N, Hasegawa E, Emoto K. Presynaptic Ube3a E3 ligase promotes synapse elimination through down-regulation of BMP signaling. Science 2023; 381:1197-1205. [PMID: 37708280 DOI: 10.1126/science.ade8978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Inactivation of the ubiquitin ligase Ube3a causes the developmental disorder Angelman syndrome, whereas increased Ube3a dosage is associated with autism spectrum disorders. Despite the enriched localization of Ube3a in the axon terminals including presynapses, little is known about the presynaptic function of Ube3a and mechanisms underlying its presynaptic localization. We show that developmental synapse elimination requires presynaptic Ube3a activity in Drosophila neurons. We further identified the domain of Ube3a that is required for its interaction with the kinesin motor. Angelman syndrome-associated missense mutations in the interaction domain attenuate presynaptic targeting of Ube3a and prevent synapse elimination. Conversely, increased Ube3a activity in presynapses leads to precocious synapse elimination and impairs synaptic transmission. Our findings reveal the physiological role of Ube3a and suggest potential pathogenic mechanisms associated with Ube3a dysregulation.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nagomi Tokumitsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eri Hasegawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Hossain MS, Yao A, Qiao X, Shi W, Xie T, Chen C, Zhang YQ. Gbb glutathionylation promotes its proteasome-mediated degradation to inhibit synapse growth. J Cell Biol 2023; 222:e202202068. [PMID: 37389657 PMCID: PMC10316630 DOI: 10.1083/jcb.202202068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Glutathionylation is a posttranslational modification involved in various molecular and cellular processes. However, it remains unknown whether and how glutathionylation regulates nervous system development. To identify critical regulators of synapse growth and development, we performed an RNAi screen and found that postsynaptic knockdown of glutathione transferase omega 1 (GstO1) caused significantly more synaptic boutons at the Drosophila neuromuscular junctions. Genetic and biochemical analysis revealed an increased level of glass boat bottom (Gbb), the Drosophila homolog of mammalian bone morphogenetic protein (BMP), in GstO1 mutants. Further experiments showed that GstO1 is a critical regulator of Gbb glutathionylation at cysteines 354 and 420, which promoted its degradation via the proteasome pathway. Moreover, the E3 ligase Ctrip negatively regulated the Gbb protein level by preferentially binding to glutathionylated Gbb. These results unveil a novel regulatory mechanism in which glutathionylation of Gbb facilitates its ubiquitin-mediated degradation. Taken together, our findings shed new light on the crosstalk between glutathionylation and ubiquitination of Gbb in synapse development.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiyu Yao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Qiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Shi
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Q. Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Sgammeglia N, Widmer YF, Kaldun JC, Fritsch C, Bruggmann R, Sprecher SG. Memory phase-specific genes in the Mushroom Bodies identified using CrebB-target DamID. PLoS Genet 2023; 19:e1010802. [PMID: 37307281 DOI: 10.1371/journal.pgen.1010802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/29/2023] [Indexed: 06/14/2023] Open
Abstract
The formation of long-term memories requires changes in the transcriptional program and de novo protein synthesis. One of the critical regulators for long-term memory (LTM) formation and maintenance is the transcription factor CREB. Genetic studies have dissected the requirement of CREB activity within memory circuits, however less is known about the genetic mechanisms acting downstream of CREB and how they may contribute defining LTM phases. To better understand the downstream mechanisms, we here used a targeted DamID approach (TaDa). We generated a CREB-Dam fusion protein using the fruit fly Drosophila melanogaster as model. Expressing CREB-Dam in the mushroom bodies (MBs), a brain center implicated in olfactory memory formation, we identified genes that are differentially expressed between paired and unpaired appetitive training paradigm. Of those genes we selected candidates for an RNAi screen in which we identified genes causing increased or decreased LTM.
Collapse
Affiliation(s)
- Noemi Sgammeglia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Yves F Widmer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jenifer C Kaldun
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Job F, Mai C, Villavicencio-Lorini P, Herfurth J, Neuhaus H, Hoffmann K, Pfirrmann T, Hollemann T. OTUD3: A Lys6 and Lys63 specific deubiquitinase in early vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194901. [PMID: 36503125 DOI: 10.1016/j.bbagrm.2022.194901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Ubiquitination and deubiquitylation regulate essential cellular processes and involve hundreds of sequentially acting enzymes, many of which are barely understood. OTUD3 is an evolutionarily highly conserved deubiquitinase involved in many aspects of cellular homeostasis. However, its biochemical properties and physiological role during development are poorly understood. Here, we report on the expression of OTUD3 in human tissue samples where it appears prominently in those of neuronal origin. In cells, OTUD3 is present in the cytoplasm where it can bind to microtubules. Interestingly, we found that OTUD3 cleaves preferentially at K6 and K63, i.e., poly-ubiquitin linkages that are not primarily involved in protein degradation. We employed Xenopus embryos to study the consequences of suppressing otud3 function during early neural development. We found that Otud3 deficiency led to impaired formation of cranial and particularly of cranial neural crest-derived structures as well as movement defects. Thus, OTUD3 appears as a neuronally enriched deubiquitinase that is involved in the proper development of the neural system.
Collapse
Affiliation(s)
- Florian Job
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Human Genetics, 06114 Halle, Germany
| | - Carolin Mai
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | | | - Juliane Herfurth
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | - Herbert Neuhaus
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | - Katrin Hoffmann
- Martin-Luther-University Halle-Wittenberg, Institute of Human Genetics, 06114 Halle, Germany
| | - Thorsten Pfirrmann
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany; Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| | - Thomas Hollemann
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany.
| |
Collapse
|
12
|
Correia-Costa GR, de Leeuw N, Pfundt R, Sgardioli IC, Dos Santos AP, de Lima Santos M, Gil-da-Silva-Lopes VL, Vieira TP. Biallelic frameshift variant in the TBC1D2B gene in two siblings with progressive gingival overgrowth, fibrous dysplasia of face, and mental deterioration. Clin Genet 2022; 102:537-542. [PMID: 36029130 DOI: 10.1111/cge.14215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/27/2023]
Abstract
Biallelic loss-of-function variants in the TBC1D2B gene were recently reported as a cause of a neurodevelopmental disorder with seizures and gingival overgrowth. Here, we report two male siblings with the similar clinical characteristics. They started with gingival overgrowth and bilateral growth of soft tissues in the malar region at 3 years of age, which evolved with significant maxillary hypertrophy and compression of the brainstem due to fibrous dysplasia of facial bones. After disease evolution, they presented with mental deterioration, limb tremors, and gait ataxia. One of them also presented with seizures. Whole exome sequencing revealed a novel biallelic frameshift variant [c.595del; p.(Val199Trpfs*22)] in the TBC1D2B gene in both patients, which was confirmed and found in heterozygous state in each of their parents. There are strong similarities in clinical characteristics, age of onset, and evolution between the patients described here and cases reported in the literature, including cherubism-like phenotype with progressive gingival overgrowth and seizures. This is the fourth family in the world in which a biallelic loss-of-function variant in the TBC1D2B gene is associated with this phenotype. These results support that loss of TBC1D2B is the cause of this rare condition.
Collapse
Affiliation(s)
- Gabriela Roldão Correia-Costa
- Department of Translational Medicine - Laboratory of Human Cytogenetics and Cytogenomics, School of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ilária Cristina Sgardioli
- Department of Translational Medicine - Laboratory of Human Cytogenetics and Cytogenomics, School of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Ana Paula Dos Santos
- Department of Translational Medicine - Laboratory of Human Cytogenetics and Cytogenomics, School of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Marilza de Lima Santos
- Department of Translational Medicine - Laboratory of Human Cytogenetics and Cytogenomics, School of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Vera Lúcia Gil-da-Silva-Lopes
- Department of Translational Medicine - Laboratory of Human Cytogenetics and Cytogenomics, School of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Társis Paiva Vieira
- Department of Translational Medicine - Laboratory of Human Cytogenetics and Cytogenomics, School of Medical Sciences, State University of Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Vicidomini R, Serpe M. Local BMP signaling: A sensor for synaptic activity that balances synapse growth and function. Curr Top Dev Biol 2022; 150:211-254. [PMID: 35817503 PMCID: PMC11102767 DOI: 10.1016/bs.ctdb.2022.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Synapse development is coordinated by intercellular communication between the pre- and postsynaptic compartments, and by neuronal activity itself. In flies as in vertebrates, neuronal activity induces input-specific changes in the synaptic strength so that the entire circuit maintains stable function in the face of many challenges, including changes in synapse number and strength. But how do neurons sense synapse activity? In several studies carried out using the Drosophila neuromuscular junction (NMJ), we demonstrated that local BMP signaling provides an exquisite sensor for synapse activity. Here we review the main features of this exquisite sensor and discuss its functioning beyond monitoring the synapse activity but rather as a key controller that operates in coordination with other BMP signaling pathways to balance synapse growth, maturation and function.
Collapse
Affiliation(s)
- Rosario Vicidomini
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mihaela Serpe
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
14
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
15
|
Kayode OT, Rotimi D, Emmanuel F, Iyobhebhe M, Kayode AAA, Adeleke Ojo O. Contraceptive and biochemical effect of juice extract of Allium cepa, Allium sativum, and their combination in Canton S fruit flies. J Food Biochem 2021; 45:e13821. [PMID: 34145617 DOI: 10.1111/jfbc.13821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
This study determines the contraceptive activity of Allium sativa (Garlic) and Allium cepa (Onion) juices on reproductive output and development of Drosophila melanogaster. The fruit flies were divided and grouped into 5, group A serves as the control, group B serves as the onion group, group C serves as the garlic group, group D serves as the onion + garlic group, while group E serves as the standard contraceptive group. Biochemical parameters measured were superoxide dismutase (SOD), Catalase (CAT), Glutathione-S-transferase (GST), malondialdehyde (MDA), nitric oxide (NO), total cholesterol (TC), triglyceride, mating test, and negative geotaxis. There was a significant reduction in the levels of MDA in onion, garlic, onion + garlic groups when compared with the control, in contrast, a significant increase was observed in SOD, CAT, and GST activities. Furthermore, there was a significant reduction in nitric oxide levels in garlic, onion + garlic extract with a corresponding increase in the standard contraceptive group. There was a significant reduction in the concentration of TC and HMG-CoA in garlic and standard contraceptive groups when compared with the control while triglyceride revealed a considerable increase in the garlic group when compared with the control. The mating test showed there was a considerable reduction in the onion, garlic, onion + garlic, and standard contraceptive when compared with the control. Taken together, Allium sativum proved to serve as a better contraceptive in D. melanogaster as a possible effective option for contraceptives, which is further, supported by their strong antioxidant activity. PRACTICAL APPLICATIONS: A. cepa and A. sativum are sources of dietary phytocompounds with proven antioxidant activities. The contraceptive activity of A. cepa and A. sativum juice extract was investigated. The results showed that A. cepa and A. sativum and their combination prove to serve as a better effective option for contraceptives in D. melanogaster. The observed results could provide the potential application of A. cepa and A. sativum as an alternative therapy for contraceptives.
Collapse
Affiliation(s)
- Omowumi T Kayode
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
| | - Damilare Rotimi
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| | - Favor Emmanuel
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| | - Matthew Iyobhebhe
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| | - Abolanle A A Kayode
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Nigeria
| | - Oluwafemi Adeleke Ojo
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
16
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
17
|
Jelali N, Ben Youssef R, Boukari N, Zorrig W, Dhifi W, Abdelly C. Salicylic acid and H 2O 2 seed priming alleviates Fe deficiency through the modulation of growth, root acidification capacity and photosynthetic performance in Sulla carnosa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:392-399. [PMID: 33293206 DOI: 10.1016/j.plaphy.2020.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/21/2020] [Indexed: 05/02/2023]
Abstract
Iron (Fe) is one of the essential nutrients for plant growth which is involved in several physiological functions. Hence, there are intensive efforts to improve plant tolerance to Fe deficiency, by genotypic screening and by the use of adapted physiological tools. The intend of the current study was to explore the seed priming effect with salicylic acid (SA 0.25 mM) and hydrogen peroxide (H2O2 20 mM), either separately applied or combined, on plant growth, nutritional elements status (Fe and potassium K), root acidification and photosynthetic activity in two S. carnosa cultivars (Sidi Khlif and Kalbia) with different tolerance to such constraint. Under unprimed conditions, Fe deficiency decreased plant growth, chlorophyll concentration, in addition to Fe and K contents. Moreover, it affected the photosynthetic activity by inhibiting the net CO2 assimilation rate and increasing the transpiration rate of both cultivars, following a reduced water use efficiency. The changes above described were much less pronounced in Sidi Khlif than in Kalbia. The stomatal conductance increased in Fe-deficient leaves of both cultivars, suggesting that the photosynthesis impairment should be attributed to non-stomatal factors. Interestingly, priming seeds with both agents significantly improved the growth performance and the rhizosphere acidification of deficient S. carnosa plants. However, the D + SA + H2O2 treatment had the most beneficial effect on S. carnosa plant growth. The degree of this stimulation may vary depending on the cultivar, the tissue and the priming agent applied. This could be owing to the photosynthetic performance modulation, leading to more efficient nutrient uptake.
Collapse
Affiliation(s)
- Nahida Jelali
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia.
| | - Rim Ben Youssef
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Nadia Boukari
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Walid Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Wissal Dhifi
- UR Ecophysiologie Environnementale et Procédés Agroalimentaires, Institut Supérieur de Biotechnologie de Sidi Thabet, BiotechPole de Sidi Thabet, Université de la Manouba, Ariana, Tunisia
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
18
|
Ryan CS, Edlund W, Mandrekar J, Wong-Kisiel LC, Gavrilova RH, Kotagal S. Iron Deficiency and Its Role in Sleep Disruption in Patients With Angelman Syndrome. J Child Neurol 2020; 35:963-969. [PMID: 32713229 DOI: 10.1177/0883073820941755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine if Angelman syndrome patients with sleep complaints have an increased risk of iron deficiency, and if iron therapy improves their sleep difficulties. BACKGROUND About two-thirds of Angelman syndrome patients experience sleep difficulties, which are likely multifactorial. Because iron deficiency can contribute toward restlessness in sleep, we investigated whether it might be a contributing factor in this special population. METHODS This retrospective study involved medical record review of Angelman syndrome patients <18 years old who had attended our multidisciplinary Angelman syndrome clinic and had sleep complaints. Serum ferritin levels were compared to age- and sex-matched controls. Sleep history and nocturnal polysomnogram findings of the Angelman syndrome patients were also characterized. RESULTS Nineteen Angelman syndrome patients (9 female, mean age 6.2±4.4 years) were identified. All 19 reported sleep difficulties. The mean serum ferritin level was 19.9±8.5 μg/L, while that in controls was 27.8±17.8 μg/L (P value .13). The odds ratio of iron deficiency in Angelman syndrome compared to controls was 4.17 (95% confidence interval 1.23-14.10), using normal serum ferritin level of 24 μg/L based on literature. Fifteen Angelman syndrome patients underwent nocturnal polysomnogram with 9/15 showing an elevated periodic limb movement index (overall mean 9.8±10.4). Seventeen of 19 received iron therapy. Twelve had follow-up after iron therapy, with parents reporting improved sleep quality. Eight had serum ferritin levels rechecked after iron therapy, showing a mean increase of 24±5.1 μg/L. CONCLUSIONS Sleep difficulties in Angelman syndrome, though multifactorial, may in part be related to iron deficiency. Treatment with iron improved sleep to a modest degree in this population.
Collapse
Affiliation(s)
- Conor S Ryan
- Department of Neurology, 4352Mayo Clinic, Rochester, MN, USA
| | - Wendy Edlund
- Department of Neurology, 4352Mayo Clinic, Rochester, MN, USA
| | - Jay Mandrekar
- Department of Neurology, 4352Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences Research, 4352Mayo Clinic, Rochester, MN, USA
| | | | - Ralitza H Gavrilova
- Department of Neurology, 4352Mayo Clinic, Rochester, MN, USA.,Department of Genetics, 4352Mayo Clinic, Rochester, MN, USA
| | - Suresh Kotagal
- Department of Neurology, 4352Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Molecular Evolution, Neurodevelopmental Roles and Clinical Significance of HECT-Type UBE3 E3 Ubiquitin Ligases. Cells 2020; 9:cells9112455. [PMID: 33182779 PMCID: PMC7697756 DOI: 10.3390/cells9112455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600–700 E3 ubiquitin ligases embedded in the human genome. Notably, mutations in around 13% of these genes are causative of severe neurological diseases. Despite this, molecular and cellular context of ubiquitination remains poorly characterized, especially in the developing brain. In this review article, we summarize recent findings on brain-expressed HECT-type E3 UBE3 ligases and their murine orthologues, comprising Angelman syndrome UBE3A, Kaufman oculocerebrofacial syndrome UBE3B and autism spectrum disorder-associated UBE3C. We summarize evolutionary emergence of three UBE3 genes, the biochemistry of UBE3 enzymes, their biology and clinical relevance in brain disorders. Particularly, we highlight that uninterrupted action of UBE3 ligases is a sine qua non for cortical circuit assembly and higher cognitive functions of the neocortex.
Collapse
|
20
|
Ttm50 facilitates calpain activation by anchoring it to calcium stores and increasing its sensitivity to calcium. Cell Res 2020; 31:433-449. [PMID: 32848200 DOI: 10.1038/s41422-020-0388-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022] Open
Abstract
Calcium-dependent proteolytic calpains are implicated in a variety of physiological processes, as well as pathologies associated with calcium overload. However, the mechanism by which calpain is activated remains elusive since intracellular calcium levels under physiological conditions do not reach the high concentration range required to trigger calpain activation. From a candidate screening using the abundance of the calpain target glutamate receptor GluRIIA at the Drosophila neuromuscular junction as a readout, we uncovered that calpain activity was inhibited upon knockdown of Ttm50, a subunit of the Tim23 complex known to be involved in the import of proteins across the mitochondrial inner membrane. Unexpectedly, Ttm50 and calpain are co-localized at calcium stores Golgi and endoplasmic reticulum (ER), and Ttm50 interacts with calpain via its C-terminal domain. This interaction is required for calpain localization at Golgi/ER, and increases calcium sensitivity of calpain by roughly an order of magnitude. Our findings reveal the regulation of calpain activation by Ttm50, and shed new light on calpain-associated pathologies.
Collapse
|
21
|
Chen A, Bai L, Zhong K, Shu X, Wang A, Xiao Y, Zhang K, Shen C. APC2
CDH1
negatively regulates agrin signaling by promoting the ubiquitination and proteolytic degradation of DOK7. FASEB J 2020; 34:12009-12023. [PMID: 32687671 DOI: 10.1096/fj.202000485r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Aizhong Chen
- The First Affiliated Hospital Institute of Translational Medicine School of Medicine Zhejiang University Zhejiang China
| | - Lei Bai
- The First Affiliated Hospital Institute of Translational Medicine School of Medicine Zhejiang University Zhejiang China
| | - Keke Zhong
- The First Affiliated Hospital Institute of Translational Medicine School of Medicine Zhejiang University Zhejiang China
| | - Xiaoqiu Shu
- The First Affiliated Hospital Institute of Translational Medicine School of Medicine Zhejiang University Zhejiang China
| | - Ailian Wang
- The First Affiliated Hospital Institute of Translational Medicine School of Medicine Zhejiang University Zhejiang China
| | - Yatao Xiao
- The First Affiliated Hospital Institute of Translational Medicine School of Medicine Zhejiang University Zhejiang China
| | - Kejing Zhang
- The First Affiliated Hospital Institute of Translational Medicine School of Medicine Zhejiang University Zhejiang China
| | - Chengyong Shen
- The First Affiliated Hospital Institute of Translational Medicine School of Medicine Zhejiang University Zhejiang China
- Department of Neurobiology Key Laboratory of Medical Neurobiology of Zhejiang Province School of Medicine Zhejiang University Zhejiang China
| |
Collapse
|
22
|
Harms FL, Parthasarathy P, Zorndt D, Alawi M, Fuchs S, Halliday BJ, McKeown C, Sampaio H, Radhakrishnan N, Radhakrishnan SK, Gorce M, Navet B, Ziegler A, Sachdev R, Robertson SP, Nampoothiri S, Kutsche K. Biallelic loss-of-function variants in TBC1D2B cause a neurodevelopmental disorder with seizures and gingival overgrowth. Hum Mutat 2020; 41:1645-1661. [PMID: 32623794 DOI: 10.1002/humu.24071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
The family of Tre2-Bub2-Cdc16 (TBC)-domain containing GTPase activating proteins (RABGAPs) is not only known as key regulatorof RAB GTPase activity but also has GAP-independent functions. Rab GTPases are implicated in membrane trafficking pathways, such as vesicular trafficking. We report biallelic loss-of-function variants in TBC1D2B, encoding a member of the TBC/RABGAP family with yet unknown function, as the underlying cause of cognitive impairment, seizures, and/or gingival overgrowth in three individuals from unrelated families. TBC1D2B messenger RNA amount was drastically reduced, and the protein was absent in fibroblasts of two patients. In immunofluorescence analysis, ectopically expressed TBC1D2B colocalized with vesicles positive for RAB5, a small GTPase orchestrating early endocytic vesicle trafficking. In two independent TBC1D2B CRISPR/Cas9 knockout HeLa cell lines that serve as cellular model of TBC1D2B deficiency, epidermal growth factor internalization was significantly reduced compared with the parental HeLa cell line suggesting a role of TBC1D2B in early endocytosis. Serum deprivation of TBC1D2B-deficient HeLa cell lines caused a decrease in cell viability and an increase in apoptosis. Our data reveal that loss of TBC1D2B causes a neurodevelopmental disorder with gingival overgrowth, possibly by deficits in vesicle trafficking and/or cell survival.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Padmini Parthasarathy
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Dennis Zorndt
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin J Halliday
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Colina McKeown
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Hugo Sampaio
- Department of Women and Children's Health, University of New South Wales, Randwick Campus, Randwick, NSW, Australia.,Sydney Children's Hospital, Randwick, NSW, Australia
| | - Natasha Radhakrishnan
- Department of Ophthalmology, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - Suresh K Radhakrishnan
- Department of Neurology, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - Magali Gorce
- Department of Metabolic Disease, Children University Hospital, Toulouse, France
| | - Benjamin Navet
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France.,MitoLab, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers, France
| | - Alban Ziegler
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France.,MitoLab, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers, France
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Ukwubile C, Ikpefan E, Malgwi T, Bababe A, Odugu J, Angyu A, Otalu O, Bingari M, Nettey H. Cytotoxic effects of new bioactive compounds isolated from a Nigerian anticancer plant Melastomastrum capitatum Fern. leaf extract. SCIENTIFIC AFRICAN 2020; 8:e00421. [DOI: 10.1016/j.sciaf.2020.e00421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Guangming G, Junhua G, Chenchen Z, Yang M, Wei X. Neurexin and Neuroligins Maintain the Balance of Ghost and Satellite Boutons at the Drosophila Neuromuscular Junction. Front Neuroanat 2020; 14:19. [PMID: 32581727 PMCID: PMC7296126 DOI: 10.3389/fnana.2020.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/26/2020] [Indexed: 11/22/2022] Open
Abstract
Neurexins and neuroligins are common synaptic adhesion molecules that are associated with autism and interact with each other in the synaptic cleft. The Drosophila neuromuscular junction (NMJ) bouton is a well-known model system in neuroscience, and ghost and satellite boutons, respectively, indicate the poor development and overgrowth of the NMJ boutons. However, the Drosophila neurexin (DNrx) and Drosophila neuroligins (DNlgs) are mainly observed in type Ib boutons, indicating the ultrastructural and developmental phenotypes of the Drosophila NMJ. Here, we identified the ultrastructural and developmental features of ghost and satellite boutons by utilizing dneurexin (dnrx) and dneuroligins (dnlgs) fly mutants and other associated fly strains. Ghost boutons contain synaptic vesicles with multiple diameters but very rarely contain T-bar structures and swollen or thin subsynaptic reticulum (SSR) membranes. The muscle cell membrane is invaginated at different sites, stretches to the ghost bouton from different directions, forms several layers that enwrap the ghost bouton, and then branches into the complex SSR. Satellite boutons share a common SSR membrane and present either a typical profile in which a main bouton is encircled by small boutons or two atypical profiles in which the small boutons are grouped together or distributed in beads without a main bouton. Electron and confocal microscopy data showed that dnrx, dnlg1, dnlg2, dnlg3, and dnlg4 mutations led to ghost boutons; the overexpression of dnrx, dnlg1, dnlg2, dnlg3, and dnlg4 led to satellite boutons; and the dnlg2;dnlg3 double mutation also led to satellite boutons. These results suggested that DNrx and DNlgs jointly maintain the development and function of NMJ boutons by regulating the balance of ghost and satellite boutons in Drosophila.
Collapse
Affiliation(s)
- Gan Guangming
- School of Medicine, Southeast University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Geng Junhua
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Zhang Chenchen
- School of Medicine, Southeast University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Mou Yang
- School of Medicine, Southeast University, Nanjing, China
| | - Xie Wei
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China.,Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Berke B, Le L, Keshishian H. Target-dependent retrograde signaling mediates synaptic plasticity at the Drosophila neuromuscular junction. Dev Neurobiol 2020; 79:895-912. [PMID: 31950660 DOI: 10.1002/dneu.22731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Neurons that innervate multiple targets often establish synapses with target-specific strengths, and local forms of synaptic plasticity. We have examined the molecular-genetic mechanisms that allow a single Drosophila motoneuron, the ventral Common Exciter (vCE), to establish connections with target-specific properties at its various synaptic partners. By driving transgenes in a subset of vCE's targets, we found that individual target cells are able to independently control the properties of vCE's innervating branch and synapses. This is achieved by means of a trans-synaptic growth factor secreted by the target cell. At the larval neuromuscular junction, postsynaptic glutamate receptor activity stimulates the release of the BMP4/5/6 homolog Glass bottom boat (Gbb). As larvae mature and motoneuron terminals grow, Gbb activates the R-Smad transcriptional regulator phosphorylated Mad (pMad) to facilitate presynaptic development. We found that manipulations affecting glutamate receptors or Gbb within subsets of target muscles led to local effects either specific to the manipulated muscle or by a limited gradient within the presynaptic branches. While presynaptic development depends on pMad transcriptional activity within the motoneuron nucleus, we find that the Gbb growth factor may also act locally within presynaptic terminals. Local Gbb signaling and presynaptic pMad accumulation within boutons may therefore participate in a "synaptic tagging" mechanism, to influence synaptic growth and plasticity in Drosophila.
Collapse
Affiliation(s)
- Brett Berke
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, CT, USA
| | - Linh Le
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Haig Keshishian
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, CT, USA
| |
Collapse
|
26
|
Straub J, Gregor A, Sauerer T, Fliedner A, Distel L, Suchy C, Ekici AB, Ferrazzi F, Zweier C. Genetic interaction screen for severe neurodevelopmental disorders reveals a functional link between Ube3a and Mef2 in Drosophila melanogaster. Sci Rep 2020; 10:1204. [PMID: 31988313 PMCID: PMC6985129 DOI: 10.1038/s41598-020-58182-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are clinically and genetically extremely heterogeneous with shared phenotypes often associated with genes from the same networks. Mutations in TCF4, MEF2C, UBE3A, ZEB2 or ATRX cause phenotypically overlapping, syndromic forms of NDDs with severe intellectual disability, epilepsy and microcephaly. To characterize potential functional links between these genes/proteins, we screened for genetic interactions in Drosophila melanogaster. We induced ubiquitous or tissue specific knockdown or overexpression of each single orthologous gene (Da, Mef2, Ube3a, Zfh1, XNP) and in pairwise combinations. Subsequently, we assessed parameters such as lethality, wing and eye morphology, neuromuscular junction morphology, bang sensitivity and climbing behaviour in comparison between single and pairwise dosage manipulations. We found most stringent evidence for genetic interaction between Ube3a and Mef2 as simultaneous dosage manipulation in different tissues including glia, wing and eye resulted in multiple phenotype modifications. We subsequently found evidence for physical interaction between UBE3A and MEF2C also in human cells. Systematic pairwise assessment of the Drosophila orthologues of five genes implicated in clinically overlapping, severe NDDs and subsequent confirmation in a human cell line revealed interactions between UBE3A/Ube3a and MEF2C/Mef2, thus contributing to the characterization of the underlying molecular commonalities.
Collapse
Affiliation(s)
- Jonas Straub
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Anne Gregor
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Tatjana Sauerer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Anna Fliedner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Laila Distel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Christine Suchy
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
| |
Collapse
|
27
|
Tracy Cai X, Li H, Safyan A, Gawlik J, Pyrowolakis G, Jasper H. AWD regulates timed activation of BMP signaling in intestinal stem cells to maintain tissue homeostasis. Nat Commun 2019; 10:2988. [PMID: 31278345 PMCID: PMC6611797 DOI: 10.1038/s41467-019-10926-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
Precise control of stem cell (SC) proliferation ensures tissue homeostasis. In the Drosophila intestine, injury-induced regeneration involves initial activation of intestinal SC (ISC) proliferation and subsequent return to quiescence. These two phases of the regenerative response are controlled by differential availability of the BMP type I receptor Thickveins (Tkv), yet how its expression is dynamically regulated remains unclear. Here we show that during homeostasis, the E3 ubiquitin ligase Highwire and the ubiquitin-proteasome system maintain low Tkv protein expression. After ISC activation, Tkv is stabilized by proteasome inhibition and undergoes endocytosis due to the induction of the nucleoside diphosphate kinase Abnormal Wing Disc (AWD). Tkv internalization is required for the activation of the Smad protein Mad, and for the return to quiescence after a regenerative episode. Our data provide insight into the mechanisms ensuring tissue homeostasis by dynamic control of somatic stem cell activity. Regeneration after injury in the Drosophila intestine involves early activation of intestinal stem cells (ISCs) and subsequent return to quiescence. Here the authors show that return to quiescence by ISCs involves BMP Type I receptor Tkv protein stabilization along with AWD mediated internalization into endocytic vesicles.
Collapse
Affiliation(s)
- Xiaoyu Tracy Cai
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Abu Safyan
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.,Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Jennifer Gawlik
- Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - George Pyrowolakis
- Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centre BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA. .,Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA. .,Leibniz Institute on Aging - Fritz Lipmann Institute, 07745, Jena, Germany.
| |
Collapse
|
28
|
Avagliano Trezza R, Sonzogni M, Bossuyt SNV, Zampeta FI, Punt AM, van den Berg M, Rotaru DC, Koene LMC, Munshi ST, Stedehouder J, Kros JM, Williams M, Heussler H, de Vrij FMS, Mientjes EJ, van Woerden GM, Kushner SA, Distel B, Elgersma Y. Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome. Nat Neurosci 2019; 22:1235-1247. [PMID: 31235931 DOI: 10.1038/s41593-019-0425-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/13/2019] [Indexed: 12/22/2022]
Abstract
Mutations affecting the gene encoding the ubiquitin ligase UBE3A cause Angelman syndrome. Although most studies focus on the synaptic function of UBE3A, we show that UBE3A is highly enriched in the nucleus of mouse and human neurons. We found that the two major isoforms of UBE3A exhibit highly distinct nuclear versus cytoplasmic subcellular localization. Both isoforms undergo nuclear import through direct binding to PSMD4 (also known as S5A or RPN10), but the amino terminus of the cytoplasmic isoform prevents nuclear retention. Mice lacking the nuclear UBE3A isoform recapitulate the behavioral and electrophysiological phenotypes of Ube3am-/p+ mice, whereas mice harboring a targeted deletion of the cytosolic isoform are unaffected. Finally, we identified Angelman syndrome-associated UBE3A missense mutations that interfere with either nuclear targeting or nuclear retention of UBE3A. Taken together, our findings elucidate the mechanisms underlying the subcellular localization of UBE3A, and indicate that the nuclear UBE3A isoform is the most critical for the pathophysiology of Angelman syndrome.
Collapse
Affiliation(s)
- Rossella Avagliano Trezza
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Monica Sonzogni
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stijn N V Bossuyt
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - F Isabella Zampeta
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A Mattijs Punt
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marlene van den Berg
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana C Rotaru
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Linda M C Koene
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Shashini T Munshi
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jeffrey Stedehouder
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mark Williams
- Mater Research Institute, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| | - Helen Heussler
- Mater Research Institute, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia.,Child Development Program, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin J Mientjes
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands. .,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands. .,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Kumar S, Reynolds K, Ji Y, Gu R, Rai S, Zhou CJ. Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk. J Neurodev Disord 2019; 11:10. [PMID: 31202261 PMCID: PMC6571119 DOI: 10.1186/s11689-019-9268-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background The development of an autistic brain is a highly complex process as evident from the involvement of various genetic and non-genetic factors in the etiology of the autism spectrum disorder (ASD). Despite being a multifactorial neurodevelopmental disorder, autistic patients display a few key characteristics, such as the impaired social interactions and elevated repetitive behaviors, suggesting the perturbation of specific neuronal circuits resulted from abnormal signaling pathways during brain development in ASD. A comprehensive review for autistic signaling mechanisms and interactions may provide a better understanding of ASD etiology and treatment. Main body Recent studies on genetic models and ASD patients with several different mutated genes revealed the dysregulation of several key signaling pathways, such as WNT, BMP, SHH, and retinoic acid (RA) signaling. Although no direct evidence of dysfunctional FGF or TGF-β signaling in ASD has been reported so far, a few examples of indirect evidence can be found. This review article summarizes how various genetic and non-genetic factors which have been reported contributing to ASD interact with WNT, BMP/TGF-β, SHH, FGF, and RA signaling pathways. The autism-associated gene ubiquitin-protein ligase E3A (UBE3A) has been reported to influence WNT, BMP, and RA signaling pathways, suggesting crosstalk between various signaling pathways during autistic brain development. Finally, the article comments on what further studies could be performed to gain deeper insights into the understanding of perturbed signaling pathways in the etiology of ASD. Conclusion The understanding of mechanisms behind various signaling pathways in the etiology of ASD may help to facilitate the identification of potential therapeutic targets and design of new treatment methods.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Sunil Rai
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| |
Collapse
|
30
|
Calcium-Activated Calpain Specifically Cleaves Glutamate Receptor IIA But Not IIB at the Drosophila Neuromuscular Junction. J Neurosci 2019; 39:2776-2791. [PMID: 30705102 DOI: 10.1523/jneurosci.2213-17.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
Calpains are calcium-dependent, cytosolic proteinases active at neutral pH. They do not degrade but cleave substrates at limited sites. Calpains are implicated in various pathologies, such as ischemia, injuries, muscular dystrophy, and neurodegeneration. Despite so, the physiological function of calpains remains to be clearly defined. Using the neuromuscular junction of Drosophila of both sexes as a model, we performed RNAi screening and uncovered that calpains negatively regulated protein levels of the glutamate receptor GluRIIA but not GluRIIB. We then showed that calpains enrich at the postsynaptic area, and the calcium-dependent activation of calpains induced cleavage of GluRIIA at Q788 of its C terminus. Further genetic and biochemical experiments revealed that different calpains genetically and physically interact to form a protein complex. The protein complex was required for the proteinase activation to downregulate GluRIIA. Our data provide a novel insight into the mechanisms by which different calpains act together as a complex to specifically control GluRIIA levels and consequently synaptic function.SIGNIFICANCE STATEMENT Calpain has been implicated in neural insults and neurodegeneration. However, the physiological function of calpains in the nervous system remains to be defined. Here, we show that calpain enriches at the postsynaptic area and negatively and specifically regulates GluRIIA, but not IIB, level during development. Calcium-dependent activation of calpain cleaves GluRIIA at Q788 of its C terminus. Different calpains constitute an active protease complex to cleave its target. This study reveals a critical role of calpains during development to specifically cleave GluRIIA at synapses and consequently regulate synaptic function.
Collapse
|
31
|
Guang S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology Involved in Autism Spectrum Disorder. Front Cell Neurosci 2018; 12:470. [PMID: 30627085 PMCID: PMC6309163 DOI: 10.3389/fncel.2018.00470] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) encompasses a group of multifactorial neurodevelopmental disorders characterized by impaired social communication, social interaction and repetitive behaviors. ASD affects 1 in 59 children, and is about 4 times more common among boys than among girls. Strong genetic components, together with environmental factors in the early stage of development, contribute to the pathogenesis of ASD. Multiple studies have revealed that mutations in genes like NRXN, NLGN, SHANK, TSC1/2, FMR1, and MECP2 converge on common cellular pathways that intersect at synapses. These genes encode cell adhesion molecules, scaffolding proteins and proteins involved in synaptic transcription, protein synthesis and degradation, affecting various aspects of synapses including synapse formation and elimination, synaptic transmission and plasticity. This suggests that the pathogenesis of ASD may, at least in part, be attributed to synaptic dysfunction. In this article, we will review major genes and signaling pathways implicated in synaptic abnormalities underlying ASD, and discuss molecular, cellular and functional studies of ASD experimental models.
Collapse
Affiliation(s)
- Shiqi Guang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
32
|
Cheng Y, Chen D. Fruit fly research in China. J Genet Genomics 2018; 45:583-592. [PMID: 30455037 DOI: 10.1016/j.jgg.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022]
Abstract
Served as a model organism over a century, fruit fly has significantly pushed forward the development of global scientific research, including in China. The high similarity in genomic features between fruit fly and human enables this tiny insect to benefit the biomedical studies of human diseases. In the past decades, Chinese biologists have used fruit fly to make numerous achievements on understanding the fundamental questions in many diverse areas of biology. Here, we review some of the recent fruit fly studies in China, and mainly focus on those studies in the fields of stem cell biology, cancer therapy and regeneration medicine, neurological disorders and epigenetics.
Collapse
Affiliation(s)
- Ying Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
33
|
Kuznetsova KG, Kliuchnikova AA, Ilina IU, Chernobrovkin AL, Novikova SE, Farafonova TE, Karpov DS, Ivanov MV, Goncharov AO, Ilgisonis EV, Voronko OE, Nasaev SS, Zgoda VG, Zubarev RA, Gorshkov MV, Moshkovskii SA. Proteogenomics of Adenosine-to-Inosine RNA Editing in the Fruit Fly. J Proteome Res 2018; 17:3889-3903. [DOI: 10.1021/acs.jproteome.8b00553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Anna A. Kliuchnikova
- Institute of Biomedical Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | | | | | | | - Dmitry S. Karpov
- Institute of Biomedical Chemistry, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mark V. Ivanov
- Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Anton O. Goncharov
- Institute of Biomedical Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | | | - Shamsudin S. Nasaev
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | - Roman A. Zubarev
- Karolinska Institutet, Stockholm, Sweden
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mikhail V. Gorshkov
- Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Sergei A. Moshkovskii
- Institute of Biomedical Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
34
|
BMP signaling downstream of the Highwire E3 ligase sensitizes nociceptors. PLoS Genet 2018; 14:e1007464. [PMID: 30001326 PMCID: PMC6042685 DOI: 10.1371/journal.pgen.1007464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/01/2018] [Indexed: 01/18/2023] Open
Abstract
A comprehensive understanding of the molecular machinery important for nociception is essential to improving the treatment of pain. Here, we show that the BMP signaling pathway regulates nociception downstream of the E3 ubiquitin ligase highwire (hiw). hiw loss of function in nociceptors caused antagonistic and pleiotropic phenotypes with simultaneous insensitivity to noxious heat but sensitized responses to optogenetic activation of nociceptors. Thus, hiw functions to both positively and negatively regulate nociceptors. We find that a sensory reception-independent sensitization pathway was associated with BMP signaling. BMP signaling in nociceptors was up-regulated in hiw mutants, and nociceptor-specific expression of hiw rescued all nociception phenotypes including the increased BMP signaling. Blocking the transcriptional output of the BMP pathway with dominant negative Mad suppressed nociceptive hypersensitivity that was induced by interfering with hiw. The up-regulated BMP signaling phenotype in hiw genetic mutants could not be suppressed by mutation in wallenda suggesting that hiw regulates BMP in nociceptors via a wallenda independent pathway. In a newly established Ca2+ imaging preparation, we observed that up-regulated BMP signaling caused a significantly enhanced Ca2+ signal in the axon terminals of nociceptors that were stimulated by noxious heat. This response likely accounts for the nociceptive hypersensitivity induced by elevated BMP signaling in nociceptors. Finally, we showed that 24-hour activation of BMP signaling in nociceptors was sufficient to sensitize nociceptive responses to optogenetically-triggered nociceptor activation without altering nociceptor morphology. Overall, this study demonstrates the previously unrevealed roles of the Hiw-BMP pathway in the regulation of nociception and provides the first direct evidence that up-regulated BMP signaling physiologically sensitizes responses of nociceptors and nociception behaviors. Although pain is a universally experienced sensation that has a significant impact on human lives and society, the molecular mechanisms of pain remain poorly understood. Elucidating these mechanisms is particularly important to gaining insight into the clinical development of currently incurable chronic pain diseases. Taking an advantage of the powerful genetic model organism Drosophila melanogaster (fruit flies), we unveil the Highwire-BMP signaling pathway as a novel molecular pathway that regulates the sensitivity of nociceptive sensory neurons. Highwire and the molecular components of the BMP signaling pathway are known to be widely conserved among animal phyla, from nematode worms to humans. Since abnormal sensitivity of nociceptive sensory neurons can play a critical role in the development of chronic pain conditions, a deeper understanding of the regulation of nociceptor sensitivity has the potential to advance effective therapeutic strategies to treat difficult pain conditions.
Collapse
|
35
|
Malzer E, Dominicus CS, Chambers JE, Dickens JA, Mookerjee S, Marciniak SJ. The integrated stress response regulates BMP signalling through effects on translation. BMC Biol 2018; 16:34. [PMID: 29609607 PMCID: PMC5881181 DOI: 10.1186/s12915-018-0503-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Background Developmental pathways must be responsive to the environment. Phosphorylation of eIF2α enables a family of stress-sensing kinases to trigger the integrated stress response (ISR), which has pro-survival and developmental consequences. Bone morphogenetic proteins (BMPs) regulate multiple developmental processes in organisms from insects to mammals. Results Here we show in Drosophila that GCN2 antagonises BMP signalling through direct effects on translation and indirectly via the transcription factor crc (dATF4). Expression of a constitutively active GCN2 or loss of the eIF2α phosphatase dPPP1R15 impairs developmental BMP signalling in flies. In cells, inhibition of translation by GCN2 blocks downstream BMP signalling. Moreover, loss of d4E-BP, a target of crc, augments BMP signalling in vitro and rescues tissue development in vivo. Conclusion These results identify a novel mechanism by which the ISR modulates BMP signalling during development. Electronic supplementary material The online version of this article (10.1186/s12915-018-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elke Malzer
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Caia S Dominicus
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Souradip Mookerjee
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK. .,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK.
| |
Collapse
|
36
|
Wang T, van Woerden GM, Elgersma Y, Borst JGG. Enhanced Transmission at the Calyx of Held Synapse in a Mouse Model for Angelman Syndrome. Front Cell Neurosci 2018; 11:418. [PMID: 29354033 PMCID: PMC5758499 DOI: 10.3389/fncel.2017.00418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
The neurodevelopmental disorder Angelman syndrome (AS) is characterized by intellectual disability, motor dysfunction, distinct behavioral aspects, and epilepsy. AS is caused by a loss of the maternally expressed UBE3A gene, and many of the symptoms are recapitulated in a Ube3a mouse model of this syndrome. At the cellular level, changes in the axon initial segment (AIS) have been reported, and changes in vesicle cycling have indicated the presence of presynaptic deficits. Here we studied the role of UBE3A in the auditory system by recording synaptic transmission at the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) through in vivo whole cell and juxtacellular recordings. We show that MNTB principal neurons in Ube3a mice exhibit a hyperpolarized resting membrane potential, an increased action potential (AP) amplitude and a decreased AP half width. Moreover, both the pre- and postsynaptic AP in the calyx of Held synapse of Ube3a mice showed significantly faster recovery from spike depression. An increase in AIS length was observed in the principal MNTB neurons of Ube3a mice, providing a possible substrate for these gain-of-function changes. Apart from the effect on APs, we also observed that EPSPs showed decreased short-term synaptic depression (STD) during long sound stimulations in AS mice, and faster recovery from STD following these tones, which is suggestive of a presynaptic gain-of-function. Our findings thus provide in vivo evidence that UBE3A plays a critical role in controlling synaptic transmission and excitability at excitatory synapses.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
37
|
Kashima R, Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:106-120. [PMID: 29190314 PMCID: PMC5846707 DOI: 10.1093/abbs/gmx124] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
The TGF-β superfamily signaling is involved in a variety of biological processes during embryogenesis and in adult tissue homeostasis. Faulty regulation of the signaling pathway that transduces the TGF-β superfamily signals accordingly leads to a number of ailments, such as cancer and cardiovascular, metabolic, urinary, intestinal, skeletal, and immune diseases. In recent years, a number of studies have elucidated the essential roles of TGF-βs and BMPs during neuronal development in the maintenance of appropriate innervation and neuronal activity. The new advancement implicates significant roles of the aberrant TGF-β superfamily signaling in the pathogenesis of neurological disorders. In this review, we compile a number of reports implicating the deregulation of TGF-β/BMP signaling pathways in the pathogenesis of cognitive and neurodegenerative disorders in animal models and patients. We apologize in advance that the review falls short of providing details of the role of TGF-β/BMP signaling or mechanisms underlying the pathogenesis of neurological disorders. The goal of this article is to reveal a gap in our knowledge regarding the association between TGF-β/BMP signaling pathways and neuronal tissue homeostasis and development and facilitate the research with a potential to develop new therapies for neurological ailments by modulating the pathways.
Collapse
Affiliation(s)
- Risa Kashima
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
38
|
Valnegri P, Huang J, Yamada T, Yang Y, Mejia LA, Cho HY, Oldenborg A, Bonni A. RNF8/UBC13 ubiquitin signaling suppresses synapse formation in the mammalian brain. Nat Commun 2017; 8:1271. [PMID: 29097665 PMCID: PMC5668370 DOI: 10.1038/s41467-017-01333-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/08/2017] [Indexed: 11/09/2022] Open
Abstract
Although ubiquitin ligases have been implicated in autism, their roles and mechanisms in brain development remain incompletely understood. Here, we report that in vivo knockdown or conditional knockout of the autism-linked ubiquitin ligase RNF8 or associated ubiquitin-conjugating enzyme UBC13 in rodent cerebellar granule neurons robustly increases the number of parallel fiber presynaptic boutons and functional parallel fiber/Purkinje cell synapses. In contrast to the role of nuclear RNF8 in proliferating cells, RNF8 operates in the cytoplasm in neurons to suppress synapse differentiation in vivo. Proteomics analyses reveal that neuronal RNF8 interacts with the HECT domain protein HERC2 and scaffold protein NEURL4, and knockdown of HERC2 or NEURL4 phenocopies the inhibition of RNF8/UBC13 signaling on synapse differentiation. In behavior analyses, granule neuron-specific knockout of RNF8 or UBC13 impairs cerebellar-dependent learning. Our study defines RNF8 and UBC13 as components of a novel cytoplasmic ubiquitin-signaling network that suppresses synapse formation in the brain.
Collapse
Affiliation(s)
- Pamela Valnegri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yue Yang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luis A Mejia
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ha Y Cho
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
39
|
Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Res 2017; 28:48-68. [PMID: 29076503 DOI: 10.1038/cr.2017.132] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 01/27/2023] Open
Abstract
The autism spectrum disorders (ASDs) are a collection of human neurological disorders with heterogeneous etiologies. Hyperactivity of E3 ubiquitin (Ub) ligase UBE3A, stemming from 15q11-q13 copy number variations, accounts for 1%-3% of ASD cases worldwide, but the underlying mechanisms remain incompletely characterized. Here we report that the functionality of ALDH1A2, the rate-limiting enzyme of retinoic acid (RA) synthesis, is negatively regulated by UBE3A in a ubiquitylation-dependent manner. Excessive UBE3A dosage was found to impair RA-mediated neuronal homeostatic synaptic plasticity. ASD-like symptoms were recapitulated in mice by overexpressing UBE3A in the prefrontal cortex or by administration of an ALDH1A antagonist, whereas RA supplements significantly alleviated excessive UBE3A dosage-induced ASD-like phenotypes. By identifying reduced RA signaling as an underlying mechanism in ASD phenotypes linked to UBE3A hyperactivities, our findings introduce a new vista of ASD etiology and facilitate a mode of therapeutic development against this increasingly prevalent disease.
Collapse
|
40
|
Zhang X, Rui M, Gan G, Huang C, Yi J, Lv H, Xie W. Neuroligin 4 regulates synaptic growth via the bone morphogenetic protein (BMP) signaling pathway at the Drosophila neuromuscular junction. J Biol Chem 2017; 292:17991-18005. [PMID: 28912273 PMCID: PMC5672027 DOI: 10.1074/jbc.m117.810242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Indexed: 01/26/2023] Open
Abstract
The neuroligin (Nlg) family of neural cell adhesion molecules is thought to be required for synapse formation and development and has been linked to the development of autism spectrum disorders in humans. In Drosophila melanogaster, mutations in the neuroligin 1–3 genes have been reported to induce synapse developmental defects at neuromuscular junctions (NMJs), but the role of neuroligin 4 (dnlg4) in synapse development has not been determined. Here, we report that the Drosophila neuroligin 4 (DNlg4) is different from DNlg1–3 in that it presynaptically regulates NMJ synapse development. Loss of dnlg4 results in reduced growth of NMJs with fewer synaptic boutons. The morphological defects caused by dnlg4 mutant are associated with a corresponding decrease in synaptic transmission efficacy. All of these defects could only be rescued when DNlg4 was expressed in the presynapse of NMJs. To understand the basis of DNlg4 function, we looked for genetic interactions and found connections with the components of the bone morphogenetic protein (BMP) signaling pathway. Immunostaining and Western blot analyses demonstrated that the regulation of NMJ growth by DNlg4 was due to the positive modulation of BMP signaling by DNlg4. Specifically, BMP type I receptor thickvein (Tkv) abundance was reduced in dnlg4 mutants, and immunoprecipitation assays showed that DNlg4 and Tkv physically interacted in vivo. Our study demonstrates that DNlg4 presynaptically regulates neuromuscular synaptic growth via the BMP signaling pathway by modulating Tkv.
Collapse
Affiliation(s)
- Xinwang Zhang
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China.,the Department of Biology, Basic Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Menglong Rui
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China.,Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Guangmin Gan
- Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Cong Huang
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jukang Yi
- Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Huihui Lv
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China.,Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Wei Xie
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China, .,Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| |
Collapse
|
41
|
Jordán-Álvarez S, Santana E, Casas-Tintó S, Acebes Á, Ferrús A. The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS One 2017; 12:e0184238. [PMID: 28892511 PMCID: PMC5593197 DOI: 10.1371/journal.pone.0184238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The number of synapses is a major determinant of behavior and many neural diseases exhibit deviations in that number. However, how signaling pathways control this number is still poorly understood. Using the Drosophila larval neuromuscular junction, we show here a PI3K-dependent pathway for synaptogenesis which is functionally connected with other previously known elements including the Wit receptor, its ligand Gbb, and the MAPkinases cascade. Based on epistasis assays, we determined the functional hierarchy within the pathway. Wit seems to trigger signaling through PI3K, and Ras85D also contributes to the initiation of synaptogenesis. However, contrary to other signaling pathways, PI3K does not require Ras85D binding in the context of synaptogenesis. In addition to the MAPK cascade, Bsk/JNK undergoes regulation by Puc and Ras85D which results in a narrow range of activity of this kinase to determine normalcy of synapse number. The transcriptional readout of the synaptogenesis pathway involves the Fos/Jun complex and the repressor Cic. In addition, we identified an antagonistic pathway that uses the transcription factors Mad and Medea and the microRNA bantam to down-regulate key elements of the pro-synaptogenesis pathway. Like its counterpart, the anti-synaptogenesis signaling uses small GTPases and MAPKs including Ras64B, Ras-like-a, p38a and Licorne. Bantam downregulates the pro-synaptogenesis factors PI3K, Hiw, Ras85D and Bsk, but not AKT. AKT, however, can suppress Mad which, in conjunction with the reported suppression of Mad by Hiw, closes the mutual regulation between both pathways. Thus, the number of synapses seems to result from the balanced output from these two pathways.
Collapse
Affiliation(s)
| | | | | | - Ángel Acebes
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| | - Alberto Ferrús
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| |
Collapse
|
42
|
Tian Y, Zhang ZC, Han J. Drosophila Studies on Autism Spectrum Disorders. Neurosci Bull 2017; 33:737-746. [PMID: 28795356 DOI: 10.1007/s12264-017-0166-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
In the past decade, numerous genes associated with autism spectrum disorders (ASDs) have been identified. These genes encode key regulators of synaptogenesis, synaptic function, and synaptic plasticity. Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis, synaptic function, synaptic plasticity, and neural circuit assembly and consolidation. Here, we review Drosophila studies on ASD genes that regulate synaptogenesis, synaptic function, and synaptic plasticity through modulating chromatin remodeling, transcription, protein synthesis and degradation, cytoskeleton dynamics, and synaptic scaffolding.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Zi Chao Zhang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Junhai Han
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
43
|
Van Vactor D, Sigrist SJ. Presynaptic morphogenesis, active zone organization and structural plasticity in Drosophila. Curr Opin Neurobiol 2017; 43:119-129. [PMID: 28388491 DOI: 10.1016/j.conb.2017.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Effective adaptation of neural circuit function to a changing environment requires many forms of plasticity. Among these, structural plasticity is one of the most durable, and is also an intrinsic part of the developmental logic for the formation and refinement of synaptic connectivity. Structural plasticity of presynaptic sites can involve the addition, remodeling, or removal of pre- and post-synaptic elements. However, this requires coordination of morphogenesis and assembly of the subcellular machinery for neurotransmitter release within the presynaptic neuron, as well as coordination of these events with the postsynaptic cell. While much progress has been made in revealing the cell biological mechanisms of postsynaptic structural plasticity, our understanding of presynaptic mechanisms is less complete.
Collapse
Affiliation(s)
- David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Okinawa Institute of Science and Technology, Graduate University, Tancha 1919-1, Onna-son, Okinawa, Japan.
| | - Stephan J Sigrist
- Institut für Biologie/Genetik and NeuroCure, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany.
| |
Collapse
|
44
|
Robert C, Pasquier L, Cohen D, Fradin M, Canitano R, Damaj L, Odent S, Tordjman S. Role of Genetics in the Etiology of Autistic Spectrum Disorder: Towards a Hierarchical Diagnostic Strategy. Int J Mol Sci 2017; 18:E618. [PMID: 28287497 PMCID: PMC5372633 DOI: 10.3390/ijms18030618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022] Open
Abstract
Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling.
Collapse
Affiliation(s)
- Cyrille Robert
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), University of Rennes 1 and Centre Hospitalier Guillaume Régnier, 35200 Rennes, France.
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - David Cohen
- Hospital-University Department of Child and Adolescent Psychiatry, Pitié-Salpétrière Hospital, Paris 6 University, 75013 Paris, France.
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, 53100 Siena, Italy.
| | - Léna Damaj
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), University of Rennes 1 and Centre Hospitalier Guillaume Régnier, 35200 Rennes, France.
- Laboratory of Psychology of Perception, University Paris Descartes, 75270 Paris, France.
| |
Collapse
|
45
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
46
|
Lee SH, Kim YJ, Choi SY. BMP signaling modulates the probability of neurotransmitter release and readily releasable pools in Drosophila neuromuscular junction synapses. Biochem Biophys Res Commun 2016; 479:440-446. [DOI: 10.1016/j.bbrc.2016.09.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
|