1
|
Wong ZQ, Deng L, Cengnata A, Abdul Rahman T, Mohd Ismail A, Hong Lim RL, Xu S, Hoh BP. Expression quantitative trait loci (eQTL): from population genetics to precision medicine. J Genet Genomics 2025; 52:449-459. [PMID: 39986349 DOI: 10.1016/j.jgg.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Evidence has shown that differential transcriptomic profiles among human populations from diverse ancestries, supporting the role of genetic architecture in regulating gene expression alongside environmental stimuli. Genetic variants that regulate gene expression, known as expression quantitative trait loci (eQTL), are primarily shaped by human migration history and evolutionary forces, likewise, regulation of gene expression in principle could have been influenced by these events. Therefore, a comprehensive understanding of how human evolution impacts eQTL offers important insights into how phenotypic diversity is shaped. Recent studies, however, suggest that eQTL is enriched in genes that are selectively constrained. Whether eQTL is minimally affected by selective pressures remains an open question and requires comprehensive investigations. In addition, such studies are primarily dominated by the major populations of European ancestry, leaving many marginalized populations underrepresented. These observations indicate there exists a fundamental knowledge gap in the role of genomics variation on phenotypic diversity, which potentially hinders precision medicine. This article aims to revisit the abundance of eQTL across diverse populations and provide an overview of their impact from the population and evolutionary genetics perspective, subsequently discuss their influence on phenomics, as well as challenges and opportunities in the applications to precision medicine.
Collapse
Affiliation(s)
- Zhi Qi Wong
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Lian Deng
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Alvin Cengnata
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Thuhairah Abdul Rahman
- Clinical Pathology Diagnostic Centre Research Laboratory, Faculty of Medicine, Universiti Teknologi MARA, 47000, Malaysia
| | - Aletza Mohd Ismail
- Clinical Pathology Diagnostic Centre Research Laboratory, Faculty of Medicine, Universiti Teknologi MARA, 47000, Malaysia
| | - Renee Lay Hong Lim
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221008, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Boon-Peng Hoh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
2
|
Goovaerts S, Naqvi S, Hoskens H, Herrick N, Yuan M, Shriver MD, Shaffer JR, Walsh S, Weinberg SM, Wysocka J, Claes P. Enhanced insights into the genetic architecture of 3D cranial vault shape using pleiotropy-informed GWAS. Commun Biol 2025; 8:439. [PMID: 40087503 PMCID: PMC11909261 DOI: 10.1038/s42003-025-07875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Large-scale GWAS studies have uncovered hundreds of genomic loci linked to facial and brain shape variation, but only tens associated with cranial vault shape, a largely overlooked aspect of the craniofacial complex. Surrounding the neocortex, the cranial vault plays a central role during craniofacial development and understanding its genetics are pivotal for understanding craniofacial conditions. Experimental biology and prior genetic studies have generated a wealth of knowledge that presents opportunities to aid further genetic discovery efforts. Here, we use the conditional FDR method to leverage GWAS data of facial shape, brain shape, and bone mineral density to enhance SNP discovery for cranial vault shape. This approach identified 120 independent genomic loci at 1% FDR, nearly tripling the number discovered through unconditioned analysis and implicating crucial craniofacial transcription factors and signaling pathways. These results significantly advance our genetic understanding of cranial vault shape and craniofacial development more broadly.
Collapse
Affiliation(s)
- Seppe Goovaerts
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanne Hoskens
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research, Institute, University of Calgary, Calgary, AB, Canada
| | - Noah Herrick
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meng Yuan
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Yuan M, Goovaerts S, Lee MK, Devine J, Richmond S, Walsh S, Shriver MD, Shaffer JR, Marazita ML, Peeters H, Weinberg SM, Claes P. Optimized phenotyping of complex morphological traits: enhancing discovery of common and rare genetic variants. Brief Bioinform 2025; 26:bbaf090. [PMID: 40062617 PMCID: PMC11891655 DOI: 10.1093/bib/bbaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
Genotype-phenotype (G-P) analyses for complex morphological traits typically utilize simple, predetermined anatomical measures or features derived via unsupervised dimension reduction techniques (e.g. principal component analysis (PCA) or eigen-shapes). Despite the popularity of these approaches, they do not necessarily reveal axes of phenotypic variation that are genetically relevant. Therefore, we introduce a framework to optimize phenotyping for G-P analyses, such as genome-wide association studies (GWAS) of common variants or rare variant association studies (RVAS) of rare variants. Our strategy is two-fold: (i) we construct a multidimensional feature space spanning a wide range of phenotypic variation, and (ii) within this feature space, we use an optimization algorithm to search for directions or feature combinations that are genetically enriched. To test our approach, we examine human facial shape in the context of GWAS and RVAS. In GWAS, we optimize for phenotypes exhibiting high heritability, estimated from either family data or genomic relatedness measured in unrelated individuals. In RVAS, we optimize for the skewness of phenotype distributions, aiming to detect commingled distributions that suggest single or few genomic loci with major effects. We compare our approach with eigen-shapes as baseline in GWAS involving 8246 individuals of European ancestry and in gene-based tests of rare variants with a subset of 1906 individuals. After applying linkage disequilibrium score regression to our GWAS results, heritability-enriched phenotypes yielded the highest SNP heritability, followed by eigen-shapes, while commingling-based traits displayed the lowest SNP heritability. Heritability-enriched phenotypes also exhibited higher discovery rates, identifying the same number of independent genomic loci as eigen-shapes with a smaller effective number of traits. For RVAS, commingling-based traits resulted in more genes passing the exome-wide significance threshold than eigen-shapes, while heritability-enriched phenotypes lead to only a few associations. Overall, our results demonstrate that optimized phenotyping allows for the extraction of genetically relevant traits that can specifically enhance discovery efforts of common and rare variants, as evidenced by their increased power in facial GWAS and RVAS.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Seppe Goovaerts
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Myoung K Lee
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
| | - Jay Devine
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Susan Walsh
- Department of Biology, Indiana University Indianapolis, 420 University Blvd, Indianapolis 46202, IN, United States
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, 201 Old Main, University Park, PA 16802, United States
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
- Department of Human Genetics, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
- Department of Human Genetics, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
- Department of Human Genetics, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, United States
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Murdoch Children's Research Institute, 50 Flemington Rd, Parkville VIC 3052, Australia
| |
Collapse
|
4
|
Alshehhi A, Mousa M, Tay GK, Werghi N, AlSafar H. Genome wide association study reveals novel associations with face morphology. PLoS One 2025; 20:e0299660. [PMID: 39928610 PMCID: PMC11809905 DOI: 10.1371/journal.pone.0299660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/12/2024] [Indexed: 02/12/2025] Open
Abstract
Genome-wide association studies (GWAS) on the Middle Eastern population, including the United Arab Emirates (UAE), have been relatively limited. The present study aims to investigate genotype-face morphology associations in the UAE population through Genome Wide Association Studies (GWAS). Phenotypic data (44 face measurements) from 172 Emiratis was obtained through three-dimensional (3D) scanning technology and an automatic face landmarking technique. GWAS analysis revealed associations of 19 genetic loci with six face features, 14 of which are novel. The GWAS analysis revealed 11 significant relationships between 44 face parameters and 242 SNPs, exceeding the GWAS significance threshold. These phenotypes were previously associated with body height, craniofacial defects, and facial characters. The most significant associations of these genetic variations were related to six main facial features which were facial convexity, left orbital protrusion, mandibular contour, nasolabial angle D, inferior facial angle B, and inferior facial angle A. To the best of our knowledge, this is the first GWAS study to investigate the association of SNP variations with face morphology in the Middle Eastern population.
Collapse
Affiliation(s)
- Aamer Alshehhi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Medical School, the University of Western Australia, Crawley, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Naoufel Werghi
- Department Electrical Engineering and Computer Science, C2PS, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba AlSafar
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Emirates Bio-Research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Lee MK, El Sergani AM, Herrick N, Green RM, Padilla C, Buxó CJ, Long RE, Valencia-Ramirez C, Muñeton CPR, Moreno Uribe LM, Adeyemo WL, Butali A, Marazita ML, Shaffer JR, Weinberg SM. Genome scan reveals several loci associated with torus palatinus. Orthod Craniofac Res 2025; 28:159-165. [PMID: 39291419 DOI: 10.1111/ocr.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE Torus Palatinus (TP) is a common trait with an unclear aetiology. Although prior studies suggest a hereditary component, the genetic factors that influence TP risk remain unknown. The purpose of this study is to identify genetic variants associated with TP. MATERIALS AND METHODS We assessed the TP status of 829 individuals from various ancestral backgrounds using 3D palate scans. We then carried out a genome-wide association study (GWAS) to identify common variants associated with TP. We also performed gene-based tests across the exome to investigate the role of low-frequency coding variants. RESULTS Our GWAS did not identify any genome-wide significant signals but identified suggestive associations including hits on chromosomes 2, 5 and 17 with p-values less than 5 × 10-6. Candidate genes at these suggestive loci have been implicated in normal-range craniofacial features, syndromes with facial and oral malformations, and bone density. We did not find evidence that low-frequency coding variants influence TP risk. In addition, we failed to replicate associations identified in prior genetic studies of TP. CONCLUSION These findings suggest that multiple genes likely influence the development of TP. Independent replication will be required to confirm our suggestive associations.
Collapse
Affiliation(s)
- Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ahmed M El Sergani
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Noah Herrick
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca M Green
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carmencita Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines, Manila, Philippines
| | - Carmen J Buxó
- Dental and Craniofacial Genomics Core, School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Ross E Long
- Lancaster Cleft Palate Clinic, Lancaster, Pennsylvania, USA
| | | | | | - Lina M Moreno Uribe
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Azeez Butali
- Department of Oral Pathology, Radiology, and Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Nemeth C, Hoskens H, Wilson G, Jones M, DiPietrantonio J, Salami B, Harnish D, Claes P, Weinberg SM, Shriver MD, Hallgrímsson B. Quantitative analysis of facial shape in children to support respirator design. APPLIED ERGONOMICS 2025; 122:104375. [PMID: 39454317 DOI: 10.1016/j.apergo.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 10/28/2024]
Abstract
The COVID-19 pandemic demonstrated the need for respiratory protection against airborne pathogens. Respirator options for children are limited, and existing designs do not consider differences in facial shape or size. We created a dataset of children's facial images from three cohorts, then used geometric morphometric analyses of dense and sparse facial landmark representations to quantify age, sex and ancestry-related variation in shape. We found facial shape and size in children vary significantly with age from ages 2 to 18, particularly in dimensions relevant to respirator design. Sex differences are small throughout most of the age range of our sample. Ancestry is associated with significant facial shape variation in dimensions that may affect respirator fit. We offer guidance on how to our results can be used for the appropriate design of devices such as respirators for pediatric populations. We also highlight the need to consider ancestry-related variation in facial morphology to promote equitable, inclusive products.
Collapse
Affiliation(s)
| | - Hanne Hoskens
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graham Wilson
- Design Reality Ltd, St. Asaph, LL17 0JE, United Kingdom
| | - Mike Jones
- Design Reality Ltd, St. Asaph, LL17 0JE, United Kingdom
| | | | - Bukola Salami
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Del Harnish
- Applied Research Associates, Inc., Albuquerque, NM, USA
| | - Peter Claes
- Medical Imaging Research Center, UZ Leuven, 3000, Leuven, Belgium; Department of Electrical Engineering, Processing of Speech and Images (ESAT-PSI), KU Leuven, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark D Shriver
- Department of Anthropology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Nadeem H, Jamal SB, Basheer A, Bakhtiar SM, Faheem M, Aziz T, Nabi G, Al-Harbi M, Raza RZ. Genetic Insights into Facial Variation and Craniofacial Development: Unraveling the Interplay of Genes, Expression Patterns, and Evolutionary Significance. Mol Biotechnol 2024:10.1007/s12033-024-01349-6. [PMID: 39724323 DOI: 10.1007/s12033-024-01349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
The development of genome technology has opened new possibilities for comparative primate genomics. Non-human primates share approximately 98% genome similarity and provides vital information into the genetic similarities and variances among species utilized as disease models. DNA study links unique genetic variations to common facial attributes such as nose and eyes. This is because of higher adaptation and improved cognitive skills over these sensual areas. Non-protein coding sequences represent approximately 85% of the human DNA under evolutionary restrictions, and the primary part of this is the cis regulatory regions. In this study, a total of 103 tissue specific human enhancers were finalized with help of VISTA Enhancer Browser that showed distinctive expression in the facial tissues and their orthologs were collected. A total of 43 out of 190 transcription factors from TRANSFAC were seen as binding in both Human and Non-Human primate enhancers. It was observed that factor binding sites of 7 of the 43 transcription factors were exclusively gained in the human eye and nose enhancers (Oct, Pax, Sox, MyoD, Foxd3, cRel and Gata). Furthermore, we performed molecular docking through PyMol; DNA & Protein (pdb) structures were modelled by SCFBio & SWISSMODEL respectively to observe interactions of the transcription factors, either by placing the contact surface of the protein exclusively to identify the DNA, to enable a representation to gain information about identification and genetic expression.
Collapse
Affiliation(s)
- Hadiqa Nadeem
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Syeda Marriam Bakhtiar
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, Arta, Greece.
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Ghulam Nabi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Mitub Al-Harbi
- Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rabail Zehra Raza
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
| |
Collapse
|
8
|
Yuan M, Goovaerts S, Vanneste M, Matthews H, Hoskens H, Richmond S, Klein OD, Spritz RA, Hallgrimsson B, Walsh S, Shriver MD, Shaffer JR, Weinberg SM, Peeters H, Claes P. Mapping genes for human face shape: Exploration of univariate phenotyping strategies. PLoS Comput Biol 2024; 20:e1012617. [PMID: 39621772 DOI: 10.1371/journal.pcbi.1012617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 12/20/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Human facial shape, while strongly heritable, involves both genetic and structural complexity, necessitating precise phenotyping for accurate assessment. Common phenotyping strategies include simplifying 3D facial features into univariate traits such as anthropometric measurements (e.g., inter-landmark distances), unsupervised dimensionality reductions (e.g., principal component analysis (PCA) and auto-encoder (AE) approaches), and assessing resemblance to particular facial gestalts (e.g., syndromic facial archetypes). This study provides a comparative assessment of these strategies in genome-wide association studies (GWASs) of 3D facial shape. Specifically, we investigated inter-landmark distances, PCA and AE-derived latent dimensions, and facial resemblance to random, extreme, and syndromic gestalts within a GWAS of 8,426 individuals of recent European ancestry. Inter-landmark distances exhibit the highest SNP-based heritability as estimated via LD score regression, followed by AE dimensions. Conversely, resemblance scores to extreme and syndromic facial gestalts display the lowest heritability, in line with expectations. Notably, the aggregation of multiple GWASs on facial resemblance to random gestalts reveals the highest number of independent genetic loci. This novel, easy-to-implement phenotyping approach holds significant promise for capturing genetically relevant morphological traits derived from complex biomedical imaging datasets, and its applications extend beyond faces. Nevertheless, these different phenotyping strategies capture different genetic influences on craniofacial shape. Thus, it remains valuable to explore these strategies individually and in combination to gain a more comprehensive understanding of the genetic factors underlying craniofacial shape and related traits.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Seppe Goovaerts
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Michiel Vanneste
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Harold Matthews
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Hanne Hoskens
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Ophir D Klein
- Departments of Orofacial Sciences and Pediatrics, and Institute for Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, California, United States of America
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Benedikt Hallgrimsson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Susan Walsh
- Department of Biology, Indiana University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Piña J, Raju R, Roth D, Winchester E, Padilla C, Iben J, Faucz F, Cotney J, D’Souza R. Spatial Multi-omics Reveals the Role of the Wnt Modulator, Dkk2, in Palatogenesis'. J Dent Res 2024; 103:1412-1420. [PMID: 38910391 PMCID: PMC11653329 DOI: 10.1177/00220345241256600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Multiple genetic and environmental etiologies contribute to the pathogenesis of cleft palate, which is the most common of the inherited disorders of the craniofacial complex. Insights into the molecular mechanisms regulating osteogenic differentiation and patterning in the palate during embryogenesis are limited and needed for the development of innovative diagnostics and cures. This study used the Pax9-/- mouse model with a consistent phenotype of cleft secondary palate to investigate the role of Pax9 in the process of palatal osteogenesis. Although prior research has identified the upregulation of Wnt pathway modulators Dkk1 and Dkk2 in Pax9-/- palate mesenchyme, limitations of spatial resolution and technology restricted a more robust analysis. Here, data from single-nucleus transcriptomics and chromatin accessibility assays validated by in situ highly multiplex targeted single-cell spatial profiling technology suggest a distinct relationship between Pax9+ and osteogenic populations. Loss of Pax9 results in spatially restricted osteogenic domains bounded by Dkk2, which normally interfaces with Pax9 in the mesenchyme. Moreover, the loss of Pax9 leads to a disruption in the normal osteodifferentiaion of palatal osteogenic mesenchymal cells. These results suggest that Pax9-dependent Wnt signaling modulators influence osteogenic programming during palate formation, potentially contributing to the observed cleft palate phenotype.
Collapse
Affiliation(s)
- J.O. Piña
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - R. Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - D.M. Roth
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- School of Dentistry, University of Alberta, Edmonton, AB, CA, USA
| | - E.W. Winchester
- University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - C. Padilla
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - J. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - F.R. Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - J.L. Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - R.N. D’Souza
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Awotoye W, Machado-Paula LA, Hovey L, Keen H, Chimenti M, Darbro B, Dabdoub S, Thomas JC, Murray J, Venugopalan SR, Moreno-Uribe L, Petrin AL. Multi-omic analyses of a twin pair with mirror image cleft lip identifies pathogenic variant in FGF20 modified by differential methylation upstream of ZFP57. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.16.24317351. [PMID: 39606391 PMCID: PMC11601713 DOI: 10.1101/2024.11.16.24317351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Disturbances in the intricate processes that control craniofacial morphogenesis can result in birth defects, most common of which are orofacial clefts (OFCs). Nonsyndromic cleft lip (nsCL), one of the phenotypic forms amongst OFCs, has a non-random laterality presentation with the left side being affected twice as often compared to the right side. This study investigates the etiology of nsCL and the factors contributing to its laterality using a pair of monozygotic twins with mirror-image cleft lip. Methods We conducted whole-genome sequencing (WGS) analyses in a female twin pair with mirror image nsCL, their affected mother and unaffected father to identify etiopathogenic variants. Additionally, to identify possible cleft lip laterality modifiers, DNA-methylome analysis was conducted to test for differential methylation patterns between the mirror twins. Lastly, DNA methylation patterns were also analyzed on an independent cohort of female cases with unilateral cleft lip (left=22; right=17) for replication purposes. Results We identified a protein-altering variant in FGF20 (p.Ile79Val) within the fibroblast growth factor interacting family domain segregating with the nsCL in this family. Concurrently, DNA-methylome analysis identified differential methylation regions (DMRs) upstream of Zinc-finger transcription factor ZFP57 (Δβ > 5%). Replication of these results on an independent cohort, confirmed these DMRs, emphasizing their biological significance (p<0.05). Enrichment analysis indicated that these DMRs are involved in DNA methylation during early embryo development (FDR adjusted p-value = 1.3241E-13). Further bioinformatics analyses showed one of these DMRs acting as a binding site for transcription factor AP2A (TFAP2A), a key player in craniofacial development. Interactome analysis also suggested a potential role for ZFP57 in left/right axis specification, thus emphasizing its significance in cleft laterality. Conclusion This study provides novel insights into the etiology of nsCL and its laterality, suggesting an interplay between etiopathogenic variants and DNA methylation in cleft laterality. Our findings elucidate the intricate mechanisms underlying OFCs development. Understanding these factors may offer new tools for prevention and management of OFCs, alleviating the burden on affected individuals, their families and global health.
Collapse
Affiliation(s)
- Waheed Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| | | | - Luke Hovey
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| | - Henry Keen
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52240
| | - Michael Chimenti
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52240
| | - Benjamin Darbro
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52240
| | - Shareef Dabdoub
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| | - James C Thomas
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| | - Jeff Murray
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52240
| | | | - Lina Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| | - Aline L Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, 52240
| |
Collapse
|
11
|
Lee D, Ban HJ, Hong KW, Lee JY, Cha S. High heritability of human facial traits reveals associations with CNTLN, BRCA1, and TMPRSS6 loci in Korean families. Heliyon 2024; 10:e39173. [PMID: 39640822 PMCID: PMC11620094 DOI: 10.1016/j.heliyon.2024.e39173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Facial features are determined by interactions between genetic and environmental factors. However, genes underlying facial similarities in individuals from the same family remain less explored. To identify genetic variants associated with heritable facial features, we investigated familial (parent-offspring) associations and estimated familial correlation and heritability using 39 facial measurements in 408 individuals from 117 Korean families. Facial trait heritability ranged from 0.124 to 0.669. Longitudinal facial growth-related traits were highly heritable, including distances from the nasion to right alare (h 2 = 0.668898), pogonion to midendocanthion (h 2 = 0.661557), subnasale to midendocanthion (h 2 = 0.656882), and morphological facial height (h 2 = 0. 654376). We identified the top three significant genome-wide associated variants in the eye, nose, and lip-jaw regions. CNTLN (rs10511632: beta = -0.02696, p = 1.146 × 10-9) and BRCA1 (rs397509305: beta = 0.02741, p = 7.17 × 10-9) loci were associated with distance from the nasion to the right alare. The TMPRSS6 (rs228913: beta = 0.05101, p = 3.68 × 10-9) locus was associated with the distance from the labiale superius to the pogonion and lower facial height. These associations were maintained in an independent unrelated population. In conclusion, we identified new gene variants associated with longitudinal facial morphology that may affect individual facial differences, which has important implications for clinical and forensic applications.
Collapse
Affiliation(s)
- Donghyun Lee
- Oneomics Co., Ltd., Bucheon-si, Gyeonggi-do, 14585, South Korea
| | - Hyo-Jeong Ban
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., Seongnam-si, Gyeonggi-do, 13493, South Korea
| | - Jong Young Lee
- Oneomics Co., Ltd., Bucheon-si, Gyeonggi-do, 14585, South Korea
| | - Seongwon Cha
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| |
Collapse
|
12
|
Yuan M, Goovaerts S, Vanneste M, Matthews H, Hoskens H, Richmond S, Klein OD, Spritz RA, Hallgrimsson B, Walsh S, Shriver MD, Shaffer JR, Weinberg SM, Peeters H, Claes P. Mapping genes for human face shape: exploration of univariate phenotyping strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597731. [PMID: 38895298 PMCID: PMC11185724 DOI: 10.1101/2024.06.06.597731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Human facial shape, while strongly heritable, involves both genetic and structural complexity, necessitating precise phenotyping for accurate assessment. Common phenotyping strategies include simplifying 3D facial features into univariate traits such as anthropometric measurements (e.g., inter-landmark distances), unsupervised dimensionality reductions (e.g., principal component analysis (PCA) and auto-encoder (AE) approaches), and assessing resemblance to particular facial gestalts (e.g., syndromic facial archetypes). This study provides a comparative assessment of these strategies in genome-wide association studies (GWASs) of 3D facial shape. Specifically, we investigated inter-landmark distances, PCA and AE-derived latent dimensions, and facial resemblance to random, extreme, and syndromic gestalts within a GWAS of 8,426 individuals of recent European ancestry. Inter-landmark distances exhibit the highest SNP-based heritability as estimated via LD score regression, followed by AE dimensions. Conversely, resemblance scores to extreme and syndromic facial gestalts display the lowest heritability, in line with expectations. Notably, the aggregation of multiple GWASs on facial resemblance to random gestalts reveals the highest number of independent genetic loci. This novel, easy-to-implement phenotyping approach holds significant promise for capturing genetically relevant morphological traits derived from complex biomedical imaging datasets, and its applications extend beyond faces. Nevertheless, these different phenotyping strategies capture different genetic influences on craniofacial shape. Thus, it remains valuable to explore these strategies individually and in combination to gain a more comprehensive understanding of the genetic factors underlying craniofacial shape and related traits. Author Summary Advancements linking variation in the human genome to phenotypes have rapidly evolved in recent decades and have revealed that most human traits are influenced by genetic variants to at least some degree. While many traits, such as stature, are straightforward to acquire and investigate, the multivariate and multipartite nature of facial shape makes quantification more challenging. In this study, we compared the impact of different facial phenotyping approaches on gene mapping outcomes. Our findings suggest that the choice of facial phenotyping method has an impact on apparent trait heritability and the ability to detect genetic association signals. These results offer valuable insights into the importance of phenotyping in genetic investigations, especially when dealing with highly complex morphological traits.
Collapse
|
13
|
Wisetchat S, Stevens KA, Frost SR. Facial modeling and measurement based upon homologous topographical features. PLoS One 2024; 19:e0304561. [PMID: 38820264 PMCID: PMC11142440 DOI: 10.1371/journal.pone.0304561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Measurement of human faces is fundamental to many applications from recognition to genetic phenotyping. While anthropometric landmarks provide a conventional set of homologous measurement points, digital scans are increasingly used for facial measurement, despite the difficulties in establishing their homology. We introduce an alternative basis for facial measurement, which 1) provides a richer information density than discrete point measurements, 2) derives its homology from shared facial topography (ridges, folds, etc.), and 3) quantifies local morphological variation following the conventions and practices of anatomical description. A parametric model that permits matching a broad range of facial variation by the adjustment of 71 parameters is demonstrated by modeling a sample of 80 adult human faces. The surface of the parametric model can be adjusted to match each photogrammetric surface mesh generally to within 1 mm, demonstrating a novel and efficient means for facial shape encoding. We examine how well this scheme quantifies facial shape and variation with respect to geographic ancestry and sex. We compare this analysis with a more conventional, landmark-based geometric morphometric (GMM) study with 43 landmarks placed on the same set of scans. Our multivariate statistical analysis using the 71 attribute values separates geographic ancestry groups and sexes with a high degree of reliability, and these results are broadly similar to those from GMM, but with some key differences that we discuss. This approach is compared with conventional, non-parametric methods for the quantification of facial shape, including generality, information density, and the separation of size and shape. Potential uses for phenotypic and dysmorphology studies are also discussed.
Collapse
Affiliation(s)
- Sawitree Wisetchat
- Department of Anthropology, University of Oregon, Eugene, Oregon, United States of America
| | - Kent A. Stevens
- Department of Computer and Information Science, University of Oregon, Eugene, Oregon, United States of America
| | - Stephen R. Frost
- Department of Anthropology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
14
|
Xie M, Kaiser M, Gershtein Y, Schnyder D, Deviatiiarov R, Gazizova G, Shagimardanova E, Zikmund T, Kerckhofs G, Ivashkin E, Batkovskyte D, Newton PT, Andersson O, Fried K, Gusev O, Zeberg H, Kaiser J, Adameyko I, Chagin AS. The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling. Nat Commun 2024; 15:2367. [PMID: 38531868 DOI: 10.1038/s41467-024-46030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Flemingsberg, Sweden
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Markéta Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Yaakov Gershtein
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Schnyder
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering (iMMC), UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research (IREC), UCLouvain, Woluwe, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Evgeny Ivashkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Department of Developmental and Comparative Physiology, N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dominyka Batkovskyte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Oleg Gusev
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Hugo Zeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
15
|
Qiao H, Tan J, Yan J, Sun C, Yin X, Li Z, Wu J, Guan H, Wen S, Zhang M, Xu S, Jin L. A comprehensive evaluation of the phenotype-first and data-driven approaches in analyzing facial morphological traits. iScience 2024; 27:109325. [PMID: 38487017 PMCID: PMC10937830 DOI: 10.1016/j.isci.2024.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
The phenotype-first approach (PFA) and data-driven approach (DDA) have both greatly facilitated anthropological studies and the mapping of trait-associated genes. However, the pros and cons of the two approaches are poorly understood. Here, we systematically evaluated the two approaches and analyzed 14,838 facial traits in 2,379 Han Chinese individuals. Interestingly, the PFA explained more facial variation than the DDA in the top 100 and 1,000 except in the top 10 phenotypes. Accordingly, the ratio of heterogeneous traits extracted from the PFA was much greater, while more homogenous traits were found using the DDA for different sex, age, and BMI groups. Notably, our results demonstrated that the sex factor accounted for 30% of phenotypic variation in all traits extracted. Furthermore, we linked DDA phenotypes to PFA phenotypes with explicit biological explanations. These findings provide new insights into the analysis of multidimensional phenotypes and expand the understanding of phenotyping approaches.
Collapse
Affiliation(s)
- Hui Qiao
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Jun Yan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Chang Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Xing Yin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Zijun Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Jiazi Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Haijuan Guan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Menghan Zhang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201203, China
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
16
|
Piña JO, Raju R, Roth DM, Winchester EW, Padilla C, Iben J, Faucz FR, Cotney JL, D’Souza RN. Spatial Multiomics Reveal the Role of Wnt Modulator, Dkk2, in Palatogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.16.541037. [PMID: 37292772 PMCID: PMC10245699 DOI: 10.1101/2023.05.16.541037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiple genetic and environmental etiologies contribute to the pathogenesis of cleft palate, which constitutes the most common among the inherited disorders of the craniofacial complex. Insights into the molecular mechanisms regulating osteogenic differentiation and patterning in the palate during embryogenesis are limited and needed for the development of innovative diagnostics and cures. This study utilized the Pax9-/- mouse model with a consistent phenotype of cleft secondary palate to investigate the role of Pax9 in the process of palatal osteogenesis. While prior research had identified upregulation of Wnt pathway modulators Dkk1 and Dkk2 in Pax9-/- palate mesenchyme, limitations of spatial resolution and technology restricted a more robust analysis. Here, data from single-nucleus transcriptomics and chromatin accessibility assays validated by in situ highly multiplex targeted single-cell spatial profiling technology suggest a distinct relationship between Pax9+ and osteogenic populations. Loss of Pax9 results in spatially restricted osteogenic domains bounded by Dkk2, which normally interfaces with Pax9 in the mesenchyme. These results suggest that Pax9-dependent Wnt signaling modulators influence osteogenic programming during palate formation, potentially contributing to the observed cleft palate phenotype.
Collapse
Affiliation(s)
- Jeremie Oliver Piña
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Resmi Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Daniela M. Roth
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- School of Dentistry, University of Alberta, Edmonton, AB, CA
| | | | - Cameron Padilla
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fabio R. Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Justin L. Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Rena N. D’Souza
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
18
|
Kapila S, Vora SR, Rengasamy Venugopalan S, Elnagar MH, Akyalcin S. Connecting the dots towards precision orthodontics. Orthod Craniofac Res 2023; 26 Suppl 1:8-19. [PMID: 37968678 DOI: 10.1111/ocr.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
Precision orthodontics entails the use of personalized clinical, biological, social and environmental knowledge of each patient for deep individualized clinical phenotyping and diagnosis combined with the delivery of care using advanced customized devices, technologies and biologics. From its historical origins as a mechanotherapy and materials driven profession, the most recent advances in orthodontics in the past three decades have been propelled by technological innovations including volumetric and surface 3D imaging and printing, advances in software that facilitate the derivation of diagnostic details, enhanced personalization of treatment plans and fabrication of custom appliances. Still, the use of these diagnostic and therapeutic technologies is largely phenotype driven, focusing mainly on facial/skeletal morphology and tooth positions. Future advances in orthodontics will involve comprehensive understanding of an individual's biology through omics, a field of biology that involves large-scale rapid analyses of DNA, mRNA, proteins and other biological regulators from a cell, tissue or organism. Such understanding will define individual biological attributes that will impact diagnosis, treatment decisions, risk assessment and prognostics of therapy. Equally important are the advances in artificial intelligence (AI) and machine learning, and its applications in orthodontics. AI is already being used to perform validation of approaches for diagnostic purposes such as landmark identification, cephalometric tracings, diagnosis of pathologies and facial phenotyping from radiographs and/or photographs. Other areas for future discoveries and utilization of AI will include clinical decision support, precision orthodontics, payer decisions and risk prediction. The synergies between deep 3D phenotyping and advances in materials, omics and AI will propel the technological and omics era towards achieving the goal of delivering optimized and predictable precision orthodontics.
Collapse
Affiliation(s)
- Sunil Kapila
- Strategic Initiatives and Operations, UCLA School of Dentistry, Los Angeles, California, USA
| | - Siddharth R Vora
- Oral Health Sciences, University of British Columbia, Vancouver, British Columbia, USA
| | | | - Mohammed H Elnagar
- Department of Orthodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sercan Akyalcin
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Cho HW, Ban HJ, Jin HS, Cha S, Eom YB. A genome-wide association scan reveals novel loci for facial traits of Koreans. Genomics 2023; 115:110710. [PMID: 37734486 DOI: 10.1016/j.ygeno.2023.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
DNA-based prediction of externally visible characteristics (EVC) with SNPs is one of the research areas of interest in the forensic field. Based on a previous study performing GWAS on facial traits in a Korean population, herein, we present results stemming from GWA analysis with KoreanChip and novel genetic loci satisfying genome-wide significant level. We discovered a total of 20 signals and 12 loci were found to have novel associations with facial traits, including six loci located in intergenic regions and six loci located at UBE2O, HECTD2, CCDC108, TPK1, FCN2, and FRMPD1. Additionally, we performed a polygenic score analysis for 33 distance-related traits in facial phenotyping and determined genetic relationships between facial traits and SNPs using the GCTA program. The results of the current study offer an understanding of how facial morphology is influenced by complex genetic structures and provide insights into forensic investigation and population genetics.
Collapse
Affiliation(s)
- Hye-Won Cho
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyo-Jeong Ban
- Korea Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Seongwon Cha
- Korea Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
20
|
Curtis SW, Carlson JC, Beaty TH, Murray JC, Weinberg SM, Marazita ML, Cotney JL, Cutler DJ, Epstein MP, Leslie EJ. Rare variant modifier analysis identifies variants in SEC24D associated with orofacial cleft subtypes. Hum Genet 2023; 142:1531-1541. [PMID: 37676273 DOI: 10.1007/s00439-023-02596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
As one of the most common structural birth defects, orofacial clefts (OFCs) have been studied for decades, and recent studies have demonstrated that there are genetic differences between the different phenotypic presentations of OFCs. However, the contribution of rare genetic variation genome-wide to different subtypes of OFCs has been understudied, with most studies focusing on common genetic variation or rare variation within targeted regions of the genome. Therefore, we used whole-genome sequencing data from the Gabriella Miller Kids First Pediatric Research Program to conduct a gene-based burden analysis to test for genetic modifiers of cleft lip (CL) vs cleft lip and palate (CLP). We found that there was a significantly increased burden of rare variants in SEC24D in CL cases compared to CLP cases (p = 6.86 [Formula: see text] 10-7). Of the 15 variants within SEC24D, 53.3% were synonymous, but overlapped a known craniofacial enhancer. We then tested whether these variants could alter predicted transcription factor binding sites (TFBS), and found that the rare alleles destroyed binding sites for 9 transcription factors (TFs), including Pax1 (p = 0.0009), and created binding sites for 23 TFs, including Pax6 (p = 6.12 [Formula: see text] 10-5) and Pax9 (p = 0.0001), which are known to be involved in normal craniofacial development, suggesting a potential mechanism by which these synonymous variants could have a functional impact. Overall, this study indicates that rare genetic variation may contribute to the phenotypic heterogeneity of OFCs and suggests that regulatory variation may also contribute and warrant further investigation in future studies of genetic variants controlling risk to OFC.
Collapse
Affiliation(s)
- Sarah W Curtis
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Jenna C Carlson
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15621, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Seth M Weinberg
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mary L Marazita
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, 06030, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
21
|
Tseng KC, Crump JG. Craniofacial developmental biology in the single-cell era. Development 2023; 150:dev202077. [PMID: 37812056 PMCID: PMC10617621 DOI: 10.1242/dev.202077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The evolution of a unique craniofacial complex in vertebrates made possible new ways of breathing, eating, communicating and sensing the environment. The head and face develop through interactions of all three germ layers, the endoderm, ectoderm and mesoderm, as well as the so-called fourth germ layer, the cranial neural crest. Over a century of experimental embryology and genetics have revealed an incredible diversity of cell types derived from each germ layer, signaling pathways and genes that coordinate craniofacial development, and how changes to these underlie human disease and vertebrate evolution. Yet for many diseases and congenital anomalies, we have an incomplete picture of the causative genomic changes, in particular how alterations to the non-coding genome might affect craniofacial gene expression. Emerging genomics and single-cell technologies provide an opportunity to obtain a more holistic view of the genes and gene regulatory elements orchestrating craniofacial development across vertebrates. These single-cell studies generate novel hypotheses that can be experimentally validated in vivo. In this Review, we highlight recent advances in single-cell studies of diverse craniofacial structures, as well as potential pitfalls and the need for extensive in vivo validation. We discuss how these studies inform the developmental sources and regulation of head structures, bringing new insights into the etiology of structural birth anomalies that affect the vertebrate head.
Collapse
Affiliation(s)
- Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
22
|
Selleri L, Rijli FM. Shaping faces: genetic and epigenetic control of craniofacial morphogenesis. Nat Rev Genet 2023; 24:610-626. [PMID: 37095271 DOI: 10.1038/s41576-023-00594-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
Major differences in facial morphology distinguish vertebrate species. Variation of facial traits underlies the uniqueness of human individuals, and abnormal craniofacial morphogenesis during development leads to birth defects that significantly affect quality of life. Studies during the past 40 years have advanced our understanding of the molecular mechanisms that establish facial form during development, highlighting the crucial roles in this process of a multipotent cell type known as the cranial neural crest cell. In this Review, we discuss recent advances in multi-omics and single-cell technologies that enable genes, transcriptional regulatory networks and epigenetic landscapes to be closely linked to the establishment of facial patterning and its variation, with an emphasis on normal and abnormal craniofacial morphogenesis. Advancing our knowledge of these processes will support important developments in tissue engineering, as well as the repair and reconstruction of the abnormal craniofacial complex.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA.
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| | - Filippo M Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
23
|
Li Y, Xiong Z, Zhang M, Hysi PG, Qian Y, Adhikari K, Weng J, Wu S, Du S, Gonzalez-Jose R, Schuler-Faccini L, Bortolini MC, Acuna-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Wang J, Tan J, Yuan Z, Jin L, Uitterlinden AG, Ghanbari M, Ikram MA, Nijsten T, Zhu X, Lei Z, Jia P, Ruiz-Linares A, Spector TD, Wang S, Kayser M, Liu F. Combined genome-wide association study of 136 quantitative ear morphology traits in multiple populations reveal 8 novel loci. PLoS Genet 2023; 19:e1010786. [PMID: 37459304 PMCID: PMC10351707 DOI: 10.1371/journal.pgen.1010786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/16/2023] [Indexed: 07/20/2023] Open
Abstract
Human ear morphology, a complex anatomical structure represented by a multidimensional set of correlated and heritable phenotypes, has a poorly understood genetic architecture. In this study, we quantitatively assessed 136 ear morphology traits using deep learning analysis of digital face images in 14,921 individuals from five different cohorts in Europe, Asia, and Latin America. Through GWAS meta-analysis and C-GWASs, a recently introduced method to effectively combine GWASs of many traits, we identified 16 genetic loci involved in various ear phenotypes, eight of which have not been previously associated with human ear features. Our findings suggest that ear morphology shares genetic determinants with other surface ectoderm-derived traits such as facial variation, mono eyebrow, and male pattern baldness. Our results enhance the genetic understanding of human ear morphology and shed light on the shared genetic contributors of different surface ectoderm-derived phenotypes. Additionally, gene editing experiments in mice have demonstrated that knocking out the newly ear-associated gene (Intu) and a previously ear-associated gene (Tbx15) causes deviating mouse ear morphology.
Collapse
Affiliation(s)
- Yi Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
| | - Ziyi Xiong
- Department of Genetic Identification, Erasmus MC, University Medical Center, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, the Netherlands
| | - Manfei Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, China
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, United Kingdom
| | - Yu Qian
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
- Beijing No.8 High School, Beijing, China
| | - Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, United Kingdom
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, United Kingdom
| | - Jun Weng
- Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
| | - Sijie Wu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- University of Chinese Academy of Sciences, China
| | - Rolando Gonzalez-Jose
- Instituto Patagonico de Ciencias Sociales y Humanas, Centro Nacional Patagonico, CONICET, Argentina
| | | | | | - Victor Acuna-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Quimica, UNAM-Instituto Nacional de Medicina Genomica, Mexico
| | - Carla Gallo
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Peru
| | - Giovanni Poletti
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Peru
| | - Gabriel Bedoya
- GENMOL (Genetica Molecular), Universidad de Antioquia, Medellin, Colombia
| | | | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, China
| | - Ziyu Yuan
- Fudan-Taizhou Institute of Health Sciences, China
| | - Li Jin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, China
- Fudan-Taizhou Institute of Health Sciences, China
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center, the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, the Netherlands
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC, University Medical Center, the Netherlands
| | - Xiangyu Zhu
- Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China
| | - Zhen Lei
- Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
| | - Andres Ruiz-Linares
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, United Kingdom
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, China
- Aix-Marseille Universite, CNRS, EFS, ADES, France
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, United Kingdom
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center, the Netherlands
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
- Department of Genetic Identification, Erasmus MC, University Medical Center, the Netherlands
| |
Collapse
|
24
|
Li Q, Chen J, Faux P, Delgado ME, Bonfante B, Fuentes-Guajardo M, Mendoza-Revilla J, Chacón-Duque JC, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Barquera R, Everardo-Martínez P, Sánchez-Quinto M, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Hünemeier T, Ramallo V, Wu S, Du S, Giardina A, Paria SS, Khokan MR, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Rojas W, Rothhammer F, Navarro N, Wang S, Adhikari K, Ruiz-Linares A. Automatic landmarking identifies new loci associated with face morphology and implicates Neanderthal introgression in human nasal shape. Commun Biol 2023; 6:481. [PMID: 37156940 PMCID: PMC10167347 DOI: 10.1038/s42003-023-04838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
We report a genome-wide association study of facial features in >6000 Latin Americans based on automatic landmarking of 2D portraits and testing for association with inter-landmark distances. We detected significant associations (P-value <5 × 10-8) at 42 genome regions, nine of which have been previously reported. In follow-up analyses, 26 of the 33 novel regions replicate in East Asians, Europeans, or Africans, and one mouse homologous region influences craniofacial morphology in mice. The novel region in 1q32.3 shows introgression from Neanderthals and we find that the introgressed tract increases nasal height (consistent with the differentiation between Neanderthals and modern humans). Novel regions include candidate genes and genome regulatory elements previously implicated in craniofacial development, and show preferential transcription in cranial neural crest cells. The automated approach used here should simplify the collection of large study samples from across the world, facilitating a cosmopolitan characterization of the genetics of facial features.
Collapse
Affiliation(s)
- Qing Li
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
| | - Jieyi Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Pierre Faux
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France
| | - Miguel Eduardo Delgado
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, República Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, República Argentina
| | - Betty Bonfante
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, 1000000, Chile
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, 75015, France
| | - J Camilo Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - Rodrigo Barquera
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, 07745, Germany
| | - Paola Everardo-Martínez
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Mirsha Sánchez-Quinto
- Forensic Science, Faculty of Medicine, UNAM (Universidad Nacional Autónoma de México), Mexico City, 06320, Mexico
| | - Jorge Gómez-Valdés
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, 4510, Mexico
| | | | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - Sijie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Andrea Giardina
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Soumya Subhra Paria
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Mahfuzur Rahman Khokan
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
| | - Victor Acuña-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, 4510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Winston Rojas
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica, 1000000, Chile
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, 21000, France
- EPHE, PSL University, Paris, 75014, France
| | - Sijia Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China.
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
25
|
Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet 2023; 65:102870. [PMID: 37084623 DOI: 10.1016/j.fsigen.2023.102870] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Forensic DNA Phenotyping (FDP) comprises the prediction of a person's externally visible characteristics regarding appearance, biogeographic ancestry and age from DNA of crime scene samples, to provide investigative leads to help find unknown perpetrators that cannot be identified with forensic STR-profiling. In recent years, FDP has advanced considerably in all of its three components, which we summarize in this review article. Appearance prediction from DNA has broadened beyond eye, hair and skin color to additionally comprise other traits such as eyebrow color, freckles, hair structure, hair loss in men, and tall stature. Biogeographic ancestry inference from DNA has progressed from continental ancestry to sub-continental ancestry detection and the resolving of co-ancestry patterns in genetically admixed individuals. Age estimation from DNA has widened beyond blood to more somatic tissues such as saliva and bones as well as new markers and tools for semen. Technological progress has allowed forensically suitable DNA technology with largely increased multiplex capacity for the simultaneous analysis of hundreds of DNA predictors with targeted massively parallel sequencing (MPS). Forensically validated MPS-based FDP tools for predicting from crime scene DNA i) several appearance traits, ii) multi-regional ancestry, iii) several appearance traits together with multi-regional ancestry, and iv) age from different tissue types, are already available. Despite recent advances that will likely increase the impact of FDP in criminal casework in the near future, moving reliable appearance, ancestry and age prediction from crime scene DNA to the level of detail and accuracy police investigators may desire, requires further intensified scientific research together with technical developments and forensic validations as well as the necessary funding.
Collapse
Affiliation(s)
- Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland,; Institute of Forensic Research, Kraków, Poland
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, PA, USA
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| |
Collapse
|
26
|
Curtis SW, Carlson JC, Beaty TH, Murray JC, Weinberg SM, Marazita ML, Cotney JL, Cutler DJ, Epstein MP, Leslie EJ. Rare genetic variants in SEC24D modify orofacial cleft phenotypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.24.23287714. [PMID: 37034635 PMCID: PMC10081436 DOI: 10.1101/2023.03.24.23287714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As one of the most common structural birth defects, orofacial clefts (OFCs) have been studied for decades, and recent studies have demonstrated that there are genetic differences between the different phenotypic presentations of OFCs. However, the contribution of rare genetic variation genome-wide to different subtypes of OFCs has been understudied, with most studies focusing on common genetic variation or rare variation within targeted regions of the genome. Therefore, we used whole-genome sequencing data from the Gabriella Miller Kids First Pediatric Research Program to conduct a gene-based burden analysis to test for genetic modifiers of cleft lip (CL) vs cleft lip and palate (CLP). We found that there was a significantly increased burden of rare variants in SEC24D in CL cases compared to CLP cases (p=6.86×10-7). Of the 15 variants within SEC24D, 53.3% were synonymous, but overlapped a known craniofacial enhancer. We then tested whether these variants could alter predicted transcription factor binding sites (TFBS), and found that the rare alleles destroyed binding sites for 9 transcription factors (TFs), including Pax1 (p=0.0009), and created binding sites for 23 TFs, including Pax6 (p=6.12×10-5) and Pax9 (p= 0.0001), which are known to be involved in normal craniofacial development, suggesting a potential mechanism by which these synonymous variants could have a functional impact. Overall, this study demonstrates that rare genetic variation contributes to the phenotypic heterogeneity of OFCs and suggests that regulatory variation may also contribute and warrant further investigation in future studies of genetic variants controlling risk to OFC.
Collapse
Affiliation(s)
- Sarah W Curtis
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Jenna C Carlson
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15621, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205,USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Seth M Weinberg
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mary L Marazita
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut, CT, 06030, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | | |
Collapse
|
27
|
Advancement in Human Face Prediction Using DNA. Genes (Basel) 2023; 14:genes14010136. [PMID: 36672878 PMCID: PMC9858985 DOI: 10.3390/genes14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
The rapid improvements in identifying the genetic factors contributing to facial morphology have enabled the early identification of craniofacial syndromes. Similarly, this technology can be vital in forensic cases involving human identification from biological traces or human remains, especially when reference samples are not available in the deoxyribose nucleic acid (DNA) database. This review summarizes the currently used methods for predicting human phenotypes such as age, ancestry, pigmentation, and facial features based on genetic variations. To identify the facial features affected by DNA, various two-dimensional (2D)- and three-dimensional (3D)-scanning techniques and analysis tools are reviewed. A comparison between the scanning technologies is also presented in this review. Face-landmarking techniques and face-phenotyping algorithms are discussed in chronological order. Then, the latest approaches in genetic to 3D face shape analysis are emphasized. A systematic review of the current markers that passed the threshold of a genome-wide association (GWAS) of single nucleotide polymorphism (SNP)-face traits from the GWAS Catalog is also provided using the preferred reporting items for systematic reviews and meta-analyses (PRISMA), approach. Finally, the current challenges in forensic DNA phenotyping are analyzed and discussed.
Collapse
|
28
|
Maréchal L, Dumoncel J, Santos F, Astudillo Encina W, Evteev A, Prevost A, Toro-Ibacache V, Venter RG, Heuzé Y. New insights into the variability of upper airway morphology in modern humans. J Anat 2022; 242:781-795. [PMID: 36585765 PMCID: PMC10093156 DOI: 10.1111/joa.13813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023] Open
Abstract
The biological adaptation of the human lineage to its environment is a recurring question in paleoanthropology. Particularly, how eco-geographic factors (e.g., environmental temperature and humidity) have shaped upper airway morphology in hominins have been subject to continuing debate. Nasal shape is the result of many intertwined factors that include, but are not limited to, genetic drift, sexual selection, or adaptation to climate. A quantification of nasal airway (NA) morphological variation in modern human populations is crucial to better understand these multiple factors. In the present research, we study 195 in vivo CT scans of adult individuals collected in five different geographic areas (Chile, France, Cambodia, Russia, and South Africa). After segmentation of the nasal airway, we reconstruct 3D meshes that are analyzed with a landmark-free geometric morphometrics method based on surface deformation. Our results highlight subtle but statistically significant morphological differences between our five samples. The two morphologically closest groups are France and Russia, whose NAs are longer and narrower, with an important protrusion of the supero-anterior part. The Cambodian sample is the most morphologically distinct and clustered sample, with a mean NA that is wider and shorter. On the contrary, the Chilean sample form the most scattered cluster with the greatest intra-population variation. The South African sample is morphologically close to the Cambodian sample, but also partially overlaps the French and Russian variation. Interestingly, we record no correlation between NA volume and geographic groups, which raises the question of climate-related metabolic demands for oxygen consumption. The other factors of variation (sex and age) have no influence on the NA shape in our samples. However, NA volume varies significantly according both to sex and age: it is higher in males than in females and tends to increase with age. In contrast, we observe no effect of temperature or humidity on NA volume. Finally, we highlight the important influence of asymmetries related to nasal septum deviations in NA shape variation.
Collapse
Affiliation(s)
- Laura Maréchal
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
| | - Jean Dumoncel
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
| | - Frédéric Santos
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
| | | | - Andrej Evteev
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | - Alice Prevost
- Plastic and Maxillo-facial Surgery Department, University Hospital Center of Toulouse, Toulouse, France
| | - Viviana Toro-Ibacache
- Centro de Análisis Cuantitativo en Antropología Dental, Universidad de Chile, Santiago, Chile
| | - Rudolph G Venter
- Division of Orthopaedic Surgery, Department of Surgical Sciences, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Yann Heuzé
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
| |
Collapse
|
29
|
Xiong Z, Gao X, Chen Y, Feng Z, Pan S, Lu H, Uitterlinden AG, Nijsten T, Ikram A, Rivadeneira F, Ghanbari M, Wang Y, Kayser M, Liu F. Combining genome-wide association studies highlight novel loci involved in human facial variation. Nat Commun 2022; 13:7832. [PMID: 36539420 PMCID: PMC9767941 DOI: 10.1038/s41467-022-35328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Standard genome-wide association studies (GWASs) rely on analyzing a single trait at a time. However, many human phenotypes are complex and composed by multiple correlated traits. Here we introduce C-GWAS, a method for combining GWAS summary statistics of multiple potentially correlated traits. Extensive computer simulations demonstrated increased statistical power of C-GWAS compared to the minimal p-values of multiple single-trait GWASs (MinGWAS) and the current state-of-the-art method for combining single-trait GWASs (MTAG). Applying C-GWAS to a meta-analysis dataset of 78 single trait facial GWASs from 10,115 Europeans identified 56 study-wide suggestively significant loci with multi-trait effects on facial morphology of which 17 are novel loci. Using data from additional 13,622 European and Asian samples, 46 (82%) loci, including 9 (53%) novel loci, were replicated at nominal significance with consistent allele effects. Functional analyses further strengthen the reliability of our C-GWAS findings. Our study introduces the C-GWAS method and makes it available as computationally efficient open-source R package for widespread future use. Our work also provides insights into the genetic architecture of human facial appearance.
Collapse
Affiliation(s)
- Ziyi Xiong
- grid.5645.2000000040459992XDepartment of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Xingjian Gao
- grid.9227.e0000000119573309CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China ,grid.440259.e0000 0001 0115 7868National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, Jiangsu China
| | - Yan Chen
- grid.5645.2000000040459992XDepartment of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands ,grid.9227.e0000000119573309CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhanying Feng
- grid.9227.e0000000119573309CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Siyu Pan
- grid.9227.e0000000119573309CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Haojie Lu
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andre G. Uitterlinden
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tamar Nijsten
- grid.5645.2000000040459992XDepartment of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Arfan Ikram
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Fernando Rivadeneira
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yong Wang
- grid.9227.e0000000119573309CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Manfred Kayser
- grid.5645.2000000040459992XDepartment of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Fan Liu
- grid.5645.2000000040459992XDepartment of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands ,grid.9227.e0000000119573309CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Linkowska K, Malyarchuk BA, Derenko MV, Grzybowski T. An association between copy number variation of enhancer involved in craniofacial development and biogeographic ancestry. ARCHIVES OF FORENSIC MEDICINE AND CRIMINOLOGY 2022. [DOI: 10.4467/16891716amsik.22.008.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human facial morphology is a combination of many complex traits and is determined by a large number of genes and enhancers. Here, we report a Copy Number Variation (CNV) study of enhancer hs1431 in populations of Central European and South Siberian ancestry. Central European samples included 97 Poles, while South Siberian samples included 78 Buryats and 27 Tuvinians. CNVs were detected by real-time PCR, using ViiA™ 7 Real-Time PCR System (Applied Biosystems). We revealed significant differences in CNV of hs1431 enhancer between Polish and Buryat population (p=0.0378), but not between Central European and South Siberian population (p=0.1225). Our results suggest that an increase in copy number variation of hs1431 enhancer is associated with biogeographic ancestry. However, this result needs extending and replicating in larger cohorts. This is the first study revealing the presence of copy number variation of enhancer hs1431 in humans.
Collapse
Affiliation(s)
- Katarzyna Linkowska
- Department of Forensic Medicine, Division of Molecular & Forensic Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Boris A. Malyarchuk
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Sciences, Magadan, Russia
| | | | - Tomasz Grzybowski
- Department of Forensic Medicine, Division of Molecular & Forensic Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
31
|
Naqvi S, Hoskens H, Wilke F, Weinberg SM, Shaffer JR, Walsh S, Shriver MD, Wysocka J, Claes P. Decoding the Human Face: Progress and Challenges in Understanding the Genetics of Craniofacial Morphology. Annu Rev Genomics Hum Genet 2022; 23:383-412. [PMID: 35483406 PMCID: PMC9482780 DOI: 10.1146/annurev-genom-120121-102607] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Variations in the form of the human face, which plays a role in our individual identities and societal interactions, have fascinated scientists and artists alike. Here, we review our current understanding of the genetics underlying variation in craniofacial morphology and disease-associated dysmorphology, synthesizing decades of progress on Mendelian syndromes in addition to more recent results from genome-wide association studies of human facial shape and disease risk. We also discuss the various approaches used to phenotype and quantify facial shape, which are of particular importance due to the complex, multipartite nature of the craniofacial form. We close by discussing how experimental studies have contributed and will further contribute to our understanding of human genetic variation and then proposing future directions and applications for the field.
Collapse
Affiliation(s)
- Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA; ,
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Hanne Hoskens
- Center for Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven, Belgium; ,
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Franziska Wilke
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA; ,
| | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John R Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan Walsh
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA; ,
| | - Mark D Shriver
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA; ,
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Peter Claes
- Center for Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven, Belgium; ,
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Cha MY, Hong YJ, Choi JE, Kwon TS, Kim IJ, Hong KW. Classification of early age facial growth pattern and identification of the genetic basis in two Korean populations. Sci Rep 2022; 12:13828. [PMID: 35970861 PMCID: PMC9378761 DOI: 10.1038/s41598-022-18127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Childhood to adolescence is an accelerated growth period, and genetic features can influence differences of individual growth patterns. In this study, we examined the genetic basis of early age facial growth (EAFG) patterns. Facial shape phenotypes were defined using facial landmark distances, identifying five growth patterns: continued-decrease, decrease-to-increase, constant, increase-to-decrease, and continued-increase. We conducted genome-wide association studies (GWAS) for 10 horizontal and 11 vertical phenotypes. The most significant association for horizontal phenotypes was rs610831 (TRIM29; β = 0.92, p-value = 1.9 × 10−9) and for vertical phenotypes was rs6898746 (ZSWIM6; β = 0.1103, p-value = 2.5 × 10−8). It is highly correlated with genes already reported for facial growth. This study is the first to classify and characterize facial growth patterns and related genetic polymorphisms.
Collapse
Affiliation(s)
- Mi-Yeon Cha
- Theragen Bio Co., Ltd., 240 Pangyoyeok-ro, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea
| | - Yu-Jin Hong
- Center for Imaging Media Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ja-Eun Choi
- Theragen Bio Co., Ltd., 240 Pangyoyeok-ro, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea
| | - Tae-Song Kwon
- Human ICT CO., Ltd., 111, Dogok-ro, Gangnam-gu, Seoul, 06253, Republic of Korea
| | - Ig-Jae Kim
- Center for Imaging Media Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., 240 Pangyoyeok-ro, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea.
| |
Collapse
|
33
|
Liang Y, Liu H, Gao Z, Li Q, Li G, Zhao J, Wang X. Ocular phenotype related SNP analysis in Southern Han Chinese population from Guangdong province. Gene 2022; 826:146458. [PMID: 35358651 DOI: 10.1016/j.gene.2022.146458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/15/2022]
Abstract
Ocular phenotype is recognizable among Asians, including eyelid fold, fissure inclination, and canthal index. Here we screened 27 facial phenotype-associated SNPs and reported a preliminary study in 246 Chinese individuals of Han origin in Guangdong province. Results showed that rs17760296 could explain 6.2% of the eyelid fold variation and double eyelids were more likely to appear when one's genotype was TT. With respect to the canthal index, rs4791774 and rs642961 were significantly associated with it. However, no individual SNP was associated with fissure inclination. We further constructed two models to predict eyelid fold and canthal index and evaluated them with receiver operating characteristic (ROC) curves and support vector machine (SVM) regression, respectively. The models showed a moderate-to-high predictive capacity (AUC = 0.75, sensitivity = 76%, and specificity = 72%) for the eyelid fold while a mild performance (R2 = 0.1074, MSE = 0.0005, P-value = 0.024) for the canthal index. In conclusion, our study indicates that rs17760296 could be selected into the facial phenotype prediction system for the Southern Han Chinese population. More SNPs are encouraged to improve the prediction accuracy of the canthal index besides rs4791774 and rs642961.
Collapse
Affiliation(s)
- Yimeng Liang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University & Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan 2nd Road 74, Yuexiu District, Guangzhou, PR China
| | - Heming Liu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Zhongshan 2nd Road 74, Yuexiu District, Guangzhou, PR China
| | - Zhenjie Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University & Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan 2nd Road 74, Yuexiu District, Guangzhou, PR China
| | - Qi Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University & Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan 2nd Road 74, Yuexiu District, Guangzhou, PR China
| | - Guoran Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University & Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan 2nd Road 74, Yuexiu District, Guangzhou, PR China
| | - Jian Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University & Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan 2nd Road 74, Yuexiu District, Guangzhou, PR China; Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Baiyun Avenue 1708, Baiyun District, Guangzhou, PR China.
| | - Xiaoguang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University & Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan 2nd Road 74, Yuexiu District, Guangzhou, PR China.
| |
Collapse
|
34
|
Zhang M, Wu S, Du S, Qian W, Chen J, Qiao L, Yang Y, Tan J, Yuan Z, Peng Q, Liu Y, Navarro N, Tang K, Ruiz-Linares A, Wang J, Claes P, Jin L, Li J, Wang S. Genetic variants underlying differences in facial morphology in East Asian and European populations. Nat Genet 2022; 54:403-411. [PMID: 35393595 DOI: 10.1038/s41588-022-01038-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/19/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Facial morphology-a conspicuous feature of human appearance-is highly heritable. Previous studies on the genetic basis of facial morphology were performed mainly in European-ancestry cohorts (EUR). Applying a data-driven phenotyping and multivariate genome-wide scanning protocol to a large collection of three-dimensional facial images of individuals with East Asian ancestry (EAS), we identified 244 variants in 166 loci (62 new) associated with typical-range facial variation. A newly proposed polygenic shape analysis indicates that the effects of the variants on facial shape in EAS can be generalized to EUR. Based on this, we further identified 13 variants related to differences between facial shape in EUR and EAS populations. Evolutionary analyses suggest that the difference in nose shape between EUR and EAS populations is caused by a directional selection, due mainly to a local adaptation in Europeans. Our results illustrate the underlying genetic basis for facial differences across populations.
Collapse
Affiliation(s)
- Manfei Zhang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Computer Science, Fudan University, Shanghai, China
| | - Sijie Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Qian
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Computer Science, Fudan University, Shanghai, China
| | - Jieyi Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Qiao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Fudan-Taizhou Institute of Health Sciences, Taizhou, China
| | - Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS-EPHE, Université Bourgogne Franche-Comté, Dijon, France
- Ecole Pratique des Hautes Etudes, PSL University, Paris, France
| | - Kun Tang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Andrés Ruiz-Linares
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, France
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, UK
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, China
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Fudan-Taizhou Institute of Health Sciences, Taizhou, China.
| | - Jiarui Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
| | - Sijia Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
35
|
Dabas P, Jain S, Khajuria H, Nayak BP. Forensic DNA phenotyping: Inferring phenotypic traits from crime scene DNA. J Forensic Leg Med 2022; 88:102351. [DOI: 10.1016/j.jflm.2022.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
36
|
Qian W, Zhang M, Wan K, Xie Y, Du S, Li J, Mu X, Qiu J, Xue X, Zhuang X, Wu Y, Liu F, Wang S. Genetic evidence for facial variation being a composite phenotype of cranial variation and facial soft tissue thickness. J Genet Genomics 2022; 49:934-942. [DOI: 10.1016/j.jgg.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
|
37
|
Shull LC, Lencer ES, Kim HM, Goyama S, Kurokawa M, Costello JC, Jones K, Artinger KB. PRDM paralogs antagonistically balance Wnt/β-catenin activity during craniofacial chondrocyte differentiation. Development 2022; 149:274527. [PMID: 35132438 PMCID: PMC8918787 DOI: 10.1242/dev.200082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/β-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/β-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/β-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.
Collapse
Affiliation(s)
- Lomeli C. Shull
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ezra S. Lencer
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hyun Min Kim
- Department of Pharmacology and University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Susumu Goyama
- Division of Cellular Therapy, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, The University of Tokyo, Tokyo, 113-8655, Japan
| | - James C. Costello
- Department of Pharmacology and University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Author for correspondence ()
| |
Collapse
|
38
|
Pośpiech E, Teisseyre P, Mielniczuk J, Branicki W. Predicting Physical Appearance from DNA Data-Towards Genomic Solutions. Genes (Basel) 2022; 13:genes13010121. [PMID: 35052461 PMCID: PMC8774670 DOI: 10.3390/genes13010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
The idea of forensic DNA intelligence is to extract from genomic data any information that can help guide the investigation. The clues to the externally visible phenotype are of particular practical importance. The high heritability of the physical phenotype suggests that genetic data can be easily predicted, but this has only become possible with less polygenic traits. The forensic community has developed DNA-based predictive tools by employing a limited number of the most important markers analysed with targeted massive parallel sequencing. The complexity of the genetics of many other appearance phenotypes requires big data coupled with sophisticated machine learning methods to develop accurate genomic predictors. A significant challenge in developing universal genomic predictive methods will be the collection of sufficiently large data sets. These should be created using whole-genome sequencing technology to enable the identification of rare DNA variants implicated in phenotype determination. It is worth noting that the correctness of the forensic sketch generated from the DNA data depends on the inclusion of an age factor. This, however, can be predicted by analysing epigenetic data. An important limitation preventing whole-genome approaches from being commonly used in forensics is the slow progress in the development and implementation of high-throughput, low DNA input sequencing technologies. The example of palaeoanthropology suggests that such methods may possibly be developed in forensics.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Paweł Teisseyre
- Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland; (P.T.); (J.M.)
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Jan Mielniczuk
- Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland; (P.T.); (J.M.)
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
- Central Forensic Laboratory of the Police, 00-583 Warsaw, Poland
- Correspondence: ; Tel.: +48-126-645-024
| |
Collapse
|
39
|
Qian Y, Xiong Z, Li Y, Kayser M, Liu L, Liu F. The effects of Tbx15 and Pax1 on facial and other physical morphology in mice. FASEB Bioadv 2021; 3:1011-1019. [PMID: 34938962 PMCID: PMC8664010 DOI: 10.1096/fba.2021-00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
DNA variants in or close to the human TBX15 and PAX1 genes have been repeatedly associated with facial morphology in independent genome-wide association studies, while their functional roles in determining facial morphology remain to be understood. We generated Tbx15 knockout (Tbx15 -/-) and Pax1 knockout (Pax1 -/-) mice by applying the one-step CRISPR/Cas9 method. A total of 75 adult mice were used for subsequent phenotype analysis, including 38 Tbx15 mice (10 homozygous Tbx15 -/-, 18 heterozygous Tbx15 +/-, 10 wild-type Tbx15 +/+ WT littermates) and 37 Pax1 mice (12 homozygous Pax1 -/-, 15 heterozygous Pax1 +/-, 10 Pax1 +/+ WT littermates). Facial and other physical morphological phenotypes were obtained from three-dimensional (3D) images acquired with the HandySCAN BLACK scanner. Compared to WT littermates, the Tbx15 -/- mutant mice had significantly shorter faces (p = 1.08E-8, R2 = 0.61) and their ears were in a significantly lower position (p = 3.54E-8, R2 = 0.62) manifesting a "droopy ear" characteristic. Besides these face alternations, Tbx15 -/- mutant mice displayed significantly lower weight as well as shorter body and limb length. Pax1 -/- mutant mice showed significantly longer noses (p = 1.14E-5, R2 = 0.46) relative to WT littermates, but otherwise displayed less obvious morphological alterations than Tbx15 -/- mutant mice did. We provide the first direct functional evidence that two well-known and replicated human face genes, Tbx15 and Pax1, impact facial and other body morphology in mice. The general agreement between our findings in knock-out mice with those from previous GWASs suggests that the functional evidence we established here in mice may also be relevant in humans.
Collapse
Affiliation(s)
- Yu Qian
- CAS Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ziyi Xiong
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| | - Yi Li
- CAS Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Manfred Kayser
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| | - Lei Liu
- Department of Plastic and Burn SurgeryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| |
Collapse
|
40
|
Aponte JD, Katz DC, Roth DM, Vidal-García M, Liu W, Andrade F, Roseman CC, Murray SA, Cheverud J, Graf D, Marcucio RS, Hallgrímsson B. Relating multivariate shapes to genescapes using phenotype-biological process associations for craniofacial shape. eLife 2021; 10:68623. [PMID: 34779766 PMCID: PMC8631940 DOI: 10.7554/elife.68623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Realistic mappings of genes to morphology are inherently multivariate on both sides of the equation. The importance of coordinated gene effects on morphological phenotypes is clear from the intertwining of gene actions in signaling pathways, gene regulatory networks, and developmental processes underlying the development of shape and size. Yet, current approaches tend to focus on identifying and localizing the effects of individual genes and rarely leverage the information content of high-dimensional phenotypes. Here, we explicitly model the joint effects of biologically coherent collections of genes on a multivariate trait – craniofacial shape – in a sample of n = 1145 mice from the Diversity Outbred (DO) experimental line. We use biological process Gene Ontology (GO) annotations to select skeletal and facial development gene sets and solve for the axis of shape variation that maximally covaries with gene set marker variation. We use our process-centered, multivariate genotype-phenotype (process MGP) approach to determine the overall contributions to craniofacial variation of genes involved in relevant processes and how variation in different processes corresponds to multivariate axes of shape variation. Further, we compare the directions of effect in phenotype space of mutations to the primary axis of shape variation associated with broader pathways within which they are thought to function. Finally, we leverage the relationship between mutational and pathway-level effects to predict phenotypic effects beyond craniofacial shape in specific mutants. We also introduce an online application that provides users the means to customize their own process-centered craniofacial shape analyses in the DO. The process-centered approach is generally applicable to any continuously varying phenotype and thus has wide-reaching implications for complex trait genetics.
Collapse
Affiliation(s)
- Jose D Aponte
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - David C Katz
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Daniela M Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Wei Liu
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Fernando Andrade
- Department of Biology, Loyola University Chicago, Chicago, United States
| | - Charles C Roseman
- Department of Biology, Loyola University Chicago, Chicago, United States
| | | | - James Cheverud
- Department of Biology, Loyola University Chicago, Chicago, United States
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, School of Medicine, University of California, San Francisco, San Francisco, United States
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Animal Biology, University of Illinois Urbana Champaign, Urbana, United States
| |
Collapse
|
41
|
Knol MJ, Pawlak MA, Lamballais S, Terzikhan N, Hofer E, Xiong Z, Klaver CCW, Pirpamer L, Vernooij MW, Ikram MA, Schmidt R, Kayser M, Evans TE, Adams HHH. Genetic architecture of orbital telorism. Hum Mol Genet 2021; 31:1531-1543. [PMID: 34791242 PMCID: PMC9071440 DOI: 10.1093/hmg/ddab334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
The interocular distance, or orbital telorism, is a distinctive craniofacial trait that also serves as a clinically informative measure. While its extremes, hypo- and hypertelorism, have been linked to monogenic disorders and are often syndromic, little is known about the genetic determinants of interocular distance within the general population. We derived orbital telorism measures from cranial magnetic resonance imaging by calculating the distance between the eyeballs’ centre of gravity, which showed a good reproducibility with an intraclass correlation coefficient of 0.991 (95% confidence interval 0.985–0.994). Heritability estimates were 76% (standard error = 12%) with a family-based method (N = 364) and 39% (standard error = 2.4%) with a single nucleotide polymorphism-based method (N = 34 130) and were unaffected by adjustment for height (model II) and intracranial volume (model III) or head width (model IV). Genome-wide association studies in 34 130 European individuals identified 56 significantly associated genomic loci (P < 5 × 10−8) across four different models of which 46 were novel for facial morphology, and overall these findings replicated in an independent sample (N = 10 115) with telorism-related horizontal facial distance measures. Genes located nearby these 56 identified genetic loci were 4.9-fold enriched for Mendelian hypotelorism and hypertelorism genes, underlining their biological relevance. This study provides novel insights into the genetic architecture underlying interocular distance in particular, and the face in general, and explores its potential for applications in a clinical setting.
Collapse
Affiliation(s)
- Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| | - Mikolaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznan University of Medical Sciences, Poznan, Poland.,Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Auenbruggerplatz 22, 8036 Graz, Austria.,Institute of Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Ziyi Xiong
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands.,Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands.,Department of Ophthalmology, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| | - Lukas Pirpamer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| | - Tavia E Evans
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CE, the Netherlands
| |
Collapse
|
42
|
Boer EF, Maclary ET, Shapiro MD. Complex genetic architecture of three-dimensional craniofacial shape variation in domestic pigeons. Evol Dev 2021; 23:477-495. [PMID: 34914861 PMCID: PMC9119316 DOI: 10.1111/ede.12395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
Deciphering the genetic basis of vertebrate craniofacial variation is a longstanding biological problem with broad implications in evolution, development, and human pathology. One of the most stunning examples of craniofacial diversification is the adaptive radiation of birds, in which the beak serves essential roles in virtually every aspect of their life histories. The domestic pigeon (Columba livia) provides an exceptional opportunity to study the genetic underpinnings of craniofacial variation because of its unique balance of experimental accessibility and extraordinary phenotypic diversity within a single species. We used traditional and geometric morphometrics to quantify craniofacial variation in an F2 laboratory cross derived from the straight-beaked Pomeranian Pouter and curved-beak Scandaroon pigeon breeds. Using a combination of genome-wide quantitative trait locus scans and multi-locus modeling, we identified a set of genetic loci associated with complex shape variation in the craniofacial skeleton, including beak shape, braincase shape, and mandible shape. Some of these loci control coordinated changes between different structures, while others explain variation in the size and shape of specific skull and jaw regions. We find that in domestic pigeons, a complex blend of both independent and coupled genetic effects underlie three-dimensional craniofacial morphology.
Collapse
Affiliation(s)
- Elena F. Boer
- School of Biological SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Emily T. Maclary
- School of Biological SciencesUniversity of UtahSalt Lake CityUtahUSA
| | | |
Collapse
|
43
|
Liu D, Ban HJ, El Sergani AM, Lee MK, Hecht JT, Wehby GL, Moreno LM, Feingold E, Marazita ML, Cha S, Szabo-Rogers HL, Weinberg SM, Shaffer JR. PRICKLE1 × FOCAD Interaction Revealed by Genome-Wide vQTL Analysis of Human Facial Traits. Front Genet 2021; 12:674642. [PMID: 34434215 PMCID: PMC8381734 DOI: 10.3389/fgene.2021.674642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The human face is a highly complex and variable structure resulting from the intricate coordination of numerous genetic and non-genetic factors. Hundreds of genomic loci impacting quantitative facial features have been identified. While these associations have been shown to influence morphology by altering the mean size and shape of facial measures, their effect on trait variance remains unclear. We conducted a genome-wide association analysis for the variance of 20 quantitative facial measurements in 2,447 European individuals and identified several suggestive variance quantitative trait loci (vQTLs). These vQTLs guided us to conduct an efficient search for gene-by-gene (G × G) interactions, which uncovered an interaction between PRICKLE1 and FOCAD affecting cranial base width. We replicated this G × G interaction signal at the locus level in an additional 5,128 Korean individuals. We used the hypomorphic Prickle1 Beetlejuice (Prickle1 Bj ) mouse line to directly test the function of Prickle1 on the cranial base and observed wider cranial bases in Prickle1 Bj/Bj . Importantly, we observed that the Prickle1 and Focadhesin proteins co-localize in murine cranial base chondrocytes, and this co-localization is abnormal in the Prickle1 Bj/Bj mutants. Taken together, our findings uncovered a novel G × G interaction effect in humans with strong support from both epidemiological and molecular studies. These results highlight the potential of studying measures of phenotypic variability in gene mapping studies of facial morphology.
Collapse
Affiliation(s)
- Dongjing Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hyo-Jeong Ban
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ahmed M. El Sergani
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical Center, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - George L. Wehby
- Department of Health Management and Policy, The University of Iowa, Iowa City, IA, United States
| | - Lina M. Moreno
- Department of Orthodontics, The University of Iowa, Iowa City, IA, United States
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Seongwon Cha
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Heather L. Szabo-Rogers
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Regenerative Medicine at the McGowan Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - John R. Shaffer
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
44
|
Liu C, Lee MK, Naqvi S, Hoskens H, Liu D, White JD, Indencleef K, Matthews H, Eller RJ, Li J, Mohammed J, Swigut T, Richmond S, Manyama M, Hallgrímsson B, Spritz RA, Feingold E, Marazita ML, Wysocka J, Walsh S, Shriver MD, Claes P, Weinberg SM, Shaffer JR. Genome scans of facial features in East Africans and cross-population comparisons reveal novel associations. PLoS Genet 2021; 17:e1009695. [PMID: 34411106 PMCID: PMC8375984 DOI: 10.1371/journal.pgen.1009695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Facial morphology is highly variable, both within and among human populations, and a sizable portion of this variation is attributable to genetics. Previous genome scans have revealed more than 100 genetic loci associated with different aspects of normal-range facial variation. Most of these loci have been detected in Europeans, with few studies focusing on other ancestral groups. Consequently, the degree to which facial traits share a common genetic basis across diverse sets of humans remains largely unknown. We therefore investigated the genetic basis of facial morphology in an East African cohort. We applied an open-ended data-driven phenotyping approach to a sample of 2,595 3D facial images collected on Tanzanian children. This approach segments the face into hierarchically arranged, multivariate features that capture the shape variation after adjusting for age, sex, height, weight, facial size and population stratification. Genome scans of these multivariate shape phenotypes revealed significant (p < 2.5 × 10-8) signals at 20 loci, which were enriched for active chromatin elements in human cranial neural crest cells and embryonic craniofacial tissue, consistent with an early developmental origin of the facial variation. Two of these associations were in highly conserved regions showing craniofacial-specific enhancer activity during embryological development (5q31.1 and 12q21.31). Six of the 20 loci surpassed a stricter threshold accounting for multiple phenotypes with study-wide significance (p < 6.25 × 10-10). Cross-population comparisons indicated 10 association signals were shared with Europeans (seven sharing the same associated SNP), and facilitated fine-mapping of causal variants at previously reported loci. Taken together, these results may point to both shared and population-specific components to the genetic architecture of facial variation.
Collapse
Affiliation(s)
- Chenxing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Myoung Keun Lee
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hanne Hoskens
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dongjing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Julie D. White
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Karlijne Indencleef
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Processing Speech & Images, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Harold Matthews
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Ryan J. Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jiarui Li
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Processing Speech & Images, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jaaved Mohammed
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Mange Manyama
- Anatomy in Radiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Benedikt Hallgrímsson
- Department of Anatomy and Cell Biology, Alberta Children´s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Richard A. Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mary L. Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mark D. Shriver
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Peter Claes
- Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- Processing Speech & Images, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Seth M. Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
45
|
Shi L, Bai H, Li Y, Yuan J, Wang P, Wang Y, Ni A, Jiang L, Ge P, Bian S, Zong Y, Isa AM, Tesfay HH, Yang F, Ma H, Sun Y, Chen J. Analysis of DNA Methylation Profiles in Mandibular Condyle of Chicks With Crossed Beaks Using Whole-Genome Bisulfite Sequencing. Front Genet 2021; 12:680115. [PMID: 34306022 PMCID: PMC8298039 DOI: 10.3389/fgene.2021.680115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023] Open
Abstract
Crossed beaks have been observed in at least 12 chicken strains around the world, which severely impairs their growth and welfare. To explore the intrinsic factor causing crossed beaks, this study measured the length of bilateral mandibular ramus of affected birds, and investigated the genome-wide DNA methylation profiles of normal and affected sides of mandibular condyle. Results showed that the trait was caused by impaired development of unilateral mandibular ramus, which is extended through calcification of mandibular condyle. The methylation levels in the CG contexts were higher than that of CHG and CHH, with the highest methylation level of gene body region, followed by transcription termination sites and downstream. Subsequently, we identified 1,568 differentially methylated regions and 1,317 differentially methylated genes in CG contexts. Functional annotation analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes showed that these genes were involved in bone mineralization and bone morphogenesis. Furthermore, by combining the WGBS and previous RNA-Seq data, 11 overlapped genes were regulated by both long non-coding RNA and DNA methylation. Among them, FIGNL1 is an important gene in calcification of mandibular condyle. Generally, because the affected genes play key roles in maintaining mandibular calcification, these changes may be pivotal factors of crossed beaks.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Yunlei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Panlin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanmei Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aixin Ni
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linlin Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingzhuang Ge
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shixiong Bian
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Zong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adamu Mani Isa
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailai Hagos Tesfay
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujian Yang
- Guangxi Shenhuang Group Co., Ltd., Yulin, China
| | - Hui Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jilan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
46
|
Raza RZ, Ma L, Zhang Z, Bao Y, Abbasi AA. Selection trends on nasal-associated SNP variants across human populations. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Hoskens H, Liu D, Naqvi S, Lee MK, Eller RJ, Indencleef K, White JD, Li J, Larmuseau MHD, Hens G, Wysocka J, Walsh S, Richmond S, Shriver MD, Shaffer JR, Peeters H, Weinberg SM, Claes P. 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies. PLoS Genet 2021; 17:e1009528. [PMID: 33983923 PMCID: PMC8118281 DOI: 10.1371/journal.pgen.1009528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The analysis of contemporary genomic data typically operates on one-dimensional phenotypic measurements (e.g. standing height). Here we report on a data-driven, family-informed strategy to facial phenotyping that searches for biologically relevant traits and reduces multivariate 3D facial shape variability into amendable univariate measurements, while preserving its structurally complex nature. We performed a biometric identification of siblings in a sample of 424 children, defining 1,048 sib-shared facial traits. Subsequent quantification and analyses in an independent European cohort (n = 8,246) demonstrated significant heritability for a subset of traits (0.17-0.53) and highlighted 218 genome-wide significant loci (38 also study-wide) associated with facial variation shared by siblings. These loci showed preferential enrichment for active chromatin marks in cranial neural crest cells and embryonic craniofacial tissues and several regions harbor putative craniofacial genes, thereby enhancing our knowledge on the genetic architecture of normal-range facial variation.
Collapse
Affiliation(s)
- Hanne Hoskens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Dongjing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Myoung Keun Lee
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ryan J. Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Karlijne Indencleef
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, KU Leuven, Leuven, Belgium
| | - Julie D. White
- Department of Anthropology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Jiarui Li
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Maarten H. D. Larmuseau
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Biology, Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
- Histories vzw, Mechelen, Belgium
| | - Greet Hens
- Department of Otorhinolaryngology, KU Leuven, Leuven, Belgium
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Mark D. Shriver
- Department of Anthropology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Seth M. Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Yamaguchi T, Kim YI, Mohamed A, Hikita Y, Takahashi M, Haga S, Park SB, Maki K. Methods in Genetic Analysis for Evaluation Mandibular Shape and Size Variations in Human Mandible. J Craniofac Surg 2021; 33:e97-e101. [PMID: 33867516 DOI: 10.1097/scs.0000000000007686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT The human mandible has been investigated from both clinical and evolutionary perspectives. Recent advances in genome science have identified the genetic regulation of human mandibular shape and size. Identification of genes that regulate mandibular shape and size would not only enhance our understanding of the mechanisms of mandibular growth and development but also help define a strategy to prevent mandibular dysplasia. This review provides a comprehensive summary of why and how the mandible was evaluated in the human mandible genome study. The variation in human mandibular shape and size has been progressively clarified, not only by focusing on the mandible alone but also by using extremely diverse approaches. The methods of data acquisition for evaluating human mandibular shape and size variation are well established. Furthermore, this review explains how to proceed with future research.
Collapse
Affiliation(s)
- Tetsutaro Yamaguchi
- Department of Orthodontics, Kanagawa Dental University, Japan Department of Orthodontics, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, South Korea Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan Department of Orthodontics, Suez Canal University, Ismailia, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Curtis SW, Chang D, Lee MK, Shaffer JR, Indencleef K, Epstein MP, Cutler DJ, Murray JC, Feingold E, Beaty TH, Claes P, Weinberg SM, Marazita ML, Carlson JC, Leslie EJ. The PAX1 locus at 20p11 is a potential genetic modifier for bilateral cleft lip. HGG ADVANCES 2021; 2:100025. [PMID: 33817668 PMCID: PMC8018676 DOI: 10.1016/j.xhgg.2021.100025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Nonsyndromic orofacial clefts (OFCs) are a common birth defect and are phenotypically heterogenous in the structure affected by the cleft - cleft lip (CL) and cleft lip and palate (CLP) - as well as other features, such as the severity of the cleft. Here, we focus on bilateral and unilateral clefts as one dimension of OFC severity, because the genetic architecture of these subtypes is not well understood. We tested for subtype-specific genetic associations in 44 bilateral CL (BCL) cases, 434 unilateral CL (UCL) cases, 530 bilateral CLP cases (BCLP), 1123 unilateral CLP (UCLP) cases, and unrelated controls (N = 1626), using a mixed-model approach. While no novel loci were found, the genetic architecture of UCL was distinct compared to BCL, with 44.03% of suggestive loci having different effects between the two subtypes. To further understand the subtype-specific genetic risk factors, we performed a genome-wide scan for modifiers and found a significant modifier locus on 20p11 (p=7.53×10-9), 300kb downstream of PAX1, that associated with higher odds of BCL vs. UCL, and replicated in an independent cohort (p=0.0018) with no effect in BCLP (p>0.05). We further found that this locus was associated with normal human nasal shape. Taken together, these results suggest bilateral and unilateral clefts may have different genetic architectures. Moreover, our results suggest BCL, the rarest form of OFC, may be genetically distinct from the other OFC subtypes. This expands our understanding of modifiers for OFC subtypes and further elucidates the genetic mechanisms behind the phenotypic heterogeneity in OFCs.
Collapse
Affiliation(s)
- Sarah W. Curtis
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Daniel Chang
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
| | - Karlijne Indencleef
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | | | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Jeffrey C. Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Peter Claes
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
| | - Jenna C. Carlson
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
50
|
Huang Y, Li D, Qiao L, Liu Y, Peng Q, Wu S, Zhang M, Yang Y, Tan J, Xu S, Jin L, Wang S, Tang K, Grünewald S. A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese. J Genet Genomics 2021; 48:198-207. [PMID: 33593615 DOI: 10.1016/j.jgg.2020.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
The human face is a heritable surface with many complex sensory organs. In recent years, many genetic loci associated with facial features have been reported in different populations, yet there is a lack of studies on the Han Chinese population. Here, we report a genome-wide association study of 3D normal human faces of 2,659 Han Chinese with autosegment phenotypes of facial morphology. We identify single-nucleotide polymorphisms (SNPs) encompassing four genomic regions showing significant associations with different facial regions, including SNPs in DENND1B associated with the chin, SNPs among PISRT1 associated with eyes, SNPs between DCHS2 and SFRP2 associated with the nose, and SNPs in VPS13B associated with the nose. We replicate 24 SNPs from previously reported genetic loci in different populations, whose candidate genes are DCHS2, SUPT3H, HOXD1, SOX9, PAX3, and EDAR. These results provide a more comprehensive understanding of the genetic basis of variation in human facial morphology.
Collapse
Affiliation(s)
- Yin Huang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Dan Li
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; DeepBlue Technology (Shanghai) Co., Ltd, Shanghai 200336, China
| | - Lu Qiao
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Yu Liu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Qianqian Peng
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Sijie Wu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Manfei Zhang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Fudan-Taizhou Institute of Health Sciences, Taizhou 225300, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Fudan-Taizhou Institute of Health Sciences, Taizhou 225300, China
| | - Shuhua Xu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Jin
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Fudan-Taizhou Institute of Health Sciences, Taizhou 225300, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| | - Sijia Wang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Kun Tang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; DeepBlue Technology (Shanghai) Co., Ltd, Shanghai 200336, China.
| | - Stefan Grünewald
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China.
| |
Collapse
|