1
|
Sirica R, Ottaiano A, Brasi DD, Marcella S, Acquaviva F, Ianniello M, Petrillo N, De Angelis V, Ruggiero R, D'Angelo R, Evangelista E, Fico A, Savarese G. Expanding the Mutational Spectrum of TSPEAR in Ectodermal Dysplasia Type 14: A Familial Case Study. Genes (Basel) 2025; 16:519. [PMID: 40428341 DOI: 10.3390/genes16050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Ectodermal dysplasia (ED) encompasses a heterogeneous group of genetic disorders affecting ectoderm-derived structures such as hair, teeth, nails, and sweat glands. Among these, variants in TSPEAR (Thrombospondin-type laminin G domain and epilepsy-associated repeats) have been implicated in autosomal recessive ED type 14 (OMIM 618180), predominantly manifesting with dental anomalies and hair dysplasia. However, the mutational spectrum of TSPEAR remains incompletely characterized. METHODS Two female siblings (ID#1 and ID#4) were clinically evaluated for ED. Genetic analysis, including next-generation sequencing (NGS) and Sanger validation, was conducted to identify TSPEAR variants. A segregation study confirmed inheritance patterns within the family. RESULTS Both affected siblings exhibited hallmark features of TSPEAR-related ED14, including oligodontia with dysmorphic, pointed maxillary central incisors. Hair thinning and cutaneous angiomas were predominant in ID#4. Genetic analysis identified two compound heterozygous variants in TSPEAR: c.543-1G>A, a splice-site variant likely to disrupt mRNA processing, and NM_144991.2:c.1251G>C(p.Gln417His), a missense variant with predicted deleterious effects. Segregation analysis confirmed maternal and paternal inheritance of the respective variants. A third sibling, ID#5, was identified as a heterozygous carrier without clinical manifestations. CONCLUSIONS This study contributes to the expanding understanding of TSPEAR-related ED14 by providing novel genotype-phenotype correlations.
Collapse
Affiliation(s)
- Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo di Napoli, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy
| | - Daniele De Brasi
- Azienda Ospedaliera di Rilievo Nazionale, "Santobono Pausilipon", Via Teresa Ravaschieri 8, 80122 Napoli, Italy
| | - Simone Marcella
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo di Napoli, Italy
| | - Fabio Acquaviva
- Azienda Ospedaliera di Rilievo Nazionale, "Santobono Pausilipon", Via Teresa Ravaschieri 8, 80122 Napoli, Italy
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo di Napoli, Italy
| | - Nadia Petrillo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo di Napoli, Italy
| | - Valentina De Angelis
- Istituto Comprensivo Statale "Massimo Troisi", Via Pini di Solimena 31, 80046 San Giorgio a Cremano, Italy
| | - Raffaella Ruggiero
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo di Napoli, Italy
| | - Rossana D'Angelo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo di Napoli, Italy
| | - Eloisa Evangelista
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo di Napoli, Italy
| | - Antonio Fico
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo di Napoli, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo di Napoli, Italy
| |
Collapse
|
2
|
Tokita S, Nakayama R, Fujishima Y, Goh VST, Anderson D, Uemura I, Ikema H, Shibata J, Kinoshita Y, Shimizu Y, Shinoda H, Goto J, Palmerini MG, Hatha AM, Satoh T, Nakata A, Fukumoto M, Miura T, Yamashiro H. Potential radiosensitive germline biomarkers in the testes of wild mice after the Fukushima accident. FEBS Open Bio 2025; 15:296-310. [PMID: 39621528 PMCID: PMC11788752 DOI: 10.1002/2211-5463.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025] Open
Abstract
We investigated potential germline-specific radiosensitive biomarkers in the testes of large Japanese field mice (Apodemus speciosus) exposed to low-dose-rate (LDR) radiation after the Fukushima accident. Fukushima wild mice testes were analysed via RNA-sequencing to identify genes differentially expressed in the breeding and non-breeding seasons when compared to controls. Results revealed significant changes during the breeding season, with Lsp1 showing a considerable upregulation, while Ptprk and Tspear exhibited significant reductions. Conversely, in the non-breeding season, Fmo2 and Fmo2 (highly similar) were significantly upregulated in radiation-exposed Fukushima mice. qPCR analysis results were consistent with transcriptome sequencing, detecting Lsp1 and Ptprk regulation in the testes of Fukushima mice. While differences in gene expression were observed, these do not imply any causal association between the identified biomarkers and chronic LDR exposure, as other factors such as the environment and developmental age may contribute. This study provides valuable insights into the reproductive biology is affected by environmental radiation and highlights the value of assessing the effects of chronic LDR radiation exposure on testicular health in wild mice.
Collapse
Affiliation(s)
- Syun Tokita
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | - Ryo Nakayama
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Yohei Fujishima
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Valerie Swee Ting Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety InitiativeNational University of SingaporeSingapore
| | - Donovan Anderson
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Ippei Uemura
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Hikari Ikema
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | - Jin Shibata
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | - Yoh Kinoshita
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | | | | | - Jun Goto
- Institute for Research AdministrationNiigata UniversityJapan
| | | | - Abdulla Mohamed Hatha
- Department of Marine Biology, Microbiology, BiochemistryCochin University of Science and TechnologyIndia
| | - Takashi Satoh
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Akifumi Nakata
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Manabu Fukumoto
- RIKEN Centre for Advanced Intelligence ProjectPathology Informatics TeamTokyoJapan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Hideaki Yamashiro
- Graduate School of Science and TechnologyNiigata UniversityJapan
- Field Centre for Sustainable Agriculture, Faculty of AgricultureNiigata UniversityJapan
| |
Collapse
|
3
|
Bloomquist RF. Developmental basis of natural tooth shape variation in cichlid fishes. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:12. [PMID: 39869142 PMCID: PMC11772509 DOI: 10.1007/s00114-025-01964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
While most dentate non-mammalian vertebrates possess simple conical teeth, some demonstrate complex tooth shapes. Lake Malawi cichlid fishes are an extreme example of this, exhibiting a myriad of tooth shapes driven by an ecologically derived rapid evolution of closely related but distinct species. Tooth shape in mammals is generally considered to be established by signaling centers called primary and secondary enamel knots, which are not believed to be present in non-mammalian vertebrates. In this study, signaling centers of gene expression with epithelial folding with similar molecular patterns to that of mammalian enamel knots are identified, and differences of asymmetric gene expression are identified between fish that possess species specific polymorphisms of either bicuspid or tricuspid teeth. Gene expression is then manipulated indirectly using a small molecule inhibitor of the Notch pathway, resulting in phenotypical aberrations of tooth shape and patterning, including a mimic of a tricuspid tooth in a fish with a naturally occurring bicuspid dentition. This study provides insight into the evolutionary origins of tooth shape and advances our knowledge of the molecular determinants of dental morphology with translational utility in regenerative dentistry.
Collapse
Affiliation(s)
- Ryan F Bloomquist
- Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Medicine, University of South Carolina, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA.
| |
Collapse
|
4
|
Shi X, Liu X, Zhao Z, Zong Y, Sun Y. Novel compound heterozygous variants in the TSPEAR gene causing autosomal recessive hearing loss in a Chinese family. Pediatr Investig 2024; 8:313-315. [PMID: 39720278 PMCID: PMC11664535 DOI: 10.1002/ped4.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 12/26/2024] Open
Affiliation(s)
- Xinyu Shi
- Department of OtorhinolaryngologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaozhou Liu
- Department of OtorhinolaryngologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhengdong Zhao
- Department of OtorhinolaryngologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yanjun Zong
- Department of OtorhinolaryngologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yu Sun
- Department of OtorhinolaryngologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Institute of OtorhinolaryngologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Province Clinic Research Center for Deafness and VertigoWuhanHubeiChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanHubeiChina
| |
Collapse
|
5
|
Friedrich J, Liu S, Fang L, Prendergast J, Wiener P. Insights into trait-association of selection signatures and adaptive eQTL in indigenous African cattle. BMC Genomics 2024; 25:981. [PMID: 39425030 PMCID: PMC11490109 DOI: 10.1186/s12864-024-10852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND African cattle represent a unique resource of genetic diversity in response to adaptation to numerous environmental challenges. Characterising the genetic landscape of indigenous African cattle and identifying genomic regions and genes of functional importance can contribute to targeted breeding and tackle the loss of genetic diversity. However, pinpointing the adaptive variant and determining underlying functional mechanisms of adaptation remains challenging. RESULTS In this study, we use selection signatures from whole-genome sequence data of eight indigenous African cattle breeds in combination with gene expression and quantitative trait loci (QTL) databases to characterise genomic targets of artificial selection and environmental adaptation and to identify the underlying functional candidate genes. In general, the trait-association analyses of selection signatures suggest the innate and adaptive immune system and production traits as important selection targets. For example, a large genomic region, with selection signatures identified for all breeds except N'Dama, was located on BTA27, including multiple defensin DEFB coding-genes. Out of 22 analysed tissues, genes under putative selection were significantly enriched for those overexpressed in adipose tissue, blood, lung, testis and uterus. Our results further suggest that cis-eQTL are themselves selection targets; for most tissues, we found a positive correlation between allele frequency differences and cis-eQTL effect size, suggesting that positive selection acts directly on regulatory variants. CONCLUSIONS By combining selection signatures with information on gene expression and QTL, we were able to reveal compelling candidate selection targets that did not stand out from selection signature results alone (e.g. GIMAP8 for tick resistance and NDUFS3 for heat adaptation). Insights from this study will help to inform breeding and maintain diversity of locally adapted, and hence important, breeds.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Shuli Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - James Prendergast
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
6
|
Tian D, Pei Q, Jiang H, Guo J, Ma X, Han B, Li X, Zhao K. Comprehensive analysis of the expression profiles of mRNA, lncRNA, circRNA, and miRNA in primary hair follicles of coarse sheep fetal skin. BMC Genomics 2024; 25:574. [PMID: 38849762 PMCID: PMC11161951 DOI: 10.1186/s12864-024-10427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The Qinghai Tibetan sheep, a local breed renowned for its long hair, has experienced significant deterioration in wool characteristics due to the absence of systematic breeding practices. Therefore, it is imperative to investigate the molecular mechanisms underlying follicle development in order to genetically enhance wool-related traits and safeguard the sustainable utilization of valuable germplasm resources. However, our understanding of the regulatory roles played by coding and non-coding RNAs in hair follicle development remains largely elusive. RESULTS A total of 20,874 mRNAs, 25,831 circRNAs, 4087 lncRNAs, and 794 miRNAs were annotated. Among them, we identified 58 DE lncRNAs, 325 DE circRNAs, 924 DE mRNAs, and 228 DE miRNAs during the development of medullary primary hair follicle development. GO and KEGG functional enrichment analyses revealed that the JAK-STAT, TGF-β, Hedgehog, PPAR, cGMP-PKG signaling pathway play crucial roles in regulating fibroblast and epithelial development during skin and hair follicle induction. Furthermore, the interactive network analysis additionally identified several crucial mRNA, circRNA, and lncRNA molecules associated with the process of primary hair follicle development. Ultimately, by investigating DEmir's role in the ceRNA regulatory network mechanism, we identified 113 circRNA-miRNA pairs and 14 miRNA-mRNA pairs, including IGF2BP1-miR-23-x-novel-circ-01998-MSTRG.7111.3, DPT-miR-370-y-novel-circ-005802-MSTRG.14857.1 and TSPEAR-oar-miR-370-3p-novel-circ-005802- MSTRG.10527.1. CONCLUSIONS Our study offers novel insights into the distinct expression patterns of various transcription types during hair follicle morphogenesis, establishing a solid foundation for unraveling the molecular mechanisms that drive hair development and providing a scientific basis for selectively breeding desirable wool-related traits in this specific breed.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanbang Pei
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, 812300, Qinghai, China
| | - Hanjing Jiang
- Qinghai Livestock and Poultry Genetic Resources Protection and Utilization Center, Xining, 810000, Qinghai, China
| | - Jijun Guo
- General Station of Animal Husbandry of Qinghai Province, Xining , 810000, Qinghai, China
| | - Xianghua Ma
- Hainan Tibetan Autonomous Prefecture science and technology extension service center, Hainan Tibetan Autonomous Prefecture, Qinghai, 813000, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China.
| |
Collapse
|
7
|
Xue D, Peng H, Li Z, Xu J, Ma H, Dang Y, Li F, Wang G, Sun Q. Comprehensive analysis reveals TSPEAR as a prognostic biomarker in colorectal cancer. J Cancer 2024; 15:809-824. [PMID: 38213725 PMCID: PMC10777046 DOI: 10.7150/jca.90028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most common malignant tumors and has high morbidity and mortality rates. Previous studies have shown that TSPEAR mutations are involved in the development and progression of gastric cancer and liver cancer. However, the role of TSPEAR in CRC is still unclear. Methods: In The Cancer Genome Atlas (TCGA) database, 590 CRC patients with complete survival information were analyzed. We assessed TSPEAR expression in a pan-cancer dataset from the TCGA database. Cox regression analysis was performed to evaluate factors associated with prognosis. Enrichment analysis via the R package "clusterProfiler" was used to explore the potential function of TSPEAR. The single-sample GSEA (ssGSEA) method from the R package "GSVA" and the TIMER database were used to investigate the association between the immune infiltration level and TSPEAR expression in CRC. The R package "maftools" was used to explore the association between tumour mutation burden (TMB) and TSPEAR expression in CRC. CCK-8 assays and cell invasion assays were used to detect the effect of TSPEAR and TGIF2 on the biological behavior of CRC cells. Results: Pan-cancer analysis revealed that TSPEAR was upregulated in CRC tissues compared to normal tissues and that high TSPEAR expression was associated with poorer overall survival (OS) (p=0.0053). The expression of TSPEAR increased with increasing TNM stage, T stage, N stage, and M stage. The nomogram constructed with TSPEAR, age, and TNM stage showed better predictive value than TSPEAR, age, or TNM stage alone. Immune cell infiltration analysis revealed that high expression of TSPEAR was associated with lower immune cell infiltration. Tumor mutation burden (TMB) analysis indicated that high expression of TSPEAR was associated with lower TMB (p=0.005), and high TMB was associated with shorter OS (p=0.02). CCK-8 assays and cell invasion assays indicated that in vitro knockdown of TSPEAR inhibited the proliferation, migration, and invasion of CRC cells. In addition, TSPEAR expression may be regulated by the upstream transcription factor TGIF2. Conclusion: TSPEAR expression was higher in CRC tissues than in normal tissues. Its upregulation was significantly associated with a poor prognosis. Additionally, TSPEAR plays a significant role in tumor immunity and the biological behavior of CRC cells. Thus, TSPEAR may become a promising prognostic biomarker and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Dong Xue
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hang Peng
- Department of Talent Highland, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenghui Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiarui Xu
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haiyun Ma
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yueyan Dang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fanni Li
- Department of Talent Highland, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guanghui Wang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Sun
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Zhou F, Wang S, Qin H, Zeng H, Ye J, Yang J, Cai G, Wu Z, Zhang Z. Genome-wide association analysis unveils candidate genes and loci associated with aplasia cutis congenita in pigs. BMC Genomics 2023; 24:701. [PMID: 37990155 PMCID: PMC10664689 DOI: 10.1186/s12864-023-09803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Aplasia cutis congenita (ACC) is a rare genetic disorder characterized by the localized or widespread absence of skin in humans and animals. Individuals with ACC may experience developmental abnormalities in the skeletal and muscular systems, as well as potential complications. Localized and isolated cases of ACC can be treated through surgical and medical interventions, while extensive cases of ACC may result in neonatal mortality. The presence of ACC in pigs has implications for animal welfare. It contributes to an elevated mortality rate among piglets at birth, leading to substantial economic losses in the pig farming industry. In order to elucidate candidate genetic loci associated with ACC, we performed a Genome-Wide Association Study analysis on 216 Duroc pigs. The primary goal of this study was to identify candidate genes that associated with ACC. RESULTS This study identified nine significant SNPs associated with ACC. Further analysis revealed the presence of two quantitative trait loci, 483 kb (5:18,196,971-18,680,098) on SSC 5 and 159 kb (13:20,713,440-207294431 bp) on SSC13. By annotating candidate genes within a 1 Mb region surrounding the significant SNPs, a total of 11 candidate genes were identified on SSC5 and SSC13, including KRT71, KRT1, KRT4, ITGB7, CSAD, RARG, SP7, PFKL, TRPM2, SUMO3, and TSPEAR. CONCLUSIONS The results of this study further elucidate the potential mechanisms underlying and genetic architecture of ACC and identify reliable candidate genes. These results lay the foundation for treating and understanding ACC in humans.
Collapse
Affiliation(s)
- Fuchen Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Shenghui Wang
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Haojun Qin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Haiyu Zeng
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Jian Ye
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China.
| | - Zebin Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.
| |
Collapse
|
9
|
Henne SK, Aldisi R, Sivalingam S, Hochfeld LM, Borisov O, Krawitz PM, Maj C, Nöthen MM, Heilmann-Heimbach S. Analysis of 72,469 UK Biobank exomes links rare variants to male-pattern hair loss. Nat Commun 2023; 14:5492. [PMID: 37737258 PMCID: PMC10517150 DOI: 10.1038/s41467-023-41186-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Male-pattern hair loss (MPHL) is common and highly heritable. While genome-wide association studies (GWAS) have generated insights into the contribution of common variants to MPHL etiology, the relevance of rare variants remains unclear. To determine the contribution of rare variants to MPHL etiology, we perform gene-based and single-variant analyses in exome-sequencing data from 72,469 male UK Biobank participants. While our population-level risk prediction suggests that rare variants make only a minor contribution to general MPHL risk, our rare variant collapsing tests identified a total of five significant gene associations. These findings provide additional evidence for previously implicated genes (EDA2R, WNT10A) and highlight novel risk genes at and beyond GWAS loci (HEPH, CEPT1, EIF3F). Furthermore, MPHL-associated genes are enriched for genes considered causal for monogenic trichoses. Together, our findings broaden the MPHL-associated allelic spectrum and provide insights into MPHL pathobiology and a shared basis with monogenic hair loss disorders.
Collapse
Affiliation(s)
- Sabrina Katrin Henne
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Rana Aldisi
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Department of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Lara Maleen Hochfeld
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Peter Michael Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Markus Maria Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Mitsiadis TA, Pagella P, Capellini TD, Smith MM. The Notch-mediated circuitry in the evolution and generation of new cell lineages: the tooth model. Cell Mol Life Sci 2023; 80:182. [PMID: 37330998 DOI: 10.1007/s00018-023-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
The Notch pathway is an ancient, evolutionary conserved intercellular signaling mechanism that is involved in cell fate specification and proper embryonic development. The Jagged2 gene, which encodes a ligand for the Notch family of receptors, is expressed from the earliest stages of odontogenesis in epithelial cells that will later generate the enamel-producing ameloblasts. Homozygous Jagged2 mutant mice exhibit abnormal tooth morphology and impaired enamel deposition. Enamel composition and structure in mammals are tightly linked to the enamel organ that represents an evolutionary unit formed by distinct dental epithelial cell types. The physical cooperativity between Notch ligands and receptors suggests that Jagged2 deletion could alter the expression profile of Notch receptors, thus modifying the whole Notch signaling cascade in cells within the enamel organ. Indeed, both Notch1 and Notch2 expression are severely disturbed in the enamel organ of Jagged2 mutant teeth. It appears that the deregulation of the Notch signaling cascade reverts the evolutionary path generating dental structures more reminiscent of the enameloid of fishes rather than of mammalian enamel. Loss of interactions between Notch and Jagged proteins may initiate the suppression of complementary dental epithelial cell fates acquired during evolution. We propose that the increased number of Notch homologues in metazoa enabled incipient sister cell types to form and maintain distinctive cell fates within organs and tissues along evolution.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Linköpings Universitet, 581 85, Linköping, Sweden
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Moya Meredith Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, London, UK
| |
Collapse
|
11
|
Jackson A, Lin SJ, Jones EA, Chandler KE, Orr D, Moss C, Haider Z, Ryan G, Holden S, Harrison M, Burrows N, Jones WD, Loveless M, Petree C, Stewart H, Low K, Donnelly D, Lovell S, Drosou K, Varshney GK, Banka S. Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14. HGG ADVANCES 2023; 4:100186. [PMID: 37009414 PMCID: PMC10064225 DOI: 10.1016/j.xhgg.2023.100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/27/2023] [Indexed: 06/11/2023] Open
Abstract
TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the β-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara -/-;tspearb -/- double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.
Collapse
Affiliation(s)
- Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Sheng-Jia Lin
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Elizabeth A. Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Kate E. Chandler
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Orr
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Celia Moss
- Department of Dermatology, Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Zahra Haider
- Department of Dermatology, Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Simon Holden
- Clinical Genetics, Addenbrooke’s Hospital, Cambridge, UK
| | - Mike Harrison
- Department of Pediatric Dentistry, Guy’s and St Thomas' Dental Institute, London, UK
| | - Nigel Burrows
- Department of Dermatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Wendy D. Jones
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, Great Ormond Street NHS Foundation Trust, London, UK
| | - Mary Loveless
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Karen Low
- Department of Clinical Genetics, St Michael’s Hospital, Bristol, UK
| | - Deirdre Donnelly
- Department of Genetic Medicine, Belfast HSC Trust, Lisburn Road, Belfast, UK
| | - Simon Lovell
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Konstantina Drosou
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 99 Oxford Road, Manchester, UK
| | - Gaurav K. Varshney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| |
Collapse
|
12
|
Yapijakis C, Douka A, Gintoni I, Agiannitopoulos K, Vlachakis D, Chrousos GP. Clinical and Molecular Genetic Analysis of Cases with Ectodermal Dysplasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:181-186. [PMID: 37525042 DOI: 10.1007/978-3-031-31978-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Ectodermal dysplasias are a group of >200 clinically and congenitally heterogeneous disorders characterized by abnormal development in the ectodermal structures, such as hair, nails, teeth, and sweat glands. We report here the clinical and molecular genetic analysis of five Greek families with different types of ectodermal dysplasia (ED). SUBJECTS The study involved 15 individuals from 5 Greek families that included 8 ED patients, 5 carriers of recessive X-linked or autosomal ED, and 2 healthy relatives. After genetic counseling, the parents signed an informed consent form before subsequent genetic testing. METHODS Genomic DNA was isolated from white blood cells of all studied individuals. The search for mutations was realized in patients' DNA samples using next-generation sequencing (NGS) gene panel, whole exome sequencing (WES), chromosomal microarray analysis (CMA), and multiplex ligation-dependent probe amplification (MLPA) technique. RESULTS The clinical diagnosis of common X-linked recessive hypohidrotic ectodermal dysplasia (HED) was suspected in five male patients with partial anodontia of baby and permanent teeth, hypohidrosis, and thin hair from three families. All HED patients were hemizygous for deletions in the EDA1 gene (Xq13.1): three related patients had a 20 bp deletion, one had a 19 bp deletion, and one had a 180 bp deletion. A female patient had the rare autosomal dominant syndrome of ankyloblepharon-ectodermal dysplasia-cleft lip/palate (AEC) caused by heterozygous missense mutation in the TP63 gene (3q28) that appeared de novo. Two siblings with hypotrichosis and hypodontia, a female and a male, had two pathogenic mutations in compound heterozygosity in the TSPEAR gene (21q22.3); therefore they presented with ectodermal dysplasia type 14 (ECTD14). CONCLUSION Clinical and molecular genetic analysis may set an accurate diagnosis of different types of ED. In the reported families, genetic diagnosis and genetic counselling assisted the parents to view their children's condition realistically and to cooperate with the specialists who will contribute to the best possible treatment for their children.
Collapse
Affiliation(s)
- Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, School of Medicine, National Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Laboratory of Molecular Genetics, Cephalogenetics Center, Athens, Greece.
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, "Aghia Sophia" Children's Hospital, Athens, Greece.
| | - Anna Douka
- Unit of Orofacial Genetics, 1st Department of Pediatrics, School of Medicine, National Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
- Laboratory of Molecular Genetics, Cephalogenetics Center, Athens, Greece
| | - Iphigenia Gintoni
- Unit of Orofacial Genetics, 1st Department of Pediatrics, School of Medicine, National Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
- Laboratory of Molecular Genetics, Cephalogenetics Center, Athens, Greece
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | - Dimitrios Vlachakis
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
13
|
CARNEIRO VF, MACHADO RA, BARBOSA MC, DIAS VO, MARTELLI DRB, MARTELLI-JÚNIOR H. Dental anomalies in syndromes displaying hypertrichosis in the clinical spectrum. Braz Oral Res 2023; 37:e030. [PMID: 37018811 DOI: 10.1590/1807-3107bor-2023.vol37.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/19/2022] [Indexed: 04/05/2023] Open
Abstract
Hypertrichosis and dental anomalies may occur alone or in combination in the spectrum of many syndromes. To identify genetic entities characterized by hypertrichosis and dental anomalies, a search was performed in the Mendelian Inheritance in Man database with the terms "hypertrichosis" or "hirsutism" and "tooth" or "dental abnormalities." Nondependent androgen metabolism disturbances were classified as hypertrichosis. Genetic entities with hypertrichosis and dental anomalies were included in the study. Additional searches were performed in the PubMed and Orphanet databases, when necessary, in order to include data from scientific articles. An integrative analysis of the genes associated with the identified syndromes was conducted using STRING to characterize biological processes, pathways, and interactive networks. The p-values were subjected to the false discovery rate for the correction of multiple tests. Thirty-nine syndromes were identified, and dental agenesis was the most frequent dental anomaly present in 41.02% (n = 16) of the syndromes. Causative genes were identified in 33 out of 39 genetic syndromes. Among them, 39 genes were identified, and 38 were analyzed by STRING, which showed 148 biological processes and three pathways that were statistically significant. The most significant biological processes were the disassembly of the nucleosome (GO:0006337, p = 1.09e-06), chromosomal organization (GO:0051276, p = 1.09e-06) and remodeling of the chromatin (GO: 0006338, p = 7.86e-06), and the pathways were hepatocellular carcinoma (hsa05225, p = 5.77e-05), thermogenesis (hsa04714, p = 0.00019), and cell cycle (hsa04110, p = 0.0433). Our results showed that the identification of hypertrichosis and dental anomalies may raise the suspicion of one of the thirty-nine syndromes with both phenotypes.
Collapse
|
14
|
Molecular Pathway-Based Classification of Ectodermal Dysplasias: First Five-Yearly Update. Genes (Basel) 2022; 13:genes13122327. [PMID: 36553593 PMCID: PMC9778228 DOI: 10.3390/genes13122327] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
To keep pace with the rapid advancements in molecular genetics and rare diseases research, we have updated the list of ectodermal dysplasias based on the latest classification approach that was adopted in 2017 by an international panel of experts. For this purpose, we searched the databases PubMed and OMIM for the term "ectodermal dysplasia", referring mainly to changes in the last 5 years. We also tried to obtain information about those diseases on which the last scientific report appeared more than 15 years ago by contacting the authors of the most recent publication. A group of experts, composed of researchers who attended the 8th International Conference on Ectodermal Dysplasias and additional members of the previous classification panel, reviewed the proposed amendments and agreed on a final table listing all 49 currently known ectodermal dysplasias for which the molecular genetic basis has been clarified, including 15 new entities. A newly reported ectodermal dysplasia, linked to the gene LRP6, is described here in more detail. These ectodermal dysplasias, in the strict sense, should be distinguished from syndromes with features of ectodermal dysplasia that are related to genes extraneous to the currently known pathways involved in ectodermal development. The latter group consists of 34 syndromes which had been placed on the previous list of ectodermal dysplasias, but most if not all of them could actually be classified elsewhere. This update should streamline the classification of ectodermal dysplasias, provide guidance to the correct diagnosis of rare disease entities, and facilitate the identification of individuals who could benefit from novel treatment options.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Genetic studies in humans and animal models have improved our understanding of the role of numerous genes in the etiology of nonsyndromic tooth agenesis (TA). The purpose of this review is to discuss recently identified genes potentially contributing to TA. RECENT FINDINGS Despite research progress, understanding the genetic factors underlying nonsyndromic TA has been challenging given the genetic heterogeneity, variable expressivity, and incomplete penetrance of putatively pathogenic variants often observed associated with the condition. Next-generation sequencing technologies have provided a platform for novel gene and variant discoveries and informed paradigm-shifting concepts in the etiology of TA. This review summarizes the current knowledge on genes and pathways related to nonsyndromic TA with a focus on recently identified genes/variants. Evidence suggesting possible multi-locus variation in TA is also presented.
Collapse
Affiliation(s)
- Ariadne Letra
- Department of Oral and Craniofacial Sciences, and Center for Craniofacial and Dental Genetics, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
16
|
Valipour S, Karimi K, Do DN, Barrett D, Sargolzaei M, Plastow G, Wang Z, Miar Y. Genome-Wide Detection of Selection Signatures for Pelt Quality Traits and Coat Color Using Whole-Genome Sequencing Data in American Mink. Genes (Basel) 2022; 13:1939. [PMID: 36360176 PMCID: PMC9690368 DOI: 10.3390/genes13111939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Domestication and selection are the major driving forces responsible for creating genetic variability in farmed species. American mink has been under selection for more than 100 years for improved body size and pelt quality. This study aimed to identify the genomic regions subjected to selection for pelt quality traits, and coat color using the whole genome sequences of 100 mink raised in the Canadian Centre for Fur Animal Research (CCFAR) at Dalhousie Agriculture Campus (Truro, NS, Canada), and Millbank fur farm (Rockwood, ON, Canada). Measurements of three dried pelt characteristics (including pelt size (n = 35), overall quality of fur (n = 27), and nap size (n = 29)), and three coat color of Black, Stardust, and Pastel (Stardust_ Black (n = 38), and Pastel_Black (n = 41)) were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (Fst), extended haplotype homozygosity (XP-EHH), and nucleotide diversity (θπ) tests. In total, overlapping top 1% of Fst and XP-EHH harbored 376 genes for pelt quality traits (110 for nap size, 163 for overall quality of fur, and 98 pelt size), and 194 genes for coat color (123 for Pastel_Black and 71 for Stardust_Black) were detected in different groups. Integrating results of Fst, and XP-EHH with the θπ test supported 19 strongly selected regions on chromosomes 3, 4, 5, 6, 7, 8, 9, and 10 that contained 33 candidate genes related to fur quality, hair follicle function, and pelt size traits. Gene ontology revealed numerous genes related to the hair cycle process and molting cycle process, epidermis development, Wnt signaling pathway and muscle development. This study provided the first map of putative selection signals related to pelt quality and coat color in American mink, which could be used as a reference for future studies attempting to identify genes associated with economically important traits in mink.
Collapse
Affiliation(s)
- Shafagh Valipour
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - David Barrett
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Select Sires Inc., Plain City, OH 43064, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
17
|
Ehnes DD, Alghadeer A, Hanson-Drury S, Zhao YT, Tilmes G, Mathieu J, Ruohola-Baker H. Sci-Seq of Human Fetal Salivary Tissue Introduces Human Transcriptional Paradigms and a Novel Cell Population. FRONTIERS IN DENTAL MEDICINE 2022; 3:887057. [PMID: 36540608 PMCID: PMC9762771 DOI: 10.3389/fdmed.2022.887057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Multiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development. Using computational tools, we identify developmental branchpoints, a novel stem cell-like population, and key signaling pathways in the human developing salivary glands by analyzing our human fetal single-cell sequencing data. Trajectory and transcriptional analysis suggest that the earliest progenitors yield excretory duct and myoepithelial cells and a transitional population that will yield later ductal cell types. Importantly, this single-cell analysis revealed a previously undescribed population of stem cell-like cells that are derived from SD and expresses high levels of genes associated with stem cell-like function. We have observed these rare cells, not in a single niche location but dispersed within the developing duct at later developmental stages. Our studies introduce new human-specific developmental paradigms for the salivary gland and lay the groundwork for the development of translational human therapeutics.
Collapse
Affiliation(s)
- Devon Duron Ehnes
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sesha Hanson-Drury
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Yan Ting Zhao
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Gwen Tilmes
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Brennan K, Zheng H, Fahrner JA, Shin JH, Gentles AJ, Schaefer B, Sunwoo JB, Bernstein JA, Gevaert O. NSD1 mutations deregulate transcription and DNA methylation of bivalent developmental genes in Sotos syndrome. Hum Mol Genet 2022; 31:2164-2184. [PMID: 35094088 PMCID: PMC9262396 DOI: 10.1093/hmg/ddac026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Sotos syndrome (SS), the most common overgrowth with intellectual disability (OGID) disorder, is caused by inactivating germline mutations of NSD1, which encodes a histone H3 lysine 36 methyltransferase. To understand how NSD1 inactivation deregulates transcription and DNA methylation (DNAm), and to explore how these abnormalities affect human development, we profiled transcription and DNAm in SS patients and healthy control individuals. We identified a transcriptional signature that distinguishes individuals with SS from controls and was also deregulated in NSD1-mutated cancers. Most abnormally expressed genes displayed reduced expression in SS; these downregulated genes consisted mostly of bivalent genes and were enriched for regulators of development and neural synapse function. DNA hypomethylation was strongly enriched within promoters of transcriptionally deregulated genes: overexpressed genes displayed hypomethylation at their transcription start sites while underexpressed genes featured hypomethylation at polycomb binding sites within their promoter CpG island shores. SS patients featured accelerated molecular aging at the levels of both transcription and DNAm. Overall, these findings indicate that NSD1-deposited H3K36 methylation regulates transcription by directing promoter DNA methylation, partially by repressing polycomb repressive complex 2 (PRC2) activity. These findings could explain the phenotypic similarity of SS to OGID disorders that are caused by mutations in PRC2 complex-encoding genes.
Collapse
Affiliation(s)
- Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - June Ho Shin
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Andrew J Gentles
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bradley Schaefer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - John B Sunwoo
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Rabie EA, Sayed ISM, Amr K, Ahmed HA, Mostafa MI, Hassib NF, El-Sayed H, Zada SK, El-Kamah G. Confirmation of a Phenotypic Entity for TSPEAR Variants in Egyptian Ectodermal Dysplasia Patients and Role of Ethnicity. Genes (Basel) 2022; 13:1056. [PMID: 35741818 PMCID: PMC9222913 DOI: 10.3390/genes13061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Ectodermal dysplasia (ED) are hereditary disorders characterized by the disturbance of the ectodermal development of at least two of four ectodermal tissues: teeth, hair, nails and sweat glands. Clinical classification of ED is challenged by overlapping features, variable expressivity, and low number of patients, hindering full phenotypic spectrum identification. Disease-causing variants in elements of major developmental pathways, e.g., Ectodysplasin/NFκB, Wnt, and Tp63 pathways, have been identified in fewer than half of ED phenotypes. Whole-exome sequencing (WES) was performed for ten Egyptian ED patients presenting with tooth agenesis, normal sweating, scalp hypotrichosis, and sharing characteristic facial features. WES was followed by in silico analysis of the effects of novel detected genetic variants on mRNA and protein structure. The study identified four novel rare pathogenic and likely pathogenic TSPEAR variants, a gene which was recently found to be involved in ectodermal organogenesis. A novel in-frame deletion recurred in eight patients from six unrelated families. Comparing our cohort to previously reported TSPEAR cohorts highlighted the influence of ethnicity on TSPEAR phenotypic affection. Our study expands the clinical and mutational spectrum of the growing TSPEAR associated phenotypes, and pinpoints the influence of WES and in silico tools on identification of rare disease-causing variants.
Collapse
Affiliation(s)
- Eman A. Rabie
- Medical Molecular Genetics Department, Human Genetics & Genome Research Division (HGGR), National Research Centre (NRC), Cairo 12622, Egypt;
- Biology Department, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo 11835, Egypt;
| | - Inas S. M. Sayed
- Orodental Genetics Department, Human Genetics & Genome Research Division (HGGR), National Research Centre (NRC), Cairo 12622, Egypt; (I.S.M.S.); (M.I.M.); (N.F.H.)
| | - Khalda Amr
- Medical Molecular Genetics Department, Human Genetics & Genome Research Division (HGGR), National Research Centre (NRC), Cairo 12622, Egypt;
| | - Hoda A. Ahmed
- Medical Molecular Genetics Department, Human Genetics & Genome Research Division (HGGR), National Research Centre (NRC), Cairo 12622, Egypt;
| | - Mostafa I. Mostafa
- Orodental Genetics Department, Human Genetics & Genome Research Division (HGGR), National Research Centre (NRC), Cairo 12622, Egypt; (I.S.M.S.); (M.I.M.); (N.F.H.)
| | - Nehal F. Hassib
- Orodental Genetics Department, Human Genetics & Genome Research Division (HGGR), National Research Centre (NRC), Cairo 12622, Egypt; (I.S.M.S.); (M.I.M.); (N.F.H.)
| | - Heba El-Sayed
- Clinical Genetics Department, Human Genetics & Genome Research Division (HGGR), National Research Centre (NRC), Cairo 12622, Egypt;
| | - Suher K. Zada
- Biology Department, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo 11835, Egypt;
| | - Ghada El-Kamah
- Clinical Genetics Department, Human Genetics & Genome Research Division (HGGR), National Research Centre (NRC), Cairo 12622, Egypt;
| |
Collapse
|
20
|
Pincha N, Marangoni P, Haque A, Klein OD. Parallels in signaling between development and regeneration in ectodermal organs. Curr Top Dev Biol 2022; 149:373-419. [PMID: 35606061 PMCID: PMC10049776 DOI: 10.1016/bs.ctdb.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ectodermal organs originate from the outermost germ layer of the developing embryo and include the skin, hair, tooth, nails, and exocrine glands. These organs develop through tightly regulated, sequential and reciprocal epithelial-mesenchymal crosstalk, and they eventually assume various morphologies and functions while retaining the ability to regenerate. As with many other tissues in the body, the development and morphogenesis of these organs are regulated by a set of common signaling pathways, such as Shh, Wnt, Bmp, Notch, Tgf-β, and Eda. However, subtle differences in the temporal activation, the multiple possible combinations of ligand-receptor activation, the various cofactors, as well as the underlying epigenetic modulation determine how each organ develops into its adult form. Although each organ has been studied separately in considerable detail, the mechanisms underlying the parallels and differences in signaling that regulate their development have rarely been investigated. First, we will use the tooth, the hair follicle, and the mammary gland as representative ectodermal organs to explore how the development of signaling centers and establishment of stem cell populations influence overall growth and morphogenesis. Then we will compare how some of the major signaling pathways (Shh, Wnt, Notch and Yap/Taz) differentially regulate developmental events. Finally, we will discuss how signaling regulates regenerative processes in all three.
Collapse
Affiliation(s)
- Neha Pincha
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ameera Haque
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, United States.
| |
Collapse
|
21
|
Abstract
The development and repair of dentin are strictly regulated by hundreds of genes. Abnormal dentin development is directly caused by gene mutations and dysregulation. Understanding and mastering this signal network is of great significance to the study of tooth development, tissue regeneration, aging, and repair and the treatment of dental diseases. It is necessary to understand the formation and repair mechanism of dentin in order to better treat the dentin lesions caused by various abnormal properties, whether it is to explore the reasons for the formation of dentin defects or to develop clinical drugs to strengthen the method of repairing dentin. Molecular biology of genes related to dentin development and repair are the most important basis for future research.
Collapse
Affiliation(s)
- Shuang Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China.,Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Han Xie
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaoling Wei
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China.,Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
22
|
Alshegifi HA, Alamoudi AM, Alrougi A, Alshaikh H, Alamri A, Shawli AM. Ectodermal Dysplasia: A Case Report. Cureus 2022; 14:e21184. [PMID: 35047314 PMCID: PMC8759711 DOI: 10.7759/cureus.21184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Ectodermal dysplasia (ED) is a hereditary genetic disorder that manifests a variety of deformities in one or more of the ectodermal derivatives. Ectodermal derivatives originate from ectodermal layers during embryonic development, such as skin, nails, hair, teeth, and exocrine glands. Over 150 variants of ED are reported in the literature. It has an incidence of seven in every 100,000 live births. There are two types of ED, which are hypohidrotic (anhidrotic) and hydrotic. The types are classified according to the degree of function of the sweat glands. This report discusses the case of a 13-month-old Saudi girl with typical features of ectodermal dysplasia who presented to a dermatology clinic.
Collapse
Affiliation(s)
- Hussein A Alshegifi
- Medicine and Surgery, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, SAU
| | - Abdulmajeed M Alamoudi
- Medicine and Surgery, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, SAU
| | - Abdullah Alrougi
- Internal Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, SAU
| | - Hassan Alshaikh
- Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, SAU
| | - Awadh Alamri
- Dermatology, King Abdulaziz Medical City, Western Region, Jeddah, SAU
| | - Aiman M Shawli
- General Pediatrics and Pediatric Genetics, King Abdulaziz Medical City, Western Region, Jeddah, SAU
| |
Collapse
|
23
|
Trigila AP, Pisciottano F, Franchini LF. Hearing loss genes reveal patterns of adaptive evolution at the coding and non-coding levels in mammals. BMC Biol 2021; 19:244. [PMID: 34784928 PMCID: PMC8594068 DOI: 10.1186/s12915-021-01170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Background Mammals possess unique hearing capacities that differ significantly from those of the rest of the amniotes. In order to gain insights into the evolution of the mammalian inner ear, we aim to identify the set of genetic changes and the evolutionary forces that underlie this process. We hypothesize that genes that impair hearing when mutated in humans or in mice (hearing loss (HL) genes) must play important roles in the development and physiology of the inner ear and may have been targets of selective forces across the evolution of mammals. Additionally, we investigated if these HL genes underwent a human-specific evolutionary process that could underlie the evolution of phenotypic traits that characterize human hearing. Results We compiled a dataset of HL genes including non-syndromic deafness genes identified by genetic screenings in humans and mice. We found that many genes including those required for the normal function of the inner ear such as LOXHD1, TMC1, OTOF, CDH23, and PCDH15 show strong signatures of positive selection. We also found numerous noncoding accelerated regions in HL genes, and among them, we identified active transcriptional enhancers through functional enhancer assays in transgenic zebrafish. Conclusions Our results indicate that the key inner ear genes and regulatory regions underwent adaptive evolution in the basal branch of mammals and along the human-specific branch, suggesting that they could have played an important role in the functional remodeling of the cochlea. Altogether, our data suggest that morphological and functional evolution could be attained through molecular changes affecting both coding and noncoding regulatory regions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01170-6.
Collapse
Affiliation(s)
- Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Francisco Pisciottano
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.,Current address: Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Shieh JT, Penon-Portmann M, Wong KHY, Levy-Sakin M, Verghese M, Slavotinek A, Gallagher RC, Mendelsohn BA, Tenney J, Beleford D, Perry H, Chow SK, Sharo AG, Brenner SE, Qi Z, Yu J, Klein OD, Martin D, Kwok PY, Boffelli D. Application of full-genome analysis to diagnose rare monogenic disorders. NPJ Genom Med 2021; 6:77. [PMID: 34556655 PMCID: PMC8460793 DOI: 10.1038/s41525-021-00241-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022] Open
Abstract
Current genetic tests for rare diseases provide a diagnosis in only a modest proportion of cases. The Full-Genome Analysis method, FGA, combines long-range assembly and whole-genome sequencing to detect small variants, structural variants with breakpoint resolution, and phasing. We built a variant prioritization pipeline and tested FGA’s utility for diagnosis of rare diseases in a clinical setting. FGA identified structural variants and small variants with an overall diagnostic yield of 40% (20 of 50 cases) and 35% in exome-negative cases (8 of 23 cases), 4 of these were structural variants. FGA detected and mapped structural variants that are missed by short reads, including non-coding duplication, and phased variants across long distances of more than 180 kb. With the prioritization algorithm, longer DNA technologies could replace multiple tests for monogenic disorders and expand the range of variants detected. Our study suggests that genomes produced from technologies like FGA can improve variant detection and provide higher resolution genome maps for future application.
Collapse
Affiliation(s)
- Joseph T Shieh
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA. .,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| | - Monica Penon-Portmann
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Karen H Y Wong
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michal Levy-Sakin
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michelle Verghese
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anne Slavotinek
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Renata C Gallagher
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Bryce A Mendelsohn
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Tenney
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Daniah Beleford
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Hazel Perry
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Stephen K Chow
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Andrew G Sharo
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Zhongxia Qi
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jingwei Yu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.,Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - David Martin
- Children's Hospital Oakland Research Institute, Benioff Children's Hospital Oakland, University of California San Francisco, Oakland, CA, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Benioff Children's Hospital Oakland, University of California San Francisco, Oakland, CA, USA
| |
Collapse
|
25
|
Sun H, Wan N. Genotype-Phenotype Analysis of 8q24.3 Duplication and 21q22.3 Deletion in a Chinese Patient and Literature Review. Public Health Genomics 2021; 24:218-228. [PMID: 34265769 DOI: 10.1159/000515547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Copy number variants (CNVs) are responsible for many patients with short stature of unknown etiology. This study aims to analyze clinical phenotypes and identify pathogenic CNVs in a patient with short stature, intellectual disability, craniofacial deformities, and anal imperforation. METHODS G-banded karyotyping and chromosomal microarray analysis (CMA) was used on the patient to identify pathogenic causes. Fluorescence in situ hybridization (FISH) was applied to explore the abnormal genetic origin. Literatures were searched using identified CNVs as keywords in the PubMed database to perform genotype-phenotype analysis. RESULTS Cytogenetic analysis revealed a normal karyotype 46,XY. CMA detected a 6.1 Mb duplication at 8q24.3 and a 3.6 Mb deletion at 21q22.3. FISH confirmed that the abnormal chromosomes were inherited from paternal balanced translocation. We compared phenotypes of our patient with 6 patients with 8q24.3 duplication and 7 cases with 21q22.3 deletion respectively. CONCLUSIONS A novel 8q24.3 duplication and 21q22.3 deletion was identified in a Chinese patient. Genotype-phenotype analysis demonstrated that patients with 8q24.3 duplication and 21q22.3 deletion had specific facial features, intellectual disability, short stature, and multiple malformations.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Naijun Wan
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
26
|
Bowles B, Ferrer A, Nishimura CJ, Pinto E Vairo F, Rey T, Leheup B, Sullivan J, Schoch K, Stong N, Agolini E, Cocciadiferro D, Williams A, Cummings A, Loddo S, Genovese S, Roadhouse C, McWalter K, Wentzensen IM, Li C, Babovic-Vuksanovic D, Lanpher BC, Dentici ML, Ankala A, Hamm JA, Dallapiccola B, Radio FC, Shashi V, Gérard B, Bloch-Zupan A, Smith RJ, Klee EW. TSPEAR variants are primarily associated with ectodermal dysplasia and tooth agenesis but not hearing loss: A novel cohort study. Am J Med Genet A 2021; 185:2417-2433. [PMID: 34042254 PMCID: PMC8361973 DOI: 10.1002/ajmg.a.62347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022]
Abstract
Biallelic loss‐of‐function variants in the thrombospondin‐type laminin G domain and epilepsy‐associated repeats (TSPEAR) gene have recently been associated with ectodermal dysplasia and hearing loss. The first reports describing a TSPEAR disease association identified this gene is a cause of nonsyndromic hearing loss, but subsequent reports involving additional affected families have questioned this evidence and suggested a stronger association with ectodermal dysplasia. To clarify genotype–phenotype associations for TSPEAR variants, we characterized 13 individuals with biallelic TSPEAR variants. Individuals underwent either exome sequencing or panel‐based genetic testing. Nearly all of these newly reported individuals (11/13) have phenotypes that include tooth agenesis or ectodermal dysplasia, while three newly reported individuals have hearing loss. Of the individuals displaying hearing loss, all have additional variants in other hearing‐loss‐associated genes, specifically TMPRSS3, GJB2, and GJB6, that present competing candidates for their hearing loss phenotype. When presented alongside previous reports, the overall evidence supports the association of TSPEAR variants with ectodermal dysplasia and tooth agenesis features but creates significant doubt as to whether TSPEAR variants are a monogenic cause of hearing loss. Further functional evidence is needed to evaluate this phenotypic association.
Collapse
Affiliation(s)
- Bradley Bowles
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alejandro Ferrer
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Carla J Nishimura
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Tristan Rey
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic génétique, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Illkirch, France
| | - Bruno Leheup
- Département de Médecine Infantile, CHRU de Nancy, Nancy, France
| | - Jennifer Sullivan
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Kelly Schoch
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, New York, USA.,Brystol Myers Squibb, New York, New York, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Dario Cocciadiferro
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Abigail Williams
- Department of Pediatrics, East Tennessee Children's Hospital, Knoxville, Tennessee, USA
| | - Alex Cummings
- Department of Pediatrics, East Tennessee Children's Hospital, Knoxville, Tennessee, USA.,University of Wisconsin Hospitals and Clinics, Madison, Wisconsin, USA
| | - Sara Loddo
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Genovese
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chelsea Roadhouse
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | - Chumei Li
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arun Ankala
- EGL Genetics LLC, Tucker, Georgia, USA.,Emory University School of Medicine, Atlanta, Georgia, USA
| | - J Austin Hamm
- Department of Pediatrics, East Tennessee Children's Hospital, Knoxville, Tennessee, USA
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Benedicte Gérard
- Laboratoires de Diagnostic génétique, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| | - Agnes Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Centre de référence des maladies rares orales et dentaires O-Rares, Filière Santé Maladies rares TETE COU, European Reference Network CRANIO, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Illkirch, France
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Assaf S, Malki L, Mayer T, Mohamad J, Peled A, Pavlovsky M, Malovitski K, Sarig O, Vodo D, Sprecher E. ST18 affects cell-cell adhesion in pemphigus vulgaris in a tumour necrosis factor-α-dependent fashion. Br J Dermatol 2020; 184:1153-1160. [PMID: 33205400 DOI: 10.1111/bjd.19679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is a life-threatening mucocutaneous autoimmune blistering disease. We previously showed that genetic variants within the ST18 gene promoter area confer a sixfold increase in the propensity to develop PV. ST18, a transcription factor, was found to be overexpressed in the epidermis of patients with PV. In addition, it was found to promote autoantibody-mediated abnormal epidermal cell-cell adhesion and secretion of proinflammatory mediators by keratinocytes. OBJECTIVES To delineate the mechanism through which ST18 contributes to destabilization of cell-cell adhesion. METHODS We used quantitative reverse-transcriptase polymerase chain reaction, immunofluorescence microscopy, a luciferase reporter system, site-directed mutagenesis, chromatin immunoprecipitation (ChIP) and the dispase dissociation assay. RESULTS The ChIP and luciferase reporter assays showed that ST18 directly binds and activates the TNF promoter. Accordingly, increased ST18 expression contributes to PV pathogenesis by destabilizing cell-cell adhesion in a tumour necrosis factor (TNF)-α-dependent fashion. In addition, dual immunofluorescence staining showed increased expression of both ST18 and TNF-α in the skin of patients with PV carrying an ST18-associated PV risk variant, which was found to be associated with a more extensive PV phenotype. CONCLUSIONS Our findings suggest a role for TNF-α in mediating the deleterious effect of increased ST18 expression in PV skin.
Collapse
Affiliation(s)
- S Assaf
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Malki
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - T Mayer
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - J Mohamad
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Pavlovsky
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - K Malovitski
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - O Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - D Vodo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Song J, Bae M, Kim J. Novel
TSPEAR
mutations in non‐syndromic oligodontia. Oral Dis 2020; 26:847-849. [DOI: 10.1111/odi.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Ji‐Soo Song
- Department of Pediatric Dentistry Seoul National University Dental Hospital Seoul Korea
| | - Miah Bae
- Department of Pediatric Dentistry & Dental Research Institute School of Dentistry Seoul National University Seoul Korea
| | - Jung‐Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute School of Dentistry Seoul National University Seoul Korea
- Department of Molecular Genetics & Dental Research Institute School of Dentistry Seoul National University Seoul Korea
| |
Collapse
|
29
|
Orlova E, Carlson JC, Lee MK, Feingold E, McNeil DW, Crout RJ, Weyant RJ, Marazita ML, Shaffer JR. Pilot GWAS of caries in African-Americans shows genetic heterogeneity. BMC Oral Health 2019; 19:215. [PMID: 31533690 PMCID: PMC6751797 DOI: 10.1186/s12903-019-0904-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Dental caries is the most common chronic disease in the US and disproportionately affects racial/ethnic minorities. Caries is heritable, and though genetic heterogeneity exists between ancestries for a substantial portion of loci associated with complex disease, a genome-wide association study (GWAS) of caries specifically in African Americans has not been performed previously. METHODS We performed exploratory GWAS of dental caries in 109 African American adults (age > 18) and 96 children (age 3-12) from the Center for Oral Health Research in Appalachia (COHRA1 cohort). Caries phenotypes (DMFS, DMFT, dft, and dfs indices) assessed by dental exams were tested for association with 5 million genotyped or imputed single nucleotide polymorphisms (SNPs), separately in the two age groups. The GWAS was performed using linear regression with adjustment for age, sex, and two principal components of ancestry. A maximum of 1 million adaptive permutations were run to determine empirical significance. RESULTS No loci met the threshold for genome-wide significance, though some of the strongest signals were near genes previously implicated in caries such as antimicrobial peptide DEFB1 (rs2515501; p = 4.54 × 10- 6) and TUFT1 (rs11805632; p = 5.15 × 10- 6). Effect estimates of lead SNPs at suggestive loci were compared between African Americans and Caucasians (adults N = 918; children N = 983). Significant (p < 5 × 10- 8) genetic heterogeneity for caries risk was found between racial groups for 50% of the suggestive loci in children, and 12-18% of the suggestive loci in adults. CONCLUSIONS The genetic heterogeneity results suggest that there may be differences in the contributions of genetic variants to caries across racial groups, and highlight the critical need for the inclusion of minorities in subsequent and larger genetic studies of caries in order to meet the goals of precision medicine and to reduce oral health disparities.
Collapse
Affiliation(s)
- E Orlova
- Department of Human Genetics, Pittsburgh, USA
| | - J C Carlson
- Department of Biostatistics, Graduate School of Public Health, Pittsburgh, USA
| | - M K Lee
- Center for Craniofacial and Dental Genetics, Dept. of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Feingold
- Department of Human Genetics, Pittsburgh, USA
- Department of Biostatistics, Graduate School of Public Health, Pittsburgh, USA
- Center for Craniofacial and Dental Genetics, Dept. of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - D W McNeil
- Departments of Psychology, & Dental Practice and Rural Health, West Virginia University, Morgantown, USA
| | - R J Crout
- Department of Periodontics, School of Dentistry, West Virginia University, Morgantown, WV, USA
| | - R J Weyant
- Department of Dental Public Health and Information Management, Pittsburgh, USA
| | - M L Marazita
- Department of Human Genetics, Pittsburgh, USA
- Center for Craniofacial and Dental Genetics, Dept. of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - J R Shaffer
- Department of Human Genetics, Pittsburgh, USA.
- Center for Craniofacial and Dental Genetics, Dept. of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Naz S, Friedman TB. Growth factor and receptor malfunctions associated with human genetic deafness. Clin Genet 2019; 97:138-155. [PMID: 31506927 DOI: 10.1111/cge.13641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
A variety of different signaling pathways are necessary for development and maintenance of the human auditory system. Normal hearing allows for the detection of soft sounds within the frequency range of 20 to 20 000 Hz, but more importantly to perceive the human voice frequency band of 250 to 6000 Hz. Loss of hearing is common, and is a clinically heterogeneous disorder that can be caused by environmental factors such as exposure to loud noise, infections and ototoxic drugs. In addition, variants of hundreds of genes have been reported to disrupt processes required for hearing. Noncoding regulatory variants and variants of additional genes necessary for hearing remain to be discovered as many individuals with inherited deafness are without a genetic diagnosis, despite the advent of whole exome sequencing. Here, we discuss in detail some of these deafness-causing variants of genes encoding a ligand or its receptor. Spotlighted in this review are three growth factor-receptor-pairs EDN3/EDNRB, HGF/MET and JAG/NOTCH, which individually are necessary for normal hearing. We also offer our perspective on unanswered questions, future challenges and potential opportunities for treatments emerging from molecular genetic and mechanistic studies of deafness due to these causes.
Collapse
Affiliation(s)
- Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
de La Dure-Molla M, Fournier BP, Manzanares MC, Acevedo AC, Hennekam RC, Friedlander L, Boy-Lefèvre ML, Kerner S, Toupenay S, Garrec P, Vi-Fane B, Felizardo R, Berteretche MV, Jordan L, Ferré F, Clauss F, Jung S, de Chalendar M, Troester S, Kawczynski M, Chaloyard J, Manière MC, Berdal A, Bloch-Zupan A. Elements of morphology: Standard terminology for the teeth and classifying genetic dental disorders. Am J Med Genet A 2019; 179:1913-1981. [PMID: 31468724 DOI: 10.1002/ajmg.a.61316] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Dental anomalies occur frequently in a number of genetic disorders and act as major signs in diagnosing these disorders. We present definitions of the most common dental signs and propose a classification usable as a diagnostic tool by dentists, clinical geneticists, and other health care providers. The definitions are part of the series Elements of Morphology and have been established after careful discussions within an international group of experienced dentists and geneticists. The classification system was elaborated in the French collaborative network "TÊTECOU" and the affiliated O-Rares reference/competence centers. The classification includes isolated and syndromic disorders with oral and dental anomalies, to which causative genes and main extraoral signs and symptoms are added. A systematic literature analysis yielded 408 entities of which a causal gene has been identified in 79%. We classified dental disorders in eight groups: dental agenesis, supernumerary teeth, dental size and/or shape, enamel, dentin, dental eruption, periodontal and gingival, and tumor-like anomalies. We aim the classification to act as a shared reference for clinical and epidemiological studies. We welcome critical evaluations of the definitions and classification and will regularly update the classification for newly recognized conditions.
Collapse
Affiliation(s)
- Muriel de La Dure-Molla
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,INSERM UMR_S1163 Bases moléculaires et physiopathologiques des ostéochondrodysplasies, Institut Imagine, Necker, Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Benjamin Philippe Fournier
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
| | - Maria Cristina Manzanares
- Unitat d'Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Ana Carolina Acevedo
- ral Care Center for Inherited Diseases, University Hospital of Brasilia, University of Brasilia, Brasilia, Brazil.,Department of Dentistry, Health Sciences School, University of Brasilia, Brasilia, Brazil
| | - Raoul C Hennekam
- Department of Pediatrics, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Friedlander
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,INSERM UMR_S1123, ECEVE, Epidémiologie clinique, évaluation économique des populations vulnérables, Paris, France
| | - Marie-Laure Boy-Lefèvre
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Stephane Kerner
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Steve Toupenay
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Pascal Garrec
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Brigite Vi-Fane
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Rufino Felizardo
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Marie-Violaine Berteretche
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Laurence Jordan
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - François Ferré
- Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
| | - François Clauss
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Jung
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Myriam de Chalendar
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Sebastien Troester
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marzena Kawczynski
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jessica Chaloyard
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Marie Cécile Manière
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ariane Berdal
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
| | - Agnès Bloch-Zupan
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire and Cellulaire, Centre Européen de Recherche en Biologie et en Médecine, Université de Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch, France.,Institut d'Etudes Avancées, Université de Strasbourg, USIAS, Strasbourg, France
| |
Collapse
|
32
|
Tricarico PM, Boniotto M, Genovese G, Zouboulis CC, Marzano AV, Crovella S. An Integrated Approach to Unravel Hidradenitis Suppurativa Etiopathogenesis. Front Immunol 2019; 10:892. [PMID: 31105704 PMCID: PMC6494959 DOI: 10.3389/fimmu.2019.00892] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Hidradenitis suppurativa/acne inversa (HS) is a chronic inflammatory disease involving hair follicles that presents with painful nodules, abscesses, fistulae, and hypertrophic scars, typically occurring in apocrine gland bearing skin. Establishing a diagnosis of HS may take up to 7 years after disease onset. HS severely impairs the quality of life of patients and its high frequency causes significant costs for health care system. HS patients have an increased risk of developing associated diseases, such as inflammatory bowel diseases and spondyloarthropathies, thereby suggesting a common pathophysiological mechanism. Familial cases, which are around 35% of HS patients, have allowed the identification of susceptibility genes. HS is perceived as a complex disease where environmental factors trigger chronic inflammation in the skin of genetically predisposed individuals. Despite the efforts made to understand HS etiopathogenesis, the exact mechanisms at the basis of the disease need to be still unraveled. In this review, we considered all OMICs studies performed on HS and observed that OMICs contribution in the context of HS appeared as not clear enough and/or rich of useful clinical information. Indeed, most studies focused only on one aspect—genome, transcriptome, or proteome—of the disease, enrolling small numbers of patients. This is quite limiting for the genetic studies, from different geographical areas and looking at a few aspects of HS pathogenesis without any integration of the findings obtained or a comparison among different studies. A strong need for an integrated approach using OMICs tools is required to discover novel actors involved in HS etiopathogenesis. Moreover, we suggest the constitution of consortia to enroll a higher number of patients to be analyzed following common and consensus OMICs strategies. Comparison and integration with the findings present in the OMICs repositories are mandatory. In a theoretic pipeline, the Skin-OMICs profile obtained from each HS patient should be compared and integrated with repositories and literature data by using appropriate InterOMICs approach. The final goal is not only to improve the knowledge of HS etiopathogenesis but also to provide novel tools to the clinicians with the eventual aim of offering a tailored treatment for HS patients.
Collapse
Affiliation(s)
- Paola M Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Michele Boniotto
- University of Paris Est-Créteil and INSERM U955/IMRB-Team 16, Créteil, France
| | - Giovanni Genovese
- UOC Dermatologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Fisiopatologia Medico-Chirurgica e Dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Angelo V Marzano
- UOC Dermatologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Fisiopatologia Medico-Chirurgica e Dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Sergio Crovella
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
33
|
Faridi R, Tona R, Brofferio A, Hoa M, Olszewski R, Schrauwen I, Assir MZ, Bandesha AA, Khan AA, Rehman AU, Brewer C, Ahmed W, Leal SM, Riazuddin S, Boyden SE, Friedman TB. Mutational and phenotypic spectra of KCNE1 deficiency in Jervell and Lange-Nielsen Syndrome and Romano-Ward Syndrome. Hum Mutat 2019; 40:162-176. [PMID: 30461122 PMCID: PMC6328321 DOI: 10.1002/humu.23689] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 11/11/2022]
Abstract
KCNE1 encodes a regulatory subunit of the KCNQ1 potassium channel-complex. Both KCNE1 and KCNQ1 are necessary for normal hearing and cardiac ventricular repolarization. Recessive variants in these genes are associated with Jervell and Lange-Nielson syndrome (JLNS1 and JLNS2), a cardio-auditory syndrome characterized by congenital profound sensorineural deafness and a prolonged QT interval that can cause ventricular arrhythmias and sudden cardiac death. Some normal-hearing carriers of heterozygous missense variants of KCNE1 and KCNQ1 have prolonged QT intervals, a dominantly inherited phenotype designated Romano-Ward syndrome (RWS), which is also associated with arrhythmias and elevated risk of sudden death. Coassembly of certain mutant KCNE1 monomers with wild-type KCNQ1 subunits results in RWS by a dominant negative mechanism. This paper reviews variants of KCNE1 and their associated phenotypes, including biallelic truncating null variants of KCNE1 that have not been previously reported. We describe three homozygous nonsense mutations of KCNE1 segregating in families ascertained ostensibly for nonsyndromic deafness: c.50G>A (p.Trp17*), c.51G>A (p.Trp17*), and c.138C>A (p.Tyr46*). Some individuals carrying missense variants of KCNE1 have RWS. However, heterozygotes for loss-of-function variants of KCNE1 may have normal QT intervals while biallelic null alleles are associated with JLNS2, indicating a complex genotype-phenotype spectrum for KCNE1 variants.
Collapse
Affiliation(s)
- Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alessandra Brofferio
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad Z.K. Assir
- Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore 54550, Pakistan
| | - Akhtar A. Bandesha
- Cardiology Department, The Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Asma A. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Atteeq U. Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Brewer
- Audiology Unit, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Wasim Ahmed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Suzanne M. Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sheikh Riazuddin
- Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore 54550, Pakistan
| | - Steven E. Boyden
- Section on Genetics of Communication Disorders, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Li B, Hu W, Ma K, Zhang C, Fu X. Are hair follicle stem cells promising candidates for wound healing? Expert Opin Biol Ther 2019; 19:119-128. [PMID: 30577700 DOI: 10.1080/14712598.2019.1559290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION With the continued focus on in-depth investigations of hair follicle stem cells (HFSCs), the role of HFSCs in wound healing has attracted increasing attention from researchers. This review may afford meaningful implications for HFSC treatment of wounds. AREAS COVERED We present the properties of HFSCs, analyze the possibility of HFSCs in wound healing, and sum up the recent studies into wound repair with HFSCs. The details of HFSCs in wound healing have been discussed. The possible mechanisms of wound healing with HFSCs have been elaborated. Additionally, the factors that influence HFSCs in wound healing are also summarized. EXPERT OPINION Hair follicle stem cells are promising sources for wound healing. However, a further understanding of human HFSCs and the safety use of HFSCs in clinical practice still remain in relative infancy.
Collapse
Affiliation(s)
- Bingmin Li
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Wenzhi Hu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Kui Ma
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Cuiping Zhang
- b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Xiaobing Fu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| |
Collapse
|
35
|
Zeng B, Lu H, Xiao X, Yu X, Li S, Zhu L, Yu D, Zhao W. KDF1 is a novel candidate gene of non-syndromic tooth agenesis. Arch Oral Biol 2018; 97:131-136. [PMID: 30384154 DOI: 10.1016/j.archoralbio.2018.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/24/2018] [Accepted: 10/21/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Tooth agenesis (TA) is featured by congenital loss of teeth, and can be divided into two subtypes, non-syndromic TA (NSTA) and syndromic TA (STA). Although 12 candidate genes of NSTA have been revealed, the genetic basis of NSTA needs to be further studied. We noticed an overlap of candidate genes between NSTA and STA, and hypothesized that some candidate genes of STA may be new candidate genes of NSTA. METHODS Sanger sequencing, whole exome sequencing, bioinformatics analyses and immunohistochemical staining were performed to reveal the genetic basis of the patients in a family with NSTA. RESULTS No pathogenic mutation was found in the 12 candidate genes of NSTA. We screened the variants of 76 STA candidate genes and identified a novel pathogenic mutation c.G908C (p.R303 P) in Keratinocyte Differentiation Factor 1 (KDF1). This mutation was cosegregated with the disease in the family. Bioinformatics analyses predicted the mutation to be pathogenic. Immunohistochemical staining of kdf1 in developing tooth germs indicated that kdf1 expression is important for the development of teeth. CONCLUSIONS This study identified KDF1 as a novel candidate gene for NSTA. STA candidate genes may be a promising source of new NSTA genes.
Collapse
Affiliation(s)
- Binghui Zeng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Hui Lu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Xue Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Xinlin Yu
- International Department, The Affiliated High School of SCNU, Guangzhou, 510630, China
| | - Sijie Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Ling Zhu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| | - Wei Zhao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| |
Collapse
|
36
|
Du R, Dinckan N, Song X, Coban-Akdemir Z, Jhangiani SN, Guven Y, Aktoren O, Kayserili H, Petty LE, Muzny DM, Below JE, Boerwinkle E, Wu N, Gibbs RA, Posey JE, Lupski JR, Letra A, Uyguner ZO. Identification of likely pathogenic and known variants in TSPEAR, LAMB3, BCOR, and WNT10A in four Turkish families with tooth agenesis. Hum Genet 2018; 137:689-703. [PMID: 30046887 PMCID: PMC6165673 DOI: 10.1007/s00439-018-1907-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
Tooth agenesis (TA), the failure of development of one or more permanent teeth, is a common craniofacial abnormality observed in different world populations. The genetic etiology of TA is heterogeneous; more than a dozen genes have been associated with isolated or nonsyndromic TA, and more than 80 genes with syndromic forms. In this study, we applied whole exome sequencing (WES) to identify candidate genes contributing to TA in four Turkish families. Likely pathogenic variants with a low allele frequency in the general population were identified in four disease-associated genes, including two distinct variants in TSPEAR, associated with syndromic and isolated TA in one family each; a variant in LAMB3 associated with syndromic TA in one family; and a variant in BCOR plus a disease-associated WNT10A variant in one family with syndromic TA. With the notable exception of WNT10A (Tooth agenesis, selective, 4, MIM #150400), the genotype-phenotype relationships described in the present cohort represent an expansion of the clinical spectrum associated with these genes: TSPEAR (Deafness, autosomal recessive 98, MIM #614861), LAMB3 (Amelogenesis imperfecta, type IA, MIM #104530; Epidermolysis bullosa, junctional, MIMs #226700 and #226650), and BCOR (Microphthalmia, syndromic 2, MIM #300166). We provide evidence supporting the candidacy of these genes with TA, and propose TSPEAR as a novel nonsyndromic TA gene. Our data also suggest potential multilocus genomic variation, or mutational burden, in a single family, involving the BCOR and WNT10A loci, underscoring the complexity of the genotype-phenotype relationship in the common complex trait of TA.
Collapse
Affiliation(s)
- Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Nuriye Dinckan
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Millet Cad., Capa, Fatih, 34093, Istanbul, Turkey
- Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Yeliz Guven
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Capa, Istanbul, Turkey
| | - Oya Aktoren
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Capa, Istanbul, Turkey
| | - Hulya Kayserili
- Department of Medical Genetics, Koc University, School of Medicine (KUSOM), Istanbul, Turkey
| | - Lauren E Petty
- Human Genetics Center, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Below
- Human Genetics Center, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Nan Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Ariadne Letra
- Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.
- Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, 1941 East Road, BBSB Room 4210, Houston, TX, 77054, USA.
| | - Z Oya Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Millet Cad., Capa, Fatih, 34093, Istanbul, Turkey.
| |
Collapse
|
37
|
Williams MA, Letra A. The Changing Landscape in the Genetic Etiology of Human Tooth Agenesis. Genes (Basel) 2018; 9:genes9050255. [PMID: 29772684 PMCID: PMC5977195 DOI: 10.3390/genes9050255] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Despite much progress in understanding the genetics of syndromic tooth agenesis (TA), the causes of the most common, isolated TA remain elusive. Recent studies have identified novel genes and variants contributing to the etiology of TA, and revealed new pathways in which tooth development genes belong. Further, the use of new research approaches including next-generation sequencing has provided increased evidence supporting an oligogenic inheritance model for TA, and may explain the phenotypic variability of the condition. In this review, we present current knowledge about the genetic mechanisms underlying syndromic and isolated TA in humans, and highlight the value of incorporating next-generation sequencing approaches to identify causative and/or modifier genes that contribute to the etiology of TA.
Collapse
Affiliation(s)
- Meredith A Williams
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|