1
|
Auvin S. Targeted therapies in epilepsies. Rev Neurol (Paris) 2025:S0035-3787(25)00495-3. [PMID: 40221358 DOI: 10.1016/j.neurol.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
In recent years, the increasing availability of antiseizure medications has not reduced the incidence of drug-resistant epilepsy. Precision medicine offers the potential for mechanism-driven treatments for rare pediatric epilepsies. The concept of precision medicine is not new in the field of epilepsy, as demonstrated by the use of pyridoxine for antiquitin deficiency (pyridoxine-dependent epilepsy) and the ketogenic diet for GLUT1 deficiency syndrome. More recently, preclinical evidence has led to phase 3 clinical trials, such as the use of everolimus to inhibit the mTOR pathway in tuberous sclerosis complex. However, preclinical findings do not always translate into effective treatments, as illustrated by the heterogeneous effects of quinidine in KCNT1-related epilepsy. Currently, an exponential increase in compounds identified at the preclinical level will require clinical trial validation. However, it remains uncertain whether these developments will lead to improved efficacy in drug-resistant epilepsy or have any disease-modifying effects. This article does not explicitly address antisense oligonucleotides or gene therapy.
Collapse
Affiliation(s)
- S Auvin
- Pediatric Neurology Department, CRMR épilepsies rares, AP-HP, Robert-Debré University Hospital, Paris, France; Institut hospitalo-universitaire Robert-Debré du cerveau de l'enfant, Paris, France; Inserm NeuroDiderot, université Paris Cité, Paris, France; Institut universitaire de France (IUF), Paris, France.
| |
Collapse
|
2
|
He M, Wollmuth LP. Regulation of NMDAR activation efficiency by environmental factors and subunit composition. J Gen Physiol 2025; 157:e202413637. [PMID: 39576244 PMCID: PMC11586625 DOI: 10.1085/jgp.202413637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
NMDA receptors (NMDAR) convert the major excitatory neurotransmitter glutamate into a synaptic signal. A key question is how efficiently the ion channel opens in response to the rapid exposure to presynaptic glutamate release. Here, we applied glutamate to single channel outside-out patches and measured the successes of channel openings and the latency to first opening to assay the activation efficiency of NMDARs under different physiological conditions and with different human subunit compositions. For GluN1/GluN2A receptors, we find that various factors, including intracellular ATP and GTP, can enhance the efficiency of activation presumably via the intracellular C-terminal domain. Notably, an energy-based internal solution or increasing the time between applications to increase recovery time improved efficiency. However, even under these optimized conditions and with a 1-s glutamate application, there remained around 10-15% inefficiency. Channel activation became more inefficient with brief synaptic-like pulses of glutamate at 2 ms. Of the different NMDAR subunit compositions, GluN2B-containing NMDARs showed the lowest success rate and longest latency to first openings, highlighting that they display the most distinct activation mechanism. In contrast, putative triheteromeric GluN1/GluN2A/GluN2B receptors showed high activation efficiency. Despite the low open probability, NMDARs containing either GluN2C or GluN2D subunits displayed high activation efficiency, nearly comparable with that for GluN2A-containing receptors. These results highlight that activation efficiency in NMDARs can be regulated by environmental surroundings and varies across different subunits.
Collapse
Affiliation(s)
- Miaomiao He
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Lonnie P. Wollmuth
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
3
|
Auvin S, Specchio N. Pharmacotherapeutic strategies for drug-resistant epilepsy in children. Epilepsy Behav 2024; 161:110139. [PMID: 39515006 DOI: 10.1016/j.yebeh.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Drug resistance is defined as the failure of adequate trials of two tolerated and appropriately chosen antiseizure medications to achieve sustained seizure freedom. In case of uncontrolled seizures, pseudo-drug-resistance (poor compliance, a worsening effect of an antiseizure medication, a diagnosis of psychogenic non-epileptic seizure) should be first ruled out in case of pediatric epilepsies. This paper discusses the process of choosing antiseizure medication and the concepts of rationale polytherapy and precision medicine. In drug-resistant epilepsy, when curative surgery is not feasible, the aim of the treatment is focused on the improvement of quality of life rather than on seizure count. In recent years, despite an increase in available antiseizure medications, the incidence of drug-resistant epilepsy has not changed. Precision medicine may offer in rare epilepsies a mechanism-driven treatment, but it is still unclear if this will end up in an improvement of efficacy in drug-resistant epilepsies. Gene therapy with antisense oligonucleotides or Adeno-associated Virus (AAV) is transitioning from the experimental side to the first human trial. It may modify the natural history of selected epileptic syndromes.
Collapse
Affiliation(s)
- Stéphane Auvin
- APHP, Robert Debré University Hospital, Pediatric Neurology Department, CRMR epilepsies rares, EpiCare member, Paris, France; Université Paris Cité, INSERM NeuroDiderot, Paris, France; Institut Universitaire de France, (IUF), Paris, France.
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesu' Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and complex Epilepsies EpiCARE, Rome, Italy; University Hospitals KU Leuven, Belgium
| |
Collapse
|
4
|
Zhang L, Duan Y, Ma R, Han J, Pan N, Gao L, Wang Y. Clinical phenotype and functional influence of GRIN2A variants in epilepsy-aphasia syndrome. Epilepsia Open 2024; 9:2306-2318. [PMID: 39474911 PMCID: PMC11633710 DOI: 10.1002/epi4.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE N-methyl-D-aspartate receptors are glutamate-gated ion channels that play a crucial role in brain function. Numerous inherited or de novo variants in the GRIN2A gene, encoding the GluN2A subunit of the receptor, have been identified in patients with epilepsy. In addition, it is worth noting that GRIN2A variants exhibit a strong correlation with epilepsy-aphasia syndromes, a group of age-dependent epileptic, cognitive, and language disorders with a characteristic electroencephalographic pattern. METHODS Whole exome sequencing was conducted in enrolled patients with epilepsy-aphasia syndromes, and GRIN2A variants were screened. The conservation of substituted residues, conformational changes of mutant subunits, and in silico predictions of pathogenicity were thoroughly assessed in our study. Functional alterations of the variants were examined using whole-cell voltage-clamp current recordings while the relative surface expression levels of subunit proteins were assessed via immunofluorescence assays. A summary of previously published GRIN2A missense variants was conducted to investigate the genotypic-phenotypic-functional correlations. RESULTS Two missense GRIN2A variants (c. 2482A >G/p. M828V, c. 2627 T >C/p. I876T) were identified, which are located in the transmembrane helix M4 and C-terminus domain of the GluN2A subunit, respectively. Both variants exhibited reduced current density of NMDARs and surface/total expression levels of GluN2A subunits, while M828V showed a decreased extent of desensitization as well. A further summary of the previously reported GRIN2A variants demonstrated that more variable phenotypes were observed for variants situated in the C-terminus domain or those with loss-of-function effects. SIGNIFICANCE Our study expands the phenotypic and functional range of GRIN2A-related disorders. In order to optimally establish the domain-function-phenotype correlations in GRIN2A variants, it is imperative to gather a more extensive set of clinical and functional data. PLAIN LANGUAGE SUMMARY This study has identified two genetic variants of the GRIN2A gene in patients with epilepsy-aphasia syndrome. We assess the variants' harmfulness through a variety of functional experiments, including evaluating the expression level of the mutated protein and the resulting changes in electrophysiological activities. Also, we reviewed previously published papers about GRIN2A variants in epilepsy to learn more about the correlations between their locations, functional changes, and clinical manifestations.
Collapse
Affiliation(s)
- Lu Zhang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yiran Duan
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Present address:
Department of NeurologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Rui Ma
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Present address:
Department of Endocrinology, Genetics and MetabolismNational Center for Children's Health, Beijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Jiaqi Han
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Na Pan
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Lehong Gao
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Center of Epilepsy, Beijing Institute for Brain DisordersCapital Medical University, Ministry of Science and TechnologyBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Torpey A, Bellow E, Samojedny V, Ahluwalia S, Desai A, Caldwell W, Bergese S. Nanotechnology in Pain Management. Pharmaceutics 2024; 16:1479. [PMID: 39598601 PMCID: PMC11597168 DOI: 10.3390/pharmaceutics16111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic pain is a debilitating condition that affects millions of patients worldwide, contributing to a high disease burden and millions of dollars in lost wages, missed workdays, and healthcare costs. Opioids, NSAIDs, acetaminophen, gabapentinoids, muscle relaxants, anticonvulsants, and antidepressants are the most used medications for chronic pain and carry significant side effects, including gastric bleeding, hepatotoxicity, stroke, kidney damage, constipation, dizziness, and arrhythmias. Opioids in particular carry the risk of long-term dependence, drug tolerance, and overdose. In 2022, 81,806 people died from opioid overdose in the United States alone. Alternative treatments for chronic pain are critically needed, and nanotechnology has emerged as a promising means of achieving effective long-term analgesia while avoiding the adverse side effects associated with conventional pharmacological agents. Nanotechnology-based treatments include liposomes, Poly Lactic-co-Glycolic Acid (PLGA) and other polymeric nanoparticles, and carbon-based polymers, which can help mitigate those adverse side effects. These nanomaterials can serve as drug delivery systems that facilitate controlled release and drug stability via the encapsulation of free molecules and protein-based drugs, leading to longer-lasting analgesia and minimizing side effects. In this review, we examine the role of nanotechnology in addressing concerns associated with conventional chronic pain treatments and discuss the ongoing efforts to develop novel, nanotechnology-based treatments for chronic pain such as nanocapacitor patches, gene therapy, the use of both viral and non-viral vectors, CRISPR, and scavengers.
Collapse
Affiliation(s)
- Andrew Torpey
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
| | - Emily Bellow
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (E.B.); (V.S.)
| | - Veronica Samojedny
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (E.B.); (V.S.)
| | - Sukhpreet Ahluwalia
- Department of Surgery, Stony Brook University Hospital, Stony Brook, NY 11794, USA;
| | - Amruta Desai
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
| | - William Caldwell
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
- Department of Neurosurgery, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Li H, Rajani V, Sengar AS, Salter MW. Src dependency of the regulation of LTP by alternative splicing of GRIN1 exon 5. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230236. [PMID: 38853562 PMCID: PMC11343231 DOI: 10.1098/rstb.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 06/11/2024] Open
Abstract
Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Hongbin Li
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Vishaal Rajani
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Ameet S. Sengar
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Michael W. Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
7
|
Yadegari F, Farahmand L, Esmaeili R, Zarinfam S, Majidzadeh-A K. Inter-BRCT linker is probably the most intolerant region of the BRCA1 BRCT domain. J Biomol Struct Dyn 2024; 42:5734-5746. [PMID: 37948190 DOI: 10.1080/07391102.2023.2274517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/15/2023] [Indexed: 11/12/2023]
Abstract
Pathogenic mutations in BRCA1 are associated with an increased risk of hereditary breast, ovarian, and some other cancers; however, the clinical significance of many mutations in this gene remains unknown (Variants of Unknown Significance/VUS). Since mutations in intolerant regions of a protein lead to dysfunction and pathogenicity, identifying these regions helps to predict the clinical importance of VUSs. This study aimed to identify intolerant regions of BRCA1 and understand the possible root of this susceptibility. Intolerant regions appear to carry more pathogenic mutations than expected due to their lower tolerance to missense variations. Therefore, we hypothesized that among the BRCA1 regions, the higher the mutation density, the greater the intolerance. Thus, pathogenic mutation density and regional intolerance scores were calculated to identify BRCA1-intolerant regions. To investigate the pathogenic mechanisms of missense-intolerant regions in BRCA1, transcription activation (TA) experiments and molecular dynamics (MD) simulations were also performed. The results showed that the RING domain, followed by the BRCT domain, has the highest density of pathogenic mutations. In the BRCT domain, a higher density of pathogenic mutations was observed in the inter-BRCT linker. Additionally, scores generated by Missense Tolerance Ratio-3D (MTR3D) and the Missense Tolerance Ratio consensus (MTRX) showed that the inter-BRCT linker is more intolerant than other regions of the BRCT domain. The MD results showed that mutations in the inter-BRCT linker led to cancer susceptibility, likely due to disruption of the interaction between BRCA1 and phosphopeptides. TA laboratory assays further supported the importance of the inter-BRCT linker.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Yadegari
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Zarinfam
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Korinek M, Candelas Serra M, Abdel Rahman F, Dobrovolski M, Kuchtiak V, Abramova V, Fili K, Tomovic E, Hrcka Krausova B, Krusek J, Cerny J, Vyklicky L, Balik A, Smejkalova T. Disease-Associated Variants in GRIN1, GRIN2A and GRIN2B genes: Insights into NMDA Receptor Structure, Function, and Pathophysiology. Physiol Res 2024; 73:S413-S434. [PMID: 38836461 PMCID: PMC11412357 DOI: 10.33549/physiolres.935346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptors critical for synaptic transmission and plasticity, and for the development of neural circuits. Rare or de-novo variants in GRIN genes encoding NMDAR subunits have been associated with neurodevelopmental disorders characterized by intellectual disability, developmental delay, autism, schizophrenia, or epilepsy. In recent years, some disease-associated variants in GRIN genes have been characterized using recombinant receptors expressed in non-neuronal cells, and a few variants have also been studied in neuronal preparations or animal models. Here we review the current literature on the functional evaluation of human disease-associated variants in GRIN1, GRIN2A and GRIN2B genes at all levels of analysis. Focusing on the impact of different patient variants at the level of receptor function, we discuss effects on receptor agonist and co-agonist affinity, channel open probability, and receptor cell surface expression. We consider how such receptor-level functional information may be used to classify variants as gain-of-function or loss-of-function, and discuss the limitations of this classification at the synaptic, cellular, or system level. Together this work by many laboratories worldwide yields valuable insights into NMDAR structure and function, and represents significant progress in the effort to understand and treat GRIN disorders. Keywords: NMDA receptor , GRIN genes, Genetic variants, Electrophysiology, Synapse, Animal models.
Collapse
Affiliation(s)
- M Korinek
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kellner S, Berlin S. Rescuing tri-heteromeric NMDA receptor function: the potential of pregnenolone-sulfate in loss-of-function GRIN2B variants. Cell Mol Life Sci 2024; 81:235. [PMID: 38795169 PMCID: PMC11127902 DOI: 10.1007/s00018-024-05243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/27/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs emerging from GRIN genes) are tetrameric receptors that form diverse channel compositions in neurons, typically consisting of two GluN1 subunits combined with two GluN2(A-D) subunits. During prenatal stages, the predominant channels are di-heteromers with two GluN1 and two GluN2B subunits due to the high abundance of GluN2B subunits. Postnatally, the expression of GluN2A subunits increases, giving rise to additional subtypes, including GluN2A-containing di-heteromers and tri-heteromers with GluN1, GluN2A, and GluN2B subunits. The latter emerge as the major receptor subtype at mature synapses in the hippocampus. Despite extensive research on purely di-heteromeric receptors containing two identical GRIN variants, the impact of a single variant on the function of other channel forms, notably tri-heteromers, is lagging. In this study, we systematically investigated the effects of two de novo GRIN2B variants (G689C and G689S) in pure, mixed di- and tri-heteromers. Our findings reveal that incorporating a single variant in mixed di-heteromers or tri-heteromers exerts a dominant negative effect on glutamate potency, although 'mixed' channels show improved potency compared to pure variant-containing di-heteromers. We show that a single variant within a receptor complex does not impair the response of all receptor subtypes to the positive allosteric modulator pregnenolone-sulfate (PS), whereas spermine completely fails to potentiate tri-heteromers containing GluN2A and -2B-subunits. We examined PS on primary cultured hippocampal neurons transfected with the variants, and observed a positive impact over current amplitudes and synaptic activity. Together, our study supports previous observations showing that mixed di-heteromers exhibit improved glutamate potency and extend these findings towards the exploration of the effect of Loss-of-Function variants over tri-heteromers. Notably, we provide an initial and crucial demonstration of the beneficial effects of GRIN2B-relevant potentiators on tri-heteromers. Our results underscore the significance of studying how different variants affect distinct receptor subtypes, as these effects cannot be inferred solely from observations made on pure di-heteromers. Overall, this study contributes to ongoing efforts to understand the pathophysiology of GRINopathies and provides insights into potential treatment strategies.
Collapse
Affiliation(s)
- Shai Kellner
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel
| | - Shai Berlin
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel.
| |
Collapse
|
10
|
Xu Y, Song R, Perszyk RE, Chen W, Kim S, Park KL, Allen JP, Nocilla KA, Zhang J, XiangWei W, Tankovic A, McDaniels ED, Sheikh R, Mizu RK, Karamchandani MM, Hu C, Kusumoto H, Pecha J, Cappuccio G, Gaitanis J, Sullivan J, Shashi V, Petrovski S, Jauss RT, Lee HK, Bozarth X, Lynch DR, Helbig I, Pierson TM, Boerkoel CF, Myers SJ, Lemke JR, Benke TA, Yuan H, Traynelis SF. De novo GRIN variants in M3 helix associated with neurological disorders control channel gating of NMDA receptor. Cell Mol Life Sci 2024; 81:153. [PMID: 38538865 PMCID: PMC10973091 DOI: 10.1007/s00018-023-05069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 05/18/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.
Collapse
Affiliation(s)
- Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Rui Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wenjuan Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kristen L Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - James P Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kelsey A Nocilla
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Anel Tankovic
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ellington D McDaniels
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Rehan Sheikh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ruth K Mizu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Manish M Karamchandani
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Chun Hu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hirofumi Kusumoto
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Joseph Pecha
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Via Pansini 5, 80131, Naples, Italy
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - John Gaitanis
- Hasbro Children's Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jennifer Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Slave Petrovski
- Ce Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC, Australia
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, BioPharmaceuticals R&D, Cambridge, UK
| | - Robin-Tobias Jauss
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Hyun Kyung Lee
- Provincial Medical Genetics Program, Department of Medical Genetics, University of British Columbia, Children's and Women's Health Centre of BC, Vancouver, B.C, V6H 3N1, Canada
| | - Xiuhua Bozarth
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Division of Pediatric Neurology, Department of Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Ingo Helbig
- Division of Child Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tyler Mark Pierson
- Department of Pediatrics and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for the Undiagnosed Patient, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cornelius F Boerkoel
- Provincial Medical Genetics Program, Department of Medical Genetics, University of British Columbia, Children's and Women's Health Centre of BC, Vancouver, B.C, V6H 3N1, Canada
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Timothy A Benke
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Vieira MM, Peng S, Won S, Hong E, Inati SK, Thurm A, Thiam AH, Kim S, Myers SJ, Badger JD, Traynelis SF, Lu W, Roche KW. A Frameshift Variant of GluN2A Identified in an Epilepsy Patient Results in NMDA Receptor Mistargeting. J Neurosci 2024; 44:e0557232023. [PMID: 38050135 PMCID: PMC10860613 DOI: 10.1523/jneurosci.0557-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are crucial for neuronal development and synaptic plasticity. Dysfunction of NMDARs is associated with multiple neurodevelopmental disorders, including epilepsy, autism spectrum disorder, and intellectual disability. Understanding the impact of genetic variants of NMDAR subunits can shed light on the mechanisms of disease. Here, we characterized the functional implications of a de novo mutation of the GluN2A subunit (P1199Rfs*32) resulting in the truncation of the C-terminal domain. The variant was identified in a male patient with epileptic encephalopathy, multiple seizure types, severe aphasia, and neurobehavioral changes. Given the known role of the CTD in NMDAR trafficking, we examined changes in receptor localization and abundance at the postsynaptic membrane using a combination of molecular assays in heterologous cells and rat primary neuronal cultures. We observed that the GluN2A P1199Rfs*32-containing receptors traffic efficiently to the postsynaptic membrane but have increased extra-synaptic expression relative to WT GluN2A-containing NMDARs. Using in silico predictions, we hypothesized that the mutant would lose all PDZ interactions, except for the recycling protein Scribble1. Indeed, we observed impaired binding to the scaffolding protein postsynaptic protein-95 (PSD-95); however, we found the mutant interacts with Scribble1, which facilitates the recycling of both the mutant and the WT GluN2A. Finally, we found that neurons expressing GluN2A P1199Rfs*32 have fewer synapses and decreased spine density, indicating compromised synaptic transmission in these neurons. Overall, our data show that GluN2A P1199Rfs*32 is a loss-of-function variant with altered membrane localization in neurons and provide mechanistic insight into disease etiology.
Collapse
Affiliation(s)
- M M Vieira
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda 20892, Maryland
| | - S Peng
- Synapse and Neural Circuit Research Section, NINDS, NIH, Bethesda 20892, Maryland
| | - S Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda 20892, Maryland
| | - E Hong
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda 20892, Maryland
| | - S K Inati
- Neurophysiology of Epilepsy Unit, NINDS, NIH, Bethesda 20892, Maryland
| | - A Thurm
- National Institute of Mental Health, National Institutes of Health, Bethesda 20892, Maryland
| | - A H Thiam
- Office of the Clinical Director, NINDS, NIH, Bethesda 20892, Maryland
| | - S Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322, Georgia
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta 30322, Georgia
| | - S J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322, Georgia
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta 30322, Georgia
| | - J D Badger
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda 20892, Maryland
| | - S F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322, Georgia
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta 30322, Georgia
| | - W Lu
- Synapse and Neural Circuit Research Section, NINDS, NIH, Bethesda 20892, Maryland
| | - K W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda 20892, Maryland
| |
Collapse
|
12
|
Kysilov B, Kuchtiak V, Hrcka Krausova B, Balik A, Korinek M, Fili K, Dobrovolski M, Abramova V, Chodounska H, Kudova E, Bozikova P, Cerny J, Smejkalova T, Vyklicky L. Disease-associated nonsense and frame-shift variants resulting in the truncation of the GluN2A or GluN2B C-terminal domain decrease NMDAR surface expression and reduce potentiating effects of neurosteroids. Cell Mol Life Sci 2024; 81:36. [PMID: 38214768 PMCID: PMC10786987 DOI: 10.1007/s00018-023-05062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening. We also show that naturally occurring and synthetic steroids pregnenolone sulfate and epipregnanolone butanoic acid, respectively, enhance NMDAR function in a way that is dependent on the length of the truncated CTD and, further, is steroid-specific, GluN2A/B subunit-specific, and GluN1 splice variant-specific. Adding to the previously described effects of disease-associated NMDAR variants on the receptor biogenesis and function, our results improve the understanding of the molecular consequences of NMDAR CTD truncations and provide an opportunity for the development of new therapeutic neurosteroid-based ligands.
Collapse
Affiliation(s)
- Bohdan Kysilov
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
- Stony Brook University, Stony Brook, 100 Nicolls Road, NY, 11794, USA
| | - Viktor Kuchtiak
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
- Faculty of Science, Charles University, Albertov 2038, 12800, Prague 2, Czech Republic
| | - Barbora Hrcka Krausova
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
| | - Ales Balik
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
| | - Miloslav Korinek
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
| | - Klevinda Fili
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, 10000, Prague 10, Czech Republic
| | - Mark Dobrovolski
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, 10000, Prague 10, Czech Republic
| | - Vera Abramova
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, 10000, Prague 10, Czech Republic
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 16610, Prague 6, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 16610, Prague 6, Czech Republic
| | - Paulina Bozikova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
| | - Jiri Cerny
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic
| | - Tereza Smejkalova
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic.
| | - Ladislav Vyklicky
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic.
| |
Collapse
|
13
|
Mony L, Paoletti P. Mechanisms of NMDA receptor regulation. Curr Opin Neurobiol 2023; 83:102815. [PMID: 37988826 DOI: 10.1016/j.conb.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels widely expressed in the central nervous system that play key role in brain development and plasticity. On the downside, NMDAR dysfunction, be it hyperactivity or hypofunction, is harmful to neuronal function and has emerged as a common theme in various neuropsychiatric disorders including autism spectrum disorders, epilepsy, intellectual disability, and schizophrenia. Not surprisingly, NMDAR signaling is under a complex set of regulatory mechanisms that maintain NMDAR-mediated transmission in check. These include an unusual large number of endogenous agents that directly bind NMDARs and tune their activity in a subunit-dependent manner. Here, we review current knowledge on the regulation of NMDAR signaling. We focus on the regulation of the receptor by its microenvironment as well as by external (i.e. pharmacological) factors and their underlying molecular and cellular mechanisms. Recent developments showing how NMDAR dysregulation participate to disease mechanisms are also highlighted.
Collapse
Affiliation(s)
- Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
14
|
Myers SJ, Yuan H, Perszyk RE, Zhang J, Kim S, Nocilla KA, Allen JP, Bain JM, Lemke JR, Lal D, Benke TA, Traynelis SF. Classification of missense variants in the N-methyl-d-aspartate receptor GRIN gene family as gain- or loss-of-function. Hum Mol Genet 2023; 32:2857-2871. [PMID: 37369021 PMCID: PMC10508039 DOI: 10.1093/hmg/ddad104] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Advances in sequencing technology have generated a large amount of genetic data from patients with neurological conditions. These data have provided diagnosis of many rare diseases, including a number of pathogenic de novo missense variants in GRIN genes encoding N-methyl-d-aspartate receptors (NMDARs). To understand the ramifications for neurons and brain circuits affected by rare patient variants, functional analysis of the variant receptor is necessary in model systems. For NMDARs, this functional analysis needs to assess multiple properties in order to understand how variants could impact receptor function in neurons. One can then use these data to determine whether the overall actions will increase or decrease NMDAR-mediated charge transfer. Here, we describe an analytical and comprehensive framework by which to categorize GRIN variants as either gain-of-function (GoF) or loss-of-function (LoF) and apply this approach to GRIN2B variants identified in patients and the general population. This framework draws on results from six different assays that assess the impact of the variant on NMDAR sensitivity to agonists and endogenous modulators, trafficking to the plasma membrane, response time course and channel open probability. We propose to integrate data from multiple in vitro assays to arrive at a variant classification, and suggest threshold levels that guide confidence. The data supporting GoF and LoF determination are essential to assessing pathogenicity and patient stratification for clinical trials as personalized pharmacological and genetic agents that can enhance or reduce receptor function are advanced. This approach to functional variant classification can generalize to other disorders associated with missense variants.
Collapse
Affiliation(s)
- Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kelsey A Nocilla
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James P Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer M Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, Köln 50923, Germany
| | - Timothy A Benke
- Department of Pediatrics, Pharmacology and Neurology, University of Colorado School of Medicine, and Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Wang X, Mei D, Gou L, Zhao S, Gao C, Guo J, Luo S, Guo B, Yang Z, Wang Q, Tan T, Zhang Y. Functional Evaluation of a Novel GRIN2B Missense Variant Associated with Epilepsy and Intellectual Disability. Neuroscience 2023; 526:107-120. [PMID: 37385334 DOI: 10.1016/j.neuroscience.2023.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Epilepsy, a neurological condition, is widely prevalent among individuals with intellectual disability (ID). It is well established that N-methyl-D-aspartate (NMDA) receptors play an important role in both epilepsy and ID. Autosomal dominant mutations in the GRIN2B gene, which encodes the GluN2B subunit of the NMDA receptor, have been reported to be associated with epilepsy and ID. However, the underlying mechanism of this association is not well-understood. In this study, we identified a novel GRIN2B mutation (c.3272A > C, p.K1091T) in a patient with epilepsy and ID. The proband was a one year and ten months old girl. GRIN2B variant was inherited from her mother. We further investigated the functional consequences of this mutation. Our findings revealed that the p.K1091T mutation created a Casein kinase 2 phosphorylation site. Using recombinant NMDA receptors containing the GluN2B-K1091T along with GluN1 in HEK 293T cells, we observed significant defects in its interactions with postsynaptic density 95. It is accompanied by reduced delivery of the receptors to the cell membrane and a decrease in glutamate affinity. Moreover, primary neurons expressing GluN2B-K1091T also exhibited impaired surface expression of NMDA receptors, a reduction in dendritic spine number and excitatory synaptic transmission. In summary, our study reports a novel GRIN2B mutation and provides functional characteristics of this mutation in vitro, thereby contributing to the understanding of GRIN2B variants in epilepsy and ID.
Collapse
Affiliation(s)
- Xiaona Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Engineering Research Center of Childhood Neurodevelopment, Zhengzhou 450018, Henan, China.
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, Henan, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Shuai Zhao
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Engineering Research Center of Childhood Neurodevelopment, Zhengzhou 450018, Henan, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, Henan, China
| | - Jisheng Guo
- School of Basic Medical Sciences, Yantai Campus of Binzhou Medical University, Yantai 264003, Shandong, China
| | - Shuying Luo
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Engineering Research Center of Childhood Neurodevelopment, Zhengzhou 450018, Henan, China
| | - Bin Guo
- School of Traditional Chinese Medicine, Ningxia Medical University, Ningxia 750004, China
| | - Zhigang Yang
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, Henan, China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Engineering Research Center of Childhood Neurodevelopment, Zhengzhou 450018, Henan, China.
| |
Collapse
|
16
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Chen JZ, Church WB, Bastard K, Duff AP, Balle T. Binding and Dynamics Demonstrate the Destabilization of Ligand Binding for the S688Y Mutation in the NMDA Receptor GluN1 Subunit. Molecules 2023; 28:molecules28104108. [PMID: 37241849 DOI: 10.3390/molecules28104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Encephalopathies are brain dysfunctions that lead to cognitive, sensory, and motor development impairments. Recently, the identification of several mutations within the N-methyl-D-aspartate receptor (NMDAR) have been identified as significant in the etiology of this group of conditions. However, a complete understanding of the underlying molecular mechanism and changes to the receptor due to these mutations has been elusive. We studied the molecular mechanisms by which one of the first mutations within the NMDAR GluN1 ligand binding domain, Ser688Tyr, causes encephalopathies. We performed molecular docking, randomly seeded molecular dynamics simulations, and binding free energy calculations to determine the behavior of the two major co-agonists: glycine and D-serine, in both the wild-type and S688Y receptors. We observed that the Ser688Tyr mutation leads to the instability of both ligands within the ligand binding site due to structural changes associated with the mutation. The binding free energy for both ligands was significantly more unfavorable in the mutated receptor. These results explain previously observed in vitro electrophysiological data and provide detailed aspects of ligand association and its effects on receptor activity. Our study provides valuable insight into the consequences of mutations within the NMDAR GluN1 ligand binding domain.
Collapse
Affiliation(s)
- Jake Zheng Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - William Bret Church
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Karine Bastard
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Anthony P Duff
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
18
|
Xie L, McDaniel MJ, Perszyk RE, Kim S, Cappuccio G, Shapiro KA, Muñoz-Cabello B, Sanchez-Lara PA, Grand K, Zhang J, Nocilla KA, Sheikh R, Armengol L, Romano R, Pierson TM, Yuan H, Myers SJ, Traynelis SF. Functional effects of disease-associated variants reveal that the S1-M1 linker of the NMDA receptor critically controls channel opening. Cell Mol Life Sci 2023; 80:110. [PMID: 37000222 PMCID: PMC10641759 DOI: 10.1007/s00018-023-04705-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 04/01/2023]
Abstract
The short pre-M1 helix within the S1-M1 linker (also referred to as the pre-M1 linker) between the agonist-binding domain (ABD, S1) and the M1 transmembrane helix of the NMDA receptor (NMDAR) is devoid of missense variants within the healthy population but is a locus for de novo pathogenic variants associated with neurological disorders. Several de novo variants within this helix have been identified in patients presenting early in life with intellectual disability, developmental delay, and/or epilepsy. In this study, we evaluated functional properties for twenty variants within the pre-M1 linker in GRIN1, GRIN2A, and GRIN2B genes, including six novel missense variants. The effects of pre-M1 variants on agonist potency, sensitivity to endogenous allosteric modulators, response time course, channel open probability, and surface expression were assessed. Our data indicated that virtually all of the variants evaluated altered channel function, and multiple variants had profound functional consequences, which may contribute to the neurological conditions in the patients harboring the variants in this region. These data strongly suggest that the residues within the pre-M1 helix play a key role in channel gating and are highly intolerant to genetic variation.
Collapse
Affiliation(s)
- Lingling Xie
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Miranda J McDaniel
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gerarda Cappuccio
- Section of Pediatrics, Department of Translational Medicine, Federico II University, Via Pansini 5, 80131, Naples, Italy
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Kevin A Shapiro
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA
| | | | - Pedro A Sanchez-Lara
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Katheryn Grand
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Kelsey A Nocilla
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Rehan Sheikh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Lluis Armengol
- Quantitative Genomic Medicine Laboratories, SL (qGenomics), Barcelona, Spain
| | - Roberta Romano
- Section of Pediatrics, Department of Translational Medicine, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | - Tyler Mark Pierson
- Division of Pediatric Neurology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, USA
- Center for the Undiagnosed Patient, Cedars-Sinai Medical Center, Los Angeles, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Neurodegenerative Disease Center, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Amin JB, He M, Prasad R, Leng X, Zhou HX, Wollmuth LP. Two gates mediate NMDA receptor activity and are under subunit-specific regulation. Nat Commun 2023; 14:1623. [PMID: 36959168 PMCID: PMC10036335 DOI: 10.1038/s41467-023-37260-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
Kinetics of NMDA receptor (NMDAR) ion channel opening and closing contribute to their unique role in synaptic signaling. Agonist binding generates free energy to open a canonical gate at the M3 helix bundle crossing. Single channel activity is characterized by clusters, or periods of rapid opening and closing, that are separated by long silent periods. A conserved glycine in the outer most transmembrane helices, the M4 helices, regulates NMDAR function. Here we find that the GluN1 glycine mainly regulates single channel events within a cluster, whereas the GluN2 glycine mainly regulates entry and exit from clusters. Molecular dynamics simulations suggest that, whereas the GluN2 M4 (along with GluN2 pre-M1) regulates the gate at the M3 helix bundle crossing, the GluN1 glycine regulates a 'gate' at the M2 loop. Subsequent functional experiments support this interpretation. Thus, the distinct kinetics of NMDARs are mediated by two gates that are under subunit-specific regulation.
Collapse
Affiliation(s)
- Johansen B Amin
- Graduate Program in Cellular and Molecular Pharmacology, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Miaomiao He
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Xiaoling Leng
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Lonnie P Wollmuth
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| |
Collapse
|
20
|
Zhou L, Sun X, Duan J. NMDARs regulate the excitatory-inhibitory balance within neural circuits. BRAIN SCIENCE ADVANCES 2023. [DOI: 10.26599/bsa.2022.9050020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Excitatory-inhibitory (E/I) balance is essential for normal neural development, behavior and cognition. E/I imbalance leads to a variety of neurological disorders, such as autism and schizophrenia. NMDA receptors (NMDARs) regulate AMPAR-mediated excitatory and GABAAR-mediated inhibitory synaptic transmission, suggesting that NMDARs play an important role in the establishment and maintenance of the E/I balance. In this review, we briefly introduced NMDARs, AMPARs and GABAARs, summarized the current studies on E/I balance mediated by NMDARs, and discussed the current advances in NMDAR-mediated AMPAR and GABAAR development. Specifically, we analyzed the role of NMDAR subunits in the establishment and maintenance of E/I balance, which may provide new therapeutic strategies for the recovery of E/I imbalance in neurological disorders.
Collapse
Affiliation(s)
- Liang Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaohui Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
21
|
Sabo SL, Lahr JM, Offer M, Weekes ALA, Sceniak MP. GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms. Front Synaptic Neurosci 2023; 14:1090865. [PMID: 36704660 PMCID: PMC9873235 DOI: 10.3389/fnsyn.2022.1090865] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The GRIN2B-related neurodevelopmental disorder is a rare disease caused by mutations in the GRIN2B gene, which encodes the GluN2B subunit of NMDA receptors. Most individuals with GRIN2B-related neurodevelopmental disorder present with intellectual disability and developmental delay. Motor impairments, autism spectrum disorder, and epilepsy are also common. A large number of pathogenic de novo mutations have been identified in GRIN2B. However, it is not yet known how these variants lead to the clinical symptoms of the disease. Recent research has begun to address this issue. Here, we describe key experimental approaches that have been used to better understand the pathophysiology of this disease. We discuss the impact of several distinct pathogenic GRIN2B variants on NMDA receptor properties. We then critically review pivotal studies examining the synaptic and neurodevelopmental phenotypes observed when disease-associated GluN2B variants are expressed in neurons. These data provide compelling evidence that various GluN2B mutants interfere with neuronal differentiation, dendrite morphogenesis, synaptogenesis, and synaptic plasticity. Finally, we identify important open questions and considerations for future studies aimed at understanding this complex disease. Together, the existing data provide insight into the pathophysiological mechanisms that underlie GRIN2B-related neurodevelopmental disorder and emphasize the importance of comparing the effects of individual, disease-associated variants. Understanding the molecular, cellular and circuit phenotypes produced by a wide range of GRIN2B variants should lead to the identification of core neurodevelopmental phenotypes that characterize the disease and lead to its symptoms. This information could help guide the development and application of effective therapeutic strategies for treating individuals with GRIN2B-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shasta L. Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,*Correspondence: Shasta L. Sabo
| | - Jessica M. Lahr
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Madelyn Offer
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Anika LA Weekes
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michael P. Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
22
|
Iacobucci GJ, Liu B, Wen H, Sincox B, Zheng W, Popescu GK. Complex functional phenotypes of NMDA receptor disease variants. Mol Psychiatry 2022; 27:5113-5123. [PMID: 36117210 PMCID: PMC11963734 DOI: 10.1038/s41380-022-01774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 01/14/2023]
Abstract
NMDA receptors have essential roles in the physiology of central excitatory synapses and their dysfunction causes severe neuropsychiatric symptoms. Recently, a series of genetic variants have been identified in patients, however, functional information about these variants is sparse and their role in pathogenesis insufficiently known. Here we investigate the mechanism by which two GluN2A variants may be pathogenic. We use molecular dynamics simulation and single-molecule electrophysiology to examine the contribution of GluN2A subunit-residues, P552 and F652, and their pathogenic substitutions, P552R and F652V, affect receptor functions. We found that P552 and F652 interact during the receptors' normal activity cycle; the interaction stabilizes receptors in open conformations and is required for a normal electrical response. Engineering shorter side-chains at these positions (P552A and/or F652V) caused a loss of interaction energy and produced receptors with severe gating, conductance, and permeability deficits. In contrast, the P552R side chain resulted in stronger interaction and produced a distinct, yet still drastically abnormal electrical response. These results identify the dynamic contact between P552 and F652 as a critical step in the NMDA receptor activation, and show that both increased and reduced communication through this interaction cause dysfunction. Results show that subtle differences in NMDA receptor primary structure can generate complex phenotypic alterations whose binary classification is too simplistic to serve as a therapeutic guide.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| | - Beiying Liu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Han Wen
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brittany Sincox
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wenjun Zheng
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
23
|
Ehtesham N, Mosallaei M, Beheshtian M, Khoshbakht S, Fadaee M, Vazehan R, Faraji Zonooz M, Karimzadeh P, Kahrizi K, Najmabadi H. Characterizing Genotypes and Phenotypes Associated with Dysfunction of Channel-Encoding Genes in a Cohort of Patients with Intellectual Disability. ARCHIVES OF IRANIAN MEDICINE 2022; 25:788-797. [PMID: 37543906 PMCID: PMC10685845 DOI: 10.34172/aim.2022.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/20/2021] [Indexed: 08/08/2023]
Abstract
BACKGROUND Ion channel dysfunction in the brain can lead to impairment of neuronal membranes and generate several neurological diseases, especially neurodevelopmental disorders. METHODS In this study, we set out to delineate the genotype and phenotype spectrums of 14 Iranian patients from 7 families with intellectual disability (ID) and/or developmental delay (DD) in whom genetic mutations were identified by next-generation sequencing (NGS) in 7 channel-encoding genes: KCNJ10, KCNQ3, KCNK6, CACNA1C, CACNA1G, SCN8A, and GRIN2B. Moreover, the data of 340 previously fully reported ID and/or DD cases with a mutation in any of these seven genes were combined with our patients to clarify the genotype and phenotype spectrum in this group. RESULTS In total, the most common phenotypes in 354 cases with ID/DD in whom mutation in any of these 7 channel-encoding genes was identified were as follows: ID (77.4%), seizure (69.8%), DD (59.8%), behavioral abnormality (29.9%), hypotonia (21.7%), speech disorder (21.5%), gait disturbance (20.9%), and ataxia (20.3%). Electroencephalography abnormality (33.9%) was the major brain imaging abnormality. CONCLUSION The results of this study broaden the molecular spectrum of channel pathogenic variants associated with different clinical presentations in individuals with ID and/or DD.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Meysam Mosallaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahrouz Khoshbakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahsa Fadaee
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Parvaneh Karimzadeh
- Department of Pediatric Neurology, School of Medicine, Pediatric Neurology Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
24
|
Sanders AL, Hermanson JN, Samuels DC, Plate L, Sanders CR. Compendium of proteins containing segments that exhibit zero-tolerance to amino acid variation in humans. Protein Sci 2022; 31:e4408. [PMID: 36040257 PMCID: PMC9387208 DOI: 10.1002/pro.4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Genetic missense tolerance ratio (MTR) analysis systematically evaluates all possible segments in a given protein-encoding transcript found in the human population. This method scores each segment for the number of observed missense variants versus the number of silent mutations in that same segment. An MTR score of 0 indicates that no missense mutations are observed within a given segment. This is indicative of evolutionary purifying selection, which excludes mutations in that segment from the general human population. Here, we conducted MTR analysis on each of the roughly 20,000 protein-encoding human genes. It was seen that there are 257 genes with at least one 31-residue encoding segment with MTR = 0 (1.3% of all human genes). The proteins encoded by these 257 genes were tabulated along with information regarding the sequence location of each intolerant segment, the likely function of the protein, and so forth. The most functionally-enriched family among these proteins is a collection of several dozen proteins that are directly involved in RNA splicing. Some of the other proteins with zero-tolerance segments have thus far escaped significant characterization. Indeed, while a number of these proteins have previously been genetically linked to human disorders, many have not. We hypothesize that this compendium of human proteins with zero-tolerance segments can be used to complement disease mutation data as a pointer to genes and proteins that are associated with interesting and underexplored human biology.
Collapse
Affiliation(s)
- Adam L. Sanders
- Department of BiochemistryVanderbilt University School of Medicine—Basic SciencesNashvilleTennesseeUSA
| | - Jake N. Hermanson
- Quantitative Chemical and Physical Biology Graduate ProgramVanderbilt University School of Medicine—Basic SciencesNashvilleTennesseeUSA
| | - David C. Samuels
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Lars Plate
- Departments of Chemistry and Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
| | - Charles R. Sanders
- Department of BiochemistryVanderbilt University School of Medicine—Basic SciencesNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt University School of Medicine—Basic SciencesNashvilleTennesseeUSA
- Department of MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
25
|
Meng Y, Shen HL. Role of N-Methyl-D-Aspartate Receptor NR2B Subunit in Inflammatory Arthritis-Induced Chronic Pain and Peripheral Sensitized Neuropathic Pain: A Systematic Review. J Pain Res 2022; 15:2005-2013. [PMID: 35880050 PMCID: PMC9307865 DOI: 10.2147/jpr.s367982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Arthritis is a common clinical disease that affects millions of people in the world. The most common types of arthritis are osteoarthritis and rheumatoid arthritis. Inflammatory arthritis (IA), a chronic painful disease, is characterized by synovitis and cartilage destruction in the early stages. Pathologically, IA causes inflammatory changes in the joints and eventually leads to joint destruction. Pain is associated with inflammation and abnormal regulation of the nervous system pathways involved in pain promotion and inhibition. In addition, the occurrence of pain is associated with depression and anxiety. We found that there are many factors affecting pain, in addition to inflammatory factors, glutamate receptor may be the possible cause of long-term chronic pain caused by IA. N-methyl-d-aspartate receptor subunit 2B (NR2B) has been reported to involved in IA and nervous system diseases, especially peripheral neuropathic pain. In this review, we summarized the mechanisms of the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor in peripheral nerve sensitization during IA and chronic pain.
Collapse
Affiliation(s)
- Yu Meng
- Department of Pain, The Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Hai Li Shen
- Department of Rheumatology and Immunology, The Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| |
Collapse
|
26
|
Benske TM, Mu TW, Wang YJ. Protein quality control of N-methyl-D-aspartate receptors. Front Cell Neurosci 2022; 16:907560. [PMID: 35936491 PMCID: PMC9352929 DOI: 10.3389/fncel.2022.907560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated cation channels that mediate excitatory neurotransmission and are critical for synaptic development and plasticity in the mammalian central nervous system (CNS). Functional NMDARs typically form via the heterotetrameric assembly of GluN1 and GluN2 subunits. Variants within GRIN genes are implicated in various neurodevelopmental and neuropsychiatric disorders. Due to the significance of NMDAR subunit composition for regional and developmental signaling at synapses, properly folded receptors must reach the plasma membrane for their function. This review focuses on the protein quality control of NMDARs. Specifically, we review the quality control mechanisms that ensure receptors are correctly folded and assembled within the endoplasmic reticulum (ER) and trafficked to the plasma membrane. Further, we discuss disease-associated variants that have shown disrupted NMDAR surface expression and function. Finally, we discuss potential targeted pharmacological and therapeutic approaches to ameliorate disease phenotypes by enhancing the expression and surface trafficking of subunits harboring disease-associated variants, thereby increasing their incorporation into functional receptors.
Collapse
Affiliation(s)
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
27
|
Zeng Y, Zheng Y, Zhang T, Ye F, Zhan L, Kou Z, Zhu S, Gao Z. Identification of a Subtype-Selective Allosteric Inhibitor of GluN1/GluN3 NMDA Receptors. Front Pharmacol 2022; 13:888308. [PMID: 35754487 PMCID: PMC9218946 DOI: 10.3389/fphar.2022.888308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are Ca2+-permeable ionotropic glutamate receptors (iGluRs) in the central nervous system and play important roles in neuronal development and synaptic plasticity. Conventional NMDARs, which typically comprise GluN1 and GluN2 subunits, have different biophysical properties than GluN3-containing NMDARs: GluN3-containing NMDARs have smaller unitary conductance, less Ca2+-permeability and lower Mg2+-sensitivity than those of conventional NMDARs. However, there are very few specific modulators for GluN3-containing NMDARs. Here, we developed a cell-based high-throughput calcium assay and identified 3-fluoro-1,2-phenylene bis (3-hydroxybenzoate) (WZB117) as a relatively selective inhibitor of GluN1/GluN3 receptors. The IC50 value of WZB117 on GluN1/GluN3A receptors expressed in HEK-293 cells was 1.15 ± 0.34 μM. Consistently, WZB117 exhibited strong inhibitory activity against glycine-induced currents in the presence of CGP-78608 but only slightly affected the NMDA-, KA- and AMPA-induced currents in the acutely isolated rat hippocampal neurons. Among the four types of endogenous currents, only the first one is primarily mediated by GluN1/GluN3 receptors. Mechanistic studies showed that WZB117 inhibited the GluN1/GluN3A receptors in a glycine-, voltage- and pH-independent manner, suggesting it is an allosteric modulator. Site-directed mutagenesis and chimera construction further revealed that WZB117 may act on the GluN3A pre-M1 region with key determinants different from those of previously identified modulators. Together, our study developed an efficient method to discover modulators of GluN3-containing NMDARs and characterized WZB117 as a novel allosteric inhibitor of GluN1/GluN3 receptors.
Collapse
Affiliation(s)
- Yue Zeng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tongtong Zhang
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zengwei Kou
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shujia Zhu
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
28
|
Han W, Yuan H, Allen JP, Kim S, Shaulsky GH, Perszyk RE, Traynelis SF, Myers SJ. Opportunities for Precision Treatment of GRIN2A and GRIN2B Gain-of-Function Variants in Triheteromeric N-Methyl-D-Aspartate Receptors. J Pharmacol Exp Ther 2022; 381:54-66. [PMID: 35110392 PMCID: PMC11046977 DOI: 10.1124/jpet.121.001000] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are tetrameric assemblies of two glutamate N-methyl-D-aspartate receptor subunits, GluN1 and two GluN2, that mediate excitatory synaptic transmission in the central nervous system. Four genes (GRIN2A-D) encode four distinct GluN2 subunits (GluN2A-D). Thus, NMDARs can be diheteromeric assemblies of two GluN1 plus two identical GluN2 subunits, or triheteromeric assemblies of two GluN1 subunits plus two different GluN2 subunits. An increasing number of de novo GRIN variants have been identified in patients with neurologic conditions and with GRIN2A and GRIN2B harboring the vast majority (> 80%) of variants in these cases. These variants produce a wide range of effects on NMDAR function depending upon its subunit subdomain location and additionally on the subunit composition of diheteromeric versus triheteromeric NMDARs. Increasing evidence implicates triheteromeric GluN1/GluN2A/GluN2B receptors as a major component of the NMDAR pool in the adult cortex and hippocampus. Here, we explore the ability of GluN2A- and GluN2B-selective inhibitors to reduce excess current flow through triheteromeric GluN1/GluN2A/GluN2B receptors that contain one copy of GRIN2A or GRIN2B gain-of-function variants. Our data reveal a broad range of sensitivities for variant-containing triheteromeric receptors to subunit-selective inhibitors, with some variants still showing strong sensitivity to inhibitors, whereas others are relatively insensitive. Most variants, however, retain sensitivity to non-selective channel blockers and the competitive antagonist D-(-)-2-amino-5-phosphonopentanoic acid. These results suggest that with comprehensive analysis, certain disease-related GRIN2A and GRIN2B variants can be identified as potential targets for subunit-selective modulation and potential therapeutic gain. SIGNIFICANCE STATEMENT: Triheteromeric NMDA receptors that contain one copy each of the GluN2A and GluN2B subunits show intermediate sensitivity to GluN2A- and GluN2B-selective inhibitors, making these compounds candidates for attenuating overactive, GRIN variant-containing NMDA receptors associated with neurological conditions. We show that functional evaluation of variant properties with inhibitor pharmacology can support selection of a subset of variants for which GluN2 subunit-selective agents remain effective inhibitors of variant-containing triheteromeric NMDA receptors.
Collapse
Affiliation(s)
- Wei Han
- Department of Pharmacology and Chemical Biology (W.H., H.Y., J.P.A., S.K., G.H.S., R.E.P., S.F.T., S.J.M.) and Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Emory University, Atlanta, Georgia (W.H., H.Y., J.P.A., S.K., G.H.S., S.F.T., S.J.M.)
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology (W.H., H.Y., J.P.A., S.K., G.H.S., R.E.P., S.F.T., S.J.M.) and Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Emory University, Atlanta, Georgia (W.H., H.Y., J.P.A., S.K., G.H.S., S.F.T., S.J.M.)
| | - James P Allen
- Department of Pharmacology and Chemical Biology (W.H., H.Y., J.P.A., S.K., G.H.S., R.E.P., S.F.T., S.J.M.) and Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Emory University, Atlanta, Georgia (W.H., H.Y., J.P.A., S.K., G.H.S., S.F.T., S.J.M.)
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology (W.H., H.Y., J.P.A., S.K., G.H.S., R.E.P., S.F.T., S.J.M.) and Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Emory University, Atlanta, Georgia (W.H., H.Y., J.P.A., S.K., G.H.S., S.F.T., S.J.M.)
| | - Gil H Shaulsky
- Department of Pharmacology and Chemical Biology (W.H., H.Y., J.P.A., S.K., G.H.S., R.E.P., S.F.T., S.J.M.) and Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Emory University, Atlanta, Georgia (W.H., H.Y., J.P.A., S.K., G.H.S., S.F.T., S.J.M.)
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology (W.H., H.Y., J.P.A., S.K., G.H.S., R.E.P., S.F.T., S.J.M.) and Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Emory University, Atlanta, Georgia (W.H., H.Y., J.P.A., S.K., G.H.S., S.F.T., S.J.M.)
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology (W.H., H.Y., J.P.A., S.K., G.H.S., R.E.P., S.F.T., S.J.M.) and Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Emory University, Atlanta, Georgia (W.H., H.Y., J.P.A., S.K., G.H.S., S.F.T., S.J.M.)
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology (W.H., H.Y., J.P.A., S.K., G.H.S., R.E.P., S.F.T., S.J.M.) and Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Emory University, Atlanta, Georgia (W.H., H.Y., J.P.A., S.K., G.H.S., S.F.T., S.J.M.)
| |
Collapse
|
29
|
Kysilov B, Hrcka Krausova B, Vyklicky V, Smejkalova T, Korinek M, Horak M, Chodounska H, Kudova E, Cerny J, Vyklicky L. Pregnane-based steroids are novel positive NMDA receptor modulators that may compensate for the effect of loss-of-function disease-associated GRIN mutations. Br J Pharmacol 2022; 179:3970-3990. [PMID: 35318645 DOI: 10.1111/bph.15841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic plasticity, and mutations in human genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. Compounds with a positive allosteric effect are thought to compensate for reduced receptor function. EXPERIMENTAL APPROACH We have used whole-cell patch-clamp electrophysiology on recombinant rat NMDARs and human variants found in individuals with neuropsychiatric disorders, in combination with in silico modelling, to explore the site of action of novel epipregnanolone-based NMDAR modulators. KEY RESULTS Analysis of the action of 4-(20-oxo-5β-pregnan-3β-yl) butanoic acid (EPA-But) at the NMDAR indicates that the effect of this steroid with a "bent" structure is different from that of cholesterol and oxysterols and shares a disuse-dependent mechanism of NMDAR potentiation with the "planar" steroid 20-oxo-pregn-5-en-3β-yl sulfate (PE-S). The potentiating effects of EPA-But and PE-S are additive. Alanine scan mutagenesis identified residues that reduce the potentiating effect of EPA-But. No correlation was found between the effects of EPA-But and PE-S at mutated receptors that were less sensitive to either steroid. The relative degree of potentiation induced by the two steroids also differed in human NMDARs carrying rare variants of hGluN1 or hGluN2B subunits found in individuals with neuropsychiatric disorders, including intellectual disability, epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION AND IMPLICATIONS Our results show novel sites of action for pregnanolones at the NMDAR and provide an opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with glutamatergic system hypofunction.
Collapse
Affiliation(s)
- Bohdan Kysilov
- Institute of Physiology CAS, Prague 4, Czech Republic.,Third Faculty of Medicine, Charles University in Prague, Prague 10, Czech Republic
| | | | | | | | | | - Martin Horak
- Institute of Physiology CAS, Prague 4, Czech Republic
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry CAS, Prague 6, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry CAS, Prague 6, Czech Republic
| | - Jiri Cerny
- Institute of Physiology CAS, Prague 4, Czech Republic
| | | |
Collapse
|
30
|
Park DK, Stein IS, Zito K. Ion flux-independent NMDA receptor signaling. Neuropharmacology 2022; 210:109019. [PMID: 35278420 DOI: 10.1016/j.neuropharm.2022.109019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/01/2023]
Abstract
NMDA receptors play vital roles in a broad array of essential brain functions, from synaptic transmission and plasticity to learning and memory. Historically, the fundamental roles of NMDARs were attributed to their specialized properties of ion flux. More recently, it has become clear that NMDARs also signal in an ion flux-independent manner. Here, we review these non-ionotropic NMDAR signaling mechanisms that have been reported to contribute to a broad array of neuronal functions and dysfunctions including synaptic transmission and plasticity, cell death and survival, and neurological disorders.
Collapse
Affiliation(s)
- Deborah K Park
- Center for Neuroscience, University of California, Davis, CA, 95618, USA
| | - Ivar S Stein
- Center for Neuroscience, University of California, Davis, CA, 95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA, 95618, USA.
| |
Collapse
|
31
|
Elmasri M, Hunter DW, Winchester G, Bates EE, Aziz W, Van Der Does DM, Karachaliou E, Sakimura K, Penn AC. Common synaptic phenotypes arising from diverse mutations in the human NMDA receptor subunit GluN2A. Commun Biol 2022; 5:174. [PMID: 35228668 PMCID: PMC8885697 DOI: 10.1038/s42003-022-03115-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Dominant mutations in the human gene GRIN2A, encoding NMDA receptor (NMDAR) subunit GluN2A, make a significant and growing contribution to the catalogue of published single-gene epilepsies. Understanding the disease mechanism in these epilepsy patients is complicated by the surprising diversity of effects that the mutations have on NMDARs. Here we have examined the cell-autonomous effect of five GluN2A mutations, 3 loss-of-function and 2 gain-of-function, on evoked NMDAR-mediated synaptic currents (NMDA-EPSCs) in CA1 pyramidal neurons in cultured hippocampal slices. Despite the mutants differing in their functional incorporation at synapses, prolonged NMDA-EPSC current decays (with only marginal changes in charge transfer) were a common effect for both gain- and loss-of-function mutants. Modelling NMDA-EPSCs with mutant properties in a CA1 neuron revealed that the effect of GRIN2A mutations can lead to abnormal temporal integration and spine calcium dynamics during trains of concerted synaptic activity. Investigations beyond establishing the molecular defects of GluN2A mutants are much needed to understand their impact on synaptic transmission. The cell-autonomous effect of five severe loss- or gain-of-function GluN2A (NMDA receptor) mutations is assessed on evoked NMDAR-mediated synaptic currents in CA1 pyramidal neurons in cultured mouse hippocampal slices. Data and modelling suggest that mutant-like NMDA-EPSCs can lead to abnormal temporal summation and spine calcium dynamics.
Collapse
Affiliation(s)
- Marwa Elmasri
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Daniel William Hunter
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Giles Winchester
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Ella Emine Bates
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Wajeeha Aziz
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | | | - Eirini Karachaliou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Andrew Charles Penn
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
32
|
Charron JG, Hernandez A, Bilinovich SM, Vogt DL, Bedinger LA, Seaver LH, Williams M, Devries S, Campbell DB, Bupp CP, Prokop JW. N-methyl-d-aspartate (NMDA) receptor genetics: The power of paralog homology and protein dynamics in defining dominant genetic variants. Am J Med Genet A 2022; 188:556-568. [PMID: 34726335 PMCID: PMC10472328 DOI: 10.1002/ajmg.a.62554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022]
Abstract
Predicting genotype-to-phenotype correlations from genomic variants has been challenging, particularly for genes that have a complex balance of dominant and recessive inheritance for phenotypes. Variants in NMDA receptor components GRIN1, GRIN2A, and GRIN2B cause a myriad of dominant disease phenotypes, with the most common being epilepsy and autism spectrum disorder. Starting from the analysis of a variant of uncertain significance (VUS, GRIN2A G760S), we realized the need for tools to map dominant variants for the components of the NMDA receptor. Some variants within GRIN1, GRIN2A, and GRIN2B exert dominant epilepsy and developmental delay, yet other amino acid variants are conserved and predicted to alter protein function but do not have dominant phenotypes. Common variant annotation tools are not powered to determine pathogenic dominant outcomes. To address this gap, we integrated sequence and structural analyses for GRIN1, GRIN2A, and GRIN2B. Using this approach, we determined that paralog homology mapping and topology can segregate dominant variants, with an elevation of intermolecular contacts between the subunits. Furthermore, demonstrating the general utility of our methodology, we show that 25 VUS within ClinVar also reach a dominant variant annotation, including the GRIN2A G760S variant. Our work suggests paralog homology and protein topology as a powerful strategy within the receptor complex to resolve dominant genetic variants relative to variants that would fit a recessive inheritance, requiring two damaging variants. These strategies should be tested in additional dominant genetic disorders to determine the broader utility.
Collapse
Affiliation(s)
- Jacob G Charron
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, MI. 49503
- Department of Biology, Calvin University, Grand Rapids MI 49506, USA
| | - Angel Hernandez
- Pediatric Neurology, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
| | - Stephanie M Bilinovich
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, MI. 49503
- Center for Research in Autism, Intellectual, and other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI, 48824, USA
| | - Daniel L Vogt
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, MI. 49503
- Center for Research in Autism, Intellectual, and other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura A Bedinger
- Division of Medical Genetics, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
| | - Laurie H Seaver
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, MI. 49503
- Division of Medical Genetics, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
| | - Michael Williams
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, MI. 49503
- Center for Research in Autism, Intellectual, and other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI, 48824, USA
| | - Seth Devries
- Pediatric Neurology, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
| | - Daniel B Campbell
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, MI. 49503
- Center for Research in Autism, Intellectual, and other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI, 48824, USA
| | - Caleb P Bupp
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, MI. 49503
- Division of Medical Genetics, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
| | - Jeremy W Prokop
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, MI. 49503
- Center for Research in Autism, Intellectual, and other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI, 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
33
|
Gale JR, Kosobucki GJ, Hartnett-Scott KA, Aizenman E. Imprecision in Precision Medicine: Differential Response of a Disease-Linked GluN2A Mutant to NMDA Channel Blockers. Front Pharmacol 2021; 12:773455. [PMID: 34776984 PMCID: PMC8581401 DOI: 10.3389/fphar.2021.773455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in N-methyl-d-aspartate receptors (NMDAR) subunits have been implicated in a growing number of human neurodevelopmental disorders. Previously, a de novo mutation in GRIN2A, encoding the GluN2A subunit, was identified in a patient with severe epilepsy and developmental delay. This missense mutation, which leads to GluN2A-P552R, produces significant dendrotoxicity in transfected rodent cortical neurons, as evidenced by pronounced dendritic blebbing. This injurious process can be prevented by treatment with the NMDA antagonist memantine. Given the increasing use of FDA approved NMDA antagonists to treat patients with GRIN mutations, who may have seizures refractory to traditional anti-epileptic drugs, we investigated whether additional NMDA antagonists were effective in attenuating neurotoxicity associated with GluN2A-P552R expression. Intriguingly, we found that while treatment with memantine can effectively block GluN2A-P552R-mediated dendrotoxicity, treatment with ketamine does not, despite the fact that both drugs work as open NMDAR channel blockers. Interestingly, we found that neurons expressing GluN2A-P552R were more vulnerable to an excitotoxic insult-an effect that, in this case, could be equally rescued by both memantine and ketamine. These findings suggest that GluN2A-P552R induced dendrotoxicity and increased vulnerability to excitotoxic stress are mediated through two distinct mechanisms. The differences between memantine and ketamine in halting GluN2A-P552R dendrotoxicity could not be explained by NMDA antagonist induced changes in MAP or Src kinase activation, previously shown to participate in NMDA-induced excitotoxicity. Our findings strongly suggest that not all NMDA antagonists may be of equal clinical utility in treating GRIN2A-mediated neurological disorders, despite a shared mechanism of action.
Collapse
Affiliation(s)
- Jenna R Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gabrielle J Kosobucki
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Karen A Hartnett-Scott
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
34
|
Liu XR, Xu XX, Lin SM, Fan CY, Ye TT, Tang B, Shi YW, Su T, Li BM, Yi YH, Luo JH, Liao WP. GRIN2A Variants Associated With Idiopathic Generalized Epilepsies. Front Mol Neurosci 2021; 14:720984. [PMID: 34720871 PMCID: PMC8551482 DOI: 10.3389/fnmol.2021.720984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Objective: The objective of this study is to explore the role of GRIN2A gene in idiopathic generalized epilepsies and the potential underlying mechanism for phenotypic variation. Methods: Whole-exome sequencing was performed in a cohort of 88 patients with idiopathic generalized epilepsies. Electro-physiological alterations of the recombinant N-methyl-D-aspartate receptors (NMDARs) containing GluN2A mutants were examined using two-electrode voltage-clamp recordings. The alterations of protein expression were detected by immunofluorescence staining and biotinylation. Previous studies reported that epilepsy related GRIN2A missense mutations were reviewed. The correlation among phenotypes, functional alterations, and molecular locations was analyzed. Results: Three novel heterozygous missense GRIN2A mutations (c.1770A > C/p.K590N, c.2636A > G/p.K879R, and c.3199C > T/p.R1067W) were identified in three unrelated cases. Electrophysiological analysis demonstrated R1067W significantly increased the current density of GluN1/GluN2A NMDARs. Immunofluorescence staining indicated GluN2A mutants had abundant distribution in the membrane and cytoplasm. Western blotting showed the ratios of surface and total expression of the three GluN2A-mutants were significantly increased comparing to the wild type. Further analysis on the reported missense mutations demonstrated that mutations with severe gain-of-function were associated with epileptic encephalopathy, while mutations with mild gain of function were associated with mild phenotypes, suggesting a quantitative correlation between gain-of-function and phenotypic severity. The mutations located around transmembrane domains were more frequently associated with severe phenotypes and absence seizure-related mutations were mostly located in carboxyl-terminal domain, suggesting molecular sub-regional effects. Significance: This study revealed GRIN2A gene was potentially a candidate pathogenic gene of idiopathic generalized epilepsies. The functional quantitative correlation and the molecular sub-regional implication of mutations helped in explaining the relatively mild clinical phenotypes and incomplete penetrance associated with GRIN2A variants.
Collapse
Affiliation(s)
- Xiao-Rong Liu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xing-Xing Xu
- Department of Physiology, Wenzhou Medical University, Wenzhou, China
| | - Si-Mei Lin
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cui-Ying Fan
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting-Ting Ye
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Tang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi-Wu Shi
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Su
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Mei Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Hong Luo
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Ping Liao
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Benke TA, Park K, Krey I, Camp CR, Song R, Ramsey AJ, Yuan H, Traynelis SF, Lemke J. Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs. Neuropharmacology 2021; 199:108805. [PMID: 34560056 PMCID: PMC8525401 DOI: 10.1016/j.neuropharm.2021.108805] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023]
Abstract
Considerable genetic variation of N-methyl-d-aspartate receptors (NMDARs) has recently become apparent, with many hundreds of de novo variants identified through widely available clinical genetic testing. Individuals with GRIN variants present with neurological conditions such as epilepsy, autism, intellectual disability (ID), movement disorders, schizophrenia and behavioral disorders. Determination of the functional consequence of genetic variation for NMDARs should lead to precision therapeutics. Furthermore, genetic animal models harboring human variants have the potential to reveal mechanisms that are shared among different neurological conditions, providing strategies that may allow treatment of individuals who are refractory to therapy. Preclinical studies in animal models and small open label trials in humans support this idea. However, additional functional data for variants and animal models corresponding to multiple individuals with the same genotype are needed to validate this approach and to lead to thoughtfully designed, randomized, placebo-controlled clinical trials, which could provide data in order to determine safety and efficacy of potential precision therapeutics.
Collapse
Affiliation(s)
- Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology, and Otolaryngology, University of Colorado, School of Medicine and Children's Hospital Colorado, United States.
| | - Kristen Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, United States
| | - Ilona Krey
- Institute of Human Genetics, Leipzig Medical Center, Leipzig, Germany
| | - Chad R Camp
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Rui Song
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Amy J Ramsey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Johannes Lemke
- Institute of Human Genetics, Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
36
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
37
|
Zhang J, Tang W, Bhatia NK, Xu Y, Paudyal N, Liu D, Kim S, Song R, XiangWei W, Shaulsky G, Myers SJ, Dobyns W, Jayaraman V, Traynelis SF, Yuan H, Bozarth X. A de novo GRIN1 Variant Associated With Myoclonus and Developmental Delay: From Molecular Mechanism to Rescue Pharmacology. Front Genet 2021; 12:694312. [PMID: 34413877 PMCID: PMC8369916 DOI: 10.3389/fgene.2021.694312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) are highly expressed in brain and play important roles in neurodevelopment and various neuropathologic conditions. Here, we describe a new phenotype in an individual associated with a novel de novo deleterious variant in GRIN1 (c.1595C>A, p.Pro532His). The clinical phenotype is characterized with developmental encephalopathy, striking stimulus-sensitive myoclonus, and frontal lobe and frontal white matter hypoplasia, with no apparent seizures detected. NMDARs that contained the P532H within the glycine-binding domain of GluN1 with either the GluN2A or GluN2B subunits were evaluated for changes in their pharmacological and biophysical properties, which surprisingly revealed only modest changes in glycine potency but a significant decrease in glutamate potency, an increase in sensitivity to endogenous zinc inhibition, a decrease in response to maximally effective concentrations of agonists, a shortened synaptic-like response time course, a decreased channel open probability, and a reduced receptor cell surface expression. Molecule dynamics simulations suggested that the variant can lead to additional interactions across the dimer interface in the agonist-binding domains, resulting in a more open GluN2 agonist-binding domain cleft, which was also confirmed by single-molecule fluorescence resonance energy transfer measurements. Based on the functional deficits identified, several positive modulators were evaluated to explore potential rescue pharmacology.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nidhi K. Bhatia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Nabina Paudyal
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Ding Liu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Rui Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Gil Shaulsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Scott J. Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - William Dobyns
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Xiuhua Bozarth
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Division of Pediatric Neurology, Department of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| |
Collapse
|
38
|
Perszyk RE, Kristensen AS, Lyuboslavsky P, Traynelis SF. Three-dimensional missense tolerance ratio analysis. Genome Res 2021; 31:1447-1461. [PMID: 34301626 PMCID: PMC8327912 DOI: 10.1101/gr.275528.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
A wealth of genetic information is available describing single-nucleotide variants in the human population that appear to be well-tolerated and in and of themselves do not confer disease. These variant data sets contain signatures about the protein structure-function relationships and provide an unbiased view of various protein functions in the context of human health. This information can be used to determine regional intolerance to variation, defined as the missense tolerance ratio (MTR), which is an indicator of stretches of the polypeptide chain that can tolerate changes without compromising protein function in a manner that impacts human health. This approach circumvents the lack of comprehensive data by averaging the data from adjacent residues on the polypeptide chain. We reasoned that many motifs in proteins consist of nonadjacent residues, but together function as a unit. We therefore developed an approach to analyze nearest neighbors in three-dimensional space as determined by crystallography rather than on the polypeptide chain. We used members of the GRIN gene family that encode subunits of NMDA-type ionotropic glutamate receptors (iGluRs) to exemplify the differences between these methods. Our method, 3DMTR, provides new information about regions of intolerance within iGluRs, allows consideration of protein-protein interfaces in multimeric proteins, and moves this important research tool from one-dimensional analysis to a structurally relevant tool. We validate the improved 3DMTR score by showing that it more accurately classifies the functional consequences of a set of newly measured and published point mutations of Grin family genes than existing methods.
Collapse
Affiliation(s)
- Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Anders S Kristensen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Polina Lyuboslavsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
39
|
Landry CR, Yip MC, Kolb I, Stoy WA, Gonzalez MM, Forest CR. Method for Rapid Enzymatic Cleaning for Reuse of Patch Clamp Pipettes: Increasing Throughput by Eliminating Manual Pipette Replacement between Patch Clamp Attempts. Bio Protoc 2021; 11:e4085. [PMID: 34395724 PMCID: PMC8329470 DOI: 10.21769/bioprotoc.4085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/02/2022] Open
Abstract
The whole-cell patch-clamp method is a gold standard for single-cell analysis of electrical activity, cellular morphology, and gene expression. Prior to our discovery that patch-clamp pipettes could be cleaned and reused, experimental throughput and automation were limited by the need to replace pipettes manually after each experiment. This article presents an optimized protocol for pipette cleaning, which enables it to be performed quickly (< 30 s), resulting in a high yield of whole-cell recording success rate (> 90%) for over 100 reuses of a single pipette. For most patch-clamp experiments (< 30 whole-cell recordings per day), this method enables a single pipette to be used for an entire day of experiments. In addition, we describe easily implementable hardware and software as well as troubleshooting tips to help other labs implement this method in their own experiments. Pipette cleaning enables patch-clamp experiments to be performed with higher throughput, whether manually or in an automated fashion, by eliminating the tedious and skillful task of replacing pipettes. From our experience with numerous electrophysiology laboratories, pipette cleaning can be integrated into existing patch-clamp setups in approximately one day using the hardware and software described in this article. Graphic abstract: Rapid enzymatic cleaning for reuse of patch-clamp pipettes.
Collapse
Affiliation(s)
- Corey R. Landry
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Mighten C. Yip
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | | | - Mercedes M. Gonzalez
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Craig R. Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
40
|
Kellner S, Abbasi A, Carmi I, Heinrich R, Garin-Shkolnik T, Hershkovitz T, Giladi M, Haitin Y, Johannesen KM, Steensbjerre Møller R, Berlin S. Two de novo GluN2B mutations affect multiple NMDAR-functions and instigate severe pediatric encephalopathy. eLife 2021; 10:67555. [PMID: 34212862 PMCID: PMC8260228 DOI: 10.7554/elife.67555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
The N-methyl-D-aspartate receptors (NMDARs; GluNRS) are glutamate receptors, commonly located at excitatory synapses. Mutations affecting receptor function often lead to devastating neurodevelopmental disorders. We have identified two toddlers with different heterozygous missense mutations of the same, and highly conserved, glycine residue located in the ligand-binding-domain of GRIN2B: G689C and G689S. Structure simulations suggest severely impaired glutamate binding, which we confirm by functional analysis. Both variants show three orders of magnitude reductions in glutamate EC50, with G689S exhibiting the largest reductions observed for GRIN2B (~2000-fold). Moreover, variants multimerize with, and upregulate, GluN2Bwt-subunits, thus engendering a strong dominant-negative effect on mixed channels. In neurons, overexpression of the variants instigates suppression of synaptic GluNRs. Lastly, while exploring spermine potentiation as a potential treatment, we discovered that the variants fail to respond due to G689’s novel role in proton-sensing. Together, we describe two unique variants with extreme effects on channel function. We employ protein-stability measures to explain why current (and future) LBD mutations in GluN2B primarily instigate Loss-of-Function.
Collapse
Affiliation(s)
- Shai Kellner
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abeer Abbasi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Rikke Steensbjerre Møller
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
41
|
Epileptic Mechanisms Shared by Alzheimer's Disease: Viewed via the Unique Lens of Genetic Epilepsy. Int J Mol Sci 2021; 22:ijms22137133. [PMID: 34281185 PMCID: PMC8268161 DOI: 10.3390/ijms22137133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Our recent work on genetic epilepsy (GE) has identified common mechanisms between GE and neurodegenerative diseases including Alzheimer's disease (AD). Although both disorders are seemingly unrelated and occur at opposite ends of the age spectrum, it is likely there are shared mechanisms and studies on GE could provide unique insights into AD pathogenesis. Neurodegenerative diseases are typically late-onset disorders, but the underlying pathology may have already occurred long before the clinical symptoms emerge. Pathophysiology in the early phase of these diseases is understudied but critical for developing mechanism-based treatment. In AD, increased seizure susceptibility and silent epileptiform activity due to disrupted excitatory/inhibitory (E/I) balance has been identified much earlier than cognition deficit. Increased epileptiform activity is likely a main pathology in the early phase that directly contributes to impaired cognition. It is an enormous challenge to model the early phase of pathology with conventional AD mouse models due to the chronic disease course, let alone the complex interplay between subclinical nonconvulsive epileptiform activity, AD pathology, and cognition deficit. We have extensively studied GE, especially with gene mutations that affect the GABA pathway such as mutations in GABAA receptors and GABA transporter 1. We believe that some mouse models developed for studying GE and insights gained from GE could provide unique opportunity to understand AD. These include the pathology in early phase of AD, endoplasmic reticulum (ER) stress, and E/I imbalance as well as the contribution to cognitive deficit. In this review, we will focus on the overlapping mechanisms between GE and AD, the insights from mutations affecting GABAA receptors, and GABA transporter 1. We will detail mechanisms of E/I imbalance and the toxic epileptiform generation in AD, and the complex interplay between ER stress, impaired membrane protein trafficking, and synaptic physiology in both GE and AD.
Collapse
|
42
|
Alhowail AH, Pinky PD, Eggert M, Bloemer J, Woodie LN, Buabeid MA, Bhattacharya S, Jasper SL, Bhattacharya D, Dhanasekaran M, Escobar M, Arnold RD, Suppiramaniam V. Doxorubicin induces dysregulation of AMPA receptor and impairs hippocampal synaptic plasticity leading to learning and memory deficits. Heliyon 2021; 7:e07456. [PMID: 34296005 PMCID: PMC8282984 DOI: 10.1016/j.heliyon.2021.e07456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent used widely to treat a variety of malignant cancers. However, Dox chemotherapy is associated with several adverse effects, including "chemobrain," the observation that cancer patients exhibit through learning and memory difficulties extending even beyond treatment. This study investigated the effect of Dox treatment on learning and memory as well as hippocampal synaptic plasticity. Dox-treated mice (5 mg/kg weekly x 5) demonstrated impaired performance in the Y-maze spatial memory task and a significant reduction in hippocampal long-term potentiation. The deficit in synaptic plasticity was mirrored by deficits in the functionality of synaptic `α-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) channels, including reduced probability of opening, decreased dwell open time, and increased closed times. Furthermore, a reduction in the AMPAR subunit GluA1 level, its downstream signaling molecule Ca2+/calmodulin-dependent protein kinase (CaMKII), and brain-derived neurotrophic factor (BDNF) were observed. This was also accompanied by an increase in extracellular signal regulated kinase (ERK) and protein kinase B (AKT) activation. Together these data suggest that Dox-induced cognitive impairments are at least partially due to alterations in the expression and functionality of the glutamatergic AMPAR system.
Collapse
Affiliation(s)
- Ahmad H. Alhowail
- Department of Pharmacology and Toxicology, Qassim University, Buraydah, Saudi Arabia
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Matthew Eggert
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, USA
| | - Lauren N. Woodie
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, Alabama, USA
- Institute for Diabetes, Obesity and Metabolism, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manal A. Buabeid
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Shanese L. Jasper
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | | | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Martha Escobar
- Department of Psychology, Oakland University, Rochester, MI, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| |
Collapse
|
43
|
Xu Y, Song R, Chen W, Strong K, Shrey D, Gedela S, Traynelis SF, Zhang G, Yuan H. Recurrent seizure-related GRIN1 variant: Molecular mechanism and targeted therapy. Ann Clin Transl Neurol 2021; 8:1480-1494. [PMID: 34227748 PMCID: PMC8283169 DOI: 10.1002/acn3.51406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Genetic variants in the GRIN genes that encode N-methyl-D-aspartate receptor (NMDAR) subunits have been identified in various neurodevelopmental disorders, including epilepsy. We identified a GRIN1 variant from an individual with early-onset epileptic encephalopathy, evaluated functional changes to NMDAR properties caused by the variant, and screened FDA-approved therapeutic compounds as potential treatments for the patient. METHODS Whole exome sequencing identified a missense variant in GRIN1. Electrophysiological recordings were made from Xenopus oocytes and transfected HEK cells to determine the NMDAR biophysical properties as well as the sensitivity to agonists and FDA-approved drugs that inhibit NMDARs. A beta-lactamase reporter assay in transfected HEK cells evaluated the effects of the variant on the NMDAR surface expression. RESULTS A recurrent de novo missense variant in GRIN1 (c.1923G>A, p.Met641Ile), which encodes the GluN1 subunit, was identified in a pediatric patient with drug-resistant seizures and early-onset epileptic encephalopathy. In vitro analysis indicates that GluN1-M641I containing NMDARs showed enhanced agonist potency and reduced Mg2+ block, which may be associated with the patient's phenotype. Results from screening FDA-approved drugs suggested that GluN1-M641I containing NMDARs are more sensitive to the NMDAR channel blockers memantine, ketamine, and dextromethorphan compared to the wild-type receptors. The addition of memantine to the seizure treatment regimen significantly reduced the patient's seizure burden. INTERPRETATION Our finding contributes to the understanding of the phenotype-genotype correlations of patients with GRIN1 gene variants, provides a molecular mechanism underlying the actions of this variant, and explores therapeutic strategies for treating GRIN1-related neurological conditions.
Collapse
Affiliation(s)
- Yuchen Xu
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Rui Song
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wenjuan Chen
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Present address:
Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Katie Strong
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Daniel Shrey
- Division of NeurologyChildren’s Hospital of Orange CountyOrangeCaliforniaUSA
- Department of PediatricsUniversity of California IrvineIrvineCaliforniaUSA
| | - Satyanarayana Gedela
- Division of NeurologyDepartment of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Functional Evaluation of Rare Variants (CFERV)Emory University School of MedicineAtlantaGeorgiaUSA
| | - Guojun Zhang
- Division of NeurologyDepartment of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Functional Evaluation of Rare Variants (CFERV)Emory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
44
|
McDaniel MJ, Ogden KK, Kell SA, Burger PB, Liotta DC, Traynelis SF. NMDA receptor channel gating control by the pre-M1 helix. J Gen Physiol 2021; 152:151592. [PMID: 32221541 PMCID: PMC7141592 DOI: 10.1085/jgp.201912362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/09/2019] [Accepted: 02/14/2020] [Indexed: 01/10/2023] Open
Abstract
The NMDA receptor (NMDAR) is an ionotropic glutamate receptor formed from the tetrameric assembly of GluN1 and GluN2 subunits. Within the flexible linker between the agonist binding domain (ABD) and the M1 helix of the pore-forming transmembrane helical bundle lies a two-turn, extracellular pre-M1 helix positioned parallel to the plasma membrane and in van der Waals contact with the M3 helix thought to constitute the channel gate. The pre-M1 helix is tethered to the bilobed ABD, where agonist-induced conformational changes initiate activation. Additionally, it is a locus for de novo mutations associated with neurological disorders, is near other disease-associated de novo sites within the transmembrane domain, and is a structural determinant of subunit-selective modulators. To investigate the role of the pre-M1 helix in channel gating, we performed scanning mutagenesis across the GluN2A pre-M1 helix and recorded whole-cell macroscopic and single channel currents from HEK293 cell-attached patches. We identified two residues at which mutations perturb channel open probability, the mean open time, and the glutamate deactivation time course. We identified a subunit-specific network of aromatic amino acids located in and around the GluN2A pre-M1 helix to be important for gating. Based on these results, we are able to hypothesize about the role of the pre-M1 helix in other NMDAR subunits based on sequence and structure homology. Our results emphasize the role of the pre-M1 helix in channel gating, implicate the surrounding amino acid environment in this mechanism, and suggest unique subunit-specific contributions of pre-M1 helices to GluN1 and GluN2 gating.
Collapse
Affiliation(s)
- Miranda J McDaniel
- Department of Pharmacology, Rollins Research Center, Emory University, Atlanta, GA
| | - Kevin K Ogden
- Department of Pharmacology, Rollins Research Center, Emory University, Atlanta, GA
| | - Steven A Kell
- Department of Pharmacology, Rollins Research Center, Emory University, Atlanta, GA.,Department of Chemistry, Emory University, Atlanta, GA
| | | | | | - Stephen F Traynelis
- Department of Pharmacology, Rollins Research Center, Emory University, Atlanta, GA
| |
Collapse
|
45
|
Motelow JE, Povysil G, Dhindsa RS, Stanley KE, Allen AS, Feng YCA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Cusick C, Singh T, Heyne H, Byrnes AE, Churchhouse C, Watts N, Solomonson M, Lal D, Gupta N, Neale BM, Cavalleri GL, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Hakonarson H, Heinzen EL, Helbig I, Kwan P, Marson AG, Petrovski S, Kamalakaran S, Sisodiya SM, Stewart R, Weckhuysen S, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, Krause R, May P, McKenna K, Regan BM, Bennett CA, Leu C, Leech SL, O’Brien TJ, Todaro M, Stamberger H, Andrade DM, Ali QZ, Sadoway TR, Krestel H, Schaller A, Papacostas SS, Kousiappa I, Tanteles GA, Christou Y, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Neubauer BA, Zimprich F, Feucht M, Reinthaler EM, Kunz WS, Zsurka G, Surges R, Baumgartner T, von Wrede R, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Lauxmann S, Boßelmann C, Kegele J, et alMotelow JE, Povysil G, Dhindsa RS, Stanley KE, Allen AS, Feng YCA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Cusick C, Singh T, Heyne H, Byrnes AE, Churchhouse C, Watts N, Solomonson M, Lal D, Gupta N, Neale BM, Cavalleri GL, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Hakonarson H, Heinzen EL, Helbig I, Kwan P, Marson AG, Petrovski S, Kamalakaran S, Sisodiya SM, Stewart R, Weckhuysen S, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, Krause R, May P, McKenna K, Regan BM, Bennett CA, Leu C, Leech SL, O’Brien TJ, Todaro M, Stamberger H, Andrade DM, Ali QZ, Sadoway TR, Krestel H, Schaller A, Papacostas SS, Kousiappa I, Tanteles GA, Christou Y, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Neubauer BA, Zimprich F, Feucht M, Reinthaler EM, Kunz WS, Zsurka G, Surges R, Baumgartner T, von Wrede R, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Lauxmann S, Boßelmann C, Kegele J, Hengsbach C, Rau S, Steinhoff BJ, Schulze-Bonhage A, Borggräfe I, Schankin CJ, Schubert-Bast S, Schreiber H, Mayer T, Korinthenberg R, Brockmann K, Wolff M, Dennig D, Madeleyn R, Kälviäinen R, Saarela A, Timonen O, Linnankivi T, Lehesjoki AE, Rheims S, Lesca G, Ryvlin P, Maillard L, Valton L, Derambure P, Bartolomei F, Hirsch E, Michel V, Chassoux F, Rees MI, Chung SK, Pickrell WO, Powell R, Baker MD, Fonferko-Shadrach B, Lawthom C, Anderson J, Schneider N, Balestrini S, Zagaglia S, Braatz V, Johnson MR, Auce P, Sills GJ, Baum LW, Sham PC, Cherny SS, Lui CH, Delanty N, Doherty CP, Shukralla A, El-Naggar H, Widdess-Walsh P, Barišić N, Canafoglia L, Franceschetti S, Castellotti B, Granata T, Ragona F, Zara F, Iacomino M, Riva A, Madia F, Vari MS, Salpietro V, Scala M, Mancardi MM, Nobili L, Amadori E, Giacomini T, Bisulli F, Pippucci T, Licchetta L, Minardi R, Tinuper P, Muccioli L, Mostacci B, Gambardella A, Labate A, Annesi G, Manna L, Gagliardi M, Parrini E, Mei D, Vetro A, Bianchini C, Montomoli M, Doccini V, Barba C, Hirose S, Ishii A, Suzuki T, Inoue Y, Yamakawa K, Beydoun A, Nasreddine W, Khoueiry Zgheib N, Tumiene B, Utkus A, Sadleir LG, King C, Caglayan SH, Arslan M, Yapıcı Z, Topaloglu P, Kara B, Yis U, Turkdogan D, Gundogdu-Eken A, Bebek N, Uğur-İşeri S, Baykan B, Salman B, Haryanyan G, Yücesan E, Kesim Y, Özkara Y, Tsai MH, Ho CJ, Lin CH, Lin KL, Chou IJ, Poduri A, Shiedley BR, Shain C, Noebels JL, Goldman A, Busch RM, Jehi L, Najm IM, Ferguson L, Khoury J, Glauser TA, Clark PO, Buono RJ, Ferraro TN, Sperling MR, Lo W, Privitera M, French JA, Schachter S, Kuzniecky RI, Devinsky O, Hegde M, Greenberg DA, Ellis CA, Goldberg E, Helbig KL, Cosico M, Vaidiswaran P, Fitch E, Berkovic SF, Lerche H, Lowenstein DH, Goldstein DB. Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals. Am J Hum Genet 2021; 108:965-982. [PMID: 33932343 PMCID: PMC8206159 DOI: 10.1016/j.ajhg.2021.04.009] [Show More Authors] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
Collapse
|
46
|
Vieira MM, Jeong J, Roche KW. The role of NMDA receptor and neuroligin rare variants in synaptic dysfunction underlying neurodevelopmental disorders. Curr Opin Neurobiol 2021; 69:93-104. [PMID: 33823469 DOI: 10.1016/j.conb.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022]
Abstract
Many genes encoding synaptic proteins are associated with neurodevelopmental disorders (NDDs) such as autism spectrum disorders (ASDs), intellectual disability (ID), and epilepsy. Here we review recent studies on the synaptic effects of disease-associated rare variants identified in two families of synaptic proteins: NMDA receptors (NMDARs) and the postsynaptic adhesion molecules neuroligins (NLGNs). Many NMDAR subunit genes (GRINs) are highly intolerant to variation, and both gain-of-function (GOF) and loss-of-function (LOF) variants are implicated in disease. NLGN genes are also associated with ASDs, and in some cases, contribute to the male bias identified in these patients. Understanding the molecular basis of synaptic dysfunction of rare variants in these genes will help the design of new therapeutic approaches.
Collapse
Affiliation(s)
- Marta Mota Vieira
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jaehoon Jeong
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Horak M, Barackova P, Langore E, Netolicky J, Rivas-Ramirez P, Rehakova K. The Extracellular Domains of GluN Subunits Play an Essential Role in Processing NMDA Receptors in the ER. Front Neurosci 2021; 15:603715. [PMID: 33796003 PMCID: PMC8007919 DOI: 10.3389/fnins.2021.603715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian central nervous system (CNS). Functional NMDARs consist of heterotetramers comprised of GluN1, GluN2A-D, and/or GluN3A-B subunits, each of which contains four membrane domains (M1 through M4), an intracellular C-terminal domain, a large extracellular N-terminal domain composed of the amino-terminal domain and the S1 segment of the ligand-binding domain (LBD), and an extracellular loop between M3 and M4, which contains the S2 segment of the LBD. Both the number and type of NMDARs expressed at the cell surface are regulated at several levels, including their translation and posttranslational maturation in the endoplasmic reticulum (ER), intracellular trafficking via the Golgi apparatus, lateral diffusion in the plasma membrane, and internalization and degradation. This review focuses on the roles played by the extracellular regions of GluN subunits in ER processing. Specifically, we discuss the presence of ER retention signals, the integrity of the LBD, and critical N-glycosylated sites and disulfide bridges within the NMDAR subunits, each of these steps must pass quality control in the ER in order to ensure that only correctly assembled NMDARs are released from the ER for subsequent processing and trafficking to the surface. Finally, we discuss the effect of pathogenic missense mutations within the extracellular domains of GluN subunits with respect to ER processing of NMDARs.
Collapse
Affiliation(s)
- Martin Horak
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Barackova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Emily Langore
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Netolicky
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Paula Rivas-Ramirez
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Kristyna Rehakova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
48
|
Iacobucci GJ, Wen H, Helou M, Liu B, Zheng W, Popescu GK. Cross-subunit interactions that stabilize open states mediate gating in NMDA receptors. Proc Natl Acad Sci U S A 2021; 118:e2007511118. [PMID: 33384330 PMCID: PMC7812756 DOI: 10.1073/pnas.2007511118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
NMDA receptors are excitatory channels with critical functions in the physiology of central synapses. Their activation reaction proceeds as a series of kinetically distinguishable, reversible steps, whose structural bases are currently under investigation. Very likely, the earliest steps include glutamate binding to glycine-bound receptors and subsequent constriction of the ligand-binding domain. Later, three short linkers transduce this movement to open the gate by mechanical pulling on transmembrane helices. Here, we used molecular and kinetic simulations and double-mutant cycle analyses to show that a direct chemical interaction between GluN1-I642 (on M3 helix) and GluN2A-L550 (on L1-M1 linker) stabilizes receptors after they have opened and thus represents one of the structural changes that occur late in the activation reaction. This native interaction extends the current decay, and its absence causes deficits in charge transfer by GluN1-I642L, a pathogenic human variant.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14203
| | - Han Wen
- Department of Physics, College of Arts and Sciences, University at Buffalo, SUNY, Buffalo, NY 14260
| | - Matthew Helou
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14203
| | - Beiying Liu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14203
| | - Wenjun Zheng
- Department of Physics, College of Arts and Sciences, University at Buffalo, SUNY, Buffalo, NY 14260
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14203;
| |
Collapse
|
49
|
Squires KE, Gerber KJ, Tillman MC, Lustberg DJ, Montañez-Miranda C, Zhao M, Ramineni S, Scharer CD, Saha RN, Shu FJ, Schroeder JP, Ortlund EA, Weinshenker D, Dudek SM, Hepler JR. Human genetic variants disrupt RGS14 nuclear shuttling and regulation of LTP in hippocampal neurons. J Biol Chem 2021; 296:100024. [PMID: 33410399 PMCID: PMC7949046 DOI: 10.1074/jbc.ra120.016009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The human genome contains vast genetic diversity as naturally occurring coding variants, yet the impact of these variants on protein function and physiology is poorly understood. RGS14 is a multifunctional signaling protein that suppresses synaptic plasticity in dendritic spines of hippocampal neurons. RGS14 also is a nucleocytoplasmic shuttling protein, suggesting that balanced nuclear import/export and dendritic spine localization are essential for RGS14 functions. We identified genetic variants L505R (LR) and R507Q (RQ) located within the nuclear export sequence (NES) of human RGS14. Here we report that RGS14 encoding LR or RQ profoundly impacts protein functions in hippocampal neurons. RGS14 membrane localization is regulated by binding Gαi-GDP, whereas RGS14 nuclear export is regulated by Exportin 1 (XPO1). Remarkably, LR and RQ variants disrupt RGS14 binding to Gαi1-GDP and XPO1, nucleocytoplasmic equilibrium, and capacity to inhibit long-term potentiation (LTP). Variant LR accumulates irreversibly in the nucleus, preventing RGS14 binding to Gαi1, localization to dendritic spines, and inhibitory actions on LTP induction, while variant RQ exhibits a mixed phenotype. When introduced into mice by CRISPR/Cas9, RGS14-LR protein expression was detected predominantly in the nuclei of neurons within hippocampus, central amygdala, piriform cortex, and striatum, brain regions associated with learning and synaptic plasticity. Whereas mice completely lacking RGS14 exhibit enhanced spatial learning, mice carrying variant LR exhibit normal spatial learning, suggesting that RGS14 may have distinct functions in the nucleus independent from those in dendrites and spines. These findings show that naturally occurring genetic variants can profoundly alter normal protein function, impacting physiology in unexpected ways.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | - Kyle J Gerber
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | | | - Daniel J Lustberg
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | | | - Meilan Zhao
- National Institute of Environmental Health Sciences, Research Triangle Park, Raleigh North Carolina, USA
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | | | - Ramendra N Saha
- Department of Molecular & Cell Biology, University of California-Merced, Merced California, USA
| | - Feng-Jue Shu
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | - Jason P Schroeder
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | - Serena M Dudek
- National Institute of Environmental Health Sciences, Research Triangle Park, Raleigh North Carolina, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA.
| |
Collapse
|
50
|
Amin JB, Gochman A, He M, Certain N, Wollmuth LP. NMDA Receptors Require Multiple Pre-opening Gating Steps for Efficient Synaptic Activity. Neuron 2020; 109:488-501.e4. [PMID: 33264592 DOI: 10.1016/j.neuron.2020.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate fast excitatory synaptic transmission in the nervous system. Applying glutamate to outside-out patches containing a single NMDAR, we find that agonist-bound receptors transition to the open state via two conformations, an "unconstrained pre-active" state that contributes to fast synaptic events and a "constrained pre-active" state that does not. To define how glutamate drives these conformations, we decoupled the ligand-binding domains from specific transmembrane segments for GluN1 and GluN2A. Displacements of the pore-forming M3 segments define the energy of fast opening. However, to enter the unconstrained conformation and contribute to fast signaling, the GluN2 pre-M1 helix must be displaced before the M3 segments move. This pre-M1 displacement is facilitated by the flexibility of the S2-M4 of GluN1 and GluN2A. Thus, outer structures-pre-M1 and S2-M4-work in concert to remove constraints and prime the channel for rapid opening, facilitating fast synaptic transmission.
Collapse
Affiliation(s)
- Johansen B Amin
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794-5230, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Aaron Gochman
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Miaomiao He
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Noele Certain
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794-5230, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| |
Collapse
|