1
|
Yao J, Qiao Z, Jiang Z, Zhao X, You Z, Zhang W, Feng J, Gong C, Li J. Infection with Jujube Witches' Broom Phytoplasma Alters the Expression Pattern of the Argonaute Gene Family in Ziziphus jujuba. Microorganisms 2025; 13:658. [PMID: 40142550 PMCID: PMC11944418 DOI: 10.3390/microorganisms13030658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
The cultivation of jujube (Ziziphus jujuba) in China is threatened by jujube witches' broom (JWB) disease, a devastating infectious disease associated with JWB phytoplasma ('Candidatus Phytoplasma ziziphi'). In many plants, proteins in the Argonaute (AGO) family, as main components of the RNA-induced silencing complex (RISC), play important roles in RNA silencing and pathogen resistance. The jujube telomere-to-telomere genome was searched by BLAST using Arabidopsis AGOs as probes. A total of nine jujube AGO gene members were identified, with each containing the conserved N-terminal, PZA, and PIWI domains. Phylogenetic analysis revealed that the nine jujube AGOs scattered into all three Arabidopsis AGO clades. Expression patterns of the ZjAGO genes were analyzed in response to phytoplasma in transcriptome data and by qRT-PCR. The jujube-phytoplasma interaction altered the expression of jujube AGO genes. ZjAGO1 and ZjAGO8 were up-regulated in the majority of the eight sampling periods subjected to qRT-PCR analysis. In the transcriptome data, ZjAGO1 and ZjAGO8 were also up-regulated during the key stages 37 and 39 weeks after grafting (WAG) with phytoplasma-infected material. These two jujube Argonaute genes may play important roles in response to JWB phytoplasma infection.
Collapse
Affiliation(s)
- Jia Yao
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (J.Y.); (Z.Q.); (Z.J.); (X.Z.); (Z.Y.); (W.Z.)
| | - Zesen Qiao
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (J.Y.); (Z.Q.); (Z.J.); (X.Z.); (Z.Y.); (W.Z.)
| | - Ziming Jiang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (J.Y.); (Z.Q.); (Z.J.); (X.Z.); (Z.Y.); (W.Z.)
| | - Xueru Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (J.Y.); (Z.Q.); (Z.J.); (X.Z.); (Z.Y.); (W.Z.)
| | - Ziyang You
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (J.Y.); (Z.Q.); (Z.J.); (X.Z.); (Z.Y.); (W.Z.)
| | - Wenzhe Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (J.Y.); (Z.Q.); (Z.J.); (X.Z.); (Z.Y.); (W.Z.)
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China;
| | - Chenrui Gong
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (J.Y.); (Z.Q.); (Z.J.); (X.Z.); (Z.Y.); (W.Z.)
| | - Jidong Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China; (J.Y.); (Z.Q.); (Z.J.); (X.Z.); (Z.Y.); (W.Z.)
| |
Collapse
|
2
|
Li X, Shi Q, Liu Y, Jiang J, Lin M, Li X. Comprehensive transcriptomic analysis revealed the mechanism of ZjLAR and ZjANR promoting proanthocyanidin biosynthesis in jujube fruit. Int J Biol Macromol 2025; 288:138291. [PMID: 39631607 DOI: 10.1016/j.ijbiomac.2024.138291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Jujube (Ziziphus jujuba Mill.) is a traditional fruit tree in China with immense economic and ecological value. Jujube fruits are abundant in polyphenolic secondary metabolites, particularly proanthocyanidins (PAs), which play a crucial role in enhancing the quality of jujube fruits. However, the mechanism underlying the biosynthesis of PAs remains unclear. The PA contents of sour jujube 'Qingjiansuanzao' and cultivated jujube 'Junzao' were compared at different developmental stages to unravel this mechanism. The PA contents of sour jujube were higher than that of cultivated jujube and decreased during fruit development. Combined with transcriptome analysis, a large number of differentially expressed genes related to PA biosynthesis were screened. Correlation analysis showed that ZjLAR and ZjANR played an active role in promoting the biosynthesis of PAs. Transient overexpression of ZjLAR and ZjANR in jujube fruits resulted in higher total PAs and monomeric catechin, but the PAs decreased after transient silencing. Overexpressing ZjLAR and ZjANR in Arabidopsis and tomato increased the content of PAs in Arabidopsis seeds and tomato fruits. These findings provide a new basis for further understanding of the biosynthesis of jujube PAs and are significant for improving the quality of jujube fruit.
Collapse
Affiliation(s)
- Xi Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Yu Liu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Junjun Jiang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Minjuan Lin
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China; College of Horticulture and Forestry, Tarim University, Alar 843300, China.
| |
Collapse
|
3
|
Zadokar A, Sharma P, Sharma R. Comprehensive insights on association mapping in perennial fruit crops breeding - Its implications, current status and future perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112281. [PMID: 39426735 DOI: 10.1016/j.plantsci.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In order to provide food and nutritional security for the world's rapidly expanding population, fruit crop researchers have identified two critical priorities: increasing production and preserving fruit quality during the pre- and post-harvest periods. The genetic basis of these complex, commercially important fruit traits which are uniquely regulated by polygenes or multi-allelic genes that interact with one another and the environment can be analyzed with the aid of trait mapping tools. The most interesting trait mapping approach that offers the genetic level investigation for marker-trait associations (MTAs) for these complex fruit traits, without the development of mapping population, is association mapping. This approach was used during the genetic improvement program, emphasizing the obstacles (breeding strategies adopted, generation interval, and their genomic status) pertaining to perennial fruit crops. This method of studying population diversity and linkage disequilibrium in perennial fruit crops has been made possible by recent developments in genotyping, phenotyping, and statistical analysis. Thus, the purpose of this review is to provide an overview of different trait mapping techniques, with a focus on association mapping (method, essential components, viability, constraints, and future perspective) and its advantages, disadvantages, and possibilities for breeding perennial fruit crops.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| |
Collapse
|
4
|
Guo M, Bi G, Wang H, Ren H, Chen J, Lian Q, Wang X, Fang W, Zhang J, Dong Z, Pang Y, Zhang Q, Huang S, Yan J, Zhao X. Genomes of autotetraploid wild and cultivated Ziziphus mauritiana reveal polyploid evolution and crop domestication. PLANT PHYSIOLOGY 2024; 196:2701-2720. [PMID: 39325737 DOI: 10.1093/plphys/kiae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Indian jujube (Ziziphus mauritiana) holds a prominent position in the global fruit and pharmaceutical markets. Here, we report the assemblies of haplotype-resolved, telomere-to-telomere genomes of autotetraploid wild and cultivated Indian jujube plants using a 2-stage assembly strategy. The generation of these genomes permitted in-depth investigations into the divergence and evolutionary history of this important fruit crop. Using a graph-based pan-genome constructed from 8 monoploid genomes, we identified structural variation (SV)-FST hotspots and SV hotspots. Gap-free genomes provide a means to obtain a global view of centromere structures. We identified presence-absence variation-related genes in 4 monoploid genomes (cI, cIII, wI, and wIII) and resequencing populations. We also present the population structure and domestication trajectory of the Indian jujube based on the resequencing of 73 wild and cultivated accessions. Metabolomic and transcriptomic analyses of mature fruits of wild and cultivated accessions unveiled the genetic basis underlying loss of fruit astringency during domestication of Indian jujube. This study reveals mechanisms underlying the divergence, evolution, and domestication of the autotetraploid Indian jujube and provides rich and reliable genetic resources for future research.
Collapse
Affiliation(s)
- Mingxin Guo
- College of Life Sciences, Luoyang Normal University, Luoyang 471934, China
| | - Guiqi Bi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Huan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, and College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ren
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jiaying Chen
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Qun Lian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaomei Wang
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Weikuan Fang
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jiangjiang Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhaonian Dong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yi Pang
- College of Life Sciences, Luoyang Normal University, Luoyang 471934, China
| | - Quanling Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xusheng Zhao
- College of Life Sciences, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
5
|
Muhammad N, Uddin N, Liu Z, Yang M, Liu M. Research Progress and Biosynthetic Mechanisms of Nutritional Compounds Obtained from Various Organs During the Developmental Stages of a Medicinal Plant (Chinese Jujube). PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:744-758. [PMID: 39150636 DOI: 10.1007/s11130-024-01225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
The fruit of the jujube tree is high in nutrients and has various health benefits. China is a major producer of jujube, and it is now cultivated all around the world. Numerous studies have demonstrated the nutritional value and potential health advantages of bioactive compounds found in the jujube tree. Furthermore, the jujube tree has a remarkable 7000-year agricultural history. The jujube plant has developed a rich gene pool, making it a valuable resource for germplasm. Different studies have focused on the developmental stages of jujube fruits to identify the optimal time for harvest and to assess the changes in their bioactive natural compounds or products during the process of development but the molecular mechanism underlying the production of bioactive natural products in Z. jujuba is still poorly understood. Moreover, the potential differential expressed genes (DEGs) identified as responsible for the synthesis of these compounds should be further functionally verified. It has been noticed that the contents of total flavonoids, total phenolic, and vitamin C increase significantly during the ripening process, while the contents of soluble sugars and organic acids decrease gradually. In this review, we have also scrutinized the challenges that hinder the utilization of jujube fruit resources and suggested potential areas for further research. As such, our review serves as a valuable resource for the future development of jujube-based nutritional compounds and the incorporation of their nutritional elements into the functional foods industry.
Collapse
Affiliation(s)
- Noor Muhammad
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China.
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China.
| | - Nisar Uddin
- School of Emergency Management, School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Minsheng Yang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China.
| | - Mengjun Liu
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China.
| |
Collapse
|
6
|
Zhang A, Wang T, Yuan L, Shen Y, Liu K, Liu B, Xu K, Elsadek MA, Wang Y, Wu L, Qi Z, Yu J, Zhang M, Chen L. Horizontal transfer of plasmid-like extrachromosomal circular DNAs across graft junctions in Solanaceae. MOLECULAR HORTICULTURE 2024; 4:41. [PMID: 39563413 DOI: 10.1186/s43897-024-00124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
The transfer of genetic material between stocks and scions of grafted plants has been extensively studied; however, the nature and frequency of the transferred material remain elusive. Here, we report a grafting system involving woody goji as the stock and herbaceous tomato as the scion, which was developed using in vitro and in vivo approaches; the results confirmed horizontal transfer of multiple nuclear DNA fragments from donor goji cells to recipient tomato cells. Tomato tissues containing goji donor DNA fragments at or near the grafting junctions had a perennial-biased anatomical structure, from which roots or shoots were regenerated. Most of the fragments were plasmid-like extrachromosomal circular DNAs (eccDNAs) present in the regenerants derived from the cells and in their asexual offspring. Plants with transferred eccDNAs in regenerated roots or shoots (designated "Go-tomato") were grown perennially and showed excellent agronomic performance. The present study provides new insights into the replication, expression, and potential function of eccDNAs in the pleiotropic traits of Go-tomato. Mobile eccDNAs offer evidence of stock-to-scion horizontal DNA transfer beyond chromosomes and organelles, thereby contributing to the molecular understanding of graft-induced genetic variation, evolution, and breeding.
Collapse
Affiliation(s)
- Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuxin Shen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ke Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed A Elsadek
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yiting Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liang Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mingfang Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Guo M, Lian Q, Mei Y, Yang W, Zhao S, Zhang S, Xing X, Zhang H, Gao K, He W, Wang Z, Wang H, Zhou J, Cheng L, Bao Z, Huang S, Yan J, Zhao X. Analyzes of pan-genome and resequencing atlas unveil the genetic basis of jujube domestication. Nat Commun 2024; 15:9320. [PMID: 39472552 PMCID: PMC11522667 DOI: 10.1038/s41467-024-53718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Jujube (Ziziphus jujuba Mill.), belonging to the Rhamnaceae family, is gaining increasing prominence as a perennial fruit crop with significant economic and medicinal values. Here, we conduct de novo assembly of four reference-grade genomes, encompassing one wild and three cultivated jujube accessions. We present insights into the population structure, genetic diversity, and genomic variations within a diverse collection of 1059 jujube accessions. Analyzes of the jujube pan-genome, based on our four assemblies and four previously released genomes, reveal extensive genomic variations within domestication-associated regions, potentially leading to the discovery of a candidate gene that regulates flowering and fruit ripening. By leveraging the pan-genome and a large-scale resequencing population, we identify two candidate genes involved in domestication traits, including the seed-setting rate, the bearing-shoot length and the leaf size in jujube. These genomic resources will accelerate evolutionary and functional genomics studies of jujube.
Collapse
Affiliation(s)
- Mingxin Guo
- College of Life Sciences, Luoyang Normal University, Luoyang, China.
| | - Qun Lian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Biology & Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Ye Mei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wangwang Yang
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Suna Zhao
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Siyuan Zhang
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Xinfeng Xing
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Haixiang Zhang
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Keying Gao
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Wentong He
- National Foundation for Improved Cultivar of Chinese Jujube, Bureau of Natural Resources and Planning of Cangxian County, Cangzhou, China
| | - Zhitong Wang
- National Foundation for Improved Cultivar of Chinese Jujube, Bureau of Natural Resources and Planning of Cangxian County, Cangzhou, China
| | - Huan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jun Zhou
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Lin Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Zhigui Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xusheng Zhao
- College of Life Sciences, Luoyang Normal University, Luoyang, China.
| |
Collapse
|
8
|
Wei T, Li H, Huang X, Yang P. Chromosome-level genome assembly of two cultivated Jujubes. Sci Data 2024; 11:1144. [PMID: 39420037 PMCID: PMC11486999 DOI: 10.1038/s41597-024-03992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Jujube (Ziziphus jujuba Mill.) is a valuable tree species with economic, edible, medicinal, and ecological conservation benefits. In this study, we used PacBio HiFi sequencing and Hi-C technology to assemble chromosome-level genomes of two cultivated Jujubes, namely 'Lingwuchangzao' and 'Shiguang'. The genome sizes of 'Lingwuchangzao' and 'Shiguang' were 385.66 Mb and 394.12 Mb, respectively, with contig N50 sizes of 30.62 Mb and 4.30 Mb. These genomes contained 31,082 and 31,015 protein-coding genes, with repeat element contents of 42.11% and 42.33%, respectively. Phylogenetic analysis revealed that 'Lingwuchangzao' was sister to 'Shiguang' and followed by 'Dongzao'. Additionally, comparative analysis of gene families among 'Lingwuchangzao', 'Shiguang', 'Dongzao', 'Junzao', and 'Suanzao' identified 15,988 (57.98%) core gene families, 11,191 (40.59%) disposable gene families, and 394 (1.43%) private gene families. Overall, the assembly of the genomes of these two cultivated Jujube varieties provides valuable genetic information for Jujube evolution, functional genomics research, and molecular breeding.
Collapse
Affiliation(s)
- Tianjun Wei
- Institute of Horticulture, NingXia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China.
| | - Hui Li
- Institute of Horticulture, NingXia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Peng Yang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
9
|
Satterlee JW, Alonso D, Gramazio P, Jenike KM, He J, Arrones A, Villanueva G, Plazas M, Ramakrishnan S, Benoit M, Gentile I, Hendelman A, Shohat H, Fitzgerald B, Robitaille GM, Green Y, Swartwood K, Passalacqua MJ, Gagnon E, Hilgenhof R, Huggins TD, Eizenga GC, Gur A, Rutten T, Stein N, Yao S, Poncet A, Bellot C, Frary A, Knapp S, Bendahmane M, Särkinen T, Gillis J, Van Eck J, Schatz MC, Eshed Y, Prohens J, Vilanova S, Lippman ZB. Convergent evolution of plant prickles by repeated gene co-option over deep time. Science 2024; 385:eado1663. [PMID: 39088611 PMCID: PMC11305333 DOI: 10.1126/science.ado1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/06/2024] [Indexed: 08/03/2024]
Abstract
An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. In this work, we genetically dissected repeated origins and losses of prickles-sharp epidermal projections-that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genus Solanum. Homologs underlie prickle formation across angiosperms that collectively diverged more than 150 million years ago, including rice and roses. By developing new Solanum genetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.
Collapse
Affiliation(s)
- James W. Satterlee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - David Alonso
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Katharine M. Jenike
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jia He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Gloria Villanueva
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Srividya Ramakrishnan
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Matthias Benoit
- French National Institute for Agriculture, Food, and Environment, Laboratory of Plant-Microbe Interactions, Toulouse, France
| | - Iacopo Gentile
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hagai Shohat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Blaine Fitzgerald
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gina M. Robitaille
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yumi Green
- Boyce Thompson Institute, Ithaca, New York, USA
| | | | - Michael J. Passalacqua
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Ontario, Canada
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | - Trevis D. Huggins
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR, USA
| | - Georgia C. Eizenga
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR, USA
| | - Amit Gur
- Cucurbits Section, Department of Vegetable Sciences, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Crop Plant Genetics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Shengrui Yao
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA
- Sustainable Agriculture Sciences Center, New Mexico State University, Alcalde, NM, USA
| | - Adrien Poncet
- Laboratoire Reproduction et Developpement des Plantes, INRAE, CNRS, Universite Lyon, Ecole Normale Superieure de Lyon, Lyon, France
| | - Clement Bellot
- Laboratoire Reproduction et Developpement des Plantes, INRAE, CNRS, Universite Lyon, Ecole Normale Superieure de Lyon, Lyon, France
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | | | - Mohammed Bendahmane
- Laboratoire Reproduction et Developpement des Plantes, INRAE, CNRS, Universite Lyon, Ecole Normale Superieure de Lyon, Lyon, France
| | | | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, New York, USA
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Zachary B. Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
10
|
Uddin N, Shinde H, Ali N, Zhang Q, Ullah R, Iqbal Z, Zhu D. Systematic exploration of Ziziphus species collection and gene identification influencing physiological traits using genotype-by-sequencing technology. PHYSIOLOGIA PLANTARUM 2024; 176:e14426. [PMID: 39049207 DOI: 10.1111/ppl.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The Ziziphus genus, belonging to the Rhamnaceae family, holds significant economic, nutritional, and medicinal value. However, much remains to be discovered about its diversity and physical characteristics. Factors such as growth, resilience to changes, disease resistance, and unique features contribute to the quality of Ziziphus species. This study aims to investigate the genomes of 200 genotypes from five Ziziphus species: Ziziphus jujuba (Zj), Ziziphus nummularia (Zm), Ziziphus oxyphylla (Zx), Ziziphus mauritiana (Zm), and the cultivated variety Ziziphus jujube var. jujube, collected from Pakistan and China. Our goal is to identify single nucleotide polymorphisms (SNPs) associated with eight different traits and understand the genetic diversity within the selected Ziziphus species and their genotypes. Using high-quality SNPs obtained through genotype-by-sequencing (GBS), we conducted population structure, phylogenetic, and principal coordinates analyses, identifying a total of 10,945 clean SNPs. These genotypes were categorized into two groups, A and B. Natural Ziziphus variants in Pakistan, specifically Z. jujuba and Z. nummularia, exhibited high levels of genetic diversity and polymorphic information content (PIC) of 0.46 and 0.41, respectively, compared to other species. Furthermore, we identified 15 influential candidate genes that play crucial roles in regulating agronomic traits, such as fruit width and diameter, leaf width, plant height, and stem diameter within this group. This study provides valuable insights that can be utilized in Ziziphus breeding efforts.
Collapse
Affiliation(s)
- Nisar Uddin
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Harshraj Shinde
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, United States of America
| | - Niaz Ali
- Department of Botany, Hazara University Mansehra, Mansehra, KP, Pakistan
| | - Qiongfang Zhang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Riaz Ullah
- Department of Pharmacognosy; College of Pharmacy King Saud University Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University P.O.Box 7805, Riyadh, Kingdom of Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
11
|
Li K, Chen R, Abudoukayoumu A, Wei Q, Ma Z, Wang Z, Hao Q, Huang J. Haplotype-resolved T2T reference genomes for wild and domesticated accessions shed new insights into the domestication of jujube. HORTICULTURE RESEARCH 2024; 11:uhae071. [PMID: 38725458 PMCID: PMC11079485 DOI: 10.1093/hr/uhae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/28/2024] [Indexed: 05/12/2024]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is one of the most important deciduous tree fruits in China, with substantial economic and nutritional value. Jujube was domesticated from its wild progenitor, wild jujube (Z. jujuba var. spinosa), and both have high medicinal value. Here we report the 767.81- and 759.24-Mb haplotype-resolved assemblies of a dry-eating 'Junzao' jujube (JZ) and a wild jujube accession (SZ), using a combination of multiple sequencing strategies. Each assembly yielded two complete haplotype-resolved genomes at the telomere-to-telomere (T2T) level, and ~81.60 and 69.07 Mb of structural variations were found between the two haplotypes within JZ and SZ, respectively. Comparative genomic analysis revealed a large inversion on each of chromosomes 3 and 4 between JZ and SZ, and numerous genes were affected by structural variations, some of which were associated with starch and sucrose metabolism. A large-scale population analysis of 672 accessions revealed that wild jujube originated from the lower reaches of the Yellow River and was initially domesticated at local sites. It spread widely and was then independently domesticated at the Shanxi-Shaanxi Gorge of the middle Yellow River. In addition, we identified some new selection signals regions on genomes, which are involved in the tissue development, pollination, and other aspects of jujube tree morphology and fertilization domestication. In conclusion, our study provides high-quality reference genomes of jujube and wild jujube and new insights into the domestication history of jujube.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Ruihong Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ayimaiti Abudoukayoumu
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Qian Wei
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Zhibo Ma
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Zhengyang Wang
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Jian Huang
- Key Laboratory of National Forestry and Grassland Administration on Forest Cultivation on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Jia Y, Wang C, Zhang Y, Deng W, Ma Y, Ma J, Han G. The Flavor Characteristics and Metabolites of Three Commercial Dried Jujube Cultivars. Foods 2024; 13:1193. [PMID: 38672867 PMCID: PMC11048840 DOI: 10.3390/foods13081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
To understand the flavor and metabolite differences between the three commercial dried jujube cultivars Huizao (HZ), Hamazao 1 (HMZ), and Qiyuexian (QYX), their soluble sugars, organic acids, volatiles, and metabolites were systematically investigated. The results show that sucrose and malic acid were the main soluble sugar and organic acids contained in these dried jujubes, respectively. Sucrose (573.89 mg/g DW) had the highest presence in HZ, and the total sugar content (898.33 mg/g DW) was the highest in QYX. Both of these had a low total acid content, resulting in relatively high sugar-acid ratios (105.49 and 127.86, respectively) compared to that of HMZ (51.50). Additionally, 66 volatile components were detected in the 3 jujubes. These mainly included acids, aldehydes, esters, and ketones (90.5-96.49%). Among them, (E)-2-nonenal, (E)-2-decenal, heptanal, decanal, nonanal, and octanal were identified as the key aromatic substances of the dried jujubes, and their contents were the highest in HMZ. Moreover, 454 metabolites were identified, including alkaloids, amino acids, flavonoids, lipids, nucleotides, and terpenoids. The highest contents of flavonoids (5.6%) and lipids (24.9%) were detected in HMZ, the highest contents of nucleotides (10.2%) and alkaloids (27%) were found in QYX, and the contents of saccharides (5.7%) and amino acids (23.6%) were high in HZ. Overall, HZ, HMZ, and QYX significantly differ in their flavor and nutrition. HZ tastes better, HMZ is more fragrant, and QYX and HMZ possess higher nutritional values.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Han
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (Y.J.); (C.W.); (Y.Z.); (W.D.); (Y.M.); (J.M.)
| |
Collapse
|
13
|
Liu H, Zhao X, Bi J, Dong X, Zhang C. A natural mutation in the promoter of the aconitase gene ZjACO3 influences fruit citric acid content in jujube. HORTICULTURE RESEARCH 2024; 11:uhae003. [PMID: 38464475 PMCID: PMC10923642 DOI: 10.1093/hr/uhae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/30/2023] [Indexed: 03/12/2024]
Abstract
Jujube (Ziziphus jujuba Mill.) is the most economically important fruit tree of the Rhamnaceae and was domesticated from wild or sour jujube (Z. jujuba Mill. var. spinosa Hu). During the process of domestication, there was a substantial reduction in the content of organic acids, particularly malate and citrate, which greatly influence the taste and nutritional value of the fruit. We previously demonstrated that ZjALMT4 is crucial for malate accumulation. However, the mechanism of citrate degradation in jujube remains poorly understood. In the present study, aconitase ZjACO3 was shown to participate in citric acid degradation in the cytoplasm through the GABA pathway. Interestingly, we discovered an E-box mutation in the ZjACO3 promoter (-484A > G; CAAGTG in sour jujube mutated to CAGGTG in cultivated jujube) that was strongly correlated with fruit citrate content; 'A' represented a high-citrate genotype and 'G' represented a low-citrate genotype. We developed and validated an ACO-based Kompetitive allele-specific PCR (KASP) marker for determining citric acid content. Yeast one-hybrid screening, transient dual-luciferase assays, and overexpression analyses showed that the transcription factor ZjbHLH113 protein directly binds to CAGGTG in the promoter of ZjACO3 in cultivated jujube plants, transcriptionally activating ZjACO3 expression, and enhancing citric acid degradation. Conversely, binding ability of the ZjbHLH113 protein to CAAGTG was weakened in sour jujube, thereby promoting citrate accumulation in the fruit. These findings will assist in elucidating the mechanism by which ZjACO3 modulates citrate accumulation in sour jujube and its cultivars.
Collapse
Affiliation(s)
- Hanxiao Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Xiangning Zhao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Jingxin Bi
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Xiaochang Dong
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, 271000, China
| | - Chunmei Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| |
Collapse
|
14
|
Ruan W, Liu J, Zhang S, Huang Y, Zhang Y, Wang Z. Sour Jujube ( Ziziphus jujuba var. spinosa): A Bibliometric Review of Its Bioactive Profile, Health Benefits and Trends in Food and Medicine Applications. Foods 2024; 13:636. [PMID: 38472749 DOI: 10.3390/foods13050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Research on the comprehensive utilization of sour jujube and its beneficial properties to human health has attracted extensive attention. This study aims to conduct a bibliometric analysis of the bioactive profile of sour jujube and future trends in applications. The research advancements within this field from 2000 to 2023 were addressed using the Web of Science database and VOSviewer. Among the 322 results, the most frequent keywords of bioactivity are flavonoids, antioxidants, saponins, insomnia, polyphenols, terpenoids and anti-inflammatory; the most studied parts of sour jujube are seeds, fruits and leaves; the published articles with high citations mainly focus on identification, biological effects and different parts distribution of bioactive compounds. The bioactivity of various parts of sour jujube was reviewed considering their application potential. The seeds, rich in flavonoids, saponins and alkaloids, exhibit strong effects on central nervous system diseases and have been well-developed in pharmacology, healthcare products and functional foods. The pulp has antioxidant properties and is used to develop added-value foods (e.g., juice, vinegar, wine). The leaves can be used to make tea and flowers are good sources of honey; their extracts are rich sources of flavonoids and saponins, which show promising medicinal effects. The branches, roots and bark have healing properties in traditional folk medicine. Overall, this study provides a reference for future applications of sour jujube in food and medicine fields.
Collapse
Affiliation(s)
- Wei Ruan
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| | - Junli Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Xinhua District, Shijiazhuang 050031, China
| | - Shixiong Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| | - Yuqing Huang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| | - Yuting Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| | - Zhixin Wang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| |
Collapse
|
15
|
Yang M, Han L, Zhang S, Dai L, Li B, Han S, Zhao J, Liu P, Zhao Z, Liu M. Insights into the evolution and spatial chromosome architecture of jujube from an updated gapless genome assembly. PLANT COMMUNICATIONS 2023; 4:100662. [PMID: 37482683 PMCID: PMC10777365 DOI: 10.1016/j.xplc.2023.100662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Affiliation(s)
- Meng Yang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China.
| | - Lu Han
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Shufeng Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Li Dai
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China; Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Bin Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Shoukun Han
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jin Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Ping Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China; Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhihui Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China; Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China; Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
16
|
Jiang J, Shi Q, Li X, He X, Wu C, Li X. Biological Characteristics and Functional Analysis of the Linoleic Acid Synthase Gene ZjFAD2 in Jujube. Int J Mol Sci 2023; 24:15479. [PMID: 37895156 PMCID: PMC10607877 DOI: 10.3390/ijms242015479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Jujube fruit is rich in linoleic acid and other bioactive components and has great potential to be used for the development of functional foods. However, the roles of FAD2 genes in linoleic acid biosynthesis in jujube fruit remain unclear. Here, we identified 15 major components in jujube and found that linoleic acid was the main unsaturated fatty acid; major differences in the content and distribution of linoleic acid in the pulp and seeds were observed, and levels of linoleic acid decreased during fruit maturation. Analysis of the fatty acid metabolome, genome, and gene expression patterns of cultivated and wild-type jujube revealed five ZjFAD2 family members highly related to linoleic acid biosynthesis. The heterologous expression of these five ZjFAD2 family members in tobacco revealed that all five of these genes increased the content of linoleic acid. Additionally, transient expression of these genes in jujube fruit and the virus-induced gene silencing (VIGS) test further confirmed the key roles of ZjFAD2-11 and ZjFAD2-1 in the biosynthesis of linoleic acid. The results of this research provide valuable insights into the molecular mechanism underlying linoleic acid synthesis in jujube and will aid the development of quality-oriented breeding strategies.
Collapse
Affiliation(s)
- Junjun Jiang
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.J.)
- Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Xianyang 712100, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Xianyang 712100, China
| | - Qianqian Shi
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.J.)
- Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Xianyang 712100, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Xianyang 712100, China
| | - Xi Li
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.J.)
- Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Xianyang 712100, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Xianyang 712100, China
| | - Xueying He
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.J.)
- Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Xianyang 712100, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Xianyang 712100, China
| | - Cuiyun Wu
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.J.)
- Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Xianyang 712100, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Xianyang 712100, China
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| |
Collapse
|
17
|
Chen X, Cornille A, An N, Xing L, Ma J, Zhao C, Wang Y, Han M, Zhang D. The East Asian wild apples, Malus baccata (L.) Borkh and Malus hupehensis (Pamp.) Rehder., are additional contributors to the genomes of cultivated European and Chinese varieties. Mol Ecol 2023; 32:5125-5139. [PMID: 35510734 DOI: 10.1111/mec.16485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/09/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
The domestication process in long-lived plant perennials differs dramatically from that of annuals, with a huge amount of genetic exchange between crop and wild populations. Though apple is a major fruit crop grown worldwide, the contribution of wild apple species to the genetic makeup of the cultivated apple genome remains a topic of intense study. We used population genomics approaches to investigate the contributions of several wild apple species to European and Chinese rootstock and dessert genomes, with a focus on the extent of wild-crop gene flow. Population genetic structure inferences revealed that the East Asian wild apples, Malus baccata (L.) Borkh and M. hupehensis (Pamp.), form a single panmictic group, and that the European dessert and rootstock apples form a specific gene pool whereas the Chinese dessert and rootstock apples were a mixture of three wild gene pools, suggesting different evolutionary histories of European and Chinese apple varieties. Coalescent-based inferences and gene flow estimates indicated that M. baccata - M. hupehensis contributed to the genome of both European and Chinese cultivated apples through wild-to-crop introgressions, and not as an initial contributor as previously supposed. We also confirmed the contribution through wild-to-crop introgressions of Malus sylvestris Mill. to the cultivated apple genome. Apple tree domestication is therefore one example in woody perennials that involved gene flow from several wild species from multiple geographical areas. This study provides an example of a complex protracted process of domestication in long-lived plant perennials, and is a starting point for apple breeding programmes.
Collapse
Affiliation(s)
- Xilong Chen
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Na An
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Libo Xing
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Yibin Wang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Hao KX, Xie H, Jiang JG, Wang D, Zhu W. Semen Ziziphus jujube Saponins Protects HaCaT Cells against UV Damage and Alleviates the Aging of Caenorhabditis elegans. ACS OMEGA 2023; 8:28080-28089. [PMID: 37576697 PMCID: PMC10413363 DOI: 10.1021/acsomega.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/29/2023] [Indexed: 08/15/2023]
Abstract
The role of Semen Ziziphus jujube saponins in sedative and hypnosis has attracted much attention. The study aimed to investigate its possible UV damage protection and anti-aging effects. Total saponins (SZR I) and purified saponins (SZR II) were analyzed and compared by infrared spectroscopy and high-performance liquid chromatography (HPLC). The protective effects of SZR I, SZR II, and their three monomers on HaCaT cells damaged by UV were studied, and their anti-aging activities were observed by Caenorhabditis elegans with paraquat-induced oxidative stress. The results showed that SZR I and SZR II differ in chemical composition but both have the same three monomers. The cell survival rate treated with SZR I and SZR II at a concentration of 400 μg/mL increased by 34.45 and 88.98%, respectively, indicating that they could promote the proliferation of UVB-damaged HaCaT cells. Jujuboside A, Jujuboside B, and spinosin from the saponins exhibited similar effects on UVB-damaged HaCaT cells. SZR I and SZR II had little effect on reproductive performance but could delay the senescence caused by heat and oxidative stress of the C. elegans model. These results provide useful data that Semen Z. jujube saponin is a potential natural product with UV damage protection and anti-aging characteristics.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College
of Food and Bioengineering, South China
University of Technology, Guangzhou 510640, China
- The
Second Affiliated Hospital, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Hong Xie
- College
of Food and Bioengineering, South China
University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College
of Food and Bioengineering, South China
University of Technology, Guangzhou 510640, China
| | - Dawei Wang
- The
First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Wei Zhu
- The
Second Affiliated Hospital, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
19
|
Li B, Muhammad N, Zhang S, Lan Y, Yang Y, Han S, Liu M, Yang M. Multiple-Genome-Based Simple Sequence Repeat Is an Efficient and Successful Method in Genotyping and Classifying Different Jujube Germplasm Resources. PLANTS (BASEL, SWITZERLAND) 2023; 12:2885. [PMID: 37571038 PMCID: PMC10421302 DOI: 10.3390/plants12152885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Jujube (Ziziphus jujuba Mill.) is a commercially important tree native to China, known for its high nutritional value and widespread distribution, as well as its diverse germplasm resources. Being resilient to harsh climatic conditions, the cultivation of jujube could provide a solution to food insecurity and income for people of arid and semi-arid regions in and outside of China. The evaluation of germplasm resources and genetic diversity in jujube necessitates the use of Simple Sequence Repeat (SSR) markers. SSR markers are highly polymorphic and can be used to evaluate the genetic diversity within and between cultivars of Chinese jujube, and are important for conservation biology, breeding programs, and the discovery of important traits for Chinese jujube improvement in China and abroad. However, traditional methods of SSR development are time-consuming and inadequate to meet the growing research demands. To address this issue, we developed a novel approach called Multiple-Genome-Based SSR identification (MGB-SSR), which utilizes the genomes of three jujube cultivars to rapidly screen for polymorphic SSRs in the jujube genome. Through the screening process, we identified 12 pairs of SSR primers, which were then used to successfully classify 249 jujube genotypes. Based on the genotyping results, a digital ID card was established, enabling the complete identification of all 249 jujube plants. The MGB-SSR approach proved efficient in rapidly detecting polymorphic SSRs within the jujube genome. Notably, this study represents the first successful differentiation of jujube germplasm resources using 12 SSR markers, with 4 markers successfully identifying triploid jujube genotypes. These findings offer valuable information for the classification of Chinese jujube germplasm, thereby providing significant assistance to jujube researchers and breeders in identifying unknown jujube germplasm.
Collapse
Affiliation(s)
- Bin Li
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (B.L.)
| | - Noor Muhammad
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (B.L.)
| | - Shufeng Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (B.L.)
| | - Yunxin Lan
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (B.L.)
| | - Yihan Yang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (B.L.)
| | - Shoukun Han
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (B.L.)
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (B.L.)
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Meng Yang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (B.L.)
| |
Collapse
|
20
|
Guo X, Hu X, Li J, Shao B, Wang Y, Wang L, Li K, Lin D, Wang H, Gao Z, Jiao Y, Wen Y, Ji H, Ma C, Ge S, Jiang W, Jin X. The Sapria himalayana genome provides new insights into the lifestyle of endoparasitic plants. BMC Biol 2023; 21:134. [PMID: 37280593 DOI: 10.1186/s12915-023-01620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Sapria himalayana (Rafflesiaceae) is an endoparasitic plant characterized by a greatly reduced vegetative body and giant flowers; however, the mechanisms underlying its special lifestyle and greatly altered plant form remain unknown. To illustrate the evolution and adaptation of S. himalayasna, we report its de novo assembled genome and key insights into the molecular basis of its floral development, flowering time, fatty acid biosynthesis, and defense responses. RESULTS The genome of S. himalayana is ~ 1.92 Gb with 13,670 protein-coding genes, indicating remarkable gene loss (~ 54%), especially genes involved in photosynthesis, plant body, nutrients, and defense response. Genes specifying floral organ identity and controlling organ size were identified in S. himalayana and Rafflesia cantleyi, and showed analogous spatiotemporal expression patterns in both plant species. Although the plastid genome had been lost, plastids likely biosynthesize essential fatty acids and amino acids (aromatic amino acids and lysine). A set of credible and functional horizontal gene transfer (HGT) events (involving genes and mRNAs) were identified in the nuclear and mitochondrial genomes of S. himalayana, most of which were under purifying selection. Convergent HGTs in Cuscuta, Orobanchaceae, and S. himalayana were mainly expressed at the parasite-host interface. Together, these results suggest that HGTs act as a bridge between the parasite and host, assisting the parasite in acquiring nutrients from the host. CONCLUSIONS Our results provide new insights into the flower development process and endoparasitic lifestyle of Rafflesiaceae plants. The amount of gene loss in S. himalayana is consistent with the degree of reduction in its body plan. HGT events are common among endoparasites and play an important role in their lifestyle adaptation.
Collapse
Affiliation(s)
- Xuelian Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Xiaodi Hu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan, 666303, China
| | - Bingyi Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yajun Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Long Wang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Kui Li
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Dongliang Lin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hanchen Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Zhiyuan Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yingying Wen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hongyu Ji
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Chongbo Ma
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, 100083, China.
| | - Xiaohua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China.
| |
Collapse
|
21
|
Song S, Jin J, Li M, Kong D, Cao M, Wang X, Li Y, Chen X, Zhang X, Pang X, Bo W, Hao Q. The Key Metabolic Network and Genes Regulating the Fresh Fruit Texture of Jujube ( Ziziphus jujuba Mill.) Revealed via Metabolomic and Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112087. [PMID: 37299066 DOI: 10.3390/plants12112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
The texture of fresh jujube fruit is related to its popularity and commercial value. The metabolic networks and essential genes that regulate the texture of jujube (Ziziphus jujuba) fruit are still unknown. In this study, two jujube cultivars with significantly different textures were selected by a texture analyzer. The four developmental stages of the exocarp and mesocarp of jujube fruit were studied separately using metabolomic and transcriptomic analyses. Differentially accumulated metabolites were enriched in several critical pathways related to cell wall substance synthesis and metabolism. Transcriptome analysis confirmed this by finding enriched differential expression genes in these pathways. Combined analysis showed that 'Galactose metabolism' was the most overlapping pathway in two omics. Genes such as β-Gal, MYB and DOF may affect fruit texture by regulating cell wall substances. Overall, this study provides an essential reference for the establishment of texture-related metabolic and gene networks of jujube fruit.
Collapse
Affiliation(s)
- Shuang Song
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Juan Jin
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Meiyu Li
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan 467000, China
| | - Decang Kong
- National Foundation for Improved Cultivar of Chinese Jujube, Cangzhou 061000, China
| | - Ming Cao
- National Foundation for Improved Cultivar of Chinese Jujube, Cangzhou 061000, China
| | - Xue Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yingyue Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xuexun Chen
- Bureau of Forestry of Aohan, Chifeng 028000, China
| | - Xiuli Zhang
- Bureau of Forestry of Aohan, Chifeng 028000, China
| | - Xiaoming Pang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qing Hao
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
22
|
Zhi Y, Chuanjiang Z, Xinfang Y, Mengyi D, Zhenlei W, Fenfen Y, Cuiyun W, Jiurui W, Mengjun L, Minjuan L. Genetic analysis of mixed models of fruit sugar-acid fractions in a cross between jujube ( Ziziphus jujuba Mill.) and wild jujube ( Z. acido jujuba). FRONTIERS IN PLANT SCIENCE 2023; 14:1181903. [PMID: 37251778 PMCID: PMC10213531 DOI: 10.3389/fpls.2023.1181903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.), an economically significant species in the Rhamnaceae family, is a popular fruit tree in Asia. The sugar and acid concentrations in jujube are considerably higher than those in other plants. Due to the low kernel rate, it is extremely difficult to establish hybrid populations. Little is known about jujube evolution and domestication, particularly with regard to the role of the sugar and acid components of jujube. Therefore, we used cover net control as a hybridization technique for the cross-breeding of Ziziphus jujuba Mill and 'JMS2' and (Z. acido jujuba) 'Xing16' to obtain an F1 population (179 hybrid progeny). The sugar and acid levels in the F1 and parent fruit were determined by HPLC. The coefficient of variation ranged from 28.4 to 93.9%. The sucrose and quinic acid levels in the progeny were higher than those in the parents. The population showed continuous distributions with transgressive segregation on both sides. Analysis by the mixed major gene and polygene inheritance model was performed. It was found that glucose is controlled by one additive-dominant major gene and polygenes, malic acid is controlled by two additive-dominant major genes and polygenes, and oxalic acid and quinic acid are controlled by two additive-dominant-epistatic major genes and polygenes. The results of this study provide insights into the genetic predisposition and molecular mechanisms underlying the role of sugar acids in jujube fruit.
Collapse
Affiliation(s)
- Yang Zhi
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Zhang Chuanjiang
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Yang Xinfang
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Dong Mengyi
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Wang Zhenlei
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Yan Fenfen
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Wu Cuiyun
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Wang Jiurui
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Liu Mengjun
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Lin Minjuan
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| |
Collapse
|
23
|
He A, Ma Z, Li Y, Huang C, Yong JWH, Huang J. Spatiotemporal, physiological and transcriptomic dynamics of wild jujube seedlings under saline conditions. TREE PHYSIOLOGY 2023; 43:832-850. [PMID: 36617163 DOI: 10.1093/treephys/tpad001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 05/13/2023]
Abstract
Soil salinity is a major constraint limiting jujube production in China. Wild jujube (Ziziphus jujuba var. spinosa (Bunge) Hu ex H. F. Chow) is widely used as the rootstock of jujube (Z. jujuba) to overcome the saline conditions. To understand the adaptive mechanism in wild jujube under saline conditions, we combined spatiotemporal and physiological assessments with transcriptomic analysis on wild jujube seedlings undergoing various salt treatments. These salt treatments showed dose and duration effects on biomass, photosynthesis, (K+) and (Na+) accumulation. Salt treatments induced higher levels of salicylic acid in roots and leaves, whereas foliar abscisic acid was also elevated after 8 days. The number of differential expression genes increased with higher doses and also longer exposure of NaCl treatments, with concomitant changes in the enriched Gene Ontology terms that were indicative of altered physiological activities. Gene co-expression network analysis identified the core gene sets associated with salt-induced changes in leaves, stems and roots, respectively. The nitrogen transporters, potassium transporters and a few transcription factors belonging to WRKY/MYB/bHLH families were clustered as the hub genes responding to salt treatments, which were related to elevated nitrogen and K+/Na+. Ectopic overexpression of two WRKY transcription factor genes (ZjWRKY6 and ZjWRKY65) conferred stronger salt-tolerance in Arabidopsis thaliana transformants by enhancing the activities of antioxidant enzymes, decreasing malondialdehyde accumulation and maintaining K+/Na+ homeostasis. This study provided evidence about the spatiotemporal, physiological and transcriptomic dynamics of wild jujube during salt stress and identified potential genes for further research to improve salt tolerance in jujube.
Collapse
Affiliation(s)
- Aobing He
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alaer 843300, China
| | - Zhibo Ma
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Yunfei Li
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Chen Huang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Jian Huang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alaer 843300, China
| |
Collapse
|
24
|
Ji Q, Wang R, Chen K, Xie Z, Li S, Wang D, Zhang A, Xu Y, Li S, Cui J, Liu S, Zhou J, Wang L. Comparative transcriptome profiling analysis provides insight into the mechanisms for sugar change in Chinese jujube (Ziziphus jujuba Mill.) under rain-proof cultivation. THE PLANT GENOME 2023:e20341. [PMID: 37144674 DOI: 10.1002/tpg2.20341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is a globally popular and economically important fruit that is rich in bioactive compounds with strong anti-cancer effects. Rain-proof cultivation is widely used to cultivate Chinese jujube, as it helps avoid rainfall damage during fruit harvest. Although the sugar content of jujube fruits differs between rain-proof and open-field cultivation, the underlying molecular mechanisms are unknown. Here, we analyzed the levels of sugar content, sugar accumulation pattern, and transcriptome profiles of jujube fruits at five developmental stages grown under rain-proof and open-field cultivation modes. The sugar content of jujube fruits was significantly higher under rain-proof cultivation than under open-field cultivation, although the sugar composition and sugar accumulation patterns were comparable. Comparative analysis of transcriptomic profiles showed that rain-proof cultivation enhanced the intrinsic metabolic activity of fruit development. Gene expression and correlation analyses suggested that ZjSPS, ZjSS, ZjHXK, and ZjINV regulate the development-related changes in sugar content in jujube fruits grown under rain-proof cultivation. Temperature, humidity, and moisture conditions were key climatic factors affecting sugar accumulation. Our results provide insights into the molecular mechanisms regulating sugar content and sugar accumulation in Chinese jujube fruits grown under rain-proof cultivation, and we provide genetic resources for studying the development mechanism of Chinese jujube fruit.
Collapse
Affiliation(s)
- Qing Ji
- Puer University, Puer, Yunnan, China
| | | | - Kai Chen
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | | | | | - Dawei Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ao Zhang
- Puer University, Puer, Yunnan, China
| | - Yumei Xu
- Puer University, Puer, Yunnan, China
| | - Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Junjun Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Jun Zhou
- College of Life Science and Engineering, North Minzu University, Yinchuan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
25
|
Lin Q, Chen J, Liu X, Wang B, Zhao Y, Liao L, Allan AC, Sun C, Duan Y, Li X, Grierson D, Verdonk JC, Chen K, Han Y, Bi J. A metabolic perspective of selection for fruit quality related to apple domestication and improvement. Genome Biol 2023; 24:95. [PMID: 37101232 PMCID: PMC10131461 DOI: 10.1186/s13059-023-02945-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Apple is an economically important fruit crop. Changes in metabolism accompanying human-guided evolution can be revealed using a multiomics approach. We perform genome-wide metabolic analysis of apple fruits collected from 292 wild and cultivated accessions representing various consumption types. RESULTS We find decreased amounts of certain metabolites, including tannins, organic acids, phenolic acids, and flavonoids as the wild accessions transition to cultivated apples, while lysolipids increase in the "Golden Delicious" to "Ralls Janet" pedigree, suggesting better storage. We identify a total of 222,877 significant single-nucleotide polymorphisms that are associated with 2205 apple metabolites. Investigation of a region from 2.84 to 5.01 Mb on chromosome 16 containing co-mapping regions for tannins, organic acids, phenolic acids, and flavonoids indicates the importance of these metabolites for fruit quality and nutrition during breeding. The tannin and acidity-related genes Myb9-like and PH4 are mapped closely to fruit weight locus fw1 from 3.41 to 3.76 Mb on chromosome 15, a region under selection during domestication. Lysophosphatidylethanolamine (LPE) 18:1, which is suppressed by fatty acid desaturase-2 (FAD2), is positively correlated to fruit firmness. We find the fruit weight is negatively correlated with salicylic acid and abscisic acid levels. Further functional assays demonstrate regulation of these hormone levels by NAC-like activated by Apetala3/Pistillata (NAP) and ATP binding cassette G25 (ABCG25), respectively. CONCLUSIONS This study provides a metabolic perspective for selection on fruit quality during domestication and improvement, which is a valuable resource for investigating mechanisms controlling apple metabolite content and quality.
Collapse
Affiliation(s)
- Qiong Lin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, 6708 PD The Netherlands
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Jing Chen
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuan Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Bin Wang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070 China
| | - Yaoyao Zhao
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liao Liao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Chongde Sun
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Yuquan Duan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuan Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
- Plant and Science Crop Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Julian C. Verdonk
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, 6708 PD The Netherlands
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Yuepeng Han
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
26
|
Liu N, Zhao H, Hou L, Zhang C, Bo W, Pang X, Li Y. HPLC-MS/MS-based and transcriptome analysis reveal the effects of ABA and MeJA on jujube (Ziziphus jujuba Mill.) cracking. Food Chem 2023; 421:136155. [PMID: 37126870 DOI: 10.1016/j.foodchem.2023.136155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Fruit cracking is a physiological disease that occurs during the development of jujube, abscisic acid (ABA) and jasmonic acid (JA) mainly regulate the cell wall metabolic pathway and induce fruit cracking. Here, we used high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to detect phytohormone-related metabolites at different developmental stages in cracking-susceptible (CS-15) and cracking-resistant (CR-04) individuals of full-sibling hybrid offspring. The fruit of 'Pingshunbenzao' jujube was treated with ABA and MeJA at the white-ripening stage, and the 48-h fruit cracking index was significantly increased compared to that of CK (water). Furthermore, RNA-seq of semi-red stage fruits identified several differentially expressed genes, related to the cell wall, such as SBT1.7 (Contig21.0.484), EXPA (Contig12.0.7) and QRT3 (newGene_1935), and transcription factors (TFs). These results reveal the relationship between the levels of different hormones and fruit cracking, identify genes associated with fruit cracking, and provide new insights to solve the problem of fruit cracking through hormonal regulation.
Collapse
Affiliation(s)
- Ningwei Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing, Forestry University, Beijing 100083, China.
| | - Hanqing Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing, Forestry University, Beijing 100083, China.
| | - Lu Hou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing, Forestry University, Beijing 100083, China.
| | - Chenxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing, Forestry University, Beijing 100083, China.
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing, Forestry University, Beijing 100083, China.
| | - Xiaoming Pang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing, Forestry University, Beijing 100083, China.
| | - Yingyue Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing, Forestry University, Beijing 100083, China.
| |
Collapse
|
27
|
Wen C, Zhang Z, Shi Q, Niu R, Duan X, Shen B, Li X. Transcription Factors ZjMYB39 and ZjMYB4 Regulate Farnesyl Diphosphate Synthase- and Squalene Synthase-Mediated Triterpenoid Biosynthesis in Jujube. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4599-4614. [PMID: 36880571 DOI: 10.1021/acs.jafc.2c08679] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Jujube (Ziziphus jujuba Mill.) is rich in valuable bioactive triterpenoids. However, the regulatory mechanism underlying triterpenoid biosynthesis in jujube remains poorly studied. Here, we characterized the triterpenoid content in wild jujube and cultivated jujube. The triterpenoid content was higher in wild jujube than in cultivated jujube, triterpenoids were most abundant in young leaves, buds, and later stages of development. The transcriptome analysis and correlation analysis showed that differentially expressed genes (DEGs) were enriched in the terpenoid synthesis pathways, and triterpenoids content was strongly correlated with farnesyl diphosphate synthase (ZjFPS), squalene synthase (ZjSQS), and transcription factors ZjMYB39 and ZjMYB4 expression. Gene overexpression and silencing analysis indicated that ZjFPS and ZjSQS were key genes in triterpenoid biosynthesis and transcription factors ZjMYB39 and ZjMYB4 regulated triterpenoid biosynthesis. Subcellular localization experiments showed that ZjFPS and ZjSQS were localized to the nucleus and endoplasmic reticulum and ZjMYB39 and ZjMYB4 were localized to the nucleus. Yeast one-hybrid, glucuronidase activity, and dual-luciferase activity assays suggested that ZjMYB39 and ZjMYB4 regulate triterpenoid biosynthesis by directly binding and activating the promoters of ZjFPS and ZjSQS. These findings provide insights into the underlying regulatory network of triterpenoids metabolism in jujube and lay theoretical and practical foundation for molecular breeding.
Collapse
Affiliation(s)
- Cuiping Wen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Zhong Zhang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Runzi Niu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xiaoshan Duan
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Bingqi Shen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| |
Collapse
|
28
|
Wang L, Wang L, Ye T, Zhao J, Wang L, Wei H, Liu P, Liu M. Autotetraploidization Alters Morphology, Photosynthesis, Cytological Characteristics and Fruit Quality in Sour Jujube ( Ziziphus acidojujuba Cheng et Liu). PLANTS (BASEL, SWITZERLAND) 2023; 12:1106. [PMID: 36903965 PMCID: PMC10004746 DOI: 10.3390/plants12051106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Artificially induced polyploidization is one of the most effective techniques for improving the biological properties and creating new cultivars of fruit trees. Up to now, systematic research on the autotetraploid of sour jujube (Ziziphus acidojujuba Cheng et Liu) has not been reported. 'Zhuguang' is the first released autotetraploid sour jujube induced with colchicine. The objective of this study was to compare the differences in the morphological, cytological characteristics, and fruit quality between diploid and autotetraploid. Compared with the original diploid, 'Zhuguang' showed dwarf phenotypes and decreased tree vigor. The sizes of the flowers, pollen, stomata, and leaves of 'Zhuguang' were larger. Perceptible darker green leaves were observed in 'Zhuguang' trees owing to increased chlorophyll contents, which led to higher photosynthesis efficiency and bigger fruit. The pollen activities and the contents of ascorbic acid, titratable acid, and soluble sugar in the autotetraploid were lower than those in diploids. However, the cyclic adenosine monophosphate content in autotetraploid fruit was significantly higher. The sugar/acid ratio of autotetraploid fruit was higher than that of diploid fruit, which made the autotetraploid fruit taste different and better. The results indicated that the autotetraploid we generated in sour jujube could greatly meet the goals of our multi-objective optimized breeding strategies for improving sour jujube, which includes tree dwarfing, increased photosynthesis efficiency, and better nutrient values and flavors as well as more bioactive compounds. Needless to say, the autotetraploid can also serve as material for generating valuable triploids or other types of polyploids and are also instrumental in studying the evolution of both sour jujube and Chinese jujube (Ziziphus jujuba Mill.).
Collapse
Affiliation(s)
- Lihu Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Lixin Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China
| | - Tingting Ye
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China
- Research Institute of Jujube Industry Technology of Hebei, Baoding 071001, China
| | - Jin Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China
- Research Institute of Jujube Industry Technology of Hebei, Baoding 071001, China
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Ping Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China
- Research Institute of Jujube Industry Technology of Hebei, Baoding 071001, China
| |
Collapse
|
29
|
Luo Z, Zhang Y, Tian C, Wang L, Zhao X, Liu Z, Wang L, Wang L, Zhao J, Wang J, Liu M. Genome-wide screening of the RNase T2 gene family and functional analyses in jujube (Ziziphus jujuba Mill.). BMC Genomics 2023; 24:80. [PMID: 36803656 PMCID: PMC9940439 DOI: 10.1186/s12864-023-09165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Ribonuclease (RNase T2) plays crucial roles in plant evolution and breeding. However, there have been few studies on the RNase T2 gene family in Ziziphus jujuba Mill., one of important dried fruit tree species. Recently, the released sequences of the reference genome of jujube provide a good chance to perform genome-wide identification and characterization of ZjRNase gene family in the jujube. RESULTS In this study, we identified four members of RNase T2 in jujube distributed on three chromosomes and unassembled chromosomes. They all contained two conserved sites (CASI and CASII). Analysis of the phylogenetic relationships revealed that the RNase T2 genes in jujube could be divided into two groups: ZjRNase1 and ZjRNase2 belonged to class I, while ZjRNase3 and ZjRNase4 belonged to class II. Only ZjRNase1 and ZjRNase2 expression were shown by the jujube fruit transcriptome analysis. So ZjRNase1 and ZjRNase2 were selected functional verification by overexpression transformation of Arabidopsis. The overexpression of these two genes led to an approximately 50% reduction in seed number, which deserve further attention. Moreover, the leaves of the ZjRNase1 overexpression transgenic lines were curled and twisted. Overexpression of ZjRNase2 resulted in shortened and crisp siliques and the production of trichomes, and no seeds were produced. CONCLUSION In summary, these findings will provide new insights into the molecular mechanisms of low number of hybrid seeds in jujube and a reference for the future molecular breeding of jujube.
Collapse
Affiliation(s)
- Zhi Luo
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Yu Zhang
- grid.274504.00000 0001 2291 4530College of Forestry, Hebei Agricultural University, Baoding, 071001 China
| | - Chunjiao Tian
- grid.274504.00000 0001 2291 4530College of Forestry, Hebei Agricultural University, Baoding, 071001 China
| | - Lihu Wang
- grid.412028.d0000 0004 1757 5708School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038 China
| | - Xuan Zhao
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Zhiguo Liu
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Lili Wang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Lixin Wang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China.
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China. .,Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
30
|
Ahmad R, Manzoor M, Muhammad HMD, Altaf MA, Shakoor A. Exogenous Melatonin Spray Enhances Salinity Tolerance in Zizyphus Germplasm: A Brief Theory. Life (Basel) 2023; 13:life13020493. [PMID: 36836849 PMCID: PMC9958626 DOI: 10.3390/life13020493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Fruit orchards are frequently irrigated with brackish water. Irrigation with poor quality water is also a major cause of salt accumulation in soil. An excess of salts results in stunted growth, poor yield, inferior quality and low nutritional properties. Melatonin is a low molecular weight protein that shows multifunctional, regulatory and pleiotropic behavior in the plant kingdom. Recently, its discovery brought a great revolution in sustainable fruit production under salinity-induced environments. Melatonin contributed to enhanced tolerance in Zizyphus fruit species by improving the plant defense system's potential to cope with the adverse effects of salinity. The supplemental application of melatonin has improved the generation of antioxidant assays and osmolytes involved in the scavenging of toxic ROS. The tolerance level of the germplasm is chiefly based on the activation of the defense system against the adverse effects of salinity. The current study explored the contribution of melatonin against salinity stress and provides information regarding which biochemical mechanism can be effective and utilized for the development of salt-tolerant germplasm in Zizyphus.
Collapse
Affiliation(s)
- Riaz Ahmad
- Department of Horticulture, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Meryam Manzoor
- Department of Horticulture, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | | | - Awais Shakoor
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co., Y35 Y521 Wexford, Ireland
| |
Collapse
|
31
|
Du S, Hu X, Guo Y, Wang S, Yang X, Wu Z, Huang Y. A comparative plastomic analysis of Ziziphus jujuba var. spinosa (Bunge) Hu ex H. F. Chow and implication of the origin of Chinese jujube. AOB PLANTS 2023; 15:plad006. [PMID: 37025103 PMCID: PMC10071050 DOI: 10.1093/aobpla/plad006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Comparative plastomics can be used to explicitly dissect various types of plastome variation. In the present study, the plastome variation pattern of Ziziphus jujuba var. spinosa (also called sour jujube) and its phylogenomic relationship with Chinese jujube were investigated. Plastomes of 21 sour jujube individuals were sequenced and assembled. The length of the sour jujube plastomes ranged between 159399 and 161279 bp. The plastomes exhibited collinearity of structure, gene order and content. The most divergent regions were located in the intergenic spacers, such as trnR-UCU-atpA and psbZ-trnG-UCC. Sliding window analysis demonstrated that the sequence variation among the sour jujube plastomes was relatively low. Sixty-two to 76 SSRs with 4 motif types were identified in the sour jujube plastomes with a predominant motif type of A/T. Three protein-coding genes exhibited higher nonsynonymous/synonymous substitution ratios, indicating that these genes may undergo positive selection. A total of 80 SNPs were detected and 1266 potential RNA editing sites of 23 protein-coding genes were predicted. In the phylogenomic tree constructed, sour jujube has a sister relationship to Chinese jujube, which indicates that Chinese jujube may have originated or been domesticated from sour jujube. The present study explicitly investigated the individual-level plastome variation of sour jujube and provides potential valuable molecular markers for future genetic-related study of this lineage.
Collapse
Affiliation(s)
- Shuhui Du
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoyan Hu
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yuanting Guo
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | | | - Zhenzhen Wu
- Taian Dushihuaxiang Agricultural Technology Co., Ltd, Taian, Shandong, China
| | - Yuyin Huang
- Shandong Huinongtianxia Science and Technology Information Consulting Co., Ltd, Taian, Shandong, China
| |
Collapse
|
32
|
Yang C, Zhao X, Luo Z, Wang L, Liu M. Genome-wide identification and expression profile analysis of SWEET genes in Chinese jujube. PeerJ 2023; 11:e14704. [PMID: 36684667 PMCID: PMC9854374 DOI: 10.7717/peerj.14704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
The novel sugar transporter known as SWEET (sugars will eventually be exported transporter) is involved in the transport and distribution of photosynthesis products in plants. The SWEET protein is also involved in pollen development, nectar secretion, stress responses, and other important physiological processes. Although SWEET genes have been characterized and identified in model plants, such as Arabidopsis and rice, little is known about them in jujube. In this study, the molecular characteristics of the SWEET gene family in the Chinese jujube (Ziziphus jujuba Mill.) and their expression patterns in different organs, at different fruit developmental stages, and under abiotic stress were analyzed. A total of 19 ZjSWEET genes were identified in jujube through a genome-wide study; these were classified into four sub-groups based on their phylogenic relationships. The gene structure analysis of ZjSWEET genes showed that all the members had introns. The expression patterns of different ZjSWEET genes varied significantly in different organs (root, shoot, leave, flower, fruit), which indicated that ZjSWEETs play different roles in multiple organs. According to the expression profiles by quantitative real-time PCR analysis during fruit development, the expression levels of the two genes (ZjSWEET11, ZjSWEET18) gradually increased with the development of the fruit and reached a high level at the full-red fruit stage. A prediction of the cis-acting regulatory elements indicated that the promoter sequences of ZjSWEETs contained nine types of phytohormone-responsive cis-regulatory elements and six environmental factors. In addition, the expression profiles by quantitative real-time PCR analysis showed that some of the ZjSWEETs responded to environmental changes; ZjSWEET2 was highly induced in response to cold stress, and ZjSWEET8 was significantly up-regulated in response to alkali and salt stresses. This study showed that the functions of the ZjSWEET family members of jujube are different, and some may play an important role in sugar accumulation and abiotic stress in jujube.
Collapse
Affiliation(s)
- Chong Yang
- Hebei Agricultural University, College of Horticulture, Baoding, Hebei, China,Hebei Agricultural University, Research Center of Chinese Jujube, Baoding, Hebei, China,Hebei Agricultural University, National Engineering Research Center for Agriculture in Northern Mountaninous Areas, Baoding, Hebei, China
| | - Xuan Zhao
- Hebei Agricultural University, College of Horticulture, Baoding, Hebei, China,Hebei Agricultural University, Research Center of Chinese Jujube, Baoding, Hebei, China
| | - Zhi Luo
- Hebei Agricultural University, College of Horticulture, Baoding, Hebei, China,Hebei Agricultural University, Research Center of Chinese Jujube, Baoding, Hebei, China
| | - Lihu Wang
- Hebei University of Engineering, School of Landscape and Ecological Engineering, Handan, Hebei, China
| | - Mengjun Liu
- Hebei Agricultural University, College of Horticulture, Baoding, Hebei, China,Hebei Agricultural University, Research Center of Chinese Jujube, Baoding, Hebei, China
| |
Collapse
|
33
|
Du J, Shi Q, Liu Y, Shi G, Li X, Li X. Integrated microRNA and transcriptome profiling reveals the regulatory network of embryo abortion in jujube. TREE PHYSIOLOGY 2023; 43:142-153. [PMID: 35972818 PMCID: PMC9833866 DOI: 10.1093/treephys/tpac098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Hybridization is an important approach to the production of new varieties with exceptional traits. Although the kernel rate of wild jujube (Ziziphus jujuba Mill. var. spinosa Hu.) is generally high, that of cultivated jujube (Z. jujuba Mill.) is low, greatly hampering the jujube breeding process. However, the mechanism by which this trait changed during jujube domestication remains unclear. Here, we explored the potential regulatory network that governs jujube embryo abortion using correlation analysis of population traits, artificial pollination, sugar content measurements and multi-omics analysis. The results showed that embryo abortion was an important reason for the low kernel rate of cultivated jujube, and kernel rate was negatively correlated with edible rate. Twenty-one days after pollination was a critical period for embryo abortion. At this time, the sugar content of cultivated 'Junzao' kernels decreased significantly compared with that of the pulp, but sugar content remained relatively stable in kernels of wild 'Suanzao'. A total of 1142 differentially expressed genes targeted by 93 microRNAs (miRNAs) were identified by transcriptome, miRNA and degradome sequencing, and may be involved in the regulation of embryo abortion during kernel development. Among them, DELLA protein, TCP14 and bHLH93 transcription factors have been shown to participate in the regulation of embryonic development. Our findings suggest that carbohydrate flow between different tissues of cultivated jujube exhibits a bias toward the pulp at 21 days after pollination, thereby restricting the process of kernel development. This information enhances our understanding of the embryo abortion process and reveals miRNA-target gene pairs that may be useful for molecular-assisted breeding.
Collapse
Affiliation(s)
- Jiangtao Du
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Yu Liu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Guozhao Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xi Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
34
|
Zhang C, Geng Y, Liu H, Wu M, Bi J, Wang Z, Dong X, Li X. Low-acidity ALUMINUM-DEPENDENT MALATE TRANSPORTER4 genotype determines malate content in cultivated jujube. PLANT PHYSIOLOGY 2023; 191:414-427. [PMID: 36271866 PMCID: PMC9806563 DOI: 10.1093/plphys/kiac491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Jujube (Ziziphus jujuba Mill.), the most economically important fruit tree in Rhamnaceae, was domesticated from sour jujube (Z. jujuba Mill. var. spinosa (Bunge) Hu ex H.F.Chow.). During domestication, fruit sweetness increased and acidity decreased. Reduction in organic acid content is crucial for the increase in sweetness of jujube fruit. In this study, the determination of malate content among 46 sour jujube and 35 cultivated jujube accessions revealed that malate content varied widely in sour jujube (0.90-13.31 mg g-1) but to a lesser extent in cultivated jujube (0.33-2.81 mg g-1). Transcriptome sequencing analysis showed that the expression level of Aluminum-Dependent Malate Transporter 4 (ZjALMT4) was substantially higher in sour jujube than in jujube. Correlation analysis of mRNA abundance and fruit malate content and transient gene overexpression showed that ZjALMT4 participates in malate accumulation. Further sequencing analyses revealed that three genotypes of the W-box in the promoter of ZjALMT4 in sour jujube associated with malate content were detected, and the genotype associated with low malate content was fixed in jujube. Yeast one-hybrid screening showed that ZjWRKY7 binds to the W-box region of the high-acidity genotype in sour jujube, whereas the binding ability was weakened in jujube. Transient dual-luciferase and overexpression analyses showed that ZjWRKY7 directly binds to the promoter of ZjALMT4, activating its transcription, and thereby promoting malate accumulation. These findings provide insights into the mechanism by which ZjALMT4 modulates malate accumulation in sour jujube and jujube. The results are of theoretical and practical importance for the exploitation and domestication of germplasm resources.
Collapse
Affiliation(s)
- Chunmei Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanqiu Geng
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxiao Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mengjia Wu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jingxin Bi
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | | | | | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
35
|
Wang R, Wu B, Jian J, Tang Y, Zhang T, Song Z, Zhang W, Qiong L. How to survive in the world's third poplar: Insights from the genome of the highest altitude woody plant, Hippophae tibetana (Elaeagnaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1051587. [PMID: 36589082 PMCID: PMC9797102 DOI: 10.3389/fpls.2022.1051587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Hippophae tibetana (Tibetan sea-buckthorn) is one of the highest distributed woody plants in the world (3,000-5,200 meters a.s.l.). It is characterized by adaptation to extreme environment and important economic values. Here, we combined PacBio Hifi platform and Hi-C technology to assemble a 1,452.75 Mb genome encoding 33,367 genes with a Contig N50 of 74.31 Mb, and inferred its sexual chromosome. Two Hippophae-specific whole-genome duplication events (18.7-21.2 million years ago, Ma; 28.6-32.4 Ma) and long terminal repeats retroelements (LTR-RTs) amplifications were detected. Comparing with related species at lower altitude, Ziziphus jujuba (<1, 700 meters a.s.l.), H. tibetana had some significantly rapid evolving genes involved in adaptation to high altitude habitats. However, comparing with Hippophae rhamnoides (<3, 700 meters a.s.l.), no rapid evolving genes were found except microtubule and microtubule-based process genes, H. tibetana has a larger genome, with extra 2, 503 genes (7.5%) and extra 680.46 Mb transposable elements (TEs) (46.84%). These results suggest that the changes in the copy number and regulatory pattern of genes play a more important role for H. tibetana adapting to more extreme and variable environments at higher altitude by more TEs and more genes increasing genome variability and expression plasticity. This suggestion was supported by two findings: nitrogen-fixing genes of H. tibetana having more copies, and intact TEs being significantly closer genes than fragmentary TEs. This study provided new insights into the evolution of alpine plants.
Collapse
Affiliation(s)
- Ruoqiu Wang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | | | - Yiwei Tang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ticao Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiping Song
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenju Zhang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - La Qiong
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, China
| |
Collapse
|
36
|
Luo X, Zhou H, Cao D, Yan F, Chen P, Wang J, Woeste K, Chen X, Fei Z, An H, Malvolti M, Ma K, Liu C, Ebrahimi A, Qiao C, Ye H, Li M, Lu Z, Xu J, Cao S, Zhao P. Domestication and selection footprints in Persian walnuts (Juglans regia). PLoS Genet 2022; 18:e1010513. [PMID: 36477175 PMCID: PMC9728896 DOI: 10.1371/journal.pgen.1010513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Walnut (Juglans) species are economically important hardwood trees cultivated worldwide for both edible nuts and high-quality wood. Broad-scale assessments of species diversity, evolutionary history, and domestication are needed to improve walnut breeding. In this study, we sequenced 309 walnut accessions from around the world, including 55 Juglans relatives, 98 wild Persian walnuts (J. regia), 70 J. regia landraces, and 86 J. regia cultivars. The phylogenetic tree indicated that J. regia samples (section Dioscaryon) were monophyletic within Juglans. The core areas of genetic diversity of J. regia germplasm were southwestern China and southern Asia near the Qinghai-Tibet Plateau and the Himalayas, and the uplift of the Himalayas was speculated to be the main factor leading to the current population dynamics of Persian walnut. The pattern of genomic variation in terms of nucleotide diversity, linkage disequilibrium, single nucleotide polymorphisms, and insertions/deletions revealed the domestication and selection footprints in Persian walnut. Selective sweep analysis, GWAS, and expression analysis further identified two transcription factors, JrbHLH and JrMYB6, that influence the thickness of the nut diaphragm as loci under selection during domestication. Our results elucidate the domestication and selection footprints in Persian walnuts and provide a valuable resource for the genomics-assisted breeding of this important crop.
Collapse
Affiliation(s)
- Xiang Luo
- College of Agriculture, Henan University, Kaifeng, Henan, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huijuan Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Xi’an Botanical Garden of Shaanxi Province, Xi’an, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Da Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Pengpeng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Jiangtao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Xin Chen
- Shandong Institute of Pomology, National Germplasm Repository of Walnut and Chestnut, Tai’an, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, US Department of Agriculture (USDA) Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, Missouri, United States of America
| | - Maria Malvolti
- Research Institute on Terrestrial Ecosystems, National Research Council, Porano, Terni, Italy
| | - Kai Ma
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chaobin Liu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Aziz Ebrahimi
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiabao Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- * E-mail: (JX); (SC); (PZ)
| | - Shangying Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (JX); (SC); (PZ)
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- * E-mail: (JX); (SC); (PZ)
| |
Collapse
|
37
|
Tree age and maturity stage affect reducing sugars, organic acids and minerals in Ziziphus jujuba Mill. cv. Huping fruits. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Shen B, Zhang Z, Shi Q, Du J, Xue Q, Li X. Active compound analysis of Ziziphus jujuba cv. Jinsixiaozao in different developmental stages using metabolomic and transcriptomic approaches. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:14-23. [PMID: 36030619 DOI: 10.1016/j.plaphy.2022.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Jujube (Ziziphus jujuba Mill.) is a popular fruit with health benefits ascribed to its various metabolites. These metabolites determine the flavors and bioactivities of the fruit, as well as their desirability. However, the dynamics of the metabolite composition and the underlying gene expression that modulate the overall flavor and accumulation of active ingredients during fruit development remain largely unknown. Therefore, we conducted an integrated metabolomic and transcriptomic investigation covering various developmental stages in the jujube cultivar Z. jujuba cv. Jinsixiaozao, which is famous for its nutritional and bioactive properties. A total of 407 metabolites were detected by non-targeted metabolomics. Metabolite accumulation during different jujube developmental stages was examined. Most nucleotides and amino acids and their derivatives accumulated during development, with cAMP increasing notably during ripening. Triterpenes gradually accumulated and were maintained at high concentrations during ripening. Many flavonoids were maintained at relatively high levels in early development, but then rapidly decreased later. Transcriptomic and metabolomic analyses revealed that chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS), and dihydroflavonol 4-reductase (DFR) were mainly responsible for regulating the accumulation of flavonoids. Therefore, the extensive downregulation of these genes was probably responsible for the decreases in flavonoid content during fruit ripening. This study provide an overview of changes of active components in 'Jinsixiaozao' during development and ripening. These findings enhance our understanding of flavor formation and will facilitate jujube breeding for improving both nutrition and function.
Collapse
Affiliation(s)
- Bingqi Shen
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhong Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Qianqian Shi
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiangtao Du
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingtun Xue
- Forestry WorkStation of Weinan City, Weinan, 714000, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, 712100, China; Research Center for Jujube Engineering and Technology National Forestry and Grassland Administration, Yangling, 712100, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
39
|
Yan F, Luo Y, Bao J, Pan Y, Wang J, Wu C, Liu M. Construction of a highly saturated genetic map and identification of quantitative trait loci for leaf traits in jujube. FRONTIERS IN PLANT SCIENCE 2022; 13:1001850. [PMID: 36275518 PMCID: PMC9582850 DOI: 10.3389/fpls.2022.1001850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.), a member of the genus Ziziphus, which comes under the family Rhamnaceae, is the most important species in terms of its economic, ecological, and social benefits. To dissect the loci associated with important phenotypical traits and analyze their genetic and genomic information in jujube, a whole-genome resequencing (WGR) based highly saturated genetic map was constructed using an F1 hybrid population of 140 progeny individuals derived from the cross of 'JMS2' × 'Jiaocheng 5'. The average sequencing depth of the parents was 14.09× and that of the progeny was 2.62×, and the average comparison efficiency between the sample and the reference genome was 97.09%. Three sets of genetic maps were constructed for a female parent, a male parent, and integrated. A total of 8,684 markers, including 8,158 SNP and 526 InDel markers, were evenly distributed across all 12 linkage groups (LGs) in the integrated map, spanning 1,713.22 cM with an average marker interval of 0.2 cM. In terms of marker number and density, this is the most saturated genetic map of jujube to date, nearly doubling that of the best ones previously reported. Based on this genetic map and phenotype data from 2019 to 2021, 31 leaf trait QTLs were identified in the linkage groups (LG1, 15; LG3, 1; LG5, 8; LG7, 4; LG8, 1, and LG11, 2), including 17 major QTLs. There were 4, 8, 14, and 5 QTLs that contributed to leaf length, leaf width, leaf shape index, and leaf area, respectively. Six QTLs clusters were detected on LG1 (8.05 cM-9.52 cM; 13.12 cM-13.99 cM; 123.84 cM-126.09 cM), LG5 (50.58 cM-50.86 cM; 80.10 cM-81.76 cM) and LG11 (35.98 cM-48.62 cM). Eight candidate genes were identified within the QTLs cluster regions. Annotation information showed that 4 genes (LOC107418196, LOC107418241, LOC107417968, and LOC112492570) in these QTLs are related to cell division and cell wall integrity. This research will provide a valuable tool for further QTL analysis, candidate gene identification, map-based gene cloning, comparative mapping, and marker-assisted selection (MAS) in jujube.
Collapse
Affiliation(s)
- Fenfen Yan
- College of Horticulture and Forestry, Tarim University/The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, Alar, China
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Yujia Luo
- College of Horticulture and Forestry, Tarim University/The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, Alar, China
| | - Jingkai Bao
- College of Horticulture and Forestry, Tarim University/The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, Alar, China
| | - Yiling Pan
- College of Horticulture and Forestry, Tarim University/The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, Alar, China
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Cuiyun Wu
- College of Horticulture and Forestry, Tarim University/The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, Alar, China
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Mengjun Liu
- College of Horticulture and Forestry, Tarim University/The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, Alar, China
- College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
40
|
Wang W, Zhang Z, Li X. Identification and expression analysis of BURP domain-containing genes in jujube and their involvement in low temperature and drought response. BMC Genomics 2022; 23:692. [PMID: 36203136 PMCID: PMC9541082 DOI: 10.1186/s12864-022-08907-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background Plant-specific BURP domain-containing genes are involved in plant development and stress responses. However, the role of BURP family in jujube (Ziziphus jujuba Mill.) has not been investigated. Results In this study, 17 BURP genes belonging to four subfamilies were identified in jujube based on homology analysis, gene structures, and conserved motif confirmation. Gene duplication analysis indicated both tandem duplication and segmental duplication had contributed to ZjBURP expansion. The ZjBURPs were extensively expressed in flowers, young fruits, and jujube leaves. Transcriptomic data and qRT-PCR analysis further revealed that ZjBURPs also significantly influence fruit development, and most genes could be induced by low temperature, salinity, and drought stresses. Notably, several BURP genes significantly altered expression in response to low temperature (ZjPG1) and drought stresses (ZjBNM7, ZjBNM8, and ZjBNM9). Conclusions These results provided insights into the possible roles of ZjBURPs in jujube development and stress response. These findings would help selecting candidate ZjBURP genes for cold- and drought-tolerant jujube breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08907-9.
Collapse
Affiliation(s)
- Wenzhu Wang
- College of Forestry, Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhong Zhang
- College of Forestry, Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Xingang Li
- College of Forestry, Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
41
|
Chen DJ, Landis JB, Wang HX, Sun QH, Wang Q, Wang HF. Plastome structure, phylogenomic analyses and molecular dating of Arecaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:960588. [PMID: 36237503 PMCID: PMC9552784 DOI: 10.3389/fpls.2022.960588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/08/2022] [Indexed: 05/29/2023]
Abstract
Arecaceae is a species-rich clade of Arecales, while also being regarded as a morphologically diverse angiosperm family with numerous species having significant economic, medicinal, and ornamental value. Although in-depth studies focused on the chloroplast structure of Arecaceae, as well as inferring phylogenetic relationships using gene fragments, have been reported in recent years, a comprehensive analysis of the chloroplast structure of Arecaceae is still needed. Here we perform a comprehensive analysis of the structural features of the chloroplast genome of Arecaceae, compare the variability of gene sequences, infer phylogenetic relationships, estimate species divergence times, and reconstruct ancestral morphological traits. In this study, 74 chloroplast genomes of Arecaceae were obtained, covering five subfamilies. The results show that all chloroplast genomes possess a typical tetrad structure ranging in size between 153,806-160,122 bp, with a total of 130-137 genes, including 76-82 protein-coding genes, 29-32 tRNA genes, and 4 rRNA genes. Additionally, the total GC content was between 36.9-37.7%. Analysis of the SC/IR boundary indicated that the IR region underwent expansion or contraction. Phylogenetic relationships indicate that all five subfamilies in Arecaceae are monophyletic and that Ceroxyloideae and Arecoideae are sister groups (BS/PP = 100/1). The results of molecular dating indicate that the age of the crown group of Arecaceae is likely to be 96.60 [84.90-107.60] Ma, while the age of the stem group is 102.40 [93.44-111.17] Ma. Reconstruction of ancestral traits indicate that the ancestral characteristics of the family include monoecious plants, one seed, six stamens, and a smooth pericarp.
Collapse
Affiliation(s)
- Da-Juan Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, United States
| | - Hong-Xin Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Zhai Mingguo Academician Work Station, Sanya University, Sanya, China
| | - Qing-Hui Sun
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Qiao Wang
- Hainan Shengda Modern Agriculture Development Co., Ltd., Qionghai, China
| | - Hua-Feng Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, China
| |
Collapse
|
42
|
Lu D, Zhang L, Wu Y, Pan Q, Zhang Y, Liu P. An integrated metabolome and transcriptome approach reveals the fruit flavor and regulatory network during jujube fruit development. FRONTIERS IN PLANT SCIENCE 2022; 13:952698. [PMID: 36212371 PMCID: PMC9537746 DOI: 10.3389/fpls.2022.952698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The fruit flavor is a key economic value attribute of jujube. Here we compared metabolomes and transcriptomes of "Mazao" (ST) and "Ping'anhuluzao" (HK) with unique flavors during fruit development. We identified 437 differential metabolites, mainly sugars, acids, and lipids. Fructose, glucose, mannose and citric acid, and malic acid are the determinants of sugar and acid taste of jujube fruit. Based on the transcriptome, 16,245 differentially expressed genes (DEGs) were identified, which were involved in "glucosyltransferase activity," "lipid binding," and "anion transmembrane transporter activity" processes. Both transcriptome and metabolome showed that developmental stages 2 and 3 were important transition periods for jujube maturation. Based on WGCNA and gene-metabolite correlation analysis, modules, and transcription factors (ZjHAP3, ZjTCP14, and ZjMYB78) highly related to sugar and acid were identified. Our results provide new insights into the mechanism of sugar and acid accumulation in jujube fruit and provide clues for the development of jujube with a unique flavor.
Collapse
Affiliation(s)
- Dongye Lu
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yang Wu
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Qinghua Pan
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Yuping Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Ping Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| |
Collapse
|
43
|
Woods P, Price N, Matthews P, McKay JK. Genome-wide polymorphism and genic selection in feral and domesticated lineages of Cannabis sativa. G3 (BETHESDA, MD.) 2022; 13:jkac209. [PMID: 36018239 PMCID: PMC9911069 DOI: 10.1093/g3journal/jkac209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022]
Abstract
A comprehensive understanding of the degree to which genomic variation is maintained by selection versus drift and gene flow is lacking in many important species such as Cannabis sativa (C. sativa), one of the oldest known crops to be cultivated by humans worldwide. We generated whole genome resequencing data across diverse samples of feralized (escaped domesticated lineages) and domesticated lineages of C. sativa. We performed analyses to examine population structure, and genome wide scans for FST, balancing selection, and positive selection. Our analyses identified evidence for sub-population structure and further support the Asian origin hypothesis of this species. Feral plants sourced from the U.S. exhibited broad regions on chromosomes 4 and 10 with high F̄ST which may indicate chromosomal inversions maintained at high frequency in this sub-population. Both our balancing and positive selection analyses identified loci that may reflect differential selection for traits favored by natural selection and artificial selection in feral versus domesticated sub-populations. In the U.S. feral sub-population, we found six loci related to stress response under balancing selection and one gene involved in disease resistance under positive selection, suggesting local adaptation to new climates and biotic interactions. In the marijuana sub-population, we identified the gene SMALLER TRICHOMES WITH VARIABLE BRANCHES 2 to be under positive selection which suggests artificial selection for increased tetrahydrocannabinol yield. Overall, the data generated, and results obtained from our study help to form a better understanding of the evolutionary history in C. sativa.
Collapse
Affiliation(s)
- Patrick Woods
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicholas Price
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Paul Matthews
- Present address for Paul Matthews: Hopsteiner, Yakima, WA 98903, USA
| | - John K McKay
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
44
|
Lu D, Wu Y, Pan Q, Zhang Y, Qi Y, Bao W. Identification of key genes controlling L-ascorbic acid during Jujube ( Ziziphus jujuba Mill.) fruit development by integrating transcriptome and metabolome analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:950103. [PMID: 35991405 PMCID: PMC9386341 DOI: 10.3389/fpls.2022.950103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Chinese jujube (Ziziphus jujuba) is a vital economic tree native to China. Jujube fruit with abundant L-Ascorbic Acid (AsA) is an ideal material for studying the mechanism of AsA biosynthesis and metabolism. However, the key transcription factors regulating AsA anabolism in jujube have not been reported. Here, we used jujube variety "Mazao" as the experimental material, conducted an integrative analysis of transcriptome and metabolome to investigate changes in differential genes and metabolites, and find the key genes regulating AsA during jujube fruit growth. The results showed that AsA was mostly synthesized in the young stage and enlargement stage, ZjMDHAR gene takes an important part in the AsA recycling. Three gene networks/modules were highly correlated with AsA, among them, three genes were identified as candidates controlling AsA, including ZjERF17 (LOC107404975), ZjbZIP9 (LOC107406320), and ZjGBF4 (LOC107421670). These results provide new directions and insights for further study on the regulation mechanism of AsA in jujube.
Collapse
|
45
|
Nutrient composition and quality traits of dried jujube fruits in seven producing areas based on metabolomics analysis. Food Chem 2022; 385:132627. [DOI: 10.1016/j.foodchem.2022.132627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
46
|
Ma Z, Zhao X, He A, Cao Y, Han Q, Lu Y, Yong JWH, Huang J. Mycorrhizal symbiosis reprograms ion fluxes and fatty acid metabolism in wild jujube during salt stress. PLANT PHYSIOLOGY 2022; 189:2481-2499. [PMID: 35604107 PMCID: PMC9342988 DOI: 10.1093/plphys/kiac239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/30/2022] [Indexed: 05/25/2023]
Abstract
Chinese jujube (Ziziphus jujuba) is an important fruit tree in China, and soil salinity is the main constraint affecting jujube production. It is unclear how arbuscular mycorrhizal (AM) symbiosis supports jujube adaptation to salt stress. Herein, we performed comparative physiological, ion flux, fatty acid (FA) metabolomic, and transcriptomic analyses to examine the mechanism of AM jujube responding to salt stress. AM seedlings showed better performance during salt stress. AM symbiosis altered phytohormonal levels: indole-3-acetic acid and abscisic acid contents were significantly increased in AM roots and reduced by salt stress. Mycorrhizal colonization enhanced root H+ efflux and K+ influx, while inducing expression of plasma membrane-type ATPase 7 (ZjAHA7) and high-affinity K+ transporter 2 (ZjHAK2) in roots. High K+/Na+ homeostasis was maintained throughout salt exposure. FA content was elevated in AM leaves as well as roots, especially for palmitic acid, oleic acid, trans oleic acid, and linoleic acid, and similar effects were also observed in AM poplar (Populus. alba × Populus. glandulosa cv. 84K) and Medicago truncatula, indicating AM symbiosis elevating FA levels could be a conserved physiological effect. Gene co-expression network analyses uncovered a core gene set including 267 genes in roots associated with AM symbiosis and conserved transcriptional responses, for example, FA metabolism, phytohormone signal transduction, SNARE interaction in vesicular transport, and biotin metabolism. In contrast to widely up-regulated genes related to FA metabolism in AM roots, limited genes were affected in leaves. We propose a model of AM symbiosis-linked reprogramming of FA metabolism and provide a comprehensive insight into AM symbiosis with a woody species adaptation to salt stress.
Collapse
Affiliation(s)
- Zhibo Ma
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Xinchi Zhao
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Aobing He
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Yan Cao
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Qisheng Han
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Yanjun Lu
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 75007, Sweden
| | | |
Collapse
|
47
|
Du S, Hu X, Yang X, Yu W, Wang Z. Genetic diversity and population dynamic of Ziziphus jujuba var. spinosa (Bunge) Hu ex H. F. Chow in Central China. Ecol Evol 2022; 12:e9101. [PMID: 35898427 PMCID: PMC9309028 DOI: 10.1002/ece3.9101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/04/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Phylogeographic research concerning Central China has been rarely conducted. Population genetic and phylogeography of Ziziphus jujuba var. spinosa (also called sour jujube) were investigated to improve our understanding of plant phylogeographic patterns in Central China. Single-copy nuclear gene markers and complete chloroplast genome data were applied to 328 individuals collected from 21 natural populations of sour jujube in China. Nucleotide variation of sour jujube was relatively high (π = 0.00720, θ w = 0.00925), which resulted from the mating system and complex population dynamics. Analysis of molecular variation analysis revealed that most of the total variation was attributed to variation within populations, and a high level of genetic differentiation among populations was detected (F st = 0.197). Relatively low long-distance dispersal capability and vitality of pollen contributed to high genetic differentiation among populations. Differences in the environmental conditions and long distance among populations further restricted gene flow. Structure clustering analysis uncovered intraspecific divergence between central and marginal populations. Migrate analysis found a high level of gene flow between these two intraspecific groups. Bayesian skyline plot detected population expansion of these two intraspecific groups. Network and phylogeny analysis of chloroplast haplotypes also found intraspecific divergence, and the divergence time was estimated to occur at about 55.86 Ma. Haplotype native to the Loess Plateau was more ancient, and multiple glacial refugia of sour jujube were found to locate at the Loess Plateau, areas adjacent to the Qinling Mountains and Tianmu Mountains. Species distribution model analysis found a typical contraction-expansion model corresponding to the Quaternary climatic oscillations. In the future, the distribution of sour jujube may shift to high-latitude areas. This study provides new insights for phylogeographic research of temperate plant species distributed in Central China and sets a solid foundation for the application of the scientific management strategy of Z. jujuba var. spinosa.
Collapse
Affiliation(s)
- Shuhui Du
- College of Forestry, Shanxi Key Laboratory of Cultivation and Development on Functional Oil Trees in the Northern ChinaShanxi Agricultural University TaiguJinzhongChina
| | - Xiaoyan Hu
- College of Forestry, Shanxi Key Laboratory of Cultivation and Development on Functional Oil Trees in the Northern ChinaShanxi Agricultural University TaiguJinzhongChina
| | - Xiuyun Yang
- College of Forestry, Shanxi Key Laboratory of Cultivation and Development on Functional Oil Trees in the Northern ChinaShanxi Agricultural University TaiguJinzhongChina
| | - Wendong Yu
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| |
Collapse
|
48
|
Fan F, Han F, Hao L. Mechanisms of Action of Semen Ziziphi spinosae in the Treatment of Tourette Syndrome. Degener Neurol Neuromuscul Dis 2022; 12:85-96. [PMID: 35875687 PMCID: PMC9297330 DOI: 10.2147/dnnd.s370278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Semen Ziziphi spinosae, known as Suanzaoren (SZR) in Chinese, is a Chinese herbal medicine widely used in sedatives and tranquilizers. Although SZR is important for the clinical treatment of Tourette syndrome (TS), its mechanism of action remains unclear. Therefore, we investigated the pharmacological mechanisms of SZR in TS treatment using network pharmacology and systems biology approaches. Methods The bioactive components and potential targets of SZR were screened using the TCMSP database. UniProt was used to identify targets by mapping the known genes related to SZR. The known genes related to TS were identified by GeneCards and OMIM databases. A protein-protein interaction network was constructed using information from STRING 11.0 database. Cytoscape 3.8.0 software and Bioinformatics online platform were used for plotting this network. Gene ontology and KEGG enrichment analyses were performed using Metascape. Finally, AutoDock was used to verify the molecular docking. Results We found that SZR had 10 active compounds. There were 30 overlapping target genes between TS and SZR. These genes were associated with several signaling and metabolic pathways. AChE, SLC6A4, and HTR3A were the top three hub genes. The active components in SZR had a high binding affinity for the key targets. Conclusion SZR therapy for TS could achieve network regulation through the action of various active components of Chinese medicine on different targets and generate a complex regulatory relationship via interaction with potential targets, thereby playing a therapeutic role. Thus, SZR is a potential candidate for treating TS because it regulates nervous system functions.
Collapse
Affiliation(s)
- Fei Fan
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Fei Han
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Long Hao
- Department of Paediatrics, Beijing Fangshan District Liangxiang Hospital, Beijing, People’s Republic of China
- Correspondence: Long Hao, Department of Paediatrics, Beijing Fangshan District Liangxiang Hospital, No. 45 Gongchen Street, Fangshan District, Beijing, People’s Republic of China, Tel +86 10-813560000, Email
| |
Collapse
|
49
|
Li B, Li H, Xu Z, Guo X, Zhou T, Shi J. Transcriptome Profiling and Identification of the Candidate Genes Involved in Early Ripening in Ziziphus Jujuba. Front Genet 2022; 13:863746. [PMID: 35774502 PMCID: PMC9237510 DOI: 10.3389/fgene.2022.863746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The early ripening jujube is an immensely popular fresh fruit due to its high commercial value as well as rich nutrition. However, little is known about the mechanism of jujube fruit’s ripening. In this study, the transcriptome profiles were comprehensively analyzed between the ‘Lingwu Changzao’ jujube and its early-ripening mutant during the fruit development and maturity. A total of 5,376 and 762 differentially expressed genes (DEGs) were presented at 80 and 90 days after the flowering of the jujube fruit, respectively. Furthermore, 521 common DEGs were identified as candidate genes that might be associated with the fruit’s early ripening. Our findings demonstrated that in a non-climacteric jujube fruit, abscisic acid (ABA) was more greatly involved in fruit ripening than ethylene. Meanwhile, the fruit ripening of the early-ripening mutant was regulated by eight promotors of DEGs related to glucose and fructose, seven repressors of DEGs related to brassinosteroid signal transduction, and a series of transcription factor genes (MYB, Bhlh, and ERF). Additionally, the expression of 20 candidate DEGs was further validated by real-time PCR during the late fruit maturation stage. Collectively, the present study sheds light on the metabolic mechanism of the fruit’s early ripening and provides valuable candidate genes for the early-ripening mutant’s breeding.
Collapse
Affiliation(s)
- Baiyun Li
- Horticulture Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Hui Li
- Horticulture Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Zehua Xu
- Horticulture Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Xinnian Guo
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Tao Zhou
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Jiangli Shi
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jiangli Shi,
| |
Collapse
|
50
|
Ma Y, Han Y, Feng X, Gao H, Cao B, Song L. Genome-wide identification of BAM (β-amylase) gene family in jujube (Ziziphus jujuba Mill.) and expression in response to abiotic stress. BMC Genomics 2022; 23:438. [PMID: 35698031 PMCID: PMC9195466 DOI: 10.1186/s12864-022-08630-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elevated temperature and drought stress have substantial impacts on fruit quality, especially in terms of sugar metabolism and content. β-Amylase (BAM) plays a critical role in regulating jujube fruit sugar levels and abiotic stress response. Nevertheless, little is known about the regulatory functions of the BAM genes in jujube fruit. RESULTS Nine jujube BAM genes were identified, clustered into four groups, and characterized to elucidate their structure, function, and distribution. Multiple sequence alignment and gene structure analysis showed that all ZjBAM genes contain Glu-186 and Glu-380 residues and are highly conserved. Phylogenetic and synteny analysis further indicated that the ZjBAM gene family is evolutionarily conserved and formed collinear pairs with the BAM genes of peach, apple, poplar, Arabidopsis thaliana, and cucumber. A single tandem gene pair was found within the ZjBAM gene family and is indicative of putative gene duplication events. We also explored the physicochemical properties, conserved motifs, and chromosomal and subcellular localization of ZjBAM genes as well as the interaction networks and 3D structures of ZjBAM proteins. A promoter cis-acting element analysis suggested that ZjBAM promoters comprise elements related to growth, development, phytohormones, and stress response. Furthermore, a metabolic pathways annotation analysis showed that ZjBAMs are significantly upregulated in the starch and sucrose metabolism, thereby controlling starch-maltose interconversion and hydrolyzing starch to maltose. Transcriptome and qRT-PCR analyses revealed that ZjBAMs respond positively to elevated temperature and drought stress. Specifically, ZjBAM1, ZjBAM2, ZjBAM5, and ZjBAM6 are significantly upregulated in response to severe drought. Bimolecular fluorescence complementation analysis demonstrated ZjBAM1-ZjAMY3, ZjBAM8-ZjDPE1, and ZjBAM7-ZjDPE1 protein interactions that were mainly present in the plasma membrane and nucleus. CONCLUSION The jujube BAM gene family exhibits high evolutionary conservation. The various expression patterns of ZjBAM gene family members indicate that they play key roles in jujube growth, development, and abiotic stress response. Additionally, ZjBAMs interact with α-amylase and glucanotransferase. Collectively, the present study provides novel insights into the structure, evolution, and functions of the jujube BAM gene family, thus laying a foundation for further exploration of ZjBAM functional mechanisms in response to elevated temperature and drought stress, while opening up avenues for the development of economic forests in arid areas.
Collapse
Affiliation(s)
- Yaping Ma
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaru Han
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xuerui Feng
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Handong Gao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
- Southern Tree Seed Inspection Center, Nanjing, 210037, China.
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Lihua Song
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|